1
|
Ozturk S. Molecular determinants of the meiotic arrests in mammalian oocytes at different stages of maturation. Cell Cycle 2022; 21:547-571. [PMID: 35072590 PMCID: PMC8942507 DOI: 10.1080/15384101.2022.2026704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 01/26/2023] Open
Abstract
Mammalian oocytes undergo two rounds of developmental arrest during maturation: at the diplotene of the first meiotic prophase and metaphase of the second meiosis. These arrests are strictly regulated by follicular cells temporally producing the secondary messengers, cAMP and cGMP, and other factors to regulate maturation promoting factor (composed of cyclin B1 and cyclin-dependent kinase 1) levels in the oocytes. Out of these normally appearing developmental arrests, permanent arrests may occur in the oocytes at germinal vesicle (GV), metaphase I (MI), or metaphase II (MII) stage. This issue may arise from absence or altered expression of the oocyte-related genes playing key roles in nuclear and cytoplasmic maturation. Additionally, the assisted reproductive technology (ART) applications such as ovarian stimulation and in vitro culture conditions both of which harbor various types of chemical agents may contribute to forming the permanent arrests. In this review, the molecular determinants of developmental and permanent arrests occurring in the mammalian oocytes are comprehensively evaluated in the light of current knowledge. As number of permanently arrested oocytes at different stages is increasing in ART centers, potential approaches for inducing permanent arrests to obtain competent oocytes are discussed.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
2
|
Tremblay PG, Sirard MA. Gene analysis of major signaling pathways regulated by gonadotropins in human ovarian granulosa tumor cells (KGN)†. Biol Reprod 2020; 103:583-598. [PMID: 32427331 DOI: 10.1093/biolre/ioaa079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/17/2020] [Accepted: 05/18/2020] [Indexed: 11/13/2022] Open
Abstract
The female reproductive function largely depends on timing and coordination between follicle-stimulating hormone (FSH) and luteinizing hormone. Even though it was suggested that these hormones act on granulosa cells via shared signaling pathways, mainly protein kinases A, B, and C (PKA, PKB, and PKC), there is still very little information available on how these signaling pathways are regulated by each hormone to provide such differences in gene expression throughout folliculogenesis. To obtain a global picture of the principal upstream factors involved in PKA, PKB, and PKC signaling in granulosa cells, human granulosa-like tumor cells (KGN) were treated with FSH or specific activators (forskolin, SC79, and phorbol 12-myristate 13-acetate) for each pathway to analyze gene expression with RNA-seq technology. Normalization and cutoffs (FC 1.5, P ≤ 0.05) revealed 3864 differentially expressed genes between treatments. Analysis of major upstream regulators showed that PKA is a master kinase of early cell differentiation as its activation resulted in the gene expression profile that accompanies granulosa cell differentiation. Our data also revealed that the activation of PKC in granulosa cells is also a strong differentiation signal that could control "advanced" differentiation in granulosa cells and the inflammatory cascade that occurs in the dominant follicle. According to our results, PKB activation provides support for PKA-stimulated gene expression and is also involved in granulosa cell survival throughout follicular development. Taken together, our results provide new information on PKA, PKB, and PKC signaling pathways and their roles in stimulating a follicle at the crossroad between maturation/ovulation and atresia.
Collapse
Affiliation(s)
- Patricia G Tremblay
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des sciences de l'agriculture et de l'alimentation, Département des Sciences animales, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Marc-André Sirard
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des sciences de l'agriculture et de l'alimentation, Département des Sciences animales, Université Laval, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
3
|
Liu Y, Deng X, Wu D, Jin M, Yu B. PKCδ promotes fertilization of mouse embryos in early development via the Cdc25B signaling pathway. Exp Ther Med 2019; 18:3281-3290. [PMID: 31602201 PMCID: PMC6777331 DOI: 10.3892/etm.2019.7959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 10/03/2018] [Indexed: 12/26/2022] Open
Abstract
Protein kinase C type δ (PKCδ) is involved in B-cell signaling and the regulation of growth, apoptosis and differentiation of a variety of cell types. Cell division cycle 25 (Cdc25) is a key mediator of cell cycle progression that activates cyclin-dependent kinase complexes that drive the cell cycle and participates in the regulation of DNA damage checkpoints. Cdc25B is a member of the Cdc25 family of phosphatases. The present study investigated the role and mechanism of PKCδ in regulating the fertilization of mouse embryos in early development. The expression and subcellular localization of PKCδ and Cdc25B were detected using reverse transcription-quantitative polymerase chain reaction, western blotting and immunofluorescence in one-cell stage mouse embryos. Specific small interfering RNAs targeting PKCδ were used to knockdown the expression of PKCδ. Subsequently, Scansite software was used to predict the target of phosphorylated Cdc25B. Western blotting was used to measure the effects of phosphorylation and dephosphorylation in one-cell stage mouse embryos at different cell cycle phases. PKCδ was expressed during M phase and served a positive role in one-cell stage mouse embryos. Immunofluorescence data revealed that PKCδ and Cdc25B were expressed during G1, S, G2 and M phases of the cell cycle. Furthermore, phosphorylated levels of Cdc25B-Ser96 were observed during G2 and M phases. Microinjection with mimics of phosphorylated Cdc25B-Ser96 mRNA promoted the development of one-cell stage mouse embryos. When PKCδ was suppressed, microinjection with mimics of phosphorylated Cdc25B-Ser96 mRNA reversed the inhibition of PKCδ. To conclude, PKCδ serves a positive role in the first cell cycle of mouse embryos by phosphorylating Cdc25B-Ser96, and provides novel insights for the regulation of early embryonic development.
Collapse
Affiliation(s)
- Yanchun Liu
- Department of Biochemical and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, P.R. China.,Liaoning Blood Center, Shenyang, Liaoning 110044, P.R. China
| | - Xin Deng
- Experimental Center of The Functional Subjects China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Didi Wu
- Department of Biochemical and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Minglin Jin
- Department of Biochemical and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Bingzhi Yu
- Department of Biochemical and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
4
|
Mechanisms of FSH- and Amphiregulin-Induced MAP Kinase 3/1 Activation in Pig Cumulus-Oocyte Complexes During Maturation In Vitro. Int J Mol Sci 2019; 20:ijms20051179. [PMID: 30866587 PMCID: PMC6429514 DOI: 10.3390/ijms20051179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/15/2022] Open
Abstract
The maturation of mammalian oocytes in vitro can be stimulated by gonadotropins (follicle-stimulating hormone, FSH) or their intrafollicular mediator, epidermal growth factor (EGF)-like peptide—amphiregulin (AREG). We have shown previously that in pig cumulus-oocyte complexes (COCs), FSH induces expression and the synthesis of AREG that binds to EGF receptor (EGFR) and activates the mitogen-activated protein kinase 3/1 (MAPK3/1) signaling pathway. However, in this study we found that FSH also caused a rapid activation of MAPK3/1 in the cumulus cells, which cannot be explained by the de novo synthesis of AREG. The rapid MAPK3/1 activation required EGFR tyrosine kinase (TK) activity, was sensitive to SRC proto-oncogene non-receptor tyrosine kinase (SRC)-family and protein kinase C (PKC) inhibitors, and was resistant to inhibitors of protein kinase A (PKA) and metalloproteinases. AREG also induced the rapid activation of MAPK3/1 in cumulus cells, but this activation was only dependent on the EGFR TK activity. We conclude that in cumulus cells, FSH induces a rapid activation of MAPK3/1 by the ligand-independent transactivation of EGFR, requiring SRC and PKC activities. This rapid activation of MAPK3/1 precedes the second mechanism participating in the generation and maintenance of active MAPK3/1—the ligand-dependent activation of EGFR depending on the synthesis of EGF-like peptides.
Collapse
|
5
|
Yi ZY, Liang QX, Meng TG, Li J, Dong MZ, Hou Y, Ouyang YC, Zhang CH, Schatten H, Sun QY, Qiao J, Qian WP. PKCβ1 regulates meiotic cell cycle in mouse oocyte. Cell Cycle 2019; 18:395-412. [PMID: 30730241 DOI: 10.1080/15384101.2018.1564492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PKCβI, a member of the classical protein kinase C family, plays key roles in regulating cell cycle transition. Here, we report the expression, localization and functions of PKCβI in mouse oocyte meiotic maturation. PKCβI and p-PKCβI (phosphor-PKCβI) were expressed from germinal vesicle (GV) stage to metaphase II (MII) stage. Confocal microscopy revealed that PKCβI was localized in the GV and evenly distributed in the cytoplasm after GV breakdown (GVBD), and it was concentrated at the midbody at telophase in meiotic oocytes. While, p-PKCβI was concentrated at the spindle poles at the metaphase stages and associated with midbody at telophase. Depletion of PKCβI by specific siRNA injection resulted in defective spindles, accompanied with spindle assembly checkpoint activation, metaphase I arrest and failure of first polar body (PB1) extrusion. Live cell imaging analysis also revealed that knockdown of PKCβI resulted in abnormal spindles, misaligned chromosomes, and meiotic arrest of oocytes arrest at the Pro-MI/MI stage. PKCβI depletion did not affect the G2/M transition, but its overexpression delayed the G2/M transition through regulating Cyclin B1 level and Cdc2 activity. Our findings reveal that PKCβI is a critical regulator of meiotic cell cycle progression in oocytes. Abbreviations: PKC, protein kinase C; COC, cumulus-oocyte complexes; GV, germinal vesicle; GVBD, germinal vesicle breakdown; Pro-MI, first pro-metaphase; MI, first metaphase; Tel I, telophase I; MII, second metaphase; PB1, first polar body; SAC, spindle assembly checkpoint.
Collapse
Affiliation(s)
- Zi-Yun Yi
- a The Reproductive Medicine Center , Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center , Shenzhen , China
| | - Qiu-Xia Liang
- a The Reproductive Medicine Center , Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center , Shenzhen , China
| | - Tie-Gang Meng
- b State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Jian Li
- a The Reproductive Medicine Center , Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center , Shenzhen , China
| | - Ming-Zhe Dong
- b State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Yi Hou
- b State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Ying-Chun Ouyang
- b State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Chun-Hui Zhang
- a The Reproductive Medicine Center , Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center , Shenzhen , China
| | - Heide Schatten
- c Department of Veterinary Pathobiology , University of Missouri-Columbia , Columbia , MO , USA
| | - Qing-Yuan Sun
- b State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Jie Qiao
- d Reproductive Medical Center , Peking University Third Hospital , Beijing , China
| | - Wei-Ping Qian
- a The Reproductive Medicine Center , Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center , Shenzhen , China
| |
Collapse
|
6
|
Cai H, Liu B, Yang T, Yang Y, Xu J, Wei Z, Deng G, Ning G, Li J, Wen J, Liu W, Ni Z, Ma Y, Zhang M, Zhou B, Xia G, Ouyang H, Wang C. Involvement of PKCε in FSH-induced connexin43 phosphorylation and oocyte maturation in mouse. Biol Open 2018; 7:bio.034678. [PMID: 30061305 PMCID: PMC6124567 DOI: 10.1242/bio.034678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Gap junctions (GJs) are indispensable for communication between cumulus cells (CCs) and oocytes in coordinating the gonadotropin-induced meiotic maturation of oocytes. Of all proteins that constitute GJs, phosphorylated connexin43 (pCx43) is vital for mediating the actions of gonadotropins. In this study, the mechanism of Cx43 phosphorylation in response to follicle stimulating hormone (FSH) stimulation was examined using an in vitro model of mouse cumulus-oocyte complexes (COCs). The results confirmed that Cx43 phosphorylation occurred twice during FSH treatment. Importantly, the second Cx43 phosphorylation was closely related to cAMP level reduction within oocytes, which initiated oocyte maturation. Exploration of the underlying mechanism revealed that the CC-specific protein kinase C ε (PKCε) level was upregulated by FSH stimulation. PKCε was a kinase downstream from mitogen-activated protein kinase (MAPK) and was responsible for Cx43 phosphorylation. Interestingly, MAPK was involved in both Cx43 phosphorylation processes, while PKCε was only involved in the second. In conclusion, PKCε-mediated MAPK signals might contribute to Cx43 phosphorylation in CCs during FSH-induced oocyte meiotic resumption. Our findings contribute to a better understanding of the molecular regulation mechanism of oocyte maturation in response to FSH in vitro. Summary: This research clarifies the important role of PKCε in mediating MAPK action on CX43 phosphorylation during FSH-induced oocyte maturation in vitro, and further explores the regulation mechanism of oocyte maturation.
Collapse
Affiliation(s)
- Han Cai
- State Key Laboratory of Agrobiotechnology and Department of Animal Physiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Bingying Liu
- State Key Laboratory of Agrobiotechnology and Department of Animal Physiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tingting Yang
- State Key Laboratory of Agrobiotechnology and Department of Animal Physiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yi Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Jinrui Xu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Zhiqing Wei
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Guangcun Deng
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Gang Ning
- State Key Laboratory of Agrobiotechnology and Department of Animal Physiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Junxia Li
- State Key Laboratory of Agrobiotechnology and Department of Animal Physiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jing Wen
- State Key Laboratory of Agrobiotechnology and Department of Animal Physiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wei Liu
- State Key Laboratory of Agrobiotechnology and Department of Animal Physiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhangli Ni
- State Key Laboratory of Agrobiotechnology and Department of Animal Physiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuzhen Ma
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010017, China
| | - Meijia Zhang
- State Key Laboratory of Agrobiotechnology and Department of Animal Physiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Bo Zhou
- State Key Laboratory of Agrobiotechnology and Department of Animal Physiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guoliang Xia
- State Key Laboratory of Agrobiotechnology and Department of Animal Physiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.,Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology and Department of Animal Physiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Sahu K, Gupta A, Sharma A, Tiwari M, Pandey AN, Prasad S, Yadav PK, Pandey AK, Shrivastav TG, Chaube SK. Role of granulosa cell mitogen-activated protein kinase 3/1 in gonadotropin-mediated meiotic resumption from diplotene arrest of mammalian oocytes. Growth Factors 2018; 36:41-47. [PMID: 29842809 DOI: 10.1080/08977194.2018.1475372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In mammals, preovulatory oocytes are encircled by several layers of granulosa cells (GCs) in follicular microenvironment. These follicular oocytes are arrested at diplotene arrest due to high level of cyclic nucleotides from encircling GCs. Pituitary gonadotropin acts at the level of encircling GCs and increases adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP) and activates mitogen-activated protein kinase 3/1 (MAPK3/1) signaling pathway. The MAPK3/1 disrupts the gap junctions between encircling GCs and oocyte. The disruption of gap junctions interrupts the transfer of cyclic nucleotides to the oocyte that results a drop in intraoocyte cAMP level. A transient decrease in oocyte cAMP level triggers maturation promoting factor (MPF) destabilization. The destabilized MPF finally triggers meiotic resumption from diplotene arrest in follicular oocyte. Thus, MAPK3/1 from GCs origin plays important role in gonadotropin-mediated meiotic resumption from diplotene arrest in follicular oocyte of mammals.
Collapse
Affiliation(s)
- Kankshi Sahu
- a Cell Physiology Laboratory, Department of Zoology , Institute of Science, Banaras Hindu University , Varanasi , India
| | - Anumegha Gupta
- a Cell Physiology Laboratory, Department of Zoology , Institute of Science, Banaras Hindu University , Varanasi , India
| | - Alka Sharma
- a Cell Physiology Laboratory, Department of Zoology , Institute of Science, Banaras Hindu University , Varanasi , India
| | - Meenakshi Tiwari
- a Cell Physiology Laboratory, Department of Zoology , Institute of Science, Banaras Hindu University , Varanasi , India
| | - Ashutosh N Pandey
- a Cell Physiology Laboratory, Department of Zoology , Institute of Science, Banaras Hindu University , Varanasi , India
| | - Shilpa Prasad
- a Cell Physiology Laboratory, Department of Zoology , Institute of Science, Banaras Hindu University , Varanasi , India
| | - Pramod K Yadav
- a Cell Physiology Laboratory, Department of Zoology , Institute of Science, Banaras Hindu University , Varanasi , India
| | - Ajai K Pandey
- b Department of Kayachikitsa, Faculty of Ayurveda , Banaras Hindu University , Varanasi , India
| | - Tulsidas G Shrivastav
- c Department of Reproductive Biomedicine , National Institute of Health and Family Welfare , New Delhi , India
| | - Shail K Chaube
- a Cell Physiology Laboratory, Department of Zoology , Institute of Science, Banaras Hindu University , Varanasi , India
| |
Collapse
|
8
|
Molecular Mechanisms of Prophase I Meiotic Arrest Maintenance and Meiotic Resumption in Mammalian Oocytes. Reprod Sci 2018; 26:1519-1537. [DOI: 10.1177/1933719118765974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mechanisms of meiotic prophase I arrest maintenance (germinal vesicle [GV] stage) and meiotic resumption (germinal vesicle breakdown [GVBD] stage) in mammalian oocytes seem to be very complicated. These processes are regulated via multiple molecular cascades at transcriptional, translational, and posttranslational levels, and many of them are interrelated. There are many molecular cascades of meiosis maintaining and meiotic resumption in oocyte which are orchestrated by multiple molecules produced by pituitary gland and follicular cells. Furthermore, many of these molecular cascades are duplicated, thus ensuring the stability of the entire system. Understanding mechanisms of oocyte maturation is essential to assess the oocyte status, develop effective protocols of oocyte in vitro maturation, and design novel contraceptive drugs. Mechanisms of meiotic arrest maintenance at prophase I and meiotic resumption in mammalian oocytes are covered in the present article.
Collapse
|
9
|
The Phosphatase Dusp7 Drives Meiotic Resumption and Chromosome Alignment in Mouse Oocytes. Cell Rep 2017; 17:1426-1437. [PMID: 27783954 PMCID: PMC5215830 DOI: 10.1016/j.celrep.2016.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/29/2016] [Accepted: 10/03/2016] [Indexed: 12/31/2022] Open
Abstract
Mammalian oocytes are stored in the ovary, where they are arrested in prophase for prolonged periods. The mechanisms that abrogate the prophase arrest in mammalian oocytes and reinitiate meiosis are not well understood. Here, we identify and characterize an essential pathway for the resumption of meiosis that relies on the protein phosphatase DUSP7. DUSP7-depleted oocytes either fail to resume meiosis or resume meiosis with a significant delay. In the absence of DUSP7, Cdk1/CycB activity drops below the critical level required to reinitiate meiosis, precluding or delaying nuclear envelope breakdown. Our data suggest that DUSP7 drives meiotic resumption by dephosphorylating and thereby inactivating cPKC isoforms. In addition to controlling meiotic resumption, DUSP7 has a second function in chromosome segregation: DUSP7-depleted oocytes that enter meiosis show severe chromosome alignment defects and progress into anaphase prematurely. Altogether, these findings establish the phosphatase DUSP7 as an essential regulator of multiple steps in oocyte meiosis.
Collapse
|
10
|
Prochazka R, Blaha M. Regulation of mitogen-activated protein kinase 3/1 activity during meiosis resumption in mammals. J Reprod Dev 2016; 61:495-502. [PMID: 26688146 PMCID: PMC4685214 DOI: 10.1262/jrd.2015-069] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In vivo, resumption of oocyte meiosis occurs in large ovarian follicles after the
preovulatory surge of luteinizing hormone (LH). The LH surge leads to the activation of a broad signaling
network in mural granulosa cells equipped with LH receptors. The signals generated in the mural granulosa
cells are further augmented by locally produced peptides or steroids and transferred to the cumulus cell
compartment and the oocyte itself. Over the last decade, essential progress has been made in the
identification of molecular events associated with the final maturation and ovulation of mammalian oocytes.
All new evidence argues for a multiple roles of mitogen-activated protein kinase 3/1 (MAPK3/1) in the
gonadotropin-induced ovulation processes. However, the knowledge of gonadotropin-induced signaling pathways
leading to MAPK3/1 activation in follicular cells seems limited. To date, only the LH-induced transactivation
of the epidermal growth factor receptor/MAPK3/1 pathway has been described in granulosa/cumulus cells even
though other mechanisms of MAPK3/1 activation have been detected in other types of cells. In this review, we
aimed to summarize recent advances in the elucidation of gonadotropin-induced mechanisms leading to the
activation of MAPK3/1 in preovulatory follicles and cultured cumulus-oocyte complexes and to point out a
specific role of this kinase in the processes accompanying final maturation of the mammalian oocyte.
Collapse
Affiliation(s)
- Radek Prochazka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Libechov, Czech Republic
| | | |
Collapse
|
11
|
Kim K, Kim CH, Moley KH, Cheon YP. Disordered Meiotic Regulation of Oocytes by Duration of Diabetes Mellitus in BBdp Rat. Reprod Sci 2016; 14:467-74. [PMID: 17913966 DOI: 10.1177/1933719107306228] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Diabetes mellitus (DM) disturbs normal functions from the level of cells to the level of organs. In this study, the authors explore the detrimental effects of type 1 diabetes on meiotic regulation depending on the duration of DM. In non-diabetes-prone BioBreeding (BBdr) control rats, most of the large follicles had germinal vesicle (GV)-intact oocytes. Conversely, a decrease of intact GV that was dependent on the duration of diabetic symptoms was observed; only 54% of the large follicles of diabetes-prone BB (BBdp) rats had GV-intact oocytes at 6 weeks after diabetes induction. Furthermore, some of the secondary follicles in BBdp rats also had germinal vesicle breakdown (GVB) oocytes. The nuclear status of the euglycemia BBdp rat was similar to those of the BBdr rat. In BBdp rats, the rate of meiotic progression to the metaphase II stage was significantly lower; however, the rate of segregated oocytes was significantly increased compared with controls during induction of in vitro maturation. The rate of segregated oocytes was not affected by the presence of the cumulus after chronic symptoms. These results indicate that chronic DM has a detrimental effect on meiotic regulation during folliculogenesis and results in a reduced number of competent oocytes. In addition, these data suggest that the follicle cells can resume supporting the meiotic regulation under euglycemia through insulin administration, independent of the duration of DM.
Collapse
Affiliation(s)
- KilSoo Kim
- College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | | | | | | |
Collapse
|
12
|
Tepekoy F, Ustunel I, Akkoyunlu G. Protein kinase C isoforms α, δ and ε are differentially expressed in mouse ovaries at different stages of postnatal development. J Ovarian Res 2014; 7:117. [PMID: 25491605 PMCID: PMC4271327 DOI: 10.1186/s13048-014-0117-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/29/2014] [Indexed: 11/11/2022] Open
Abstract
Background The protein kinase C (PKC) is a family of serine/threonine kinases that consists of 12 different isoforms. Since PKC isoform expressions are known to be specific for different cell types and postnatal developmental stages, we aimed to determine immunolocalizations and protein expression levels of different PKC isoforms in pre-pubertal, pubertal and adult mouse ovaries. Methods Ovaries were obtained from postnatal day 1 (PND1) and PND7 of pre-pubertal, PND21 of pubertal and PND60 of adult mice. Immunolocalizations of PKCα, PKCδ and PKCε isoforms were determined and immunostainings in different cellular components of all follicular stages were evaluated by H-Score. PKCα, PKCδ and PKCε protein expression levels were determined by Western blot. The bands were quantified via ImageJ software. The data obtained from H-Score and ImageJ evaluations were analyzed by ANOVA statistical test. Results PKCα immunostainings were more intense in oocytes when compared to granulosa and theca cells at different follicular stages of all groups. The Western blot analysis revealed that PKCα expression was significantly higher in PND60 adult ovaries. Conversely, PKCδ immunostainings were more intense in granulosa cells. According to the Western blot analysis, PKCδ protein expression was also higher in PND60 and significantly lower in PND1 ovaries. PKCε immunostaining was more apparent in oocytes. PKCε protein expression was significantly higher in adult PND60 and pubertal PND21 ovaries when compared to pre-pubertal PND7 and PND1 ovaries. Interestingly, PKCε immunostaining was significantly higher in primordial follicles, though PKCα and PKCδ immunostainings were more apparent in larger follicles. PKCα immunostainings of corpora lutea (CL) were significantly higher when compared to follicles in PND60 ovaries. Conclusions This study demonstrates that PKCα, PKCδ and PKCε isoforms are differentially expressed in particular cellular components of pre-pubertal, pubertal and adult mouse ovarian follicles. Therefore, we suggest that each PKC isoform has unique functions that are controlled by gonadotropin dependent mechanisms during follicular growth, oocyte maturation, ovulation and luteinization.
Collapse
|
13
|
Kawashima I, Umehara T, Noma N, Kawai T, Shitanaka M, Richards JS, Shimada M. Targeted disruption of Nrg1 in granulosa cells alters the temporal progression of oocyte maturation. Mol Endocrinol 2014; 28:706-21. [PMID: 24650175 DOI: 10.1210/me.2013-1316] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Neuregulin 1 (NRG1) is induced in granulosa cells by LH and acts on granulosa and cumulus cells during ovulation. In this study, we sought to determine the role of NRG1 in oocyte maturation by generating a granulosa cell-specific Nrg1 knockout mouse (Nrg1(flox/flox);Cyp19a1Cre mice [gcNrg1KO]). In the gcNrg1KO mice, meiosis was induced 2 hours earlier than in control mice. More than 60% of the oocytes in the mutant mice spontaneously re-resumed meiosis beyond the MII stage. The percentage of successful fertilization was comparable in oocytes of both genotypes collected at 14 or 16 hours after human chorionic gonadotropin injection but was significantly lower in oocytes of the gcNrg1KO mice at 18 or 20 hours. The number of pups per litter was significantly decreased in gcNrg1KO mice. To determine the molecular events associated with the abnormal progression of meiosis in the gcNrg1KO mouse oocytes, the defects of cumulus/granulosa cell functions were analyzed. The expression of genes involved in luteinization and cumulus expansion was significantly higher at 2 hours after human chorionic gonadotropin injection in the gcNrg1KO mice; this was related to abnormal activation of protein kinase C (PKC) and phosphorylation of connexin-43 in cumulus cells. Changes in connexin-43 by PKC might lead to early meiotic resumption of oocytes in gcNrg1KO mice. We conclude that NRG1 is induced by LH in mural granulosa cells and exerts an important regulatory role in oocyte meiotic maturation and competence by reducing PKC activation in cumulus cells and preventing premature progression to the MII stage that leads to abnormal fertilization and fertility.
Collapse
Affiliation(s)
- Ikko Kawashima
- Laboratory of Reproductive Endocrinology (I.K., T.U., N.N., T.K., M.S., M.S.), Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima,739-8528, Japan; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | | | | | |
Collapse
|
14
|
Yamashita Y, Okamoto M, Ikeda M, Okamoto A, Sakai M, Gunji Y, Nishimura R, Hishinuma M, Shimada M. Protein kinase C (PKC) increases TACE/ADAM17 enzyme activity in porcine ovarian somatic cells, which is essential for granulosa cell luteinization and oocyte maturation. Endocrinology 2014; 155:1080-90. [PMID: 24424050 DOI: 10.1210/en.2013-1655] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During in vitro maturation of porcine cumulus cell-oocyte complexes and in vitro luteinization of porcine granulosa cells, FSH induces the expression of the protease TNFα-converting enzyme/A disintegrin and metalloproteinase domain 17 (TACE/ADAM17) and the epidermal growth factor (EGF)-like factors, which activate the EGF receptor (EGFR)-MAPK3/1 pathway in both cumulus and granulosa cells. FSH is known to activate not only protein kinase A and p38MAPK pathways in both cell types but also activates protein kinase C (PKC). Because PKC-induced association of cellular-Sarcoma (c-Src) and TACE/ADAM17 is required for TACE/ADAM17 enzyme activation in some cancer cells, we hypothesized that PKC and c-Src impact TACE/ADAM17-mediated activation of EGFR signaling pathway in porcine granulosa and cumulus cells. When granulosa cells or cumulus cell-oocyte complexes were cultured with FSH, PKC activity and c-Src phosphorylation increased and were associated with increased TACE/ADAM17 enzyme activity. The PKC inhibitor calphostin C (CalC) and the c-Src inhibitor (4 amino 5 (4 chlorophenyl) 7 (t butyl)pyrazolo[3,4 d]pyrimidine [PP2]) suppressed TACE/ADAM17 enzyme activity, whereas these inhibitors did not affect Tace/Adam17 mRNA expression. Immunoprecipitation analysis showed that FSH mediated the association of c-Src with TACE/ADAM17 via a PKC-dependent mechanism. Either CalC or PP2 suppressed EGFR downstream signaling pathway (MAPK3/1) in these ovarian cell types and reduced cumulus expansion, meiotic maturation of oocytes, and progesterone production. The negative effects were overcome by the addition of amphiregulin. Collectively, these results indicate that activation of TACE/ADAM17 via a PKC-induced c-Src-dependent manner mediates proteolytic activation of the EGF-like factors that are involved in the induction of granulosa cell differentiation, cumulus expansion, and meiotic maturation of porcine oocytes in vitro.
Collapse
Affiliation(s)
- Yasuhisa Yamashita
- Laboratory of Animal Physiology (Y.Y., M.I., A.O., M.Sa.), Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara 727-0023, Japan; Laboratory of Theriogenology (M.O., Y.G., R.N., M.H.), School of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan; United Graduate School of Veterinary Medicine (Y.G.), Yamaguchi University, Yamaguchi 735-8515, Japan; and Laboratory of Reproductive Endocrinology (M.Sh.), Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Demirtas E, Holzer H, Son WY, Elizur S, Levin D, Chian RC, Tan SL. Willin vitromaturation ever be used in all IVF patients? ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17474108.3.5.627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Wang Y, Kong N, Li N, Hao X, Wei K, Xiang X, Xia G, Zhang M. Epidermal growth factor receptor signaling-dependent calcium elevation in cumulus cells is required for NPR2 inhibition and meiotic resumption in mouse oocytes. Endocrinology 2013; 154:3401-9. [PMID: 23787120 DOI: 10.1210/en.2013-1133] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In preovulatory ovarian follicles, the oocyte is maintained in meiotic prophase arrest by natriuretic peptide precursor C (NPPC) and its receptor natriuretic peptide receptor 2 (NPR2). LH treatment results in the decrease of NPR2 guanylyl cyclase activity that promotes resumption of meiosis. We investigated the regulatory mechanism of LH-activated epidermal growth factor (EGF) receptor signaling on NPR2 function. Cumulus cell-oocyte complex is cultured in the medium with 30 nM NPPC to prevent oocyte spontaneous maturation. In this system, EGF could stimulate oocyte meiotic resumption after 4 hours of incubation. Further study showed that EGF elevated intracellular calcium concentrations of cumulus cells and decreased cGMP levels in cumulus cells and oocytes, and calcium-elevating reagents ionomycin and sphingosine-1-phosphate mimicked the effects of EGF on oocyte maturation and cGMP levels. EGF-mediated cGMP levels and meiotic resumption could be reversed by EGF receptor inhibitor AG1478 and the calcium chelator bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid, tetra(acetoxymethyl)-ester. EGF also decreased the expression of Npr2 mRNA in cumulus cells, which may not be involved in meiotic resumption, because the block of NPR2 protein de novo synthesis by cycloheximide had no effect on NPPC and EGF-mediated oocyte maturation. However, EGF had no effect on oocyte maturation when meiotic arrest was maintained in the present of cGMP analog 8-bromoadenosine-cGMP. These results suggest that EGF receptor signaling induces meiotic resumption by elevating calcium concentrations of cumulus cells to decrease NPR2 guanylyl cyclase activity.
Collapse
Affiliation(s)
- Yakun Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, 100193 Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Stricker SA, Cline C, Goodrich D. Oocyte maturation and fertilization in marine nemertean worms: using similar sorts of signaling pathways as in mammals, but often with differing results. THE BIOLOGICAL BULLETIN 2013; 224:137-155. [PMID: 23995739 DOI: 10.1086/bblv224n3p137] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In marine worms belonging to the phylum Nemertea, oocyte maturation and fertilization are regulated by the same general kinds of signals that control such processes in mammals. However, unlike mammalian oocytes that develop within follicles, nemertean oocytes characteristically lack a surrounding sheath of follicle cells and often respond differently to maturation-related cues than do mammalian oocytes. For example, elevators of cyclic adenosine monophosphate (cAMP) or cyclic guanosine monophosphate (cGMP) levels promote the resumption of meiotic maturation (=germinal vesicle breakdown, GVBD) in nemertean oocytes, whereas increasing intraoocytic cAMP and cGMP typically blocks GVBD in mammals. Similarly, AMP-activated kinase (AMPK) signaling keeps nemertean oocytes from maturing, but in mouse oocytes, AMPK activation triggers GVBD. In addition, protein kinase C (PKC) activity is required for seawater-induced GVBD in nemerteans, whereas some PKCs have been shown to inhibit GVBD in mammals. Furthermore, although fertilization causes both types of oocytes to reorganize their endoplasmic reticulum and generate calcium oscillations that can involve soluble sperm factor activity and inositol 1,4,5-trisphosphate signaling, some discrepancies in the spatiotemporal patterns and underlying mechanisms of fertilization are also evident in nemerteans versus mammals. Thus, to characterize differences and similarities in gamete biology more fully, aspects of oocyte maturation and fertilization in marine nemertean worms are reviewed and briefly compared with related findings that have been published for mammalian oocytes. In addition, possible causes of the alternative responses displayed by oocytes in these two animal groups are addressed.
Collapse
Affiliation(s)
- Stephen A Stricker
- Department of Biology, University of New Mexico, Albuquerque, 87131, USA
| | | | | |
Collapse
|
18
|
Abstract
When cultured for an extended time, pig oocytes that matured in vitro to the stage of metaphase II undergo the complex process designated as ageing. Under our conditions, some pig oocytes aged 3 days remained at the stage of metaphase II (22%), but others underwent spontaneous parthenogenetic activation (45%), and still others perished through fragmentation (28%) or lysis (5%). Activation of protein kinases C (PKCs) using phorbol-12-myristate-13-acetate (PMA) protects oocytes from fragmentation. None of the oocytes were fragmented after 3 days of aging in 50 nM of PMA. A similar effect (8% of fragmented oocytes) was observed after a 3-day treatment of aging oocytes with 100 μM of 1-stearoyl-2arachidonoyl-sn-glycerol (STEAR). PMA and STEAR activate both calcium-dependent and calcium-independent PKCs. This combined effect on PKCs seems to be essential for the protection of oocytes from fragmentation. Neither the specific activator of calcium-dependent PKCs 1-oleoyl-2-acetyl-sn-glycerol (OLE) nor the specific activator of calcium-independent PKCs dipalmitoyl-l-α-phosphatidylinositol-3,4,5-triphosphate heptaammonium salt (DIPALM) suppressed the fragmentation of aging pig oocytes. Twenty-one percentage of oocytes fragmented when aged for 3 days in 10 μM OLE and 26% of aged oocytes fragmented in 100 nM of DIPALM. However, fragmentation was significantly suppressed to 7% when the oocytes were exposed to the combination of both 10 μM OLE and 100 nM DIPALM. Aging pig oocytes cultured for 1 day with PMA maintained a high capability of being parthenogenetically activated (86% of activated oocytes), using calcium ionophore with 6-dimethylaminopurine. Ageing oocytes treated with PMA also had high capability of cleavage (82%) after their artificial parthenogenetic activation. However, their ability to develop to the stage of blastocyst (12%) was suppressed when compared with oocytes activated immediately after their maturation (29%).
Collapse
|
19
|
Wang J, Chen Q, Zhou J, Wen J, Bian F, Li G, Mu X, Han Y, Xia G, Zhang M. Specific protein kinase C isoforms α and βI are involved in follicle-stimulating hormone-induced mouse follicle-enclosed oocytes meiotic resumption. PLoS One 2012; 7:e45043. [PMID: 23028752 PMCID: PMC3445551 DOI: 10.1371/journal.pone.0045043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/11/2012] [Indexed: 11/19/2022] Open
Abstract
Protein kinase C (PKC) is involved in gonadotrophin-induced oocyte maturation. In the present study, we investigated the role of specific PKC isoforms in the process of follicle-stimulating hormone (FSH)-induced oocyte meiotic resumption. Small antral follicles (200–300 µm in diameter) were isolated from immature mice and cultured in vitro. FSH significantly induced follicle-enclosed oocytes (FEOs) meiotic resumption after 8 hr culture. However, the induced effect of FSH was dose-dependently inhibited by the specific PKC α and βI inhibitor Gö6976, and 100 nM Gö6976 completely blocked FSH function in oocyte meiotic resumption. Furthermore, FSH dramatically induced the expression of transcripts encoding epidermal growth factor (EGF)-like growth factors Areg, Btc, and Ereg mRNA levels, and up-regulated tyrosine phosphorylation level of EGF receptor (EGFR) in granulosa cells. Blocking the function of EGFR by AG1478 eliminated the effect of FSH-induced FEOs meiotic resumption, suggesting that FSH induced oocyte maturation through the activation of EGFR. FSH-induced phosphorylation of EGFR could also be inhibited by Gö6976. Next, we examined the effect of FSH on the expression and phosphorylation PKC α and βI. FSH induced the expression of PKC α at mRNA and protein level, and also up-regulated its phosphorylation level in granulosa cells after 8 hr culture. However, FSH had no effect on the expression of PKC βI but down-regulated its phosphorylation level. In conclusion, FSH-induced activation of PKC α alone, or together with the inactivation of PKC βI in granulosa cells, participates in mouse oocyte meiotic resumption, possibly by the activation of EGFR signaling pathway.
Collapse
Affiliation(s)
- Jianwei Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People’s Republic of China
| | - Qian Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People’s Republic of China
| | - Jinlian Zhou
- Department of Pathology, 306 Hospital of PLA, Beijing, People’s Republic of China
| | - Jing Wen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People’s Republic of China
| | - Fenghua Bian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People’s Republic of China
| | - Ge Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People’s Republic of China
| | - Xinyi Mu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People’s Republic of China
| | - Yingying Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People’s Republic of China
| | - Guoliang Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People’s Republic of China
| | - Meijia Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People’s Republic of China
- * E-mail:
| |
Collapse
|
20
|
Lebedeva IY, Singina GN, Taradajnic TE, Zinovieva NA. Protein kinase implication in prolactin signaling in bovine oocyte-cumulus complexes. ACTA ACUST UNITED AC 2011. [DOI: 10.1134/s1990519x11060071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Lee HS, Kim EY, Lee KA. Changes in gene expression associated with oocyte meiosis after Obox4 RNAi. Clin Exp Reprod Med 2011; 38:68-74. [PMID: 22384421 PMCID: PMC3283059 DOI: 10.5653/cerm.2011.38.2.68] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 05/31/2011] [Accepted: 06/03/2011] [Indexed: 12/03/2022] Open
Abstract
Objective Previously, we found that oocyte specific homeobox (Obox) 4 plays significant role in completion of meiosis specifically at meiosis I-meiosis II (MI-MII) transition. The purpose of this study was to determine the mechanism of action of Obox4 in oocyte maturation by evaluating downstream signal networking. Methods The Obox4 dsRNA was prepared by in vitro transcription and microinjected into the cytoplasm of germinal vesicle oocytes followed by in vitro maturation in the presence or absence of 0.2 mM 3-isobutyl-1-metyl-xanthine. Total RNA was extracted from 200 oocytes of each group using a PicoPure RNA isolation kit then amplified two-rounds. The probe hybridization and data analysis were used by Affymetrix GeneChip® Mouse Genome 430 2.0 array and GenPlex 3.0 (ISTECH, Korea) software, respectively. Results Total 424 genes were up (n=80) and down (n=344) regulated after Obox4 RNA interference (RNAi). Genes mainly related to metabolic pathways and mitogen-activated protein kinase (MAPK) signaling pathway was changed. Among the protein kinase C (PKC) isoforms, PKC-alpha, beta, gamma were down-regulated and especially the MAPK signaling pathway PKC-gamma was dramatically decreased by Obox4 RNAi. In the cell cycle pathway, we evaluated the expression of genes involved in regulation of chromosome separation, and found that these genes were down-regulated. It may cause the aberrant chromosome segregation during MI-MII transition. Conclusion From the results of this study, it is concluded that Obox4 is important upstream regulator of the PKC and anaphase-promoting complex action for maintaining intact germinal vesicle.
Collapse
Affiliation(s)
- Hyun-Seo Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | | | | |
Collapse
|
22
|
Effect of age, GV transfer and modified nucleocytoplasmic ratio on PKCα in mouse oocytes and early embryos. ZYGOTE 2011; 20:87-95. [DOI: 10.1017/s0967199410000626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SummaryProtein kinase C (PKC) is a family of Ser/Thr protein kinases that can be activated by Ca2+, phospholipid and diacylglycerol. There is evidence that PKC plays key roles in the meiotic maturation and activation of mammalian oocytes. The present study aimed to monitor the effect of age, germinal vesicle (GV) transfer and modified nucleoplasmic ratio on the subcellular distribution profile of PKCα, an important isozyme of PKC, in mouse oocytes undergoing meiotic maturation and following egg activation. Germinal vesicle oocytes were collected from 6–8-week-old and 12-month-old mice. Germinal vesicle-reconstructed oocytes and GV oocytes with one-half or one-third of the original oocyte volume were created using micromanipulation and electrofusion. The subcellular localization of PKCα was detected by immunocytochemistry and laser confocal microscopy. Our study showed that PKCα had a similar location pattern in oocytes and early embryos from young and old mice. PKCα was localized evenly in ooplasm, with weak staining in GV at the GV stage, and present in the entire meiosis II (MII) spindle at the MII stage. In pronuclear and 2-cell embryos, PKCα was concentrated in the nucleus except for the nucleolus. After the GV oocytes were reconstructed, the resultant MII oocytes and embryos showed a similar distribution of PKCα between reconstructed and unreconstructed controls. After one-half or two-thirds of the cytoplasm was removed from the GV oocytes, PKCα still had a similar location pattern in MII oocytes and early embryos from the GV oocytes with modified nucleoplasmic ratio. Our study showed that age, GV transfer and modified nucleocytoplasmic ratio does not affect distribution of PKCα during mouse oocyte maturation, activation, and early embryonic mitosis.
Collapse
|
23
|
Abstract
Regulation of maturation in meiotically competent mammalian oocytes is a complex process involving the carefully coordinated exchange of signals between the somatic and germ cell compartments of the ovarian follicle via paracrine and cell-cell coupling pathways. This review highlights recent advances in our understanding of how such signaling controls both meiotic arrest and gonadotropin-triggered meiotic resumption in competent oocytes and relates them to the historical context. Emphasis will be on rodent systems, where many of these new findings have taken place. A regulatory scheme is then proposed that integrates this information into an overall framework for meiotic regulation that demonstrates the complex interplay between different follicular compartments.
Collapse
Affiliation(s)
- Stephen M Downs
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53233, USA.
| |
Collapse
|
24
|
Pharmacological analyses of protein kinases regulating egg maturation in marine nemertean worms: a review and comparison with Mammalian eggs. Mar Drugs 2010; 8:2417-34. [PMID: 20948915 PMCID: PMC2953411 DOI: 10.3390/md8082417] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 07/24/2010] [Accepted: 08/20/2010] [Indexed: 01/29/2023] Open
Abstract
For development to proceed normally, animal eggs must undergo a maturation process that ultimately depends on phosphorylations of key regulatory proteins. To analyze the kinases that mediate these phosphorylations, eggs of marine nemertean worms have been treated with pharmacological modulators of intracellular signaling pathways and subsequently probed with immunoblots employing phospho-specific antibodies. This article both reviews such analyses and compares them with those conducted on mammals, while focusing on how egg maturation in nemerteans is affected by signaling pathways involving cAMP, mitogen-activated protein kinases, Src-family kinases, protein kinase C isotypes, AMP-activated kinase, and the Cdc2 kinase of maturation-promoting factor.
Collapse
|
25
|
Paradis F, Moore HS, Pasternak JA, Novak S, Dyck MK, Dixon WT, Foxcroft GR. Pig preovulatory oocytes modulate cumulus cell protein and gene expression in vitro. Mol Cell Endocrinol 2010; 320:87-96. [PMID: 20138115 DOI: 10.1016/j.mce.2010.01.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 01/22/2010] [Accepted: 01/26/2010] [Indexed: 11/28/2022]
Abstract
This study investigated the changes in protein and gene expression in oocytectomized cumulus cells (OOX) of medium-sized follicles from gilts, cultured with or without denuded oocytes isolated from large oestrogenic sow follicles. Proteomic analysis identified 14 proteins that were differentially expressed in OOX, of which the protein 14-3-3 eta, a signal transduction pathway modulator, was down-regulated in the presence of oocytes. Oocyte co-culture also down-regulated FSHR mRNA expression in OOX, as measured by real-time PCR, and FSHR and 14-3-3 eta mRNA abundance were positively correlated. The oocyte also up-regulated HSD3B mRNA, suggesting an effect on cumulus cell progesterone synthesis. Together with data on gene expression in granulosa cells during the follicular phase of the sow oestrous cycle, this study suggests that modulation of the expression of steroidogenesis related proteins and genes in cumulus cells by the porcine preovulatory oocyte reflects the specific physiological requirements of the preovulatory follicle.
Collapse
Affiliation(s)
- Francois Paradis
- Swine Reproduction-Development Program, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | |
Collapse
|
26
|
Lebedeva IY, Singina GN, Ernst LK, Golubev AK. Realization pathways of prolactin modulating effect on the cAMP-dependent mechanism of meiosis regulation in bovine oocytes. ACTA ACUST UNITED AC 2009. [DOI: 10.1134/s1990519x0905006x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Downs SM, Mosey JL, Klinger J. Fatty acid oxidation and meiotic resumption in mouse oocytes. Mol Reprod Dev 2009; 76:844-53. [PMID: 19455666 DOI: 10.1002/mrd.21047] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We have examined the potential role of fatty acid oxidation (FAO) in AMP-activated protein kinase (AMPK)-induced meiotic maturation. Etomoxir and malonyl CoA, two inhibitors of carnitine palmitoyl transferase-1 (CPT1), and thus FAO, blocked meiotic induction in dbcAMP-arrested cumulus cell-enclosed oocytes (CEO) and denuded oocytes (DO) by the AMPK activator, AICAR. C75, an activator of CPT1 and FAO, stimulated meiotic resumption in CEO and DO. This effect was insensitive to the AMPK inhibitor, compound C, indicating an action downstream of AMPK. Palmitic acid or carnitine also promoted meiotic resumption in DO in the presence of AICAR. Since C75 also suppresses the activity of fatty acid synthase (FAS), we tested another FAS inhibitor, cerulenin. Cerulenin stimulated maturation in arrested oocytes, but to a lesser extent, exhibited significantly slower kinetics and was effective in CEO but not DO. Moreover, etomoxir completely blocked C75-induced maturation but was ineffective in cerulenin-treated oocytes, suggesting that the meiosis-inducing action of C75 is through activation of FAO within the oocyte, while that of cerulenin is independent of FAO and acts within the cumulus cells. Finally, we determined that long chain, but not short chain, fatty acyl carnitine derivatives were stimulatory to oocyte maturation. Palmitoyl carnitine stimulated maturation in both CEO and DO, with rapid kinetics in DO; this effect was blocked by mercaptoacetate, a downstream inhibitor of FAO. These results indicate that activation of AMPK stimulates meiotic resumption in mouse oocytes by eliminating a block to FAO.
Collapse
Affiliation(s)
- Stephen M Downs
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53233, USA.
| | | | | |
Collapse
|
28
|
Stricker SA. Interactions between mitogen-activated protein kinase and protein kinase C signaling during oocyte maturation and fertilization in a marine worm. Mol Reprod Dev 2009; 76:708-21. [DOI: 10.1002/mrd.21032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Stricker SA. Roles of protein kinase C isotypes during seawater-versus cAMP-induced oocyte maturation in a marine worm. Mol Reprod Dev 2009; 76:693-707. [DOI: 10.1002/mrd.20993] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Zhang M, Ouyang H, Xia G. The signal pathway of gonadotrophins-induced mammalian oocyte meiotic resumption. Mol Hum Reprod 2009; 15:399-409. [PMID: 19443606 DOI: 10.1093/molehr/gap031] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fully grown mammalian oocytes are arrested at the first meiotic prophase until a surge of gonadotrophin at the mid-cycle. The actions of gonadotrophins, follicle stimulating hormone (FSH) and luteinizing hormone (LH), on oocyte meiotic resumption are believed to be mediated in large part through increasing the production of cyclic adenosine 3',5'-monophosphate and subsequent activation of mitogen-activated protein kinase (MAPK) in its surrounding cumulus granulosa cells. Recent findings indicate that gonadotrophins-induced epidermal growth factor-like growth factors, meiosis activating sterol and gonadal steroid hormones, possibly via protein kinase A II and protein kinase C pathways, are involved in the activation of MAPK. Another second messenger cyclic guanosine 3',5'-monophosphate induced by nitric oxide or natriuretic peptides system mediates the function of gonadotrophins during oocyte meiotic resumption. FSH and LH induced pathways may either directly overlap or each hormone may utilize redundant pathways in oocyte maturation. A detailed appreciation of different FSH and LH-activated signaling pathways in mammalian oocytes will be needed in understanding their actions in follicular development and oocyte maturation.
Collapse
Affiliation(s)
- Meijia Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | | | | |
Collapse
|
31
|
Tao Y, Cao C, Zhang M, Fang F, Liu Y, Zhang Y, Ding J, Zhang X. Effects of cumulus cells on rabbit oocytein vitromaturation. J Anim Physiol Anim Nutr (Berl) 2008; 92:438-47. [DOI: 10.1111/j.1439-0396.2007.00729.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Downs SM, Chen J. EGF-like peptides mediate FSH-induced maturation of cumulus cell-enclosed mouse oocytes. Mol Reprod Dev 2008; 75:105-14. [PMID: 17549700 DOI: 10.1002/mrd.20781] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This study was carried out to examine the participation of epidermal growth factor (EGF)-like peptides in the induction of germinal vesicle breakdown (GVB) in mouse cumulus cell-enclosed oocytes (CEO). The EGF-like peptide, amphiregulin (AR), dose-dependently stimulated meiotic resumption in CEO, but not denuded oocytes (DO) maintained in meiotic arrest with 300 microM dbcAMP. The EGF receptor (EGFR) kinase inhibitor, AG1478, blocked meiotic resumption induced by FSH and AR in CEO, but had no effect in DO. FSH-induced maturation was also suppressed by antisera to both EGFR and EGF. Maturation occurred with slightly faster kinetics in AR-stimulated CEO when compared to FSH-stimulated CEO. When CEO were maintained in meiotic arrest with a low level of dbcAMP, FSH was initially inhibitory to maturation and later stimulatory; the stimulatory phase was prevented by AG1478, indicating mediation by EGF-like peptides. Pulsing CEO with high levels of dbcAMP also stimulated GVB and could be blocked by AG1478. Treatment of arrested CEO with PKC agonists stimulated maturation and this was prevented with AG1478 as well as antibodies to EGFR. FSH-induced maturation of dbcAMP-arrested CEO was blocked by bisindolylmaleimide I (BIM-I), an inhibitor of PKC, implicating PKC in FSH action. EGF-stimulated CEO failed to resume maturation in the presence of glycerrhetinic acid, a gap junction inhibitor, suggesting transfer of positive signal through the cell-cell coupling pathway. These data support the idea that EGF-like peptides provide a common pathway mediating the meiosis-inducing influence of FSH, cAMP pulsing, and PKC activation in mouse CEO by a gap junction-dependent process.
Collapse
Affiliation(s)
- Stephen M Downs
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA.
| | | |
Collapse
|
33
|
Liang CG, Su YQ, Fan HY, Schatten H, Sun QY. Mechanisms Regulating Oocyte Meiotic Resumption: Roles of Mitogen-Activated Protein Kinase. Mol Endocrinol 2007; 21:2037-55. [PMID: 17536005 DOI: 10.1210/me.2006-0408] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AbstractOocyte meiotic maturation is one of the important physiological requirements for species survival. However, little is known about the detailed events occurring during this process. A number of studies have demonstrated that MAPK plays a pivotal role in the regulation of meiotic cell cycle progression in oocytes, but controversial findings have been reported in both lower vertebrates and mammals. In this review, we summarized the roles of MAPK cascade and related signal pathways in oocyte meiotic reinitiation in both lower vertebrates and mammals. We also tried to reconcile the paradoxical results and highlight the new findings concerning the function of MAPK in both oocytes and the surrounding follicular somatic cells. The unresolved questions and future research directions regarding the role of MAPK in meiotic resumption are addressed.
Collapse
Affiliation(s)
- Cheng-Guang Liang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang Beijing 100101, China
| | | | | | | | | |
Collapse
|
34
|
Sirard MA, Desrosier S, Assidi M. In vivo and in vitro effects of FSH on oocyte maturation and developmental competence. Theriogenology 2007; 68 Suppl 1:S71-6. [PMID: 17588652 DOI: 10.1016/j.theriogenology.2007.05.053] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is increasing evidence demonstrating that oocyte quality depends on the events that occur before germinal vesicle breakdown (GVBD), suggesting that the oocyte must accumulate the appropriate information for meiotic resumption fertilization and early embryonic development before chromosome condensation. This situation seems to prevail in large mammals and particularly in the bovine where we have more information than in other species. Signaling events at two different levels controls the changes that must take place for follicular growth and attainment of oocyte developmental competence. The first signaling event comes from the proper differentiation of the follicle as it normally occurs in the dominant follicle in preparation for ovulation. The second signaling event occurs as the process of follicle differentiation signals directly to the oocyte, possibly through the cumulus cells, that conditions are suitable for further embryo development. The first signal, follicular differentiation, becomes possible though a rise and fall of FSH in the circulation, while the second signal might be mimicked partially by the same hormone acting on the cumulus cells. Although FSH is likely involved in these two signaling events, the processes involved are quite different and analysis of gene expression in granulosa, cumulus and oocyte is starting to reveal the complexity of this system. The next challenge is to combine these two pathways into a functional signaling cascade. To be successful and obtain meaningful information, these genomic analyses must be developed and performed in precisely defined conditions of follicular growth and differentiation or culture conditions. Functional genomics already started with the study of function of several genes and genes families in the regulation of follicular growth and follicle-oocyte co-differentiation (i.e. IGF and BMP genes families, EGF).
Collapse
Affiliation(s)
- M-A Sirard
- Centre de Recherche en Biologie de la Reproduction, Department of Animal Sciences, Laval University, Pav. Comtois, Sainte-Foy, Québec, Canada G1K 7P4.
| | | | | |
Collapse
|
35
|
Smitz J, Picton HM, Platteau P, Rutherford A, Cortvrindt R, Clyde J, Nogueira D, Devroey P, Lyby K, Gröndahl C. Principal findings from a multicenter trial investigating the safety of follicular-fluid meiosis-activating sterol for in vitro maturation of human cumulus-enclosed oocytes. Fertil Steril 2007; 87:949-64. [PMID: 17198705 DOI: 10.1016/j.fertnstert.2006.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 08/31/2006] [Accepted: 10/11/2006] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To evaluate the safety of applying follicular-fluid meiosis-activating sterol (FF-MAS) in vitro to immature human oocytes. DESIGN Phase I bicenter, randomized, parallel-group, controlled, partially blinded trial. SETTING Third-level referral academic centers, including reproductive biology and genetics laboratories. PATIENTS Endocrinologically normal women with a medical indication for IVF or intracytoplasmic sperm injection, or healthy volunteers. INTERVENTION(S) Subjects were randomized at a ratio 1 to 6 into either conventional GnRH-agonist and recombinant FSH stimulation (IVO) for oocyte retrieval, or minimally stimulated in vitro maturation (IVM) with the use of recombinant FSH. Retrieved immature oocyte cumulus complexes were cultured for 30 or 36 hours in one of six IVM culture conditions containing FF-MAS (range, 0.1-20 microM). Polar body-extruded oocytes from the IVO and IVM groups were processed for chromosomal analysis. MAIN OUTCOME MEASURE(S) The primary endpoint was the incidence of metaphase II stage oocytes with numeric chromosomal abnormalities, using full (spectral karyotyping) or partial (fluorescent in situ hybridization with seven probes) karyotyping or Giemsa count. A secondary objective was to document the frequency of metaphase II oocytes after IVM with FF-MAS supplements. RESULT(S) Oocyte cumulus complexes obtained from the IVO (mean, 8.9) and IVM (mean, 6.2) groups had equal maturation rates. Compared to IVO, exposure of germinal-vesicle oocytes for a maturation period of 30 hours did not increase aneuploidy. An exposure period of 36 hours doubled the aneuploidy rate, but this was significant only for the 20-muM dose of FF-MAS. CONCLUSION Inclusion of 1-10 microM FF-MAS in a 30-hour IVM protocol is safe.
Collapse
Affiliation(s)
- Johan Smitz
- Center for Reproductive Medicine, Academisch Ziekenhuis, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Denys A, Avazeri N, Lefèvre B. The PKC pathway and in particular its β1 isoform is clearly involved in meiotic arrest maintenance but poorly in FSH-induced meiosis resumption of the mouse cumulus cell enclosed oocyte. Mol Reprod Dev 2007; 74:1575-80. [PMID: 17474092 DOI: 10.1002/mrd.20748] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PKC modulators were used to investigate the role of the PKC pathway either on the maintenance of meiotic arrest or on FSH-induced maturation of mouse cumulus cell enclosed oocytes (CEOs). (1) Whereas PKC activation (PMA 8 microM) overcomed clearly the HX-maintained meiotic arrest (83.7 +/- 3.6% vs. 16.1 +/- 10.6% GVBD oocytes), PKC inhibition (Calphostin C 100 nM) did not. On the contrary, it better maintained the meiotic arrest than HX alone. (2) No significant effect of PKC activation or inhibition was observed. (3) HX alone maintained PKCbeta1 in the cytoplasm, whereas FSH and PKC activation induced partly its translocation into the nucleus. The results show that whereas the PKC pathway is clearly involved in maintenance of the meiotic arrest through PKCbeta1, it is not involved in FSH-induced meiosis of CEOs.
Collapse
Affiliation(s)
- Anne Denys
- INSERM Eri-18, Université Paris 13, Bobigny, France
| | | | | |
Collapse
|
37
|
Wu XQ, Zhang X, Li XH, Cheng HH, Kuai YR, Wang S, Guo YL. Translocation of classical PKC and cortical granule exocytosis of human oocyte in germinal vesicle and metaphase II stage. Acta Pharmacol Sin 2006; 27:1353-8. [PMID: 17007743 DOI: 10.1111/j.1745-7254.2006.00407.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
AIM Protein kinase C (PKC) is as a family of serine/threonine kinases that can be activated by Ca2+, phospholipid and diacylglycerol. PKC plays an important role in oocyte maturation and activation. This study was undertaken to investigate classical PKC (cPKC) in human oocyte maturation and activation. METHODS Germinal vesicle (GV) and metaphase II (MII) stage oocytes were collected from healthy women. The expression and distribution of cPKC were investigated by immunoflourescence. MII oocytes were treated with PKC activator or inhibitor and imaged using a laser confocal scanning microscope (LCSM). RESULTS In GV oocytes, PKCalpha, beta1 and gamma were localized to the germinal vesicles, with a weak expression in ooplasm. In MII oocytes, PKCalpha, beta1 and gamma were distributed evenly in ooplasm. After treatment with PKC activator, phorbol 12-myristate 13-acetate (PMA), cPKC translocated to the periphery of oocyte, and cortical granules (CG) exocytosis was found. When the oocytes were treated with PKC inhibitor, staurosporine, no translocation of cPKC and CG exocytosis were found. CONCLUSION PKCalpha, beta1 and gamma exist in human oocytes and activation of these subunits could induce CG exocytosis in MII stage.
Collapse
Affiliation(s)
- Xue-qing Wu
- Institute of Urology, Peking University, Beijing 100034, China.
| | | | | | | | | | | | | |
Collapse
|
38
|
Mishra A, Joy KP. 2-Hydroxyestradiol-17β-induced oocyte maturation in catfish (Heteropneustes fossilis) involves protein kinase C and its interaction with protein phosphatases. Comp Biochem Physiol A Mol Integr Physiol 2006; 144:416-22. [PMID: 16730203 DOI: 10.1016/j.cbpa.2006.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 03/12/2006] [Accepted: 03/23/2006] [Indexed: 11/26/2022]
Abstract
In vitro effects of phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator, calphostin C (PKC inhibitor) and okadaic acid [OA, a protein phosphatase (PP; PP1 and PP2A) inhibitor] on 2-hydroxyestradiol-17beta (2-OHE(2))-induced oocyte maturation were investigated in the catfish Heteropneustes fossilis. Incubations of postvitellogenic follicles with PMA or OA alone did not induce oocyte maturation. However, co-incubations with 2-OHE(2) and PMA (0.05, 0.5 and 5 microM) or 2-OHE(2) and OA (0.5, 1.0 or 2.0 microM) increased germinal vesicle breakdown (GVBD) significantly over that of 2-OHE(2). Incubation of follicles with calphostin C elicited varied effects on GVBD, low (0.005 and 0.01 microM) and high (5.0 and 10.0 microM) concentrations did not affect GVBD, but medium concentrations (0.05, 0.1, 0.5, 1.0 and 2.5 microM) stimulated it. The medium concentrations elicited a biphasic stimulatory response with peak GVBD at 0.1 microM (54%). Calphostin C (>or=2.5 microM) inhibited the 2-OHE(2)-induced GVBD in a concentration-dependent manner during the 24 h incubation. Pre- or post-treatment with calphostin C inhibited the steroid-induced GVBD only at 6 h. In co-incubation studies, both PMA and OA reversed the inhibitory effect of calphostin C: the former partially and the latter fully. The results of the present study show that PKC appears to modulate the 2-OHE(2)-induced oocyte maturation. The OA-sensitive PP may be involved in the PKC modulation of steroid-induced oocyte maturation.
Collapse
Affiliation(s)
- Abha Mishra
- Department of Zoology, Banaras Hindu University, Varanasi-221005, India
| | | |
Collapse
|
39
|
Kovac J, Oster H, Leitges M. Expression of the atypical protein kinase C (aPKC) isoforms iota/lambda and zeta during mouse embryogenesis. Gene Expr Patterns 2006; 7:187-96. [PMID: 16931174 DOI: 10.1016/j.modgep.2006.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 05/26/2006] [Accepted: 07/12/2006] [Indexed: 11/24/2022]
Abstract
The atypical C-type protein kinases (aPKCs) comprise the third subclass of the PKC family functionally defined by insensitivity to phorbol esters, diacylgylcerol and calcium. aPKCs have been implicated in numerous biological processes including cell proliferation and survival, cell polarity, migration and inflammation. However, only insufficient data exist with regard to aPKC isoform specificity, since both mammalian aPKCs, PKC iota/lambda and PKC zeta, exhibit a high structural homology and very similar biochemical properties. In this study, we therefore used isoform-specific riboprobes and antibodies to define the characteristic expression profile of each aPKC isoform during mouse embryogenesis. Both, PKC iota/lambda and zeta show highly specific temporal and spatial patterns of expression which may help in distinguishing physiological functions of these isoforms.
Collapse
Affiliation(s)
- Judit Kovac
- Max-Planck-Institute of Experimental Endocrinology, Feodor-Lynen-Strasse 7, 30625 Hannover, Germany.
| | | | | |
Collapse
|
40
|
Avazeri N, Denys A, Lefèvre B. Lead cations affect the control of both meiosis arrest and meiosis resumption of the mouse oocyte in vitro at least via the PKC pathway. Biochimie 2006; 88:1823-9. [PMID: 16740354 DOI: 10.1016/j.biochi.2006.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Accepted: 04/20/2006] [Indexed: 10/24/2022]
Abstract
The aim of this study was to determine in vitro whether lead has a direct cytotoxic effect on the female gamete or through its surrounding somatic cells. We had previously demonstrated that it partly accumulates in the mouse ovary and induces follicle and oocyte apoptosis. The data reported here demonstrate for the first time that low levels of Pb(NO3)2 (<or=10 pM) affect oocyte meiosis in vitro. On the one hand, in condition similar to the in vivo one, i.e. in hypoxanthine (HX)-maintained meiotic arrest, Pb(NO3)2 was able to significantly release the oocytes from this arrest. On the other hand, when meiosis occurred spontaneously in vitro, Pb(NO3)2 inhibits meiosis. Whereas PMA, an agonist of PKC was able to prevent the first lead effect, calphostin C, an antagonist, was able to significantly prevent lead inhibition of spontaneous GVBD. And, similarly to Pb2+, the inhibition of PKC by calphostin C prevented HX to maintain the meiotic arrest whereas its activation by PMA inhibited spontaneous GVBD. No significant differences in the effects of Pb(NO3)2 on the oocytes were observed whatever the cumulus cells were present or absent. Moreover, lead did not seem to affect the metaphase plate formation. We concluded that Pb2+ may disturb the control of oocyte meiosis at least in part through its ability to interfere with the PKC pathway in taking place of Ca2+ ions.
Collapse
Affiliation(s)
- N Avazeri
- Institut National de la Santé et de la Recherche Médicale, Unité 566, Commissariat à L'énergie Atomique, Universités de Paris VII et Paris XI, BP 6, 92260 Fontenay-aux-Roses, France
| | | | | |
Collapse
|
41
|
Hunzicker-Dunn M, Maizels ET. FSH signaling pathways in immature granulosa cells that regulate target gene expression: branching out from protein kinase A. Cell Signal 2006; 18:1351-9. [PMID: 16616457 PMCID: PMC1564187 DOI: 10.1016/j.cellsig.2006.02.011] [Citation(s) in RCA: 282] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Accepted: 02/20/2006] [Indexed: 11/19/2022]
Abstract
Follicle-stimulating hormone (FSH) is necessary and sufficient to induce maturation of ovarian follicles to a mature, preovulatory phenotype in the intact animal, resulting in the generation of mature eggs and production of estrogen. FSH accomplishes these actions by inducing a complex pattern of gene expression in target granulosa cells that is regulated by input from many different signaling cascades, including those for the extracellular regulated kinases (ERKs), p38 mitogen-activated protein kinases (MAPKs), and phosphatidylinositol-3 kinase (PI3K). The upstream kinase that appears to be responsible for initiating all of the signaling that regulates gene expression in these epithelial cells is protein kinase A (PKA). PKA not only signals to directly phosphorylate transcription factors like cAMP response element binding protein and to promote chromatin remodeling by phosphorylating histone H3, this versatile kinase also enhances the activity of the p38 MAPK, ERK, and PI3K pathways. Additionally, accumulating evidence suggests that activation of a single signaling cascade downstream of PKA is not sufficient to activate target gene expression. Rather, cross-talk between and among signaling cascades is required. We will review the signaling cascades activated by FSH in granulosa cells and how these cascades contribute to the regulation of select target gene expression.
Collapse
Affiliation(s)
- Mary Hunzicker-Dunn
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | |
Collapse
|
42
|
Dehghani H, Hahnel AC. Expression profile of protein kinase C isozymes in preimplantation mouse development. Reproduction 2006; 130:441-51. [PMID: 16183862 DOI: 10.1530/rep.1.00571] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the preimplantation mouse embryo, the protein kinase C (PKC) family has been implicated in regulation of egg activation, progression of meiotic and mitotic cell cycles, embryo compaction, and blastulation, but the involvement of the individual isozymes is largely unknown. Here, using semiquantitative immunocytochemistry and confocal microscopy we analyze the relative amount and subcellular distribution of ten isozymes of PKC (alpha, betaI, betaII, gamma, delta, epsilon, eta, theta, zeta, iota/lambda) and a PKC-anchoring protein, receptor for activated C-kinase 1 (RACK1). Our results show that all of these isoforms of PKC are present between the two-cell and blastocyst stages of mouse preimplantation development, and that each has a distinct, dynamic pattern and level of expression. The data suggest that different complements of the isozymes are involved in various steps of preimplantation development, and will serve as a framework for further functional studies of the individual isozymes. In particular, there was a transient increase in the nuclear concentration of several isozymes at the early four-cell stage, suggesting that some of the PKC isozymes might be involved in regulation of nuclear organization and function in the early mouse embryo.
Collapse
Affiliation(s)
- Hesam Dehghani
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, N1G 2W1 Canada
| | | |
Collapse
|
43
|
van den Hurk R, Zhao J. Formation of mammalian oocytes and their growth, differentiation and maturation within ovarian follicles. Theriogenology 2005; 63:1717-51. [PMID: 15763114 DOI: 10.1016/j.theriogenology.2004.08.005] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 07/28/2004] [Accepted: 08/17/2004] [Indexed: 11/25/2022]
Abstract
The limited knowledge on the regulation of oocyte formation, the different steps of folliculogenesis and the required conditions for oocytes to undergo proper growth, differentiation and maturation are major causes of the failure in obtaining viable offspring from in vitro cultured early oocytes from domestic animals and humans. This review highlights the factors that at present are known to be involved in the formation of mammalian oocytes and their growth, differentiation and maturation within ovarian follicles.
Collapse
Affiliation(s)
- Robert van den Hurk
- Department of Farm Animal Health, Faculty of Veterinary Medicine, P.O. Box 90151, Yalelaan 7, Utrecht University, Utrecht 3508TD, The Netherlands.
| | | |
Collapse
|
44
|
Denisenko VY, Kuzmina TI. Effects of Guanine Nucleotides and Protein Kinase C on Prolactin-Stimulated Release of Ca2+ from Intracellular Stores of Pig Oocytes. Russ J Dev Biol 2005. [DOI: 10.1007/s11174-005-0025-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Zheng ZY, Li QZ, Chen DY, Schatten H, Sun QY. Translocation of phospho-protein kinase Cs implies their roles in meiotic-spindle organization, polar-body emission and nuclear activity in mouse eggs. Reproduction 2005; 129:229-34. [PMID: 15695617 DOI: 10.1530/rep.1.00336] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The protein kinase Cs (PKCs) are a family of Ser/Thr protein kinases categorized into three subfamilies: classical, novel, and atypical. The phosphorylation of PKC in germ cells is not well defined. In this study, we described the subcellular localization of phopho-PKC in the process of mouse oocyte maturation, fertilization, and early embryonic mitosis. Confocal microscopy revealed that phospho-PKC (pan) was distributed abundantly in the nucleus at the germinal vesicle stage. After germinal vesicle breakdown, phospho-PKC was localized in the vicinity of the condensed chromosomes, distributed in the whole meiotic spindle, and concentrated at the spindle poles. After metaphase I, phospho-PKC was translocated gradually to the spindle mid-zone during emission of the first polar body. After sperm penetration and electrical activation, the distribution of phospho-PKC was moved from the spindle poles to the spindle mid-zone. After the extrusion of the second polar body (PB2) phospho-PKC was localized in the area between the oocyte and the PB2. In fertilized eggs, phospho-PKC was concentrated in the pronuclei except for the nucleolus. Phospho-PKC was dispersed after pronuclear envelope breakdown, but distributed on the entire spindle at mitotic metaphase. The results suggest that PKC activation may play important roles in regulating spindle organization and stabilization, polar-body extrusion, and nuclear activity during mouse oocyte meiosis, fertilization, and early embryonic mitosis.
Collapse
Affiliation(s)
- Zhen-Yu Zheng
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
| | | | | | | | | |
Collapse
|
46
|
Cukurcam S, Sun F, Betzendahl I, Adler ID, Eichenlaub-Ritter U. Trichlorfon predisposes to aneuploidy and interferes with spindle formation in in vitro maturing mouse oocytes. Mutat Res 2005; 564:165-78. [PMID: 15507381 DOI: 10.1016/j.mrgentox.2004.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Revised: 08/20/2004] [Accepted: 08/23/2004] [Indexed: 11/19/2022]
Abstract
The pesticide trichlorfon (TCF) has been implicated in human trisomy 21, and in errors in chromosome segregation at male meiosis II in the mouse. We previously provided evidence that TCF interferes with spindle integrity and cell-cycle control during murine oogenesis. To assess the aneugenic activity of TCF in oogenesis, we presently analysed maturation, spindle assembly, and chromosome constitution in mouse oocytes maturing in vitro in the presence of 50 or 100 microg/ml TCF for 16 h or in pulse-chase experiments. TCF stimulated maturation to meiosis II at 50 microg/ml, but arrested meiosis in some oocytes at 100 microg/ml. TCF at 100 microg/ml was aneugenic causing non-disjunction of homologous chromosomes at meiosis I, a significant increase of the hyperploidy rate at metaphase II, and a significant rise in the numbers of oocytes that contained a 'diploid' set of metaphase II chromosomes (dyads). TCF elevated the rate of precocious chromatid segregation (predivision) at 50 and 100 microg/ml. Pulse-chase experiments with 100 microg/ml TCF present during the first 7 h or the last 9 h of maturation in vitro did not affect meiotic progression and induced intermediate levels of hyperploidy at metaphase II. Exposure to > or =50 microg/ml TCF throughout maturation in vitro induced severe spindle aberrations at metaphase II, and over one-third of the oocytes failed to align all chromosomes at the spindle equator (congression failure). These observations suggest that exposure to high concentrations of TCF induces non-disjunction at meiosis I of oogenesis, while lower doses may preferentially cause errors in chromosome segregation at meiosis II due to disturbances in spindle function, and chromosome congression as well as precocious separation of chromatids prior to anaphase II. The data support evidence from other studies that TCF has to be regarded as a germ cell aneugen.
Collapse
Affiliation(s)
- Suna Cukurcam
- Institute of Genetechnology/Microbiology, Faculty of Biology, University of Bielefeld, D-33501 Bielefeld, Germany
| | | | | | | | | |
Collapse
|
47
|
Eckert JJ, McCallum A, Mears A, Rumsby MG, Cameron IT, Fleming TP. Specific PKC isoforms regulate blastocoel formation during mouse preimplantation development. Dev Biol 2004; 274:384-401. [PMID: 15385166 DOI: 10.1016/j.ydbio.2004.07.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Revised: 07/22/2004] [Accepted: 07/28/2004] [Indexed: 12/21/2022]
Abstract
During early mammalian development, blastocyst morphogenesis is achieved by epithelial differentiation of trophectoderm (TE) and its segregation from the inner cell mass (ICM). Two major interrelated features of TE differentiation required for blastocoel formation include intercellular junction biogenesis and a directed ion transport system, mediated by Na+/K+ ATPase. We have examined the relative contribution of intercellular signalling mediated by protein kinase C (PKC) and gap junctional communication in TE differentiation and blastocyst cavitation. The distribution pattern of four (delta, theta, iota/lambda, zeta) PKC isoforms and PKCmicro/PKD1 showed partial colocalisation with the tight junction marker ZO-1alpha+ in TE and all four PKCs (delta, theta, iota/lambda, zeta) showed distinct TE/ICM staining patterns (predominantly at the cell membrane within the TE and cytoplasmic within the ICM), indicating their potential contribution to TE differentiation and blastocyst morphogenesis. Specific inhibition of PKCdelta and zeta activity significantly delayed blastocyst formation. Although modulation of these PKC isoforms failed to influence the already established programme of epithelial junctional differentiation within the TE, Na+/K+ ATPase alpha1 subunit was internalised from membrane to cytoplasm. Inhibition of gap junctional communication, in contrast, had no influence on any of these processes. Our results demonstrate for the first time that distinct PKC isotypes contribute to the regulation of cavitation in preimplantation embryos via target proteins including Na+/K+ ATPase.
Collapse
Affiliation(s)
- Judith J Eckert
- Division of Cell Sciences, School of Biological Sciences, University of Southampton, Southampton SO16 7PX, UK.
| | | | | | | | | | | |
Collapse
|
48
|
Avazeri N, Courtot AM, Lefevre B. Regulation of spontaneous meiosis resumption in mouse oocytes by various conventional PKC isozymes depends on cellular compartmentalization. J Cell Sci 2004; 117:4969-78. [PMID: 15367584 DOI: 10.1242/jcs.01375] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we investigated the spatio-temporal distribution of conventional protein kinases C (cPKC) isoforms PKC-alpha, PKC-betaI, PKC-betaII and PKC-gamma in mouse oocytes. The cPKCs were present in the cytoplasm at the start of the process and migrated to the nucleus (or germinal vesicle) before germinal vesicle breakdown, except for PKC-gamma which remained cytoplasmic. In both compartments, the fully phosphorylated form corresponding to the 'mature' enzyme was revealed for PKC-alpha, PKC-betaI and PKC-betaII. Microinjection of specific antibodies against each isozyme in one or the other cell compartment at different times of the meiotic process, permitted us to observe the following: (1) When located in the cytoplasm at the beginning of the process, PKC-alpha is not implicated in germinal vesicle breakdown, PKC-betaI and PKC-gamma are involved in maintaining the meiotic arrest, and PKC-betaII plays a role in meiosis reinitiation. Furthermore, just before germinal vesicle breakdown, these cytoplasmic cPKCs were no longer implicated. (2) When located in the germinal vesicle, PKC-alpha, PKC-betaI and PKC-betaII are involved in meiosis reinitiation. Our data highlight not only the importance of the nuclear pathways in the cell cycle progression, but also their independence of the cytoplasmic ones. Further investigations are however necessary to discover the molecular targets of these cPKCs to better understand the links with the cell cycle progression.
Collapse
Affiliation(s)
- Nathalie Avazeri
- Institut National de la Santé et de la Recherche Médicale Unité 566 Commissariat à l'Energie Atomique, 92260 Fontenay-aux-Roses CEDEX, France
| | | | | |
Collapse
|
49
|
Bu S, Xie H, Tao Y, Wang J, Xia G. Nitric oxide influences the maturation of cumulus cell-enclosed mouse oocytes cultured in spontaneous maturation medium and hypoxanthine-supplemented medium through different signaling pathways. Mol Cell Endocrinol 2004; 223:85-93. [PMID: 15279914 DOI: 10.1016/j.mce.2004.04.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Accepted: 04/14/2004] [Indexed: 10/26/2022]
Abstract
Nitric oxide (NO) has been recently shown to act with a dual action in mouse oocyte meiotic maturation depending on its concentration, but the mechanism(s) through which it influences oocyte maturation has not been fully clarified to date. The purpose of this study was to test the hypothesis that different signaling mechanisms exist for NO-stimulated and NO-inhibited in vitro maturation of meiosis in cumulus cell-enclosed oocytes (CEOs) from PMSG-primed immature female mice. CEOs were cultured in both spontaneous maturation model and hypoxanthine (HX) arrested model to investigate the mechanism(s). Sodium nitroprusside (SNP, an NO donor) at a concentration of 1mM delayed significantly germinal vesical breakdown (GVBD) during the first 5 h of incubation period and further inhibited the formation of first polar body (PB1) at the end of 24 h of incubation. While SNP, at a concentration of 10 microM, stimulated significantly the meiotic maturation of oocytes by overcoming the inhibition of HX. Methinine blue (MB, 10 microM) or 1-H-[1,2,4] oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ, 10 microM)), two soluble guanylate cyclase (sGC) inhibitors, could reverse SNP-inhibited spontaneous oocyte maturation, but had no effect on SNP-stimulated meiotic maturation in the presence of HX. 8-Br-cGMP (1mM), a cell-permeating cGMP analogue, demonstrated a significant inhibitory effect on both spontaneous meiotic maturation and HX-arrested meiotic maturation. The delay effect of SNP on GVBD occurrence was similar to that of forskolin (6 microM, an adenylate cyclase stimulator) and rolipram (250 microM, a phosphodiesterase 4 inhibitor), two cAMP elevating reagents. Both forskolin and rolipram reversed significantly the SNP-stimulated meiotic maturation, but did not reverse the SNP-inhibited spontaneous meiotic maturation. Cilostamide (1 microM), the selective inhibitor of phosphodiestrase 3 (PDE3), could mimic the inhibitory effect of HX on the spontaneous meiotic maturation in CEOs and this inhibitory effect could also be reversed by SNP (10 microM). Moreover, sphingosine (3 microM), a protein kinase C (PKC) inhibitor, blocked the SNP-inhibited spontaneous meiotic maturation, but did not block the SNP-stimulated meiotic maturation. Clearly, these results suggest that pathway differences are present between SNP-inhibited spontaneous meiotic maturation and SNP-stimulated meiotic maturation of mouse oocytes.
Collapse
Affiliation(s)
- Shumin Bu
- College of Biological Sciences, China Agricultural University, Beijing 100094, PR China
| | | | | | | | | |
Collapse
|
50
|
Bertagnolli A, Gonçalves P, Giometti I, Costa L, Oliveira J, Gonçalves I, Barreto K, Emanuelli I, Borges L. Interação entre células do cumulus e atividade da proteína quinase C em diferentes fases da maturação nuclear de oócitos bovinos. ARQ BRAS MED VET ZOO 2004. [DOI: 10.1590/s0102-09352004000400010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Verificou-se a influência da proteína quinase C (PK-C) no reinício e na progressão da meiose em oócitos bovinos, determinando se as células do cumulus são mediadoras da PK-C na regulação da maturação dos oócitos. Complexos cumulus-oócitos (CCO) e oócitos desnudos (OD), distribuídos aleatoriamente em seis tratamentos (T) com base na presença de um ativador da PK-C (PMA) (T1 e T2), de um forbol éster incapaz de ativar a PK-C (4alfa-PDD-controle) (T3 e T4) ou de apenas o meio básico (TCM-199-controle) (T5 e T6), foram cultivados por 7, 9, 12, 18 e 22 horas. A percentagem de rompimento da vesícula germinativa no grupo cultivado com PMA foi maior do que nos dois grupos controle, com e sem células do cumulus. O cultivo de CCO e OD por 12 e 18 horas demonstrou que a PK-C influencia a progressão para os estádios de metáfase I (MI) e metáfase II (MII) de maneira dependente das células do cumulus. Nos períodos de 9 e 22 horas, não foi possível observar diferença entre os grupos quanto aos diferentes estádios de maturação. A ativação da PK-C acelera o reinício da meiose independentemente das células somáticas e acelera a progressão até os estádios de MI e MII na dependência das células do cumulus.
Collapse
|