1
|
Gong Z, Zhang X, Cui J, Chen W, Huang X, Yang Q, Li T, Zhang W. IFRD2, a target of miR-2400, regulates myogenic differentiation of bovine skeletal muscle satellite cells via decreased phosphorylation of ERK1/2 proteins. J Muscle Res Cell Motil 2024; 45:253-262. [PMID: 38896394 DOI: 10.1007/s10974-024-09677-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
The proliferation and differentiation of skeletal muscle satellite cells is a complex physiological process involving various transcription factors and small RNA molecules. This study aimed to understand the regulatory mechanisms underlying these processes, focusing on interferon-related development factor 2 (IFRD2) as a target gene of miRNA-2400 in bovine skeletal MuSCs (MuSCs). IFRD2 was identified as a target gene of miRNA-2400 involved in regulating the proliferation and differentiation of bovine skeletal MuSCs. Our results indicate that miR-2400 can target binding the 3'UTR of IFRD2 and inhibit its translation. mRNA and protein expression levels of IFRD2 increased significantly with increasing days of differentiation. Moreover, overexpression of the IFRD2 gene inhibited proliferation and promoted differentiation of bovine MuSCs. Conversely, the knockdown of the gene had the opposite effect. Overexpression of IFRD2 resulted in the inhibition of ERK1/2 phosphorylation levels in bovine MuSCs, which in turn promoted differentiation. In summary, IFRD2, as a target gene of miR-2400, crucially affects bovine skeletal muscle proliferation and differentiation by precisely regulating ERK1/2 phosphorylation.
Collapse
Affiliation(s)
- Zhian Gong
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, Jianhua District, Qiqihar, 161000, PR China
| | - Xiaoyu Zhang
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, Jianhua District, Qiqihar, 161000, PR China
| | - Jingxuan Cui
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, Jianhua District, Qiqihar, 161000, PR China
| | - Wen Chen
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, Jianhua District, Qiqihar, 161000, PR China
| | - Xin Huang
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, Jianhua District, Qiqihar, 161000, PR China
- Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang Province, 161000, PR China
| | - Qingzhu Yang
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, Jianhua District, Qiqihar, 161000, PR China
- Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang Province, 161000, PR China
| | - Tie Li
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, Jianhua District, Qiqihar, 161000, PR China
| | - Weiwei Zhang
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, Jianhua District, Qiqihar, 161000, PR China.
| |
Collapse
|
2
|
Chen MM, Zhao Y, Yu K, Xu XL, Zhang XS, Zhang JL, Wu SJ, Liu ZM, Yuan YM, Guo XF, Qi SY, Yi G, Wang SQ, Li HX, Wu AW, Liu GS, Deng SL, Han HB, Lv FH, Lian D, Lian ZX. A MSTNDel73C mutation with FGF5 knockout sheep by CRISPR/Cas9 promotes skeletal muscle myofiber hyperplasia. eLife 2024; 12:RP86827. [PMID: 39365728 PMCID: PMC11452178 DOI: 10.7554/elife.86827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024] Open
Abstract
Mutations in the well-known Myostatin (MSTN) produce a 'double-muscle' phenotype, which makes it commercially invaluable for improving livestock meat production and providing high-quality protein for humans. However, mutations at different loci of the MSTN often produce a variety of different phenotypes. In the current study, we increased the delivery ratio of Cas9 mRNA to sgRNA from the traditional 1:2 to 1:10, which improves the efficiency of the homozygous mutation of biallelic gene. Here, a MSTNDel73C mutation with FGF5 knockout sheep, in which the MSTN and FGF5 dual-gene biallelic homozygous mutations were produced via the deletion of 3-base pairs of AGC in the third exon of MSTN, resulting in cysteine-depleted at amino acid position 73, and the FGF5 double allele mutation led to inactivation of FGF5 gene. The MSTNDel73C mutation with FGF5 knockout sheep highlights a dominant 'double-muscle' phenotype, which can be stably inherited. Both F0 and F1 generation mutants highlight the excellent trait of high-yield meat with a smaller cross-sectional area and higher number of muscle fibers per unit area. Mechanistically, the MSTNDel73C mutation with FGF5 knockout mediated the activation of FOSL1 via the MEK-ERK-FOSL1 axis. The activated FOSL1 promotes skeletal muscle satellite cell proliferation and inhibits myogenic differentiation by inhibiting the expression of MyoD1, and resulting in smaller myotubes. In addition, activated ERK1/2 may inhibit the secondary fusion of myotubes by Ca2+-dependent CaMKII activation pathway, leading to myoblasts fusion to form smaller myotubes.
Collapse
Affiliation(s)
- Ming-Ming Chen
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Yue Zhao
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Kun Yu
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Xue-Ling Xu
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Xiao-Sheng Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural SciencesTianjinChina
| | - Jin-Long Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural SciencesTianjinChina
| | - Su-Jun Wu
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Zhi-Mei Liu
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Yi-Ming Yuan
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Xiao-Fei Guo
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural SciencesTianjinChina
| | - Shi-Yu Qi
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Guang Yi
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Shu-Qi Wang
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Huang-Xiang Li
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Ao-Wu Wu
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Guo-Shi Liu
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Shou-Long Deng
- National Center of Technology Innovation for animal model, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical CollegeBeijingChina
| | - Hong-Bing Han
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Feng-Hua Lv
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Di Lian
- College of Pulmonary and Critical Care Medicine, Chinese PLA General HospitalBeijingChina
| | - Zheng-Xing Lian
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| |
Collapse
|
3
|
Klimenko ES, Sukhareva KS, Vlasova Y, Smolina NA, Fomicheva Y, Knyazeva A, Muravyev AS, Sorokina MY, Gavrilova LS, Boldyreva LV, Medvedeva SS, Sejersen T, Kostareva AA. Flnc expression impacts mitochondrial function, autophagy, and calcium handling in C2C12 cells. Exp Cell Res 2024; 442:114174. [PMID: 39089502 DOI: 10.1016/j.yexcr.2024.114174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Affiliation(s)
- E S Klimenko
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - K S Sukhareva
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - YuA Vlasova
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - N A Smolina
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - YuV Fomicheva
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - A Knyazeva
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - A S Muravyev
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - M Yu Sorokina
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - L S Gavrilova
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - L V Boldyreva
- Scientific-Research Institute of Neurosciences and Medicine, Novosibirsk, Russia; Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S S Medvedeva
- Scientific-Research Institute of Neurosciences and Medicine, Novosibirsk, Russia; Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - T Sejersen
- Department of Women's and Children's Health, Karolinska Institutet, Department of Child Neurology, Karolinska University Hospital, Astrid Lindgren Children's Hospital, Stockholm, Sweden; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - A A Kostareva
- Almazov National Medical Research Centre, Saint-Petersburg, Russia; Department of Women's and Children's Health, Karolinska Institutet, Department of Child Neurology, Karolinska University Hospital, Astrid Lindgren Children's Hospital, Stockholm, Sweden; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, New Territories, Hong Kong.
| |
Collapse
|
4
|
Ren T, Xu M, Lin W, Luo W, Zhang X. Transcriptome sequencing reveals the potential mechanisms of dietary lutein regulation on chicken leg muscle development. Poult Sci 2024; 103:104265. [PMID: 39293263 PMCID: PMC11426042 DOI: 10.1016/j.psj.2024.104265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/03/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024] Open
Abstract
Lutein is an antioxidant that can indicate the oxidative status of organisms through its coloration and may be involved in the development process of chicken skeletal muscle. In this study, after feeding Nanhai Yellow Chickens with lutein-containing feed for 21 d, the lutein group significantly increased the muscle fiber diameter and decreased the fiber density in the chicken's leg muscles compared to the control group. To elucidate the potential regulatory mechanisms by which lutein is involved in muscle development, RNA-seq was used to detect changes in gene expression in chicken leg muscle tissue. After data analysis, a total of 249 significantly differentially expressed genes (DEG) were identified, including TGF-β superfamily (MSTN and TGFB1) and nonreceptor tyrosine kinase c-Src (SRC). Results from GO and KEGG analysis showed that the DEGs were enriched in GO terms such as positive regulation of the ERK1/ERK2 cascade and negative regulation of myoblast differentiation, as well as signaling pathways including the Toll-like receptor signaling pathway and the MAPK signaling pathway. These significantly enriched GO terms and pathways are closely related to muscle development, suggesting that lutein may play an important role in the process of chicken muscle development. This study provides insights into the regulatory mechanisms of dietary lutein on chicken muscle development.
Collapse
Affiliation(s)
- Tuanhui Ren
- Department of Animal Genetics, College of Animal Science, Breeding and Reproduction, South China Agricultural University, Guangzhou, 510642, China; Guangdong Key Laboratory of Genome and Molecular Breeding of Agricultural Animals and Key Laboratory of Chicken Genetic Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Meng Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Wujian Lin
- Department of Animal Genetics, College of Animal Science, Breeding and Reproduction, South China Agricultural University, Guangzhou, 510642, China; Guangdong Key Laboratory of Genome and Molecular Breeding of Agricultural Animals and Key Laboratory of Chicken Genetic Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Wen Luo
- Department of Animal Genetics, College of Animal Science, Breeding and Reproduction, South China Agricultural University, Guangzhou, 510642, China; Guangdong Key Laboratory of Genome and Molecular Breeding of Agricultural Animals and Key Laboratory of Chicken Genetic Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- Department of Animal Genetics, College of Animal Science, Breeding and Reproduction, South China Agricultural University, Guangzhou, 510642, China; Guangdong Key Laboratory of Genome and Molecular Breeding of Agricultural Animals and Key Laboratory of Chicken Genetic Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Kawecki NS, Chen KK, Smith CS, Xie Q, Cohen JM, Rowat AC. Scalable Processes for Culturing Meat Using Edible Scaffolds. Annu Rev Food Sci Technol 2024; 15:241-264. [PMID: 38211941 DOI: 10.1146/annurev-food-072023-034451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
There is increasing consumer demand for alternative animal protein products that are delicious and sustainably produced to address concerns about the impacts of mass-produced meat on human and planetary health. Cultured meat has the potential to provide a source of nutritious dietary protein that both is palatable and has reduced environmental impact. However, strategies to support the production of cultured meats at the scale required for food consumption will be critical. In this review, we discuss the current challenges and opportunities of using edible scaffolds for scaling up the production of cultured meat. We provide an overview of different types of edible scaffolds, scaffold fabrication techniques, and common scaffold materials. Finally, we highlight potential advantages of using edible scaffolds to advance cultured meat production by accelerating cell growth and differentiation, providing structure to build complex 3D tissues, and enhancing the nutritional and sensory properties of cultured meat.
Collapse
Affiliation(s)
- N Stephanie Kawecki
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Kathleen K Chen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Corinne S Smith
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Qingwen Xie
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
| | - Julian M Cohen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
| | - Amy C Rowat
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
- Broad Stem Cell Center, University of California, Los Angeles, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
6
|
Afsar B, Afsar RE, Caliskan Y, Lentine KL, Edwards JC. Renin angiotensin system-induced muscle wasting: putative mechanisms and implications for clinicians. Mol Cell Biochem 2024:10.1007/s11010-024-05043-8. [PMID: 38811433 DOI: 10.1007/s11010-024-05043-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Renin angiotensin system (RAS) alters various mechanisms related to muscle wasting. The RAS system consists of classical and non-classical pathways, which mostly function differently. Classical RAS pathway, operates through angiotensin II (AngII) and angiotensin type 1 receptors, is associated with muscle wasting and sarcopenia. On the other hand, the non-classical RAS pathway, which operates through angiotensin 1-7 and Mas receptor, is protective against sarcopenia. The classical RAS pathway might induce muscle wasting by variety of mechanisms. AngII reduces body weight, via reduction in food intake, possibly by decreasing hypothalamic expression of orexin and neuropeptide Y, insulin like growth factor-1 (IGF-1) and mammalian target of rapamycin (mTOR), signaling, AngII increases skeletal muscle proteolysis by forkhead box transcription factors (FOXO), caspase activation and muscle RING-finger protein-1 transcription. Furthermore, AngII infusion in skeletal muscle reduces phospho-Bad (Ser136) expression and induces apoptosis through increased cytochrome c release and DNA fragmentation. Additionally, Renin angiotensin system activation through AT1R and AngII stimulates tumor necrosis factor-α, and interleukin-6 which induces muscle wasting, Last but not least classical RAS pathway, induce oxidative stress, disturb mitochondrial energy metabolism, and muscle satellite cells which all lead to muscle wasting and decrease muscle regeneration. On the contrary, the non-classical RAS pathway functions oppositely to mitigate these mechanisms and protects against muscle wasting. In this review, we summarize the mechanisms of RAS-induced muscle wasting and putative implications for clinical practice. We also emphasize the areas of uncertainties and suggest potential research areas.
Collapse
Affiliation(s)
- Baris Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey.
- Division of Nephrology, School of Medicine, Saint Louis University, St. Louis, MO, USA.
| | - Rengin Elsurer Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey
- Division of Nephrology, School of Medicine, Saint Louis University, St. Louis, MO, USA
| | - Yasar Caliskan
- Division of Nephrology, School of Medicine, Saint Louis University, St. Louis, MO, USA
| | - Krista L Lentine
- Division of Nephrology, School of Medicine, Saint Louis University, St. Louis, MO, USA
| | - John C Edwards
- Division of Nephrology, School of Medicine, Saint Louis University, St. Louis, MO, USA
| |
Collapse
|
7
|
Geng S, Liu SB, He W, Pan X, Sun Y, Xue T, Han S, Lou J, Chang Y, Zheng J, Shi X, Li Y, Song YH. Deletion of TECRL promotes skeletal muscle repair by up-regulating EGR2. Proc Natl Acad Sci U S A 2024; 121:e2317495121. [PMID: 38753506 PMCID: PMC11126978 DOI: 10.1073/pnas.2317495121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/10/2024] [Indexed: 05/18/2024] Open
Abstract
Myogenic regeneration relies on the proliferation and differentiation of satellite cells. TECRL (trans-2,3-enoyl-CoA reductase like) is an endoplasmic reticulum protein only expressed in cardiac and skeletal muscle. However, its role in myogenesis remains unknown. We show that TECRL expression is increased in response to injury. Satellite cell-specific deletion of TECRL enhances muscle repair by increasing the expression of EGR2 through the activation of the ERK1/2 signaling pathway, which in turn promotes the expression of PAX7. We further show that TECRL deletion led to the upregulation of the histone acetyltransferase general control nonderepressible 5, which enhances the transcription of EGR2 through acetylation. Importantly, we showed that AAV9-mediated TECRL silencing improved muscle repair in mice. These findings shed light on myogenic regeneration and muscle repair.
Collapse
Affiliation(s)
- Sha Geng
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou215123, People’s Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou215123, People’s Republic of China
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, SuzhouJiangsu215000, People’s Republic of China
| | - Song-Bai Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou215009, People’s Republic of China
| | - Wei He
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou215123, People’s Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou215123, People’s Republic of China
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, SuzhouJiangsu215000, People’s Republic of China
| | - Xiangbin Pan
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, China and Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100037, People’s Republic of China
| | - Yi Sun
- Department of Cardiovascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Kunming650102, People’s Republic of China
| | - Ting Xue
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou215123, People’s Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou215123, People’s Republic of China
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, SuzhouJiangsu215000, People’s Republic of China
| | - Shiyuan Han
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou215123, People’s Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou215123, People’s Republic of China
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, SuzhouJiangsu215000, People’s Republic of China
| | - Jing Lou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou215123, People’s Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou215123, People’s Republic of China
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, SuzhouJiangsu215000, People’s Republic of China
| | - Ying Chang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou215123, People’s Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou215123, People’s Republic of China
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, SuzhouJiangsu215000, People’s Republic of China
| | - Jiqing Zheng
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou215123, People’s Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou215123, People’s Republic of China
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, SuzhouJiangsu215000, People’s Republic of China
| | - Xinghong Shi
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou215123, People’s Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou215123, People’s Republic of China
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, SuzhouJiangsu215000, People’s Republic of China
| | - Yangxin Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, SuzhouJiangsu215000, People’s Republic of China
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou215123, People’s Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou215123, People’s Republic of China
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, SuzhouJiangsu215000, People’s Republic of China
| |
Collapse
|
8
|
Zhang Z, Kang Z, Deng K, Li J, Liu Z, Huang X, Wang F, Fan Y. circUSP13 facilitates the fast-to-slow myofiber shift via the MAPK/ERK signaling pathway in goat skeletal muscles. J Cell Physiol 2024; 239:e31226. [PMID: 38591363 DOI: 10.1002/jcp.31226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 04/10/2024]
Abstract
Understanding how skeletal muscle fiber proportions are regulated is essential for understanding muscle function and improving the quality of mutton. While circular RNA (circRNA) has a critical function in myofiber type transformation, the specific mechanisms are not yet fully understood. Prior evidence indicates that circular ubiquitin-specific peptidase 13 (circUSP13) can promote myoblast differentiation by acting as a ceRNA, but its potential role in myofiber switching is still unknown. Herein, we found that circUSP13 enhanced slow myosin heavy chain (MyHC-slow) and suppressed MyHC-fast expression in goat primary myoblasts (GPMs). Meanwhile, circUSP13 evidently enhanced the remodeling of the mitochondrial network while inhibiting the autophagy of GPMs. We obtained fast-dominated myofibers, via treatment with rotenone, and further demonstrated the positive role of circUSP13 in the fast-to-slow transition. Mechanistically, activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway significantly impaired the slow-to-fast shift in fully differentiated myotubes, which was restored by circUSP13 or IGF1 overexpression. In conclusion, circUSP13 promoted the fast-to-slow myofiber type transition through MAPK/ERK signaling in goat skeletal muscle. These findings provide novel insights into the role of circUSP13 in myofiber type transition and contribute to a better understanding of the genetic mechanisms underlying meat quality.
Collapse
Affiliation(s)
- Zhen Zhang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - Ziqi Kang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - Kaiping Deng
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - Juan Li
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - Zhipeng Liu
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - Xinai Huang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
- College of Animal Science, Shanxi Agricultural University, Taiyuan, China
| | - Feng Wang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - Yixuan Fan
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Liu F, Cao Y, Wang X, Zhang K, Li N, Su Y, Zhang Y, Meng Q. Islr regulates satellite cells asymmetric division through the SPARC/p-ERK1/2 signaling pathway. FASEB J 2024; 38:e23534. [PMID: 38597911 DOI: 10.1096/fj.202302614r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/03/2024] [Accepted: 02/20/2024] [Indexed: 04/11/2024]
Abstract
Satellite cells (SCs) are adult muscle stem cells responsible for muscle regeneration after acute and chronic muscle injuries. The balance between stem cell self-renewal and differentiation determines the kinetics and efficiency of skeletal muscle regeneration. This study assessed the function of Islr in SC asymmetric division. The deletion of Islr reduced muscle regeneration in adult mice by decreasing the SC pool. Islr is pivotal for SC proliferation, and its deletion promoted the asymmetric division of SCs. A mechanistic search revealed that Islr bound to and degraded secreted protein acidic and rich in cysteine (SPARC), which activated p-ERK1/2 signaling required for asymmetric division. These findings demonstrate that Islr is a key regulator of SC division through the SPARC/p-ERK1/2 signaling pathway. These data provide a basis for treating myopathy.
Collapse
Affiliation(s)
- Fan Liu
- State Key Laboratories for Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Yuxin Cao
- State Key Laboratories for Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Xiong Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Kuo Zhang
- State Key Laboratories for Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Na Li
- State Key Laboratories for Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Yang Su
- State Key Laboratories for Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Yali Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qingyong Meng
- State Key Laboratories for Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Olson LC, Nguyen T, Sabalewski EL, Puetzer JL, Schwartz Z, McClure MJ. S100b treatment overcomes RAGE signaling deficits in myoblasts on advanced glycation end-product cross-linked collagen and promotes myogenic differentiation. Am J Physiol Cell Physiol 2024; 326:C1080-C1093. [PMID: 38314727 DOI: 10.1152/ajpcell.00502.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Advanced glycation end-products (AGEs) stochastically accrue in skeletal muscle and on collagen over an individual's lifespan, stiffening the muscle and modifying the stem cell (MuSC) microenvironment while promoting proinflammatory, antiregenerative signaling via the receptor for advanced glycation end-products (RAGEs). In the present study, a novel in vitro model was developed of this phenomenon by cross linking a 3-D collagen scaffold with AGEs and investigating how myoblasts responded to such an environment. Briefly, collagen scaffolds were incubated with d-ribose (0, 25, 40, 100, or 250 mM) for 5 days at 37°C. C2C12 immortalized mouse myoblasts were grown on the scaffolds for 6 days in growth conditions for proliferation, and 12 days for differentiation and fusion. Human primary myoblasts were also used to confirm the C2C12 data. AGEs aberrantly extended the DNA production stage of C2C12s (but not in human primary myoblasts) which is known to delay differentiation in myogenesis, and this effect was prevented by RAGE inhibition. Furthermore, the differentiation and fusion of myoblasts were disrupted by AGEs, which were associated with reductions in integrins and suppression of RAGE. The addition of S100b (RAGE agonist) recovered the differentiation and fusion of myoblasts, and the addition of RAGE inhibitors (FPS-ZM1 and Azeliragon) inhibited the differentiation and fusion of myoblasts. Our results provide novel insights into the role of the AGE-RAGE axis in skeletal muscle aging, and future work is warranted on the potential application of S100b as a proregenerative factor in aged skeletal muscle.NEW & NOTEWORTHY Collagen cross-linked by advanced glycation end-products (AGEs) induced myoblast proliferation but prevented differentiation, myotube formation, and RAGE upregulation. RAGE inhibition occluded AGE-induced myoblast proliferation, while the delivery of S100b, a RAGE ligand, recovered fusion deficits.
Collapse
Affiliation(s)
- Lucas C Olson
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
- Department of Gerontology, College of Health Professionals, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Tri Nguyen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Eleanor L Sabalewski
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Jennifer L Puetzer
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
- Department of Orthopaedic Surgery, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Zvi Schwartz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Michael J McClure
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
- Department of Orthopaedic Surgery, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| |
Collapse
|
11
|
O'Leary MF, Jackman SR, Bowtell JL. Shatavari supplementation in postmenopausal women alters the skeletal muscle proteome and pathways involved in training adaptation. Eur J Nutr 2024; 63:869-879. [PMID: 38214710 PMCID: PMC10948523 DOI: 10.1007/s00394-023-03310-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 12/10/2023] [Indexed: 01/13/2024]
Abstract
PURPOSE Shatavari is an understudied, widely available herbal supplement. It contains steroidal saponins and phytoestrogens. We previously showed that six weeks of shatavari supplementation improved handgrip strength and increased markers of myosin contractile function. Mechanistic insights into shatavari's actions are limited. Therefore, we performed proteomics on vastus lateralis (VL) samples that remained from our original study. METHODS In a randomised double-blind trial, women (68.5 ± 6 years) ingested either placebo or shatavari (equivalent to 26,500 mg/d fresh weight) for six weeks. Tandem mass tag global proteomic analysis of VL samples was conducted (N = 7 shatavari, N = 5 placebo). Data were normalized to total peptides and scaled using a reference sample. Data were filtered using a 5% FDR. For each protein, the pre to post supplementation difference was expressed as log2 fold change. Welch's t tests with Benjamini-Hochberg corrections were performed for each protein. Pathway enrichment (PADOG, CAMERA) was interrogated in Reactome (v85). RESULTS No individual protein was significantly different between supplementation conditions. Both PADOG and CAMERA indicated that pathways related to (1) Integrin/MAPK signalling, (2) metabolism/insulin secretion; (3) cell proliferation/senescence/DNA repair/cell death; (4) haemostasis/platelets/fibrin; (5) signal transduction; (6) neutrophil degranulation and (7) chemical synapse function were significantly upregulated. CAMERA indicated pathways related to translation/amino acid metabolism, viral infection, and muscle contraction were downregulated. CONCLUSION Our analyses indicate that shatavari may support muscle adaptation responses to exercise. These data provide useful signposts for future investigation of shatavari's utility in conserving and enhancing musculoskeletal function in older age. TRIAL REGISTRATION NCT05025917 30/08/21, retrospectively registered.
Collapse
Affiliation(s)
- Mary F O'Leary
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| | - Sarah R Jackman
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Joanna L Bowtell
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
12
|
Bareja A, Lee DE, Ho T, Waitt G, McKay LH, Hannou SA, Orenduff MC, McGreevy KM, Binder A, Ryan CP, Soderblom EJ, Belsky DW, Ferrucci L, Das JK, Banskota N, Kraus VB, Huebner JL, Kraus WE, Huffman KM, Baht GS, Horvath S, Parmer RJ, Miles LA, White JP. Liver-derived plasminogen mediates muscle stem cell expansion during caloric restriction through the plasminogen receptor Plg-R KT. Cell Rep 2024; 43:113881. [PMID: 38442019 PMCID: PMC11075744 DOI: 10.1016/j.celrep.2024.113881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 08/08/2023] [Accepted: 02/13/2024] [Indexed: 03/07/2024] Open
Abstract
An intriguing effect of short-term caloric restriction (CR) is the expansion of certain stem cell populations, including muscle stem cells (satellite cells), which facilitate an accelerated regenerative program after injury. Here, we utilized the MetRSL274G (MetRS) transgenic mouse to identify liver-secreted plasminogen as a candidate for regulating satellite cell expansion during short-term CR. Knockdown of circulating plasminogen prevents satellite cell expansion during short-term CR. Furthermore, loss of the plasminogen receptor KT (Plg-RKT) is also sufficient to prevent CR-related satellite cell expansion, consistent with direct signaling of plasminogen through the plasminogen receptor Plg-RKT/ERK kinase to promote proliferation of satellite cells. Importantly, we are able to replicate many of these findings in human participants from the CALERIE trial. Our results demonstrate that CR enhances liver protein secretion of plasminogen, which signals directly to the muscle satellite cell through Plg-RKT to promote proliferation and subsequent muscle resilience during CR.
Collapse
Affiliation(s)
- Akshay Bareja
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA
| | - David E Lee
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA
| | - Tricia Ho
- Proteomics and Metabolomics Core Facility, Duke University School of Medicine, Durham, NC, USA
| | - Greg Waitt
- Proteomics and Metabolomics Core Facility, Duke University School of Medicine, Durham, NC, USA
| | - Lauren H McKay
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA; Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of Chapel Hill, Chapel Hill, NC, USA
| | - Sarah A Hannou
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA
| | - Melissa C Orenduff
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA
| | - Kristen M McGreevy
- Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, CA 90095, USA
| | - Alexandra Binder
- Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI 96813, USA; Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA 90095, USA
| | - Calen P Ryan
- Columbia University Mailman School of Public Health, New York, NY, USA
| | - Erik J Soderblom
- Proteomics and Metabolomics Core Facility, Duke University School of Medicine, Durham, NC, USA
| | - Daniel W Belsky
- Columbia University Mailman School of Public Health, New York, NY, USA
| | - Luigi Ferrucci
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jayanta Kumar Das
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nirad Banskota
- Longitudinal Studies Section, Translation Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Virginia B Kraus
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA; Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC 27701, USA
| | - Janet L Huebner
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA
| | - William E Kraus
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA; Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC 27701, USA
| | - Kim M Huffman
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA; Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC 27701, USA
| | - Gurpreet S Baht
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA; Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC 27701, USA; Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC 27701, USA
| | - Steve Horvath
- Computational Biology and Genomics Core, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA; Altos Labs, San Diego, CA, USA
| | - Robert J Parmer
- Department of Medicine, Veterans Administration San Diego Healthcare System, San Diego, CA, USA; Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lindsey A Miles
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - James P White
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA; Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC 27701, USA.
| |
Collapse
|
13
|
Esteca MV, Divino IA, Vieira da Silva AL, Severino MB, Braga RR, Ropelle ER, Simabuco FM, Baptista IL. Parkin is a critical player in the effects of caffeine over mitochondrial quality control pathways during skeletal muscle regeneration in mice. Acta Physiol (Oxf) 2024; 240:e14111. [PMID: 38314948 DOI: 10.1111/apha.14111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 02/07/2024]
Abstract
AIM This study aimed to investigate the effects of caffeine on pathways associated with mitochondrial quality control and mitochondrial capacity during skeletal muscle regeneration, focusing on the role of Parkin, a key protein involved in mitophagy. METHODS We used in vitro C2C12 myoblast during differentiation with and without caffeine in the medium, and we evaluated several markers of mitochondrial quality control pathways and myotube growth. In vivo experiments, we used C57BL/6J (WT) and Parkintm 1Shn lineage (Parkin-/- ) mice and injured tibial anterior muscle. The mice regenerated TA muscle for 3, 10, and 21 days with or without caffeine ingestion. TA muscle was used to analyze the protein content of several markers of mitochondrial quality pathways, muscle satellite cell differentiation, and protein synthesis. Furthermore, it analyzed mtDNA, mitochondrial respiration, and myofiber growth. RESULTS C2C12 differentiation experiments showed that caffeine decreased Parkin content, potentially leading to increased DRP1 and PGC-1α content and altered mitochondrial population, thereby enhancing growth capacity. Using Parkin-/- mice, we found that caffeine intake during the regenerative process induces an increase in AMPKα phosphorylation and PGC-1α and TFAM content, changes that were partly Parkin-dependent. In addition, the absence of Parkin potentiates the ergogenic effect of caffeine by increasing mitochondrial capacity and myotube growth. Those effects are related to increased ATF4 content and activation of protein synthesis pathways, such as increased 4E-BP1 phosphorylation. CONCLUSION These findings demonstrate that caffeine ingestion changes mitochondrial quality control during skeletal muscle regeneration, and Parkin is a central player in those mechanisms.
Collapse
Affiliation(s)
- M V Esteca
- Laboratory of Cell and Tissue Biology, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - I A Divino
- Laboratory of Cell and Tissue Biology, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - A L Vieira da Silva
- Laboratory of Cell and Tissue Biology, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - M B Severino
- Laboratory of Cell and Tissue Biology, School of Applied Sciences, University of Campinas, Limeira, Brazil
- Multidisciplinarity Laboratory of Food and Health, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - R R Braga
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - E R Ropelle
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - F M Simabuco
- Multidisciplinarity Laboratory of Food and Health, School of Applied Sciences, University of Campinas, Limeira, Brazil
- Department of Biochemistry, Federal University of São Paulo, São Paulo, Brazil
| | - I L Baptista
- Laboratory of Cell and Tissue Biology, School of Applied Sciences, University of Campinas, Limeira, Brazil
| |
Collapse
|
14
|
Robertson R, Li S, Filippelli RL, Chang NC. Muscle stem cell dysfunction in rhabdomyosarcoma and muscular dystrophy. Curr Top Dev Biol 2024; 158:83-121. [PMID: 38670717 DOI: 10.1016/bs.ctdb.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Muscle stem cells (MuSCs) are crucial to the repair and homeostasis of mature skeletal muscle. MuSC dysfunction and dysregulation of the myogenic program can contribute to the development of pathology ranging from cancers like rhabdomyosarcoma (RMS) or muscle degenerative diseases such as Duchenne muscular dystrophy (DMD). Both diseases exhibit dysregulation at nearly all steps of myogenesis. For instance, MuSC self-renewal processes are altered. In RMS, this leads to the creation of tumor propagating cells. In DMD, impaired asymmetric stem cell division creates a bias towards producing self-renewing stem cells instead of committing to differentiation. Hyperproliferation of these cells contribute to tumorigenesis in RMS and symmetric expansion of the self-renewing MuSC population in DMD. Both diseases also exhibit a repression of factors involved in terminal differentiation, halting RMS cells in the proliferative stage and thus driving tumor growth. Conversely, the MuSCs in DMD exhibit impaired differentiation and fuse prematurely, affecting myonuclei maturation and the integrity of the dystrophic muscle fiber. Finally, both disease states cause alterations to the MuSC niche. Various elements of the niche such as inflammatory and migratory signaling that impact MuSC behavior are dysregulated. Here we show how these seemingly distantly related diseases indeed have similarities in MuSC dysfunction, underlying the importance of considering MuSCs when studying the pathophysiology of muscle diseases.
Collapse
Affiliation(s)
- Rebecca Robertson
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Shulei Li
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, Canada
| | - Romina L Filippelli
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Natasha C Chang
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, Canada.
| |
Collapse
|
15
|
Wei X, Rigopoulos A, Lienhard M, Pöhle-Kronawitter S, Kotsaris G, Franke J, Berndt N, Mejedo JO, Wu H, Börno S, Timmermann B, Murgai A, Glauben R, Stricker S. Neurofibromin 1 controls metabolic balance and Notch-dependent quiescence of murine juvenile myogenic progenitors. Nat Commun 2024; 15:1393. [PMID: 38360927 PMCID: PMC10869796 DOI: 10.1038/s41467-024-45618-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Patients affected by neurofibromatosis type 1 (NF1) frequently show muscle weakness with unknown etiology. Here we show that, in mice, Neurofibromin 1 (Nf1) is not required in muscle fibers, but specifically in early postnatal myogenic progenitors (MPs), where Nf1 loss led to cell cycle exit and differentiation blockade, depleting the MP pool resulting in reduced myonuclear accretion as well as reduced muscle stem cell numbers. This was caused by precocious induction of stem cell quiescence coupled to metabolic reprogramming of MPs impinging on glycolytic shutdown, which was conserved in muscle fibers. We show that a Mek/Erk/NOS pathway hypersensitizes Nf1-deficient MPs to Notch signaling, consequently, early postnatal Notch pathway inhibition ameliorated premature quiescence, metabolic reprogramming and muscle growth. This reveals an unexpected role of Ras/Mek/Erk signaling supporting postnatal MP quiescence in concert with Notch signaling, which is controlled by Nf1 safeguarding coordinated muscle growth and muscle stem cell pool establishment. Furthermore, our data suggest transmission of metabolic reprogramming across cellular differentiation, affecting fiber metabolism and function in NF1.
Collapse
Affiliation(s)
- Xiaoyan Wei
- Musculoskeletal Development and Regeneration Group, Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
- Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Angelos Rigopoulos
- Musculoskeletal Development and Regeneration Group, Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
- Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
- International Max Planck Research School for Biology and Computation IMPRS-BAC, Berlin, Germany
| | - Matthias Lienhard
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Sophie Pöhle-Kronawitter
- Musculoskeletal Development and Regeneration Group, Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Georgios Kotsaris
- Musculoskeletal Development and Regeneration Group, Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Julia Franke
- Musculoskeletal Development and Regeneration Group, Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
- Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Nikolaus Berndt
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- Institute of Computer-assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Joy Orezimena Mejedo
- Musculoskeletal Development and Regeneration Group, Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Hao Wu
- Division of Gastroenterology, Infectiology and Rheumatology, Medical Department, Charité University Medicine Berlin, 12203, Berlin, Germany
| | - Stefan Börno
- Sequencing Core Unit, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Bernd Timmermann
- Sequencing Core Unit, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Arunima Murgai
- Musculoskeletal Development and Regeneration Group, Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Rainer Glauben
- Division of Gastroenterology, Infectiology and Rheumatology, Medical Department, Charité University Medicine Berlin, 12203, Berlin, Germany
| | - Sigmar Stricker
- Musculoskeletal Development and Regeneration Group, Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany.
- Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany.
- International Max Planck Research School for Biology and Computation IMPRS-BAC, Berlin, Germany.
| |
Collapse
|
16
|
Wang J, Li DL, Zheng LF, Ren S, Huang ZQ, Tao Y, Liu Z, Shang Y, Pang D, Guo H, Zeng T, Wang HR, Huang H, Du X, Ye H, Zhou HM, Li P, Zhao TJ. Dynamic palmitoylation of STX11 controls injury-induced fatty acid uptake to promote muscle regeneration. Dev Cell 2024; 59:384-399.e5. [PMID: 38198890 DOI: 10.1016/j.devcel.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/17/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Different types of cells uptake fatty acids in response to different stimuli or physiological conditions; however, little is known about context-specific regulation of fatty acid uptake. Here, we show that muscle injury induces fatty acid uptake in muscle stem cells (MuSCs) to promote their proliferation and muscle regeneration. In humans and mice, fatty acids are mobilized after muscle injury. Through CD36, fatty acids function as both fuels and growth signals to promote MuSC proliferation. Mechanistically, injury triggers the translocation of CD36 in MuSCs, which relies on dynamic palmitoylation of STX11. Palmitoylation facilitates the formation of STX11/SNAP23/VAMP4 SANRE complex, which stimulates the fusion of CD36- and STX11-containing vesicles. Restricting fatty acid supply, blocking fatty acid uptake, or inhibiting STX11 palmitoylation attenuates muscle regeneration in mice. Our studies have identified a critical role of fatty acids in muscle regeneration and shed light on context-specific regulation of fatty acid sensing and uptake.
Collapse
Affiliation(s)
- Juan Wang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China; Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Dong-Lin Li
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
| | - Lang-Fan Zheng
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
| | - Su Ren
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Zi-Qin Huang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
| | - Ying Tao
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
| | - Ziyu Liu
- Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an Second People's Hospital, Xuzhou 220005, Jiangsu, China
| | - Yanxia Shang
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Dejian Pang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
| | - Huiling Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Taoling Zeng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Hong-Rui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - He Huang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
| | - Xingrong Du
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
| | - Haobin Ye
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
| | - Hai-Meng Zhou
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, Zhejiang, China
| | - Peng Li
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China; Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Tong-Jin Zhao
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China; Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
17
|
Imai K, Takai K, Unome S, Miwa T, Hanai T, Suetsugu A, Shimizu M. Lenvatinib Exacerbates the Decrease in Skeletal Muscle Mass in Patients with Hepatocellular Carcinoma, Whereas Atezolizumab Plus Bevacizumab Does Not. Cancers (Basel) 2024; 16:442. [PMID: 38275883 PMCID: PMC10814020 DOI: 10.3390/cancers16020442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
This study aimed to evaluate chronological changes in skeletal muscle index (SMI), subcutaneous and visceral adipose tissue indices (SATI and VATI), AFP, PIVKA-II, and ALBI scores during atezolizumab plus bevacizumab (AB) or lenvatinib (LEN) treatment for hepatocellular carcinoma (HCC) and the effect of these changes on survival. A total of 94 patients with HCC (37 were on AB and 57 on LEN) were enrolled. SMI, SATI, VATI, AFP, PIVKA-II, and ALBI scores were analyzed at the time of the treatment introduction (Intro), 3 months after the introduction (3M), at drug discontinuation (End), and the last observational time (Last). The differences between chronological changes were analyzed using the Wilcoxon paired test. The independent predictors for survival and the changes in SMI during AB or LEN (c-SMI%) were analyzed using the Cox proportional hazards model treating all these factors as time-varying covariates and the analysis of covariance, respectively. SMI in the AB group was maintained over time (42.9-44.0-40.6-44.2 cm2/m2), whereas that in the LEN group significantly decreased during the Intro-3M (p < 0.05) and 3M-End (p < 0.05) period (46.5-45.1-42.8-42.1 cm2/m2). SMI (p < 0.001) was an independent predictor for survival together with AFP (p = 0.004) and ALBI score (p < 0.001). Drug choice (AB or LEN; p = 0.038) and PIVKA-II (p < 0.001) were extracted as independent predictors for c-SMI%. AB treatment was significantly superior to LEN in terms of maintaining skeletal muscle, which is an independent predictor for survival.
Collapse
Affiliation(s)
- Kenji Imai
- Department of Gastroenterology/Internal Medicine, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (K.T.); (S.U.); (T.H.); (A.S.); (M.S.)
| | | | | | | | | | | | | |
Collapse
|
18
|
Liu W, Wang T, Wang W, Lin X, Xie K. Tanshinone IIA promotes the proliferation and differentiation ability of primary muscle stem cells via MAPK and Akt signaling. Biochem Biophys Res Commun 2023; 689:149235. [PMID: 37976834 DOI: 10.1016/j.bbrc.2023.149235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/09/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Salvia miltiorrhiza Bunge is a widely-used traditional Chinese medicine to treat a variety of diseases including muscle disorders. The underlying pharmacological mechanisms of which active component and how it functions are still unknown. Tanshinone IIA (Tan IIA) is the main active lipophilic compound in Salvia miltiorrhiza Bunge. Muscle stem cells (MuSCs) play a crucial role in maintaining healthy physiological function of skeletal muscle. For the purpose of this study, we investigated the effects of Tan IIA on primary MuSCs as well as mechanism. The EdU staining, cell counts assay and RT-qPCR results of proliferative genes revealed increased proliferation ability of MuSCs after Tan IIA treatment. Immunofluorescent staining of MyHC and RT-qPCR results of myogenic genes found Tan IIA contributed to promoting differentiation of MuSCs. In addition, enrichment analysis of RNA-seq data and Western blot assay results demonstrated activated MAPK and Akt signaling after treatment of Tan IIA during proliferation and differentiation. The above proliferative and differentiative phonotypes could be suppressed by the combination of MAPK inhibitor U0126 and Akt inhibitor Akti 1/2, respectively. Furthermore, HE staining found significantly improved myofiber regeneration of injured muscle after Tan IIA treatment, which also contributed to muscle force and running performance recovery. Thus, Tan IIA could promote proliferation and differentiation ability of MuSCs through activating MAPK and Akt signaling, respectively. These beneficial effects also significantly contributed to muscle regeneration and muscle function recovery after muscle injury.
Collapse
Affiliation(s)
- Wenbin Liu
- Department of Orthopedic Surgery, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Third Affiliated Hospital of Shanghai University, No.57 Canghou Street, Wenzhou, Zhejiang, PR China
| | - Tihui Wang
- Department of Orthopedic Surgery, Mindong Hospital Affiliated to Fujian Medical University, No.89 Heshan Road, Fuan, Fujian, PR China
| | - Wei Wang
- Department of Orthopedic Surgery, HuBei Provincial Hospital of TCM, No.4 Hua Yuan Shan, Wuchang District, Wuhan, Hubei, PR China
| | - Xingzuan Lin
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai, PR China.
| | - Kailuo Xie
- Department of Orthopedic Surgery, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Third Affiliated Hospital of Shanghai University, No.57 Canghou Street, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
19
|
Endo T. Postnatal skeletal muscle myogenesis governed by signal transduction networks: MAPKs and PI3K-Akt control multiple steps. Biochem Biophys Res Commun 2023; 682:223-243. [PMID: 37826946 DOI: 10.1016/j.bbrc.2023.09.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023]
Abstract
Skeletal muscle myogenesis represents one of the most intensively and extensively examined systems of cell differentiation, tissue formation, and regeneration. Muscle regeneration provides an in vivo model system of postnatal myogenesis. It comprises multiple steps including muscle stem cell (or satellite cell) quiescence, activation, migration, myogenic determination, myoblast proliferation, myocyte differentiation, myofiber maturation, and hypertrophy. A variety of extracellular signaling and subsequent intracellular signal transduction pathways or networks govern the individual steps of postnatal myogenesis. Among them, MAPK pathways (the ERK, JNK, p38 MAPK, and ERK5 pathways) and PI3K-Akt signaling regulate multiple steps of myogenesis. Ca2+, cytokine, and Wnt signaling also participate in several myogenesis steps. These signaling pathways often control cell cycle regulatory proteins or the muscle-specific MyoD family and the MEF2 family of transcription factors. This article comprehensively reviews molecular mechanisms of the individual steps of postnatal skeletal muscle myogenesis by focusing on signal transduction pathways or networks. Nevertheless, no or only a partial signaling molecules or pathways have been identified in some responses during myogenesis. The elucidation of these unidentified signaling molecules and pathways leads to an extensive understanding of the molecular mechanisms of myogenesis.
Collapse
Affiliation(s)
- Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan.
| |
Collapse
|
20
|
Mohamad Yusoff F, Nakashima A, Kajikawa M, Kishimoto S, Maruhashi T, Higashi Y. Therapeutic Myogenesis Induced by Ultrasound Exposure in a Volumetric Skeletal Muscle Loss Injury Model. Am J Sports Med 2023; 51:3554-3566. [PMID: 37743748 DOI: 10.1177/03635465231195850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
BACKGROUND Low-intensity pulsed ultrasound (LIPUS) irradiation has been shown to induce various responses in different cells. It has been shown that LIPUS activates extracellular signal-regulated kinase 1/2 (ERK1/2) through integrin. PURPOSE To study the effects of LIPUS on myogenic regulatory factors and other related myogenesis elements in a volumetric skeletal muscle loss injury model. STUDY DESIGN Controlled laboratory study. METHODS C57BL/6J mice were subjected to full-thickness muscle defect injury of the quadriceps and treated with direct application of LIPUS 20 min/d or non-LIPUS treatment (control) for 3, 7, and 14 days. LIPUS was also applied to C2C12 cells in culture in the presence of low and high doses of lipopolysaccharides. The expression levels of myogenic regulatory factors and the expression levels of myokine-related and angiogenic-related proteins of the control and LIPUS groups were analyzed. RESULTS Muscle volume in the injury site was restored at day 14 with LIPUS treatment. Paired-box protein 7, myogenic factor 5, myogenin, and desmin expressions were significantly different between control and LIPUS groups at days 7 and 14. Myokine and angiogenic cytokine-related factors were significantly increased in the LIPUS group at day 3 and decreased with no significant difference between the groups by day 14. LIPUS induced different responses of myogenic regulatory factors in C2C12 cells with low and high doses of lipopolysaccharides. LIPUS promoted myogenesis through short-lived increase in interleukin-6 and heme oxygenase 1, together with activation of ERK1/2. CONCLUSION LIPUS had a constant effect on the variables of tissue damage, from macrotrauma to microtrauma, leading to efficient muscle regeneration. CLINICAL RELEVANCE The focus of therapeutic strategies with LIPUS has been not only for microvascular regeneration but also for skeletal muscle and related local tissue recovery from acute or chronic damage.
Collapse
Affiliation(s)
- Farina Mohamad Yusoff
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Ayumu Nakashima
- Department of Stem Cell Biology and Medicine, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Masato Kajikawa
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Shinji Kishimoto
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Tatsuya Maruhashi
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yukihito Higashi
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
21
|
Yu IS, Choi J, Kim MK, Kim MJ. The Comparison of Commercial Serum-Free Media for Hanwoo Satellite Cell Proliferation and the Role of Fibroblast Growth Factor 2. Food Sci Anim Resour 2023; 43:1017-1030. [PMID: 37969322 PMCID: PMC10636218 DOI: 10.5851/kosfa.2023.e68] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 11/17/2023] Open
Abstract
Fetal bovine serum (FBS), which contains various nutrients, comprises 20% of the growth medium for cell-cultivated meat. However, ethical, cost, and scientific issues, necesitates identification of alternatives. In this study, we investigated commercially manufactured serum-free media capable of culturing Hanwoo satellite cells (HWSCs) to identify constituent proliferation enhancing factors. Six different serum-free media were selected, and the HWSC proliferation rates in these serum-free media were compared with that of control medium supplemented with 20% FBS. Among the six media, cell proliferation rates were higher only in StemFlexTM Medium (SF) and Mesenchymal Stem Cell Growth Medium DXF (MS) than in the control medium. SF and MS contain high fibroblast growth factor 2 (FGF2) concentrations, and we found upregulated FGF2 protein expression in cells cultured in SF or MS. Activation of the fibroblast growth factor receptor 1 (FGFR1)-mediated signaling pathway and stimulation of muscle satellite cell proliferation-related factors were confirmed by the presence of related biomarkers (FGFR1, FRS2, Raf1, ERK, p38, Pax7, and MyoD) as indicated by quantitative polymerase chain reaction, western blotting, and immunocytochemistry. Moreover, PD173074, an FGFR1 inhibitor suppressed cell proliferation in SF and MS and downregulated related biomarkers (FGFR1, FRS2, Raf1, and ERK). The promotion of cell proliferation in SF and MS was therefore attributed to FGF2, which indicates that FGFR1 activation in muscle satellite cells may be a target for improving the efficiency of cell-cultivated meat production.
Collapse
Affiliation(s)
- In-sun Yu
- Division of Food Functionality Research,
Korea Food Research Institute, Wanju 55365, Korea
- Department of Food Science and Human
Nutrition and K-Food Research Center, Jeonbuk National
University, Jeonju 54896, Korea
| | - Jungseok Choi
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Mina K. Kim
- Department of Food Science and Human
Nutrition and K-Food Research Center, Jeonbuk National
University, Jeonju 54896, Korea
| | - Min Jung Kim
- Division of Food Functionality Research,
Korea Food Research Institute, Wanju 55365, Korea
| |
Collapse
|
22
|
Guan L, Cao Z, Pan Z, Zhao C, Xue M, Yang F, Chen J. Butyrate promotes C2C12 myoblast proliferation by activating ERK/MAPK pathway. Mol Omics 2023; 19:552-559. [PMID: 37204279 DOI: 10.1039/d2mo00256f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Sarcopenia has garnered considerable interest in recent years as ageing-associated diseases constitute a significant worldwide public health burden. Nutritional supplements have received much attention as potential tools for managing sarcopenia. However, the specific nutrients responsible are still under-investigated. In the current study, we first determined the levels of short chain fatty acids (SCFAs) and intestinal flora in the feces of elderly sarcopenia subjects and elderly healthy individuals by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Then cell viability detection, flow cytometry and transcriptome analysis were adopted to experimentally evaluate the effect and the underlying mechanism of SCFA on C2C12 cells proliferation in vitro. The results suggested that patients with sarcopenia exhibited decreased levels of butyrate. And butyrate may stimulate C2C12 myocyte proliferation via promoting G1/S cell cycle transition. Transcriptomic analyses pointed to upregulation of the Mitogen-activated protein kinase (MAPK) signaling pathway in butyrate-treated cells. In addition, the above proliferative phenotypes could be suppressed by the combination of ERK/MAPK inhibitor. A combined transcriptomic and metabolomic approach was applied in our study to investigate the potential effect of microbiota-derived butyrate yield on muscular proliferation which may indicate a protective effect of nutritional supplements.
Collapse
Affiliation(s)
- Li Guan
- Department of Gastroenterology, Huadong Hospital affiliated to Fudan University, Shanghai, China.
| | - Ziyi Cao
- Department of Gastroenterology, Huadong Hospital affiliated to Fudan University, Shanghai, China.
| | - Ziyue Pan
- Department of Gastroenterology, Minhang Hospital affiliated to Fudan University, Shanghai, China
| | - Chao Zhao
- Key Laboratory of Medical Molecular Virology, School of Basic Medical sciences, Shanghai Medical College, Fudan university, Shanghai, China
| | - Mengjuan Xue
- Department of Endocrine, Huadong Hospital affiliated to Fudan University, Shanghai, China
| | - Fan Yang
- Shanghai Key laboratory of Clinical Geriatric Medicine, Shanghai, China.
| | - Jie Chen
- Department of Gastroenterology, Huadong Hospital affiliated to Fudan University, Shanghai, China.
| |
Collapse
|
23
|
Kang HS, Park JH, Auh JH. Effects of Protein Hydrolysate from Silkworm ( Bombyx mori) pupae on the C2C12 Myogenic Differentiation. Foods 2023; 12:2840. [PMID: 37569109 PMCID: PMC10417612 DOI: 10.3390/foods12152840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
This study investigated the effects and active compounds of silkworm pupae, an edible insect, on C2C12 muscle differentiation. The protein of silkworm pupae was extracted using sonication after defatting with hexane. Subsequently, the extract was rehydrated using Alcalase to obtain a protein hydrolysate. The silkworm pupae protein hydrolysate effectively promoted C2C12 myogenic differentiation without cytotoxicity. Subsequently, the hydrolysate was fractionated into four subfractions using preparative high-performance liquid chromatography (Prep-HPLC). Subfraction 1 was the most effective in promoting C2C12 myogenic differentiation and significantly upregulated the expression of myoblast transcription factors, 1.5-fold of myoblast determination protein 1 (MyoD), 2-fold of myogenin, and 3-fold of myosin heavy chain (MyHC). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) and multivariate statistical analysis were used to identify the active peptides in silkworm pupae responsible for the observed effects; then, dipeptides and essential amino acids, such as isoleucine (Ile), valine (Val), and methionine (Met), were identified. In addition, Val, Ile, and two dipeptides underwent quantification to determine the potential bioactive peptides that enhanced C2C12 myogenic differentiation. This study suggests that the peptides from silkworm pupae could be used as a nutraceutical to enhance muscle growth.
Collapse
Affiliation(s)
| | | | - Joong-Hyuck Auh
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| |
Collapse
|
24
|
Feng X, Wang AH, Juan AH, Ko KD, Jiang K, Riparini G, Ciuffoli V, Kaba A, Lopez C, Naz F, Jarnik M, Aliberti E, Hu S, Segalés J, Khateb M, Acevedo-Luna N, Randazzo D, Cheung TH, Muñoz-Cánoves P, Dell'Orso S, Sartorelli V. Polycomb Ezh1 maintains murine muscle stem cell quiescence through non-canonical regulation of Notch signaling. Dev Cell 2023; 58:1052-1070.e10. [PMID: 37105173 PMCID: PMC10330238 DOI: 10.1016/j.devcel.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/08/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023]
Abstract
Organismal homeostasis and regeneration are predicated on committed stem cells that can reside for long periods in a mitotically dormant but reversible cell-cycle arrest state defined as quiescence. Premature escape from quiescence is detrimental, as it results in stem cell depletion, with consequent defective tissue homeostasis and regeneration. Here, we report that Polycomb Ezh1 confers quiescence to murine muscle stem cells (MuSCs) through a non-canonical function. In the absence of Ezh1, MuSCs spontaneously exit quiescence. Following repeated injuries, the MuSC pool is progressively depleted, resulting in failure to sustain proper muscle regeneration. Rather than regulating repressive histone H3K27 methylation, Ezh1 maintains gene expression of the Notch signaling pathway in MuSCs. Selective genetic reconstitution of the Notch signaling corrects stem cell number and re-establishes quiescence of Ezh1-/- MuSCs.
Collapse
Affiliation(s)
- Xuesong Feng
- Laboratory of Muscle Stem Cells & Gene Regulation, NIAMS, NIH, Bethesda, MD, USA
| | - A Hongjun Wang
- Laboratory of Muscle Stem Cells & Gene Regulation, NIAMS, NIH, Bethesda, MD, USA
| | - Aster H Juan
- Laboratory of Muscle Stem Cells & Gene Regulation, NIAMS, NIH, Bethesda, MD, USA
| | - Kyung Dae Ko
- Laboratory of Muscle Stem Cells & Gene Regulation, NIAMS, NIH, Bethesda, MD, USA
| | - Kan Jiang
- Biodata Mining & Discovery Section, NIAMS, NIH, Bethesda, MD, USA
| | - Giulia Riparini
- Laboratory of Muscle Stem Cells & Gene Regulation, NIAMS, NIH, Bethesda, MD, USA
| | - Veronica Ciuffoli
- Laboratory of Muscle Stem Cells & Gene Regulation, NIAMS, NIH, Bethesda, MD, USA
| | - Aissah Kaba
- Laboratory of Muscle Stem Cells & Gene Regulation, NIAMS, NIH, Bethesda, MD, USA
| | - Christopher Lopez
- Laboratory of Muscle Stem Cells & Gene Regulation, NIAMS, NIH, Bethesda, MD, USA
| | - Faiza Naz
- Genomic Technology Section, NIAMS, NIH, Bethesda, MD, USA
| | - Michal Jarnik
- Cell Biology and Neurobiology Branch, NICHD, NIH, Bethesda, MD, USA
| | - Elizabeth Aliberti
- Laboratory of Muscle Stem Cells & Gene Regulation, NIAMS, NIH, Bethesda, MD, USA
| | - Shenyuan Hu
- Division of Life Sciences, State Key Laboratory of Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jessica Segalés
- Department of Medicine and Life Sciences (MELIS), Pompeu Fabra University (UPF), Barcelona, Spain
| | - Mamduh Khateb
- Laboratory of Muscle Stem Cells & Gene Regulation, NIAMS, NIH, Bethesda, MD, USA
| | - Natalia Acevedo-Luna
- Laboratory of Muscle Stem Cells & Gene Regulation, NIAMS, NIH, Bethesda, MD, USA
| | | | - Tom H Cheung
- Division of Life Sciences, State Key Laboratory of Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Pura Muñoz-Cánoves
- Department of Medicine and Life Sciences (MELIS), Pompeu Fabra University (UPF), Barcelona, Spain; Altos Labs Inc, San Diego, CA, USA
| | | | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells & Gene Regulation, NIAMS, NIH, Bethesda, MD, USA.
| |
Collapse
|
25
|
Li B, Wang J, Raza SHA, Wang S, Liang C, Zhang W, Yu S, Shah MA, Al Abdulmonem W, Alharbi YM, Aljohani ASM, Pant SD, Zan L. MAPK family genes' influences on myogenesis in cattle: Genome-wide analysis and identification. Res Vet Sci 2023; 159:198-212. [PMID: 37148739 DOI: 10.1016/j.rvsc.2023.04.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/11/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
The mitogen-activated protein kinase (MAPK) family is highly conserved in mammals, and is involved in a variety of physiological phenomena like regeneration, development, cell proliferation, and differentiation. In this study, 13 MAPK genes were identified in cattle and their corresponding protein properties were characterized using genome-wide identification and analysis. Phylogenetic analysis showed that the 13 BtMAPKs were cluster grouped into eight major evolutionary branches, which were segmented into three large subfamilies: ERK, p38 and JNK MAPK. BtMAPKs from the same subfamily had similar protein motif compositions, but considerably different exon-intron patterns. The heatmap analysis of transcriptome sequencing data showed that the expression of BtMAPKs was tissue-specific, with BtMAPK6 and BtMAPK12 highly expressed in muscle tissues. Furthermore, knockdown of BtMAPK6 and BtMAPK12 revealed that BtMAPK6 had no effect on myogenic cell proliferation, but negatively affected the differentiation of myogenic cells. In contrast, BtMAPK12 improved both the cell proliferation and differentiation. Taken together, these results provide novel insights into the functions of MAPK families in cattle, which could serve as a basis for further studies on the specific mechanisms of the genes in myogenesis.
Collapse
Affiliation(s)
- Bingzhi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China; Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642 China
| | - Sihu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Chengcheng Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Wenzheng Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Shengchen Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Mujahid Ali Shah
- Faculty of Fisheries and Protection of Water, University of South Bohemia in Ceske Budejovice, Czech Republic
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah 51452, Kingdom of Saudi Arabia
| | - Yousef Mesfer Alharbi
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Sameer D Pant
- Gulbali Institute, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW 2678, Australia
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling, 712100 Shaanxi, China.
| |
Collapse
|
26
|
Yeh CJ, Sattler KM, Lepper C. Molecular regulation of satellite cells via intercellular signaling. Gene 2023; 858:147172. [PMID: 36621659 PMCID: PMC9928918 DOI: 10.1016/j.gene.2023.147172] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Somatic stem cells are tissue-specific reserve cells tasked to sustain tissue homeostasis in adulthood and/or effect tissue regeneration after traumatic injury. The stem cells of skeletal muscle tissue are the satellite cells, which were originally described and named after their localization beneath the muscle fiber lamina and attached to the multi-nucleated muscle fibers. During adult homeostasis, satellite cells are maintained in quiescence, a state of reversible cell cycle arrest. Yet, upon injury, satellite cells are rapidly activated, becoming highly mitotically active to generate large numbers of myoblasts that differentiate and fuse to regenerate the injured muscle fibers. A subset self-renews to replenish the pool of muscle stem cells.Complex intrinsic gene regulatory networks maintain the quiescent state of satellite cells, or upon injury, direct their activation, proliferation, differentiation and self-renewal. Molecular cues from the satellite cells' environment provide the essential information as to when and where satellite cells are to stay quiescent or break quiescence and effect regenerative myogenesis. Predominantly, these cues are secreted, diffusible or membrane-bound ligands that bind to and activate their specific cognate receptors on the satellite cell to activate downstream signaling cascades and elicit context-specific cell behavior. This review aims to offer a concise overview of major intercellular signaling pathways regulating satellite cells during quiescence and in injury-induced skeletal muscle regeneration.
Collapse
Affiliation(s)
- Chung-Ju Yeh
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Kristina M Sattler
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Christoph Lepper
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
27
|
Emerging Mechanisms of Skeletal Muscle Homeostasis and Cachexia: The SUMO Perspective. Cells 2023; 12:cells12040644. [PMID: 36831310 PMCID: PMC9953977 DOI: 10.3390/cells12040644] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Mobility is an intrinsic feature of the animal kingdom that stimulates evolutionary processes and determines the biological success of animals. Skeletal muscle is the primary driver of voluntary movements. Besides, skeletal muscles have an immense impact on regulating glucose, amino acid, and lipid homeostasis. Muscle atrophy/wasting conditions are accompanied by a drastic effect on muscle function and disrupt steady-state muscle physiology. Cachexia is a complex multifactorial muscle wasting syndrome characterized by extreme loss of skeletal muscle mass, resulting in a dramatic decrease in life quality and reported mortality in more than 30% of patients with advanced cancers. The lack of directed treatments to prevent or relieve muscle loss indicates our inadequate knowledge of molecular mechanisms involved in muscle cell organization and the molecular etiology of cancer-induced cachexia (CIC). This review highlights the latest knowledge of regulatory mechanisms involved in maintaining muscle function and their deregulation in wasting syndromes, particularly in cachexia. Recently, protein posttranslational modification by the small ubiquitin-like modifier (SUMO) has emerged as a key regulatory mechanism of protein function with implications for different aspects of cell physiology and diseases. We also review an atypical association of SUMO-mediated pathways in this context and deliberate on potential treatment strategies to alleviate muscle atrophy.
Collapse
|
28
|
Gondret F, Louveau I, Langendjik P, Farmer C. Exogenous porcine somatotropin administered to late pregnant gilts alters liver and muscle functionalities in pig foetuses. Animal 2023; 17:100691. [PMID: 36584622 DOI: 10.1016/j.animal.2022.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Neonatal maturity depends on the maternal capacity to provide nutrients for foetal growth. This study aimed to investigate the effects of systemic administration of recombinant porcine somatotropin (pST), one of the main regulators of growth and metabolism, to pregnant gilts during late gestation on circulating nutrients and expression levels of genes in liver and skeletal muscle of their 110-day-old foetuses. Gilts received either daily injections of sterile water (control [CTL] group, n = 15) or of 5 mg of pST (pST group, n = 17) from days 90 to 109 of gestation. At day 110 postconceptus, pairs of foetuses (one of small and one of average size within a litter) were selected. Circulating fructose concentrations were greater, but circulating concentrations of urea were lower in pST than in CTL foetuses. Expression levels of genes involved in carbohydrate and lipid metabolism were more affected by pST treatment in liver than in muscle. Hepatic molecular changes suggest an inhibition of energy-consuming processes (glycogen and lipid biosynthesis) and the activation of energy-producing pathway (mitochondrial oxidation) in pST compared to CTL foetuses. Expression levels of some genes involved in intracellular degradation of proteins were greater in the liver of pST foetuses, and combined with lower uremia, this suggests a higher utilisation of protein sources in pST foetuses than in CTL foetuses. In muscle, molecular changes were mainly observed in the IGF-insulin axis. Altogether, pST-treated gilts seem to have a greater ability to support foetal liver development by the reorientation of energy and protein metabolism.
Collapse
Affiliation(s)
- F Gondret
- PEGASE, INRAE, Institut Agro, 35590 Saint-Gilles, France.
| | - I Louveau
- PEGASE, INRAE, Institut Agro, 35590 Saint-Gilles, France
| | - P Langendjik
- Trouw Nutrition Research & Development, Stationsstraat 77, Amersfoort, The Netherlands
| | - C Farmer
- Agriculture and Agri-Food Canada, Sherbrooke R & D Centre, 2000 College, Sherbrooke (QC) J1M 0C8, Canada
| |
Collapse
|
29
|
Ferguson TD, Loos CMM, Vanzant ES, Urschel KL, Klotz JL, McLeod KR. Impact of ergot alkaloid and steroidal implant on whole-body protein turnover and expression of mTOR pathway proteins in muscle of cattle. Front Vet Sci 2023; 10:1104361. [PMID: 37143501 PMCID: PMC10151678 DOI: 10.3389/fvets.2023.1104361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/28/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Holstein steers (n = 32) were used to determine if the ergot analog, bromocriptine decreases muscle protein synthesis through inhibitory action on the mTOR pathway via a direct effect on signal proteins, and if these negative effects can be alleviated with anabolic agents. Methods Steers were treated with intramuscular administration of bromocriptine (vehicle or 0.1 mg/kg BW) and a subdermal commercial steroidal implant containing trenbolone acetate (TBA) and estradiol 17β (with or without), in a 2×2 factorial design. During the 35 day experiment, intake was restricted to 1.5 times maintenance energy requirement. On days 27 through 32, steers were moved to metabolism stalls for urine collection, and whole-body protein turnover was determined using a single pulse dose of [15N] glycine into the jugular vein on day 28. On day 35, skeletal muscle samples were collected before (basal state) and 60 min after (stimulated state) an i.v. glucose challenge (0.25 g glucose/kg). Blood samples were collected at regular intervals before and after glucose infusion for determination of circulating concentrations of glucose and insulin. Results Bromocriptine reduced insulin and glucose clearance following the glucose challenge, indicating decreased insulin sensitivity and possible disruption of glucose uptake and metabolism in the skeletal muscle. Conversely, analysis of whole-body protein turnover demonstrated that bromocriptine does not appear to affect protein synthesis or urea excretion. Western immunoblot analysis of skeletal muscle showed that it did not affect abundance of S6K1 or 4E-BP1, so bromocriptine does not appear to inhibit activation of the mTOR pathway or protein synthesis. Estradiol/TBA implant decreased urea excretion and protein turnover but had no effect on protein synthesis, suggesting that steroidal implants promote protein accretion through unchanged rates of synthesis and decreased degradation, even in the presence of bromocriptine, resulting in improved daily gains. Implanted steers likely experienced increased IGF-1 signaling, but downstream activation of mTOR, S6K and 4E-BP1, and thus increased protein synthesis did not occur as expected. Conclusions Overall, this data suggests that bromocriptine does not have a negative impact on muscle protein synthetic pathways independent of DMI.
Collapse
Affiliation(s)
- Taylor D. Ferguson
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - Caroline M. M. Loos
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - Eric S. Vanzant
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - Kristine L. Urschel
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - James L. Klotz
- Forage Animal Production Research Unit, Agricultural Research Service, United States Department of Agriculture, Lexington, KY, United States
| | - Kyle R. McLeod
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
- *Correspondence: Kyle R. McLeod,
| |
Collapse
|
30
|
Jiang X, Ji S, Cui S, Wang R, Wang W, Chen Y, Zhu S. Apol9a regulates myogenic differentiation via the ERK1/2 pathway in C2C12 cells. Front Pharmacol 2022; 13:942061. [PMID: 36506560 PMCID: PMC9727217 DOI: 10.3389/fphar.2022.942061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022] Open
Abstract
Background: The rising prevalence of obesity and its complications is a big challenge for the global public health. Obesity is accompanied by biological dysfunction of skeletal muscle and the development of muscle atrophy. The deep knowledge of key molecular mechanisms underlying myogenic differentiation is crucial for discovering novel targets for the treatment of obesity and obesity-related muscle atrophy. However, no effective target is currently known for obesity-induced skeletal muscle atrophy. Methods: Transcriptomic analyses were performed to identify genes associated with the regulation of myogenic differentiation and their potential mechanisms of action. C2C12 cells were used to assess the myogenic effect of Apol9a through immunocytochemistry, western blotting, quantitative polymerase chain reaction, RNA interference or overexpression, and lipidomics. Results: RNA-seq of differentiated and undifferentiated C2C12 cells revealed that Apol9a expression significantly increased following myogenic differentiation and decreased during obesity-induced muscle atrophy. Apol9a silencing in these C2C12 cells suppressed the expression of myogenesis-related genes and reduced the accumulation of intracellular triglycerides. Furthermore, RNA-seq and western blot results suggest that Apol9a regulates myogenic differentiation through the activation of extracellular signal-regulated kinase 1/2 (ERK1/2). This assumption was subsequently confirmed by intervention with PD98059. Conclusion: In this study, we found that Apol9a regulates myogenic differentiation via the ERK1/2 pathway. These results broaden the putative function of Apol9a during myogenic differentiation and provide a promising therapeutic target for intervention in obesity and obesity-induced muscle atrophy.
Collapse
Affiliation(s)
- Xuan Jiang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Siyu Ji
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Siyuan Cui
- The Wuxi No. 2 People’s Hospital, Wuxi, China
| | - Rong Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yongquan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China,School of Food Science and Technology, Jiangnan University, Wuxi, China,Wuxi Translational Medicine Research Center and School of Translational Medicine, Jiangnan University, Wuxi, China
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China,Wuxi Translational Medicine Research Center and School of Translational Medicine, Jiangnan University, Wuxi, China,*Correspondence: Shenglong Zhu,
| |
Collapse
|
31
|
Torregrosa C, Chorin F, Beltran EEM, Neuzillet C, Cardot-Ruffino V. Physical Activity as the Best Supportive Care in Cancer: The Clinician's and the Researcher's Perspectives. Cancers (Basel) 2022; 14:5402. [PMID: 36358820 PMCID: PMC9655932 DOI: 10.3390/cancers14215402] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 08/11/2023] Open
Abstract
Multidisciplinary supportive care, integrating the dimensions of exercise alongside oncological treatments, is now regarded as a new paradigm to improve patient survival and quality of life. Its impact is important on the factors that control tumor development, such as the immune system, inflammation, tissue perfusion, hypoxia, insulin resistance, metabolism, glucocorticoid levels, and cachexia. An increasing amount of research has been published in the last years on the effects of physical activity within the framework of oncology, marking the appearance of a new medical field, commonly known as "exercise oncology". This emerging research field is trying to determine the biological mechanisms by which, aerobic exercise affects the incidence of cancer, the progression and/or the appearance of metastases. We propose an overview of the current state of the art physical exercise interventions in the management of cancer patients, including a pragmatic perspective with tips for routine practice. We then develop the emerging mechanistic views about physical exercise and their potential clinical applications. Moving toward a more personalized, integrated, patient-centered, and multidisciplinary management, by trying to understand the different interactions between the cancer and the host, as well as the impact of the disease and the treatments on the different organs, this seems to be the most promising method to improve the care of cancer patients.
Collapse
Affiliation(s)
- Cécile Torregrosa
- Oncologie Digestive, Département d’Oncologie Médicale Institut Curie, Université Versailles Saint-Quentin—Université Paris Saclay, 35, rue Dailly, 92210 Saint-Cloud, France
- Département de Chirurgie Digestive et Oncologique, Hôpital Universitaire Ambroise Paré, Assistance Publique-Hôpitaux de Paris, 9 avenue Charles de Gaulle, 92100 Boulogne Billancourt, France
| | - Frédéric Chorin
- Laboratoire Motricité Humaine, Expertise, Sport, Santé (LAMHESS), HEALTHY Graduate School, Université Côte d’Azur, 06205 Nice, France
- Clinique Gériatrique du Cerveau et du Mouvement, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06205 Nice, France
| | - Eva Ester Molina Beltran
- Oncologie Digestive, Département d’Oncologie Médicale Institut Curie, Université Versailles Saint-Quentin—Université Paris Saclay, 35, rue Dailly, 92210 Saint-Cloud, France
| | - Cindy Neuzillet
- Oncologie Digestive, Département d’Oncologie Médicale Institut Curie, Université Versailles Saint-Quentin—Université Paris Saclay, 35, rue Dailly, 92210 Saint-Cloud, France
- GERCOR, 151 rue du Faubourg Saint-Antoine, 75011 Paris, France
| | - Victoire Cardot-Ruffino
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
32
|
Gros K, Matkovič U, Parato G, Miš K, Luin E, Bernareggi A, Sciancalepore M, Marš T, Lorenzon P, Pirkmajer S. Neuronal Agrin Promotes Proliferation of Primary Human Myoblasts in an Age-Dependent Manner. Int J Mol Sci 2022; 23:ijms231911784. [PMID: 36233091 PMCID: PMC9570459 DOI: 10.3390/ijms231911784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/06/2022] [Accepted: 09/22/2022] [Indexed: 12/02/2022] Open
Abstract
Neuronal agrin, a heparan sulphate proteoglycan secreted by the α-motor neurons, promotes the formation and maintenance of the neuromuscular junction by binding to Lrp4 and activating muscle-specific kinase (MuSK). Neuronal agrin also promotes myogenesis by enhancing differentiation and maturation of myotubes, but its effect on proliferating human myoblasts, which are often considered to be unresponsive to agrin, remains unclear. Using primary human myoblasts, we determined that neuronal agrin induced transient dephosphorylation of ERK1/2, while c-Abl, STAT3, and focal adhesion kinase were unresponsive. Gene silencing of Lrp4 and MuSK markedly reduced the BrdU incorporation, suggesting the functional importance of the Lrp4/MuSK complex for myoblast proliferation. Acute and chronic treatments with neuronal agrin increased the proliferation of human myoblasts in old donors, but they did not affect the proliferation of myoblasts in young donors. The C-terminal fragment of agrin which lacks the Lrp4-binding site and cannot activate MuSK had a similar age-dependent effect, indicating that the age-dependent signalling pathways activated by neuronal agrin involve the Lrp4/MuSK receptor complex as well as an Lrp4/MuSK-independent pathway which remained unknown. Collectively, our results highlight an age-dependent role for neuronal agrin in promoting the proliferation of human myoblasts.
Collapse
Affiliation(s)
- Katarina Gros
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Urška Matkovič
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Giulia Parato
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
- The B.R.A.I.N. Centre for Neuroscience, University of Trieste, 34127 Trieste, Italy
| | - Katarina Miš
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Elisa Luin
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
- The B.R.A.I.N. Centre for Neuroscience, University of Trieste, 34127 Trieste, Italy
| | - Annalisa Bernareggi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
- The B.R.A.I.N. Centre for Neuroscience, University of Trieste, 34127 Trieste, Italy
| | - Marina Sciancalepore
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
- The B.R.A.I.N. Centre for Neuroscience, University of Trieste, 34127 Trieste, Italy
| | - Tomaž Marš
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Paola Lorenzon
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
- The B.R.A.I.N. Centre for Neuroscience, University of Trieste, 34127 Trieste, Italy
- Correspondence: (P.L.); (S.P.)
| | - Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: (P.L.); (S.P.)
| |
Collapse
|
33
|
Jones FK, Phillips A, Jones AR, Pisconti A. The INSR/AKT/mTOR pathway regulates the pace of myogenesis in a syndecan-3-dependent manner. Matrix Biol 2022; 113:61-82. [PMID: 36152781 DOI: 10.1016/j.matbio.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022]
Abstract
Muscle stem cells (MuSCs) are indispensable for muscle regeneration. A multitude of extracellular stimuli direct MuSC fate decisions from quiescent progenitors to differentiated myocytes. The activity of these signals is modulated by coreceptors such as syndecan-3 (SDC3). We investigated the global landscape of SDC3-mediated regulation of myogenesis using a phosphoproteomics approach which revealed, with the precision level of individual phosphosites, the large-scale extent of SDC3-mediated regulation of signal transduction in MuSCs. We then focused on INSR/AKT/mTOR as a key pathway regulated by SDC3 during myogenesis and mechanistically dissected SDC3-mediated inhibition of insulin receptor signaling in MuSCs. SDC3 interacts with INSR ultimately limiting signal transduction via AKT/mTOR. Both knockdown of INSR and inhibition of AKT rescue Sdc3-/- MuSC differentiation to wild type levels. Since SDC3 is rapidly downregulated at the onset of differentiation, our study suggests that SDC3 acts a timekeeper to restrain proliferating MuSC response and prevent premature differentiation.
Collapse
Affiliation(s)
- Fiona K Jones
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Alexander Phillips
- School of Electrical Engineering, Electronics and Computer Science, University of Liverpool, Liverpool, UK
| | - Andrew R Jones
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Addolorata Pisconti
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
34
|
Li P, Liu W, Lu W, Wang J. Biochemical indices, gene expression, and SNPs associated with salinity adaptation in juvenile chum salmon ( Oncorhynchus keta) as determined by comparative transcriptome analysis. PeerJ 2022; 10:e13585. [PMID: 36117540 PMCID: PMC9477081 DOI: 10.7717/peerj.13585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/23/2022] [Indexed: 01/17/2023] Open
Abstract
Chum salmon (Oncorhynchus keta) migrate from freshwater to saltwater, and incur developmental, physiological and molecular adaptations as the salinity changes. The molecular regulation for salinity adaptation in chum salmon is currently not well defined. In this study, 1-g salmon were cultured under 0 (control group, D0), 8‰ (D8), 16‰ (D16), and 24‰ (D24) salinity conditions for 42 days. Na+/K+-ATPase and Ca2+/Mg2+-ATPase activities in the gill first increased and then decreased in response to higher salinity environments where D8 exhibited the highest Na+/K+ATPase and Ca2+/Mg2+-ATPase activity and D24 exhibited the lowest. Alkaline phosphatase (AKP) activity was elevated in all salinity treatment groups relative to controls, while no significant difference in acid phosphatase (ACP) activity was observed across treatment groups. De novo transcriptome sequencing in the D0 and D24 groups using RNA-Seq analysis identified 187,836 unigenes, of which 2,143 were differentially expressed in response to environmental salinity (71 up-regulated and 2,072 down-regulated). A total of 56,020 putative single nucleotide polymorphisms (SNPs) were also identified. The growth, development, osmoregulation and maturation factors of N-methyl-D-aspartate receptors (nmdas) expressed in memory formation, as well as insulin-like growth factor 1 (igf-1) and igf-binding proteins (igfbps) were further investigated using targeted qRT-PCR. The lowest expression of all these genes occurred in the low salinity environments (D8 or D16), while their highest expression occurred in the high salinity environments (D24). These results provide preliminary insight into salinity adaptation in chum salmon and a foundation for the development of marker-assisted breeding for this species.
Collapse
Affiliation(s)
- Peilun Li
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China,Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Harbin, China
| | - Wei Liu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China,Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Harbin, China
| | - Wanqiao Lu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China,Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Harbin, China
| | - Jilong Wang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China,Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Harbin, China
| |
Collapse
|
35
|
Cultured Myoblasts Derived from Rat Soleus Muscle Show Altered Regulation of Proliferation and Myogenesis during the Course of Mechanical Unloading. Int J Mol Sci 2022; 23:ijms23169150. [PMID: 36012431 PMCID: PMC9409304 DOI: 10.3390/ijms23169150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
The structure and function of soleus muscle fibers undergo substantial remodeling under real or simulated microgravity conditions. However, unloading-induced changes in the functional activity of skeletal muscle primary myoblasts remain poorly studied. The purpose of our study was to investigate how short-term and long-term mechanical unloading would affect cultured myoblasts derived from rat soleus muscle. Mechanical unloading was simulated by rat hindlimb suspension model (HS). Myoblasts were purified from rat soleus at basal conditions and after 1, 3, 7, and 14 days of HS. Myoblasts were expanded in vitro, and the myogenic nature was confirmed by their ability to differentiate as well as by immunostaining/mRNA expression of myogenic markers. The proliferation activity at different time points after HS was analyzed, and transcriptome analysis was performed. We have shown that soleus-derived myoblasts differently respond to an early and later stage of HS. At the early stage of HS, the proliferative activity of myoblasts was slightly decreased, and processes related to myogenesis activation were downregulated. At the later stage of HS, we observed a decrease in myoblast proliferative potential and spontaneous upregulation of the pro-myogenic program.
Collapse
|
36
|
Wang X, Liu F, An Q, Wang W, Cheng Z, Dai Y, Meng Q, Zhang Y. Lactoferrin Deficiency Impairs Proliferation of Satellite Cells via Downregulating the ERK1/2 Signaling Pathway. Int J Mol Sci 2022; 23:ijms23137478. [PMID: 35806481 PMCID: PMC9267821 DOI: 10.3390/ijms23137478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022] Open
Abstract
Lactoferrin (Ltf), a naturally active glycoprotein, possesses anti-inflammatory, anti-microbial, anti-tumor, and immunomodulatory activities. Many published studies have indicated that Ltf modulates the proliferation of stem cells. However, the role of Ltf in the proliferation of satellite cells, an important cell type in muscle regeneration, has not yet been reported. Here, by using Ltf systemic knockout mice, we illustrate the role of Ltf in skeletal muscle. Results shows that Ltf deficiency impaired proliferation of satellite cells (SCs) and the regenerative capability of skeletal muscle. Mechanistic studies showed that ERK1/2 phosphorylation was significantly downregulated after Ltf deletion in SCs. Simultaneously, the cell cycle-related proteins cyclin D and CDK4 were significantly downregulated. Intervention with exogenous recombinant lactoferrin (R-Ltf) at a concentration of 1000 μg/mL promoted proliferation of SCs. In addition, intraperitoneal injection of Ltf effectively ameliorated the skeletal muscle of mice injured by 1.2% BaCl2 solution. Our results suggest a protective effect of Ltf in the repair of skeletal muscle damage. Ltf holds promise as a novel therapeutic agent for skeletal muscle injuries.
Collapse
Affiliation(s)
- Xiong Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Tsing Hua Road No. 17, Haidian District, Beijing 100083, China; (X.W.); (Q.A.); (W.W.); (Z.C.)
| | - Fan Liu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China; (F.L.); (Y.D.); (Q.M.)
| | - Qin An
- College of Food Science and Nutritional Engineering, China Agricultural University, Tsing Hua Road No. 17, Haidian District, Beijing 100083, China; (X.W.); (Q.A.); (W.W.); (Z.C.)
| | - Wenli Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Tsing Hua Road No. 17, Haidian District, Beijing 100083, China; (X.W.); (Q.A.); (W.W.); (Z.C.)
| | - Zhimei Cheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Tsing Hua Road No. 17, Haidian District, Beijing 100083, China; (X.W.); (Q.A.); (W.W.); (Z.C.)
| | - Yunping Dai
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China; (F.L.); (Y.D.); (Q.M.)
| | - Qingyong Meng
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China; (F.L.); (Y.D.); (Q.M.)
| | - Yali Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Tsing Hua Road No. 17, Haidian District, Beijing 100083, China; (X.W.); (Q.A.); (W.W.); (Z.C.)
- Correspondence: ; Tel.: +86-010-6273-7465
| |
Collapse
|
37
|
Zheng J, Lou J, Li Y, Qian P, He W, Hao Y, Xue T, Li Y, Song YH. Satellite cell-specific deletion of Cipc alleviates myopathy in mdx mice. Cell Rep 2022; 39:110939. [PMID: 35705041 DOI: 10.1016/j.celrep.2022.110939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 04/18/2022] [Accepted: 05/20/2022] [Indexed: 11/03/2022] Open
Abstract
Skeletal muscle regeneration relies on satellite cells that can proliferate, differentiate, and form new myofibers upon injury. Emerging evidence suggests that misregulation of satellite cell fate and function influences the severity of Duchenne muscular dystrophy (DMD). The transcription factor Pax7 determines the myogenic identity and maintenance of the pool of satellite cells. The circadian clock regulates satellite cell proliferation and self-renewal. Here, we show that the CLOCK-interacting protein Circadian (CIPC) a negative-feedback regulator of the circadian clock, is up-regulated during myoblast differentiation. Specific deletion of Cipc in satellite cells alleviates myopathy, improves muscle function, and reduces fibrosis in mdx mice. Cipc deficiency leads to activation of the ERK1/2 and JNK1/2 signaling pathways, which activates the transcription factor SP1 to trigger the transcription of Pax7 and MyoD. Therefore, CIPC is a negative regulator of satellite cell function, and loss of Cipc in satellite cells promotes muscle regeneration.
Collapse
Affiliation(s)
- Jiqing Zheng
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou 215123, P.R. China; National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P.R. China
| | - Jing Lou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou 215123, P.R. China; National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P.R. China
| | - Yanfang Li
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou 215123, P.R. China; National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P.R. China
| | - Panting Qian
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou 215123, P.R. China; National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P.R. China
| | - Wei He
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou 215123, P.R. China; National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P.R. China
| | - Yingxue Hao
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou 215123, P.R. China; National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P.R. China
| | - Ting Xue
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou 215123, P.R. China; National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P.R. China
| | - Yangxin Li
- Department of Cardiovascular Surgery and Institute of Cardiovascular Science, First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, P.R. China.
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou 215123, P.R. China; National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P.R. China.
| |
Collapse
|
38
|
Boyer JG, Huo J, Han S, Havens JR, Prasad V, Lin BL, Kass DA, Song T, Sadayappan S, Khairallah RJ, Ward CW, Molkentin JD. Depletion of skeletal muscle satellite cells attenuates pathology in muscular dystrophy. Nat Commun 2022; 13:2940. [PMID: 35618700 PMCID: PMC9135721 DOI: 10.1038/s41467-022-30619-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/03/2022] [Indexed: 11/11/2022] Open
Abstract
Skeletal muscle can repair and regenerate due to resident stem cells known as satellite cells. The muscular dystrophies are progressive muscle wasting diseases underscored by chronic muscle damage that is continually repaired by satellite cell-driven regeneration. Here we generate a genetic strategy to mediate satellite cell ablation in dystrophic mouse models to investigate how satellite cells impact disease trajectory. Unexpectedly, we observe that depletion of satellite cells reduces dystrophic disease features, with improved histopathology, enhanced sarcolemmal stability and augmented muscle performance. Mechanistically, we demonstrate that satellite cells initiate expression of the myogenic transcription factor MyoD, which then induces re-expression of fetal genes in the myofibers that destabilize the sarcolemma. Indeed, MyoD re-expression in wildtype adult skeletal muscle reduces membrane stability and promotes histopathology, while MyoD inhibition in a mouse model of muscular dystrophy improved membrane stability. Taken together these observations suggest that satellite cell activation and the fetal gene program is maladaptive in chronic dystrophic skeletal muscle.
Collapse
Affiliation(s)
- Justin G Boyer
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Jiuzhou Huo
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Sarah Han
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Julian R Havens
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Vikram Prasad
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Brian L Lin
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
| | - David A Kass
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
| | - Taejeong Song
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | | | - Christopher W Ward
- Department of Orthopedics and Center for Biomedical Engineering and Technology (BioMET), University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45229, USA.
| |
Collapse
|
39
|
Wang J, Broer T, Chavez T, Zhou CJ, Tran S, Xiang Y, Khodabukus A, Diao Y, Bursac N. Myoblast deactivation within engineered human skeletal muscle creates a transcriptionally heterogeneous population of quiescent satellite-like cells. Biomaterials 2022; 284:121508. [PMID: 35421801 PMCID: PMC9289780 DOI: 10.1016/j.biomaterials.2022.121508] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 03/18/2022] [Accepted: 04/01/2022] [Indexed: 12/19/2022]
Abstract
Satellite cells (SCs), the adult Pax7-expressing stem cells of skeletal muscle, are essential for muscle repair. However, in vitro investigations of SC function are challenging due to isolation-induced SC activation, loss of native quiescent state, and differentiation to myoblasts. In the present study, we optimized methods to deactivate in vitro expanded human myoblasts within a 3D culture environment of engineered human skeletal muscle tissues ("myobundles"). Immunostaining and gene expression analyses revealed that a fraction of myoblasts within myobundles adopted a quiescent phenotype (3D-SCs) characterized by increased Pax7 expression, cell cycle exit, and activation of Notch signaling. Similar to native SCs, 3D-SC quiescence is regulated by Notch and Wnt signaling while loss of quiescence and reactivation of 3D-SCs can be induced by growth factors including bFGF. Myobundle injury with a bee toxin, melittin, induces robust myofiber fragmentation, functional decline, and 3D-SC proliferation. By applying single cell RNA-sequencing (scRNA-seq), we discover the existence of two 3D-SC subpopulations (quiescent and activated), identify deactivation-associated gene signature using trajectory inference between 2D myoblasts and 3D-SCs, and characterize the transcriptomic changes within reactivated 3D-SCs in response to melittin-induced injury. These results demonstrate the ability of an in vitro engineered 3D human skeletal muscle environment to support the formation of a quiescent and heterogeneous SC population recapitulating several aspects of the native SC phenotype, and provide a platform for future studies of human muscle regeneration and disease-associated SC dysfunction.
Collapse
Affiliation(s)
- Jason Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Torie Broer
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Taylor Chavez
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Chris J Zhou
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Sabrina Tran
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Yu Xiang
- Department of Cell Biology, Duke University, Durham, NC, USA
| | | | - Yarui Diao
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
40
|
Lautherbach N, Gonçalves DAP, Silveira WA, Paula-Gomes S, Valentim RR, Zanon NM, Pereira MG, Miyabara EH, Navegantes LCC, Kettelhut IC. Urocortin 2 promotes hypertrophy and enhances skeletal muscle function through cAMP and insulin/IGF-1 signaling pathways. Mol Metab 2022; 60:101492. [PMID: 35390501 PMCID: PMC9035725 DOI: 10.1016/j.molmet.2022.101492] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/27/2022] [Accepted: 03/29/2022] [Indexed: 11/28/2022] Open
Abstract
Objective Although it is well established that urocortin 2 (Ucn2), a peptide member of the corticotrophin releasing factor (CRF) family, and its specific corticotrophin-releasing factor 2 receptor (CRF2R) are highly expressed in skeletal muscle, the role of this peptide in the regulation of skeletal muscle mass and protein metabolism remains elusive. Methods To elucidate the mechanisms how Ucn2 directly controls protein metabolism in skeletal muscles of normal mice, we carried out genetic tools, physiological and molecular analyses of muscles in vivo and in vitro. Results Here, we demonstrated that Ucn2 overexpression activated cAMP signaling and promoted an expressive muscle hypertrophy associated with higher rates of protein synthesis and activation of Akt/mTOR and ERK1/2 signaling pathways. Furthermore, Ucn2 induced a decrease in mRNA levels of atrogin-1 and in autophagic flux inferred by an increase in the protein content of LC3-I, LC3-II and p62. Accordingly, Ucn2 reduced both the transcriptional activity of FoxO in vivo and the overall protein degradation in vitro through an inhibition of lysosomal proteolytic activity. In addition, we demonstrated that Ucn2 induced a fast-to-slow fiber type shift and improved fatigue muscle resistance, an effect that was completely blocked in muscles co-transfected with mitogen-activated protein kinase phosphatase 1 (MKP-1), but not with dominant-negative Akt mutant (Aktmt). Conclusions These data suggest that Ucn2 triggers an anabolic and anti-catabolic response in skeletal muscle of normal mice probably through the activation of cAMP cascade and participation of Akt and ERK1/2 signaling. These findings open new perspectives in the development of therapeutic strategies to cope with the loss of muscle mass. Ucn2 overexpression promotes muscle growth due to an increase in protein synthesis. Ucn2 inhibits FoxO activity and autophagic-lysosomal system. Ucn2-induced skeletal muscle phenotype is dependent on Akt and ERK1/2. Ucn2 induces a fast-to-slow fiber type shift and improves fatigue resistance. The increase in muscle fatigue resistance is dependent on ERK1/2.
Collapse
Affiliation(s)
- Natalia Lautherbach
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Biochemistry/Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Dawit A P Gonçalves
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Wilian A Silveira
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Biochemistry, Pharmacology and Physiology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil.
| | - Sílvia Paula-Gomes
- Department of Biochemistry/Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil.
| | - Rafael Rossi Valentim
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Neuza M Zanon
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Marcelo G Pereira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Elen H Miyabara
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Luiz C C Navegantes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Isis C Kettelhut
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Biochemistry/Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
41
|
Chang SW, Yoshihara T, Tsuzuki T, Natsume T, Kakigi R, Machida S, Naito H. Circadian rhythms modulate the effect of eccentric exercise on rat soleus muscles. PLoS One 2022; 17:e0264171. [PMID: 35213577 PMCID: PMC8880858 DOI: 10.1371/journal.pone.0264171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 02/04/2022] [Indexed: 11/23/2022] Open
Abstract
We investigated whether time-of-day dependent changes in the rat soleus (SOL) muscle size, after eccentric exercises, operate via the mechanistic target of rapamycin (mTOR) signaling pathway. For our first experiment, we assigned 9-week-old male Wistar rats randomly into four groups: light phase (zeitgeber time; ZT6) non-trained control, dark phase (ZT18) non-trained control, light phase-trained, and dark phase-trained. Trained animals performed 90 min of downhill running once every 3 d for 8 weeks. The second experiment involved dividing 9-week-old male Wistar rats to control and exercise groups. The latter were subjected to 15 min of downhill running at ZT6 and ZT18. The absolute (+12.8%) and relative (+9.4%) SOL muscle weights were higher in the light phase-trained group. p70S6K phosphorylation ratio was 42.6% higher in the SOL muscle of rats that had exercised only in light (non-trained ZT6). Collectively, the degree of muscle hypertrophy in SOL is time-of-day dependent, perhaps via the mTOR/p70S6K signaling.
Collapse
Affiliation(s)
- Shuo-wen Chang
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
- Department of Physical Education, National University of Tainan, Tainan, Taiwan
| | - Toshinori Yoshihara
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Takamasa Tsuzuki
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
- Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | - Toshiharu Natsume
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
- School of Medicine, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Ryo Kakigi
- Faculty of Management & Information Sciences, Josai International University, Chiba, Japan
| | - Shuichi Machida
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
- * E-mail:
| |
Collapse
|
42
|
Tidyman WE, Goodwin AF, Maeda Y, Klein OD, Rauen KA. MEK-inhibitor-mediated rescue of skeletal myopathy caused by activating Hras mutation in a Costello syndrome mouse model. Dis Model Mech 2022; 15:272258. [PMID: 34553752 PMCID: PMC8617311 DOI: 10.1242/dmm.049166] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/13/2021] [Indexed: 11/20/2022] Open
Abstract
Costello syndrome (CS) is a congenital disorder caused by heterozygous activating germline HRAS mutations in the canonical Ras/mitogen-activated protein kinase (Ras/MAPK) pathway. CS is one of the RASopathies, a large group of syndromes caused by mutations within various components of the Ras/MAPK pathway. An important part of the phenotype that greatly impacts quality of life is hypotonia. To gain a better understanding of the mechanisms underlying hypotonia in CS, a mouse model with an activating HrasG12V allele was utilized. We identified a skeletal myopathy that was due, in part, to inhibition of embryonic myogenesis and myofiber formation, resulting in a reduction in myofiber size and number that led to reduced muscle mass and strength. In addition to hyperactivation of the Ras/MAPK and PI3K/AKT pathways, there was a significant reduction in p38 signaling, as well as global transcriptional alterations consistent with the myopathic phenotype. Inhibition of Ras/MAPK pathway signaling using a MEK inhibitor rescued the HrasG12V myopathy phenotype both in vitro and in vivo, demonstrating that increased MAPK signaling is the main cause of the muscle phenotype in CS. Summary: A Costello syndrome (CS) mouse model carrying a heterozygous Hras p.G12V mutation was utilized to investigate Ras pathway dysregulation, revealing that increased MAPK signaling is the main cause of the muscle phenotype in CS.
Collapse
Affiliation(s)
- William E Tidyman
- Department of Pediatrics, University of California Davis, Sacramento, CA 95817, USA.,UC Davis MIND Institute, Sacramento, CA 95817, USA
| | - Alice F Goodwin
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, CA 94143, USA
| | - Yoshiko Maeda
- Department of Pediatrics, University of California Davis, Sacramento, CA 95817, USA.,UC Davis MIND Institute, Sacramento, CA 95817, USA
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, CA 94143, USA.,Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA 94143, USA
| | - Katherine A Rauen
- Department of Pediatrics, University of California Davis, Sacramento, CA 95817, USA.,UC Davis MIND Institute, Sacramento, CA 95817, USA
| |
Collapse
|
43
|
Dalle S, Dupont J, Dedeyne L, Verschueren S, Tournoy J, Gielen E, Koppo K. Preliminary evidence of differential expression of myogenic and stress factors in skeletal muscle of older adults with low muscle strength. J Gerontol A Biol Sci Med Sci 2022; 77:1121-1129. [PMID: 34984449 DOI: 10.1093/gerona/glac002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 11/12/2022] Open
Abstract
The age-related loss of muscle strength and mass, or sarcopenia, is a growing concern in the ageing population. Yet, it is not fully understood which molecular mechanisms underlie sarcopenia. Therefore, the present study compared the protein expression profile, such as catabolic, oxidative, stress-related and myogenic pathways, between older adults with preserved (8 ♀ and 5 ♂; 71.5 ±2.6 years) and low muscle strength (6 ♀ and 5 ♂; 78.0±5.0 years). Low muscle strength was defined as chair stand test time >15 seconds and/or handgrip strength <16kg (women) or <27kg (men) according the EWGSOP2 criteria. Catabolic signaling (i.e. FOXO1/3a, MuRF1, MAFbx, LC3b, Atg5, p62) was not differentially expressed between both groups, whereas the mitochondrial marker COX-IV, but not PGC1α and citrate synthase, was lower in the low muscle strength group. Stress factors CHOP and p-ERK1/2 were higher (~1.5-fold) in older adults with low muscle strength. Surprisingly, the inflammatory marker p-p65NF-κB was ~7-fold higher in older adults with preserved muscle strength. Finally, expression of myogenic factors (i.e. Pax7, MyoD, desmin; ~2-fold) was higher in adults with low muscle strength. To conclude, whereas the increased stress factors might reflect the age-related deterioration of tissue homeostasis, e.g. due to misfolded proteins (CHOP), upregulation of myogenic markers in the low strength group might be an attempt to compensate for the gradual loss in muscle quantity and quality. These data might provide valuable insights in the processes that underlie sarcopenia.
Collapse
Affiliation(s)
- Sebastiaan Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Belgium
| | - Jolan Dupont
- Geriatrics & Gerontology, Department of Public Health and Primary Care, KU Leuven, Belgium.,Department of Geriatric Medicine, UZ Leuven, Belgium
| | - Lenore Dedeyne
- Geriatrics & Gerontology, Department of Public Health and Primary Care, KU Leuven, Belgium
| | - Sabine Verschueren
- Research Group for Musculoskeletal Rehabilitation, Department of Movement Sciences, KU Leuven, Belgium
| | - Jos Tournoy
- Geriatrics & Gerontology, Department of Public Health and Primary Care, KU Leuven, Belgium.,Department of Geriatric Medicine, UZ Leuven, Belgium
| | - Evelien Gielen
- Geriatrics & Gerontology, Department of Public Health and Primary Care, KU Leuven, Belgium.,Department of Geriatric Medicine, UZ Leuven, Belgium
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Belgium
| |
Collapse
|
44
|
Injury-induced Erk1/2 signaling tissue-specifically interacts with Ca2+ activity and is necessary for regeneration of spinal cord and skeletal muscle. Cell Calcium 2022; 102:102540. [PMID: 35074688 PMCID: PMC9542431 DOI: 10.1016/j.ceca.2022.102540] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/17/2021] [Accepted: 01/14/2022] [Indexed: 12/27/2022]
Abstract
The transition of stem cells from quiescence to proliferation enables tissues to self-repair. The signaling mechanisms driving these stem-cell-status decisions are still unclear. Ca2+ and the extracellular signal-regulated kinase (Erk1/2) are two signaling pathways that have the potential to coordinate multiple signals to promote a specific cellular response. They both play important roles during nervous system development but their roles during spinal cord and muscle regeneration are not fully deciphered. Here we show in Xenopus laevis larvae that both Ca2+ and Erk1/2 signaling pathways are activated after tail amputation. In response to injury, we find that Erk1/2 signaling is activated in neural and muscle stem cells and is necessary for spinal cord and skeletal muscle regeneration. Finally, we show in vivo that Erk1/2 activity is necessary for an injury-induced increase in intracellular store-dependent Ca2+ dynamics in skeletal muscle-associated tissues but that in spinal cord, injury increases Ca2+ influx-dependent Ca2+ activity independent of Erk1/2 signaling. This study suggests that precise temporal and tissue-specific activation of Ca2+ and Erk1/2 pathways is essential for regulating spinal cord and muscle regeneration.
Collapse
|
45
|
Contingent intramuscular boosting of P2XR7 axis improves motor function in transgenic ALS mice. Cell Mol Life Sci 2021; 79:7. [PMID: 34936028 PMCID: PMC8695421 DOI: 10.1007/s00018-021-04070-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/06/2022]
Abstract
Amyotrophic lateral sclerosis is a fatal neurodegenerative disorder that leads to progressive degeneration of motor neurons and severe muscle atrophy without effective treatment. Most research on the disease has been focused on studying motor neurons and supporting cells of the central nervous system. Strikingly, the recent observations have suggested that morpho-functional alterations in skeletal muscle precede motor neuron degeneration, bolstering the interest in studying muscle tissue as a potential target for the delivery of therapies. We previously showed that the systemic administration of the P2XR7 agonist, 2′(3′)-O‐(4-benzoylbenzoyl) adenosine 5-triphosphate (BzATP), enhanced the metabolism and promoted the myogenesis of new fibres in the skeletal muscles of SOD1G93A mice. Here we further corroborated this evidence showing that intramuscular administration of BzATP improved the motor performance of ALS mice by enhancing satellite cells and the muscle pro-regenerative activity of infiltrating macrophages. The preservation of the skeletal muscle retrogradely propagated along with the motor unit, suggesting that backward signalling from the muscle could impinge on motor neuron death. In addition to providing the basis for a suitable adjunct multisystem therapeutic approach in ALS, these data point out that the muscle should be at the centre of ALS research as a target tissue to address novel therapies in combination with those oriented to the CNS.
Collapse
|
46
|
Eigler T, Zarfati G, Amzallag E, Sinha S, Segev N, Zabary Y, Zaritsky A, Shakked A, Umansky KB, Schejter ED, Millay DP, Tzahor E, Avinoam O. ERK1/2 inhibition promotes robust myotube growth via CaMKII activation resulting in myoblast-to-myotube fusion. Dev Cell 2021; 56:3349-3363.e6. [PMID: 34932950 PMCID: PMC8693863 DOI: 10.1016/j.devcel.2021.11.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 07/28/2021] [Accepted: 11/21/2021] [Indexed: 11/19/2022]
Abstract
Myoblast fusion is essential for muscle development and regeneration. Yet, it remains poorly understood how mononucleated myoblasts fuse with preexisting fibers. We demonstrate that ERK1/2 inhibition (ERKi) induces robust differentiation and fusion of primary mouse myoblasts through a linear pathway involving RXR, ryanodine receptors, and calcium-dependent activation of CaMKII in nascent myotubes. CaMKII activation results in myotube growth via fusion with mononucleated myoblasts at a fusogenic synapse. Mechanistically, CaMKII interacts with and regulates MYMK and Rac1, and CaMKIIδ/γ knockout mice exhibit smaller regenerated myofibers following injury. In addition, the expression of a dominant negative CaMKII inhibits the formation of large multinucleated myotubes. Finally, we demonstrate the evolutionary conservation of the pathway in chicken myoblasts. We conclude that ERK1/2 represses a signaling cascade leading to CaMKII-mediated fusion of myoblasts to myotubes, providing an attractive target for the cultivated meat industry and regenerative medicine.
Collapse
Affiliation(s)
- Tamar Eigler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Giulia Zarfati
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Emmanuel Amzallag
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sansrity Sinha
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Nadav Segev
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yishaia Zabary
- Department of Software & Information Systems Engineering, Ben Gurion University, Be'er Sheva, Israel
| | - Assaf Zaritsky
- Department of Software & Information Systems Engineering, Ben Gurion University, Be'er Sheva, Israel
| | - Avraham Shakked
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Kfir-Baruch Umansky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal D Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Ori Avinoam
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
47
|
Cai X, Yang S, Peng Y, Huang Y, Chen H, Wu X. Screening of key genes during early embryonic development of Nile tilapia (Oreochromis niloticus). GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Fujikura Y, Sugihara H, Hatakeyama M, Oishi K, Yamanouchi K. Ketogenic diet with medium-chain triglycerides restores skeletal muscle function and pathology in a rat model of Duchenne muscular dystrophy. FASEB J 2021; 35:e21861. [PMID: 34416029 DOI: 10.1096/fj.202100629r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/16/2021] [Accepted: 08/04/2021] [Indexed: 12/28/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an intractable genetic disease associated with progressive skeletal muscle weakness and degeneration. Recently, it was reported that intraperitoneal injections of ketone bodies partially ameliorated muscular dystrophy by increasing satellite cell (SC) proliferation. Here, we evaluated whether a ketogenic diet (KD) with medium-chain triglycerides (MCT-KD) could alter genetically mutated DMD in model rats. We found that the MCT-KD significantly increased muscle strength and fiber diameter in these rats. The MCT-KD significantly suppressed the key features of DMD, namely, muscle necrosis, inflammation, and subsequent fibrosis. Immunocytochemical analysis revealed that the MCT-KD promoted the proliferation of muscle SCs, suggesting enhanced muscle regeneration. The muscle strength of DMD model rats fed with MCT-KD was significantly improved even at the age of 9 months. Our findings suggested that the MCT-KD ameliorates muscular dystrophy by inhibiting myonecrosis and promoting the proliferation of muscle SCs. As far as we can ascertain, this is the first study to apply a functional diet as therapy for DMD in experimental animals. Further studies are needed to elucidate the underlying mechanisms of the MCT-KD-induced improvement of DMD.
Collapse
Affiliation(s)
- Yuri Fujikura
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Hidetoshi Sugihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | | | - Katsutaka Oishi
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.,Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.,School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Japan
| | - Keitaro Yamanouchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
49
|
Zhu YC, Jin FH, Zhang MY, Qi F. Inhibition of Peripheral ERK Signaling Ameliorates Persistent Muscle Pain Around Trigger Points in Rats. Cell Transplant 2021; 29:963689720960190. [PMID: 33081508 PMCID: PMC7784566 DOI: 10.1177/0963689720960190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The purpose of this study was to investigate whether the ERK signaling pathway was involved in ameliorating chronic myofascial hyperalgesia from contused gastrocnemius muscle in rats. We established an animal model associated with myofascial pain syndrome and described the mechanism of muscle pain in an animal model. Changes in the mechanical pain threshold were observed 0.5, 1, 2, 3, 4, 5, 8, 12, 18, and 24 h after ERK inhibitor injection around myofascial trigger points (MTrPs) of the gastrocnemius muscle in rats. Morphological changes in gastrocnemius muscle cells were observed by hematoxylin and eosin (H&E) staining. ERK signaling pathway activation was detected through immunohistochemistry and Western blotting. The main morphological characteristics of injured muscle fibers around MTrPs include gathered circular or elliptical shapes of different sizes in the cross-section and continuous inflated and tapering fibers in the longitudinal section. After intramuscular injection of U0126 (ERK inhibitor), the mechanical pain threshold significantly increased. The reduction in mechanical hyperalgesia was accompanied by reduced ERK protein phosphorylation, myosin light chain kinase (MLCK) protein, p-MLC protein expression, and the cross-sectional area of skeletal muscle cells around MTrPs. An ERK inhibitor contributed to the attenuation of mechanical hyperalgesia in the rat myofascial pain model, and the increase in pain threshold may be related to MLCK downregulation and other related contraction-associated proteins by ERK.
Collapse
Affiliation(s)
- Yu-Chang Zhu
- Department of Anaesthesiology and Pain Clinic, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Anaesthesiology, Shangdong Provincial Maternal and Child Health Care Hospital, China
| | - Fei-Hong Jin
- Department of Anaesthesiology and Pain Clinic, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ming-Yang Zhang
- Department of Anaesthesiology, Tengzhou Central People's Hospital, Tengzhou, Shandong, China
| | - Feng Qi
- Department of Anaesthesiology and Pain Clinic, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
50
|
Liu H, Lee SM, Joung H. 2-D08 treatment regulates C2C12 myoblast proliferation and differentiation via the Erk1/2 and proteasome signaling pathways. J Muscle Res Cell Motil 2021; 42:193-202. [PMID: 34142311 PMCID: PMC8332585 DOI: 10.1007/s10974-021-09605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/09/2021] [Indexed: 11/24/2022]
Abstract
SUMOylation is one of the post-translational modifications that involves the covalent attachment of the small ubiquitin-like modifier (SUMO) to the substrate. SUMOylation regulates multiple biological processes, including myoblast proliferation, differentiation, and apoptosis. 2-D08 is a synthetically available flavone, which acts as a potent cell-permeable SUMOylation inhibitor. Its mechanism of action involves preventing the transfer of SUMO from the E2 thioester to the substrate without influencing SUMO-activating enzyme E1 (SAE-1/2) or E2 Ubc9-SUMO thioester formation. However, both the effects and mechanisms of 2-D08 on C2C12 myoblast cells remain unclear. In the present study, we found that treatment with 2-D08 inhibits C2C12 cell proliferation and differentiation. We confirmed that 2-D08 significantly hampers the viability of C2C12 cells. Additionally, it inhibited myogenic differentiation, decreasing myosin heavy chain (MHC), MyoD, and myogenin expression. Furthermore, we confirmed that 2-D08-mediated anti-myogenic effects impair myoblast differentiation and myotube formation, reducing the number of MHC-positive C2C12 cells. In addition, we found that 2-D08 induces the activation of ErK1/2 and the degradation of MyoD and myogenin in C2C12 cells. Taken together, these results indicated that 2-D08 treatment results in the deregulated proliferation and differentiation of myoblasts. However, further research is needed to investigate the long-term effects of 2-D08 on skeletal muscles.
Collapse
Affiliation(s)
- Hyunju Liu
- Department of Obstetrics and Gynecology, Chosun University College of Medicine, Gwangju, Republic of Korea
| | - Su-Mi Lee
- Research Institute of Medical Sciences, Chonnam National University Medical School, Hwasun, Republic of Korea. .,Department of Internal Medicine, Division of Gastroenterology and Hepatology, Chonnam National University Medical School,, 42, Jebong-ro, Dong-gu, Gwangju, 61469, Republic of Korea.
| | - Hosouk Joung
- Research Institute of Medical Sciences, Chonnam National University Medical School, Hwasun, Republic of Korea. .,Department of Internal Medicine, Division of Gastroenterology and Hepatology, Chonnam National University Medical School,, 42, Jebong-ro, Dong-gu, Gwangju, 61469, Republic of Korea.
| |
Collapse
|