1
|
Dynein promotes sustained axonal growth and Schwann cell remodeling early during peripheral nerve regeneration. PLoS Genet 2019; 15:e1007982. [PMID: 30779743 PMCID: PMC6396928 DOI: 10.1371/journal.pgen.1007982] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 03/01/2019] [Accepted: 01/23/2019] [Indexed: 11/19/2022] Open
Abstract
Following injury, axons of the peripheral nervous system have retained the capacity for regeneration. While it is well established that injury signals require molecular motors for their transport from the injury site to the nucleus, whether kinesin and dynein motors play additional roles in peripheral nerve regeneration is not well understood. Here we use genetic mutants of motor proteins in a zebrafish peripheral nerve regeneration model to visualize and define in vivo roles for kinesin and dynein. We find that both kinesin-1 and dynein are required for zebrafish peripheral nerve regeneration. While loss of kinesin-1 reduced the overall robustness of axonal regrowth, loss of dynein dramatically impaired axonal regeneration and also reduced injury-induced Schwann cell remodeling. Chimeras between wild type and dynein mutant embryos demonstrate that dynein function in neurons is sufficient to promote axonal regrowth. Finally, by simultaneously monitoring actin and microtubule dynamics in regenerating axons we find that dynein appears dispensable to initiate axonal regrowth, but is critical to stabilize microtubules, thereby sustaining axonal regeneration. These results reveal two previously unappreciated roles for dynein during peripheral nerve regeneration, initiating injury induced Schwann cell remodeling and stabilizing axonal microtubules to sustain axonal regrowth. Nerve regeneration requires coordinated responses from multiple cell types after injury. Axons must extend from the neuronal cell body back towards their targets, while surrounding Schwann cells enter a repair cell state in which they promote regeneration. While nerves of the peripheral nervous system can regrow, it is estimated that fewer than 10 percent of patients fully recover function after nerve injury. In order to understand the mechanisms by which peripheral nerves regrow, we used live cell imaging in the zebrafish to observe the process of nerve regeneration, monitoring axons and Schwann cells simultaneously during this process. Using genetic mutants, we identified a role for the molecular motors kinesin-1 and dynein in promoting axonal regrowth. Furthermore, we found that dynein plays an additional role in Schwann cell response to injury. Thus, we demonstrate that molecular motors are required in multiple cell types to promote nerve regeneration.
Collapse
|
2
|
He Z, Jin Y. Intrinsic Control of Axon Regeneration. Neuron 2016; 90:437-51. [DOI: 10.1016/j.neuron.2016.04.022] [Citation(s) in RCA: 337] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/10/2016] [Accepted: 04/13/2016] [Indexed: 01/12/2023]
|
3
|
Abstract
Failure of axon regeneration after central nervous system (CNS) injuries results in permanent functional deficits. Numerous studies in the past suggested that blocking extracellular inhibitory influences alone is insufficient to allow the majority of injured axons to regenerate, pointing to the importance of revisiting the hypothesis that diminished intrinsic regenerative ability critically underlies regeneration failure. Recent studies in different species and using different injury models have started to reveal important cellular and molecular mechanisms within neurons that govern axon regeneration. This review summarizes these observations and discusses possible strategies for stimulating axon regeneration and perhaps functional recovery after CNS injury.
Collapse
Affiliation(s)
- Kai Liu
- FM Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
4
|
Axotomy induces axonogenesis in hippocampal neurons by a mechanism dependent on importin β. Biochem Biophys Res Commun 2011; 405:697-702. [DOI: 10.1016/j.bbrc.2011.01.108] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 01/28/2011] [Indexed: 11/24/2022]
|
5
|
Yuan Q, Hu B, Wu Y, Chu TH, Su H, Zhang W, So KF, Lin Z, Wu W. Induction of c-Jun phosphorylation in spinal motoneurons in neonatal and adult rats following axonal injury. Brain Res 2010; 1320:7-15. [DOI: 10.1016/j.brainres.2010.01.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 01/07/2010] [Accepted: 01/14/2010] [Indexed: 12/20/2022]
|
6
|
Richardson PM, Miao T, Wu D, Zhang Y, Yeh J, Bo X. RESPONSES OF THE NERVE CELL BODY TO AXOTOMY. Neurosurgery 2009; 65:A74-9. [DOI: 10.1227/01.neu.0000352378.26755.c3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Abstract
OBJECTIVE
Peripheral nerve injury causes retrograde changes in the damaged neurons, which are beneficial to axonal regeneration. Better understanding of the mechanisms of induction and mediation of these conditioning responses would help to design strategies to invoke stronger regenerative responses in neurons in situations when these responses are inadequate.
METHODS
Relevant literature is reviewed.
RESULTS
Experimental preparations that measure the influence of peripheral axotomy on regeneration in the central axons of primary sensory neurons are useful to examine mechanisms of conditioning neurons. Despite 4 decades of speculation, the nature of the damage signals from injured nerves that initiate axonal signals to the nerve cell body remains elusive. Members of the family of neuropoietic cytokines are clearly implicated, but what induces them is unknown. Multiple changes in gene regulation in axotomized neurons have been described, and dozens of growth-associated genes have been identified: neurotrophic factors, transcription factors, molecules participating in axonal transport, and molecules active in the growth cone. The mechanisms of interaction of a few regeneration-associated molecules with the signaling cascades that lead to actin and tubulin remodeling at the growth cone are understood in some detail. In animals, viral gene therapy to deliver regeneration-associated genes to neurons or other local measures to induce these genes can improve regeneration. A few pharmacological agents, administered systemically, have small beneficial effects on axonal regeneration.
CONCLUSION
Advances in laboratory research have provided knowledge of cell body responses to axotomy with clinical relevance.
Collapse
Affiliation(s)
- Peter M. Richardson
- Department of Neurosurgery, Queen Mary, University of London, The Royal London Hospital, London, England
| | - Tizong Miao
- Neuroscience Centre, Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, England
| | - Dongsheng Wu
- Neuroscience Centre, Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, England
| | - Yi Zhang
- Neuroscience Centre, Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, England
| | - John Yeh
- Department of Neurosurgery, Queen Mary, University of London, The Royal London Hospital, London, England
| | - Xuenong Bo
- Neuroscience Centre, Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, England
| |
Collapse
|
7
|
Abstract
The cell body of a lesioned neuron must receive accurate and timely information on the site and extent of axonal damage, in order to mount an appropriate response. Specific mechanisms must therefore exist to transmit such information along the length of the axon from the lesion site to the cell body. Three distinct types of signals have been postulated to underlie this process, starting with injury-induced discharge of axon potentials, and continuing with two distinct types of retrogradely transported macromolecular signals. The latter includes, on the one hand, an interruption of the normal supply of retrogradely transported trophic factors from the target, and, on the other hand, activated proteins originating from the injury site. This chapter reviews the progress on understanding the different mechanistic aspects of the axonal response to injury, and how the information is conveyed from the injury site to the cell body to initiate regeneration.
Collapse
Affiliation(s)
- Keren Ben-Yaakov
- Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | |
Collapse
|
8
|
Dahlin L, Johansson F, Lindwall C, Kanje M. Chapter 28 Future Perspective in Peripheral Nerve Reconstruction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 87:507-30. [DOI: 10.1016/s0074-7742(09)87028-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Rossi F, Gianola S, Corvetti L. Regulation of intrinsic neuronal properties for axon growth and regeneration. Prog Neurobiol 2006; 81:1-28. [PMID: 17234322 DOI: 10.1016/j.pneurobio.2006.12.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 11/04/2006] [Accepted: 12/05/2006] [Indexed: 01/29/2023]
Abstract
Regulation of neuritic growth is crucial for neural development, adaptation and repair. The intrinsic growth potential of nerve cells is determined by the activity of specific molecular sets, which sense environmental signals and sustain structural extension of neurites. The expression and function of these molecules are dynamically regulated by multiple mechanisms, which adjust the actual growth properties of each neuron population at different ontogenetic stages or in specific conditions. The neuronal potential for axon elongation and regeneration are restricted at the end of development by the concurrent action of several factors associated with the final maturation of neurons and of the surrounding tissue. In the adult, neuronal growth properties can be significantly modulated by injury, but they are also continuously tuned in everyday life to sustain physiological plasticity. Strict regulation of structural remodelling and neuritic elongation is thought to be required to maintain specific patterns of connectivity in the highly complex mammalian CNS. Accordingly, procedures that neutralize such mechanisms effectively boost axon growth in both intact and injured nervous system. Even in these conditions, however, aberrant connections are only formed in the presence of unusual external stimuli or experience. Therefore, growth regulatory mechanisms play an essentially permissive role by setting the responsiveness of neural circuits to environmental stimuli. The latter exert an instructive action and determine the actual shape of newly formed connections. In the light of this notion, efficient therapeutic interventions in the injured CNS should combine targeted manipulations of growth control mechanisms with task-specific training and rehabilitation paradigms.
Collapse
Affiliation(s)
- Ferdinando Rossi
- Rita Levi Montalcini Centre for Brain Repair, Department of Neuroscience, University of Turin, Corso Raffaello 30, I-10125 Turin, Italy.
| | | | | |
Collapse
|
10
|
Abstract
Injury to axons elicits changes in macromolecule synthesis in the corresponding cell bodies that are critical for an effective regenerative response. For decades the most easily studied aspect of this phenomenon was the onset of chromatolysis, a suite of structural changes in the cell body characterized by swelling, shifting of the nucleus and dispersal of Nissl bodies. The question: 'what is the signal for chromatolysis?' received no less than 10 possible answers in a comprehensive review article published more than three decades ago. Here we come back to this 36 years old question, and review progress on understanding the mechanism of retrograde injury signaling in lesioned peripheral nerves. Recent work suggests that this is based on local axonal synthesis of critical carrier proteins, including importins and vimentin that link diverse signaling molecules to the dynein retrograde motor. A multiplicity of binding sites and of potential signaling molecules, including transcription factors and MAP kinases (Erk, Jnk), may allow diverse options for information-rich encoding of the injury status of the axon for transmission to the cell body.
Collapse
Affiliation(s)
- Shlomit Hanz
- Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel.
| | | |
Collapse
|
11
|
Abstract
p75 was immunohistochemically identified in spinal motoneurons in immature and adult rats after either distal peripheral axotomy or root avulsion. Few or no p75 positive motoneurons were observed after distal axotomy in animals at the age of postnatal day 1 and postnatal day 7, whereas the injury induced marked neuronal death. Motoneurons reexpressed p75 from the end of the second postnatal week to adulthood in response to distal axotomy, whereas most motoneurons survived after the injury. On the other hand, root avulsion in animals of all ages did not cause significant p75 expression in avulsed motoneurons where most motoneurons died ultimately. The potential role of such reexpression in motoneuron protection is discussed.
Collapse
Affiliation(s)
- Qiuju Yuan
- Department of Anatomy, Faculty of Medicine, The University of Hong Kong, China
| | | | | | | |
Collapse
|
12
|
Otis KO, Thompson KR, Martin KC. Importin-mediated nuclear transport in neurons. Curr Opin Neurobiol 2006; 16:329-35. [PMID: 16690311 DOI: 10.1016/j.conb.2006.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 05/03/2006] [Indexed: 01/17/2023]
Abstract
The polarized morphology of neurons poses a particular challenge to intracellular signal transduction. Local signals generated at distal sites must be retrogradely transported to the nucleus to produce persistent changes in neuronal function. Such communication of signals between distal neuronal compartments and the nucleus occurs during axon guidance, synapse formation, synaptic plasticity and following neuronal injury. Recent studies have begun to delineate a role for the active nuclear import pathway in transporting signals from axons and dendrites to the nucleus. In this pathway, soluble cargo proteins are recognized by nuclear transport carriers, called importins, which mediate their translocation from the cytoplasm into the nucleus. In neurons, importins might serve an additional function by carrying signals from distal sites to the soma.
Collapse
Affiliation(s)
- Klara Olofsdotter Otis
- University of California, Los Angeles, Gonda Research Building 3506C, 695 Charles Young Drive South, Los Angeles, CA 90095-1761, USA
| | | | | |
Collapse
|
13
|
Hermann PM, Nicol JJ, Nagle GT, Bulloch AGM, Wildering WC. Epidermal growth factor-dependent enhancement of axonal regeneration in the pond snail Lymnaea stagnalis: role of phagocyte survival. J Comp Neurol 2006; 492:383-400. [PMID: 16228994 DOI: 10.1002/cne.20732] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peripheral nerve injury triggers complex responses from neuronal as well as from multiple nonneuronal cell types. These responses are coordinated by a wide spectrum of secreted and nonsecreted factors, including growth factors, cytokines, and cell adhesion molecules. These molecules originate from different sources and act both locally at the site of injury as well as centrally at the location of the neuronal cell bodies. One of the signal systems frequently implicated in this process is the epidermal growth factor (EGF) family and its receptors. Expression of members of this family as well as that of EGF-receptors is upregulated in different cell types after peripheral nerve injury. However, the functional significance of this response is unclear. Using a simple invertebrate model system (Lymnaea stagnalis), the present study implicates the EGF/EGF-receptor system in the survival of ionized calcium-binding adaptor molecule 1 (Iba1)-positive phagocytes that reside in the nervous system. We show that inhibiting the EGF-signaling pathway enhances cell death in this type of cell, an effect paralleled by a substantial reduction in axonal regeneration. Therefore, complementing our previous observation that Lymnaea EGF provides trophic support to axotomized neurons, the present results emphasize the significance of nonneuronal actions of EGF receptor ligands in axonal regeneration. Thus, we add a novel perspective to the ongoing discussion on the functional significance of the EGF signaling system in the injury responses of the nervous system.
Collapse
Affiliation(s)
- Petra M Hermann
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
14
|
McPhail LT, Oschipok LW, Liu J, Tetzlaff W. Both positive and negative factors regulate gene expression following chronic facial nerve resection. Exp Neurol 2005; 195:199-207. [PMID: 15935349 DOI: 10.1016/j.expneurol.2005.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 04/19/2005] [Accepted: 04/26/2005] [Indexed: 10/25/2022]
Abstract
Previously, we reported that following a chronic nerve resection, removal of the neuroma reversed the atrophy, increased the number of countable motoneurons and resulted in the re-expression of GAP-43 and alpha tubulin mRNA. In the present study, we questioned whether this response was due to the removal of the neuroma, or a result of factors such as neurotrophins, produced at the injury site. To test this hypothesis, 10 weeks after axotomy, the axonal transport blocker colchicine or, glial derived neurotrophic factor (GDNF) was injected proximal to the neuroma. The injection of GDNF or colchicine elicited an increase in motoneuron size and in GAP-43, but not alpha tubulin, mRNA. These data suggest that in addition to factors produced at the injury site, the neuroma acts as a source of target-like repressive signals that when removed results in an increase in gene expression and motoneuron size. To analyze the regenerative potential of chronically resected motoneurons, mice without a previous nerve injury and mice with a chronic resection received a pre-degenerated segment of sciatic nerve attached to the proximal facial nerve stump. Axons from both the chronic and acute groups grew into the grafts, however, significantly more retrogradely labeled motoneurons were counted in the acute group compared to the chronic resection group. No difference in motoneuron cell size was observed between the two groups of regenerated neurons. Therefore, despite severe atrophy, many of the surviving mouse facial motoneurons retain the propensity to extend their axons when provided with the appropriate environment.
Collapse
Affiliation(s)
- Lowell T McPhail
- ICORD (International Collaboration On Repair Discoveries), University of British Columbia, Rm 2465 Biosciences Building, 6270 University Boulevard, Vancouver, BC, Canada V6T1Z4
| | | | | | | |
Collapse
|
15
|
Hanz S, Fainzilber M. Integration of retrograde axonal and nuclear transport mechanisms in neurons: implications for therapeutics. Neuroscientist 2005; 10:404-8. [PMID: 15359007 DOI: 10.1177/1073858404267884] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The elongated morphology of neuronal processes imposes a significant challenge for effective intracellular communication between the neurites and the cell body. This problem is especially acute upon injury, when the cell body must receive accurate and timely information on the site and extent of axonal damage to mount an appropriate response. Recent work has demonstrated that nuclear import factors from the importin (karyopherin) alpha and beta families provide a mechanism for retrograde injury signaling. Importins are found throughout axons and dendrites at significant distances from the cell body, and importin beta protein is increased after nerve lesion by local translation of axonal mRNA. This leads to formation of a high-affinity nuclear localization signal (NLS) binding complex that traffics retrogradely due to an interaction of importin alpha with the motor protein dynein. Disruption of the complex with excess NLS peptides delays regeneration of injured sensory neurons. The dual role of importins in retrograde transport in axons and nuclear import in cell bodies suggests new avenues for manipulating intrinsic regeneration mechanisms in the nervous system and may provide a novel route for drug delivery to the CNS.
Collapse
Affiliation(s)
- Shlomit Hanz
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
16
|
Mandolesi G, Madeddu F, Bozzi Y, Maffei L, Ratto GM. Acute physiological response of mammalian central neurons to axotomy: ionic regulation and electrical activity. FASEB J 2004; 18:1934-6. [PMID: 15451889 DOI: 10.1096/fj.04-1805fje] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The transection of the axon of central neurons has dramatic consequences on the damaged cells and nerves. Injury activates molecular programs leading to a complex repertoire of responses that, depending on the cellular context, include activation of sprouting, axonal degeneration, and cell death. Although the cellular mechanisms started at the time of lesion are likely to shape the changes affecting injured cells, the acute physiological reaction to trauma of mammalian central neurons is not completely understood yet. To characterize the physiology of the acute response to axonal transection, we have developed a model of in vitro axotomy of neurons cultured from the rodent cortex. Imaging showed that axotomy caused an increase of calcium in the soma and axon. Propagation of the response to the soma required the activation of voltage-dependent sodium channels, since it was blocked by tetrodotoxin. The electrophysiological response to axotomy was recorded in patched neurons kept in the current clamp configuration: injury was followed by vigorous spiking activity that caused a sodium load and the activation of transient calcium currents that were opened by each action potential. The decrease of the electrochemical gradient of sodium caused inversion of the Na-Ca exchanger that provided an additional mean of entry for calcium. Finally, we determined that inhibition of the physiological response to axotomy hindered the regeneration of a new neurite. These data provide elements of the framework required to link the axotomy itself to the downstream molecular machinery that contributes to the determination of the long-term fate of injured neurons and axons.
Collapse
|
17
|
Perlson E, Medzihradszky KF, Darula Z, Munno DW, Syed NI, Burlingame AL, Fainzilber M. Differential Proteomics Reveals Multiple Components in Retrogradely Transported Axoplasm After Nerve Injury. Mol Cell Proteomics 2004; 3:510-20. [PMID: 14973157 DOI: 10.1074/mcp.m400004-mcp200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Information on axonal damage is conveyed to neuronal cell bodies by a number of signaling modalities, including the post-translational modification of axoplasmic proteins. Retrograde transport of a subset of such proteins is thought to induce or enhance a regenerative response in the cell body. Here we report the use of a differential 2D-PAGE approach to identify injury-correlated retrogradely transported proteins in nerves of the mollusk Lymnaea. A comprehensive series of gels at different pI ranges allowed resolution of approximately 4000 spots by silver staining, and 172 of these were found to differ between lesioned versus control nerves. Mass spectrometric sequencing of 134 differential spots allowed their assignment to over 40 different proteins, some belonging to a vesicular ensemble blocked by the lesion and others comprising an up-regulated ensemble highly enriched in calpain cleavage products of an intermediate filament termed RGP51 (retrograde protein of 51 kDa). Inhibition of RGP51 expression by RNA interference inhibits regenerative outgrowth of adult Lymnaea neurons in culture. These results implicate regulated proteolysis in the formation of retrograde injury signaling complexes after nerve lesion and suggest that this signaling modality utilizes a wide range of protein components.
Collapse
Affiliation(s)
- Eran Perlson
- Molecular Neurobiology Group, Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|
18
|
Hanz S, Perlson E, Willis D, Zheng JQ, Massarwa R, Huerta JJ, Koltzenburg M, Kohler M, van-Minnen J, Twiss JL, Fainzilber M. Axoplasmic importins enable retrograde injury signaling in lesioned nerve. Neuron 2004; 40:1095-104. [PMID: 14687545 DOI: 10.1016/s0896-6273(03)00770-0] [Citation(s) in RCA: 379] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Axoplasmic proteins containing nuclear localization signals (NLS) signal retrogradely by an unknown mechanism in injured nerve. Here we demonstrate that the importin/karyopherin alpha and beta families underlie this process. We show that importins are found in axons at significant distances from the cell body and that importin beta protein is increased after nerve lesion by local translation of axonal mRNA. This leads to formation of a high-affinity NLS binding complex that traffics retrogradely with the motor protein dynein. Trituration of synthetic NLS peptide at the injury site of axotomized dorsal root ganglion (DRG) neurons delays their regenerative outgrowth, and NLS introduction to sciatic nerve concomitantly with a crush injury suppresses the conditioning lesion induced transition from arborizing to elongating growth in L4/L5 DRG neurons. These data suggest a model whereby lesion-induced upregulation of axonal importin beta may enable retrograde transport of signals that modulate the regeneration of injured neurons.
Collapse
Affiliation(s)
- Shlomit Hanz
- Molecular Neurobiology Group, Department of Biological Chemistry, Weizmann Institute of Science, 76100, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lin H, Bao J, Sung YJ, Walters ET, Ambron RT, Ying JS. Rapid electrical and delayed molecular signals regulate the serum response element after nerve injury: convergence of injury and learning signals. ACTA ACUST UNITED AC 2003; 57:204-20. [PMID: 14556286 DOI: 10.1002/neu.10275] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Axotomy elicits changes in gene expression, but little is known about how information from the site of injury is communicated to the cell nucleus. We crushed nerves in Aplysia californica and the sciatic nerve in the mouse and found short- and long-term activation of an Elk1-SRF transcription complex that binds to the serum response element (SRE). The enhanced short-term binding appeared rapidly and was attributed to the injury-induced activation of an Elk1 kinase that phosphorylates Elk1 at ser383. This kinase is the previously described Aplysia (ap) ERK2 homologue, apMAPK. Nerve crush evoked action potentials that propagated along the axon to the cell soma. Exposing axons to medium containing high K(+), which evoked a similar burst of spikes, or bathing the ganglia in 20 microM serotonin (5HT) for 20 min, activated the apMAPK and enhanced SRE binding. Since 5HT is released in response to electrical activity, our data indicate that the short-term process is initiated by an injury-induced electrical discharge that causes the release of 5HT which activates apMAPK. 5HT is also released in response to noxious stimuli for aversive learning. Hence, apMAPK is a point of convergence for injury signals and learning signals. The delay before the onset of the long-term SRE binding was reduced when the crush was closer to the ganglion and was attributed to an Elk1 kinase that is activated by injury in the axon and retrogradely transported to the cell body. Although this Elk1 kinase phosphorylates mammalian rElk1 at ser383, it is distinct from apMAPK.
Collapse
Affiliation(s)
- Hana Lin
- Department of Anatomy and Cell Biology, 1201 Black Building, Columbia University, West 168th Street, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
20
|
Lukowiak K, Haque Z, Spencer G, Varshay N, Sangha S, Syed N. Long-term memory survives nerve injury and the subsequent regeneration process. Learn Mem 2003; 10:44-54. [PMID: 12551963 PMCID: PMC196652 DOI: 10.1101/lm.48703] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A three-neuron network (a central pattern generator [CPG]) is both sufficient and necessary to generate aerial respiratory behavior in the pond snail, Lymnaea stagnalis. Aerial respiratory behavior is abolished following a specific nerve crush that results in axotomy to one of the three CPG neurons, RPeD1. Functional regeneration of the crushed neurite occurs within 10 days, allowing aerial respiratory behavior to be restored. Functional regeneration does not occur if the connective is cut rather than crushed. In unaxotomized snails, aerial respiratory behavior can be operantly conditioned, and following memory consolidation, long-term memory (LTM) persists for at least 2 weeks. We used the Lymnaea model system to determine (1) If in naive animals axotomy and the subsequent regeneration result in a nervous system that is competent to mediate associative learning and LTM, and (2) if LTM survives RPeD1 axotomy and the subsequent regenerative process. We show here that (1) A regenerated nervous system is competent to mediate associative memory and LTM, and (2) LTM survives axotomy and the subsequent regenerative process.
Collapse
Affiliation(s)
- Ken Lukowiak
- Department of Physiology and Biophysics, and Neuroscience and Respiratory Research Groups, University of Calgary, Calgary, Alberta, Canada T2N 4N1.
| | | | | | | | | | | |
Collapse
|
21
|
Perlson E, Hanz S, Medzihradszky KF, Burlingame AL, Fainzilber M. From snails to sciatic nerve: Retrograde injury signaling from axon to soma in lesioned neurons. ACTA ACUST UNITED AC 2003; 58:287-94. [PMID: 14704959 DOI: 10.1002/neu.10316] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The cell body of a lesioned neuron must receive accurate and timely information on the site and extent of axonal damage, in order to mount an appropriate response. Specific mechanisms must therefore exist to transmit such information along the length of the axon from the lesion site to the cell body. Three distinct types of signals have been postulated to underlie this process, starting with injury-induced discharge of axon potentials, and continuing with two distinct types of retrogradely transported macromolecular signals. The latter include, on the one hand, an interruption of the normal supply of retrogradely transported trophic factors from the target; and on the other hand activated proteins emanating from the injury site. These activated proteins are termed "positive injury signals", and are thought to be endogenous axoplasmic proteins that undergo post-translational modifications at the lesion site upon axotomy, which then target them to the retrograde transport system for trafficking to the cell body. Here, we summarize the work to date supporting the positive retrograde injury signal hypothesis, and provide some new and emerging proteomic data on the system. We propose that the retrograde positive injury signals form part of a complex that is assembled by a combination of different processes, including post-translational modifications such as phosphorylation, regulated and transient proteolysis, and local axonal protein synthesis.
Collapse
Affiliation(s)
- Eran Perlson
- Molecular Neurobiology Group, Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | | | |
Collapse
|