1
|
Gunes S, Metin Mahmutoglu A, Hekim N. Epigenetics of nonobstructive azoospermia. Asian J Androl 2024:00129336-990000000-00238. [PMID: 39225008 DOI: 10.4103/aja202463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/04/2024] [Indexed: 09/04/2024] Open
Abstract
Nonobstructive azoospermia (NOA) is a severe and heterogeneous form of male factor infertility caused by dysfunction of spermatogenesis. Although various factors are well defined in the disruption of spermatogenesis, not all aspects due to the heterogeneity of the disorder have been determined yet. In this review, we focus on the recent findings and summarize the current data on epigenetic mechanisms such as DNA methylation and different metabolites produced during methylation and demethylation and various types of small noncoding RNAs involved in the pathogenesis of different groups of NOA.
Collapse
Affiliation(s)
- Sezgin Gunes
- Department of Medical Biology, Medical Faculty, Ondokuz Mayis University, Samsun 55139, Türkiye
| | - Asli Metin Mahmutoglu
- Department of Medical Biology, Medical Faculty, Yozgat Bozok University, Yozgat 66100, Türkiye
| | - Neslihan Hekim
- Department of Medical Biology, Medical Faculty, Ondokuz Mayis University, Samsun 55139, Türkiye
| |
Collapse
|
2
|
Arévalo L, Esther Merges G, Schneider S, Schorle H. Protamines: lessons learned from mouse models. Reproduction 2022; 164:R57-R74. [PMID: 35900356 DOI: 10.1530/rep-22-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022]
Abstract
In brief Protamines package and shield the paternal DNA in the sperm nucleus and have been studied in many mouse models over decades. This review recapitulates and updates our knowledge about protamines and reveals a surprising complexity in protamine function and their interactions with other sperm nuclear proteins. Abstract The packaging and safeguarding of paternal DNA in the sperm cell nucleus is a critical feature of proper sperm function. Histones cannot mediate the necessary hypercondensation and shielding of chromatin required for motility and transit through the reproductive tracts. Paternal chromatin is therefore reorganized and ultimately packaged by protamines. In most mammalian species, one protamine is present in mature sperm (PRM1). In rodents and primates among others, however, mature sperm contain a second protamine (PRM2). Unlike PRM1, PRM2 is cleaved at its N-terminal end. Although protamines have been studied for decades due to their role in chromatin hypercondensation and involvement in male infertility, key aspects of their function are still unclear. This review updates and integrates our knowledge of protamines and their function based on lessons learned from mouse models and starts to answer open questions. The combined insights from recent work reveal that indeed both protamines are crucial for the production of functional sperm and indicate that the two protamines perform distinct functions beyond simple DNA compaction. Loss of one allele of PRM1 leads to subfertility whereas heterozygous loss of PRM2 does not. Unprocessed PRM2 seems to play a distinct role related to the eviction of intermediate DNA-bound proteins and the incorporation of both protamines into chromatin. For PRM1, on the other hand, heterozygous loss leads to strongly reduced sperm motility as the main phenotype, indicating that PRM1 might be important for processes ensuring correct motility, apart from DNA compaction.
Collapse
Affiliation(s)
- Lena Arévalo
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Gina Esther Merges
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Simon Schneider
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany.,Bonn Technology Campus, Core Facility 'Gene-Editing', University Hospital Bonn, Bonn, Germany
| | - Hubert Schorle
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
3
|
Okada Y. Sperm chromatin condensation: epigenetic mechanisms to compact the genome and spatiotemporal regulation from inside and outside the nucleus. Gene 2022; 97:41-53. [PMID: 35491100 DOI: 10.1266/ggs.21-00065] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Sperm chromatin condensation is a critical step in mammalian spermatogenesis to protect the paternal DNA from external damaging factors and to acquire fertility. During chromatin condensation, various events proceed in a chronological order, independently or in sequence, interacting with each other both inside and outside the nucleus to support the dramatic chromatin changes. Among these events, histone-protamine replacement, which is concomitant with acrosome biogenesis and cytoskeletal alteration, is the most critical step associated with nuclear elongation. Failures of not only intranuclear events but also extra-nuclear events severely affect sperm shape and chromatin state and are subsequently linked to infertility. This review focuses on nuclear and non-nuclear factors that affect sperm chromatin condensation and its effects, and further discusses the possible utility of sperm chromatin for clinical applications.
Collapse
Affiliation(s)
- Yuki Okada
- Laboratory of Pathology and Development, Institute for Quantitative Biosciences, The University of Tokyo
| |
Collapse
|
4
|
Le Blévec E, Muroňová J, Ray PF, Arnoult C. Paternal epigenetics: Mammalian sperm provide much more than DNA at fertilization. Mol Cell Endocrinol 2020; 518:110964. [PMID: 32738444 DOI: 10.1016/j.mce.2020.110964] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022]
Abstract
The spermatozoon is a highly differentiated cell with unique characteristics: it is mobile, thanks to its flagellum, and is very compact. The sperm cytoplasm is extremely reduced, containing no ribosomes, and therefore does not allow translation, and its nucleus contains very closed chromatin, preventing transcription. This DNA compaction is linked to the loss of nucleosomes and the replacement of histones by protamines. Based on these characteristics, sperm was considered to simply deliver paternal DNA to the oocyte. However, some parts of the sperm DNA remain organized in a nucleosomal format, and bear epigenetic information. In addition, the nucleus and the cytoplasm contain a multitude of RNAs of different types, including non-coding RNAs (ncRNAs) which also carry epigenetic information. For a long time, these RNAs were considered residues of spermatogenesis. After briefly describing the mechanisms of compaction of sperm DNA, we focus this review on the origin and function of the different ncRNAs. We present studies demonstrating the importance of these RNAs in embryonic development and transgenerational adaptation to stress. We also look at other epigenetic marks, such as DNA methylation or post-translational modifications of histones, and show that they are sensitive to environmental stress and transmissible to offspring. The post-fertilization role of certain sperm-borne proteins is also discussed.
Collapse
Affiliation(s)
- Emilie Le Blévec
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France; IMV Technologies, ZI N° 1 Est, L'Aigle, F-61300, France
| | - Jana Muroňová
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France
| | - Pierre F Ray
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France; CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France
| | - Christophe Arnoult
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France.
| |
Collapse
|
5
|
Male Factors: the Role of Sperm in Preimplantation Embryo Quality. Reprod Sci 2020; 28:1788-1811. [DOI: 10.1007/s43032-020-00334-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/25/2020] [Indexed: 12/19/2022]
|
6
|
Torres-Flores U, Hernández-Hernández A. The Interplay Between Replacement and Retention of Histones in the Sperm Genome. Front Genet 2020; 11:780. [PMID: 32765595 PMCID: PMC7378789 DOI: 10.3389/fgene.2020.00780] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/30/2020] [Indexed: 12/21/2022] Open
Abstract
The genome of eukaryotes is highly organized within the cell nucleus, this organization per se elicits gene regulation and favors other mechanisms like cell memory throughout histones and their post-translational modifications. In highly specialized cells, like sperm, the genome is mostly organized by protamines, yet a significant portion of it remains organized by histones. This protamine-histone-DNA organization, known as sperm epigenome, is established during spermiogenesis. Specific histones and their post-translational modifications are retained at specific genomic sites and during embryo development these sites recapitulate their histone profile that harbored in the sperm nucleus. It is known that histones are the conduit of epigenetic memory from cell to cell, hence histones in the sperm epigenome may have a role in transmitting epigenetic memory from the sperm to the embryo. However, the exact function and mechanism of histone retention remains elusive. During spermatogenesis, most of the histones that organize the genome are replaced by protamines and their retention at specific regions may be deeply intertwined with the eviction and replacement mechanism. In this review we will cover some relevant aspects of histone replacement that in turn may help us to contextualize histone retention. In the end, we focus on the architectonical protein CTCF that is, so far, the only factor that has been directly linked to the histone retention process.
Collapse
Affiliation(s)
- Ulises Torres-Flores
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Abrahan Hernández-Hernández
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| |
Collapse
|
7
|
The dynamics and regulation of chromatin remodeling during spermiogenesis. Gene 2019; 706:201-210. [DOI: 10.1016/j.gene.2019.05.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 01/06/2023]
|
8
|
Genetic Instability and Chromatin Remodeling in Spermatids. Genes (Basel) 2019; 10:genes10010040. [PMID: 30646585 PMCID: PMC6356297 DOI: 10.3390/genes10010040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/13/2022] Open
Abstract
The near complete replacement of somatic chromatin in spermatids is, perhaps, the most striking nuclear event known to the eukaryotic domain. The process is far from being fully understood, but research has nevertheless unraveled its complexity as an expression of histone variants and post-translational modifications that must be finely orchestrated to promote the DNA topological change and compaction provided by the deposition of protamines. That this major transition may not be genetically inert came from early observations that transient DNA strand breaks were detected in situ at chromatin remodeling steps. The potential for genetic instability was later emphasized by our demonstration that a significant number of DNA double-strand breaks (DSBs) are formed and then repaired in the haploid context of spermatids. The detection of DNA breaks by 3'OH end labeling in the whole population of spermatids suggests that a reversible enzymatic process is involved, which differs from canonical apoptosis. We have set the stage for a better characterization of the genetic impact of this transition by showing that post-meiotic DNA fragmentation is conserved from human to yeast, and by providing tools for the initial mapping of the genome-wide DSB distribution in the mouse model. Hence, the molecular mechanism of post-meiotic DSB formation and repair in spermatids may prove to be a significant component of the well-known male mutation bias. Based on our recent observations and a survey of the literature, we propose that the chromatin remodeling in spermatids offers a proper context for the induction of de novo polymorphism and structural variations that can be transmitted to the next generation.
Collapse
|
9
|
Champroux A, Torres-Carreira J, Gharagozloo P, Drevet JR, Kocer A. Mammalian sperm nuclear organization: resiliencies and vulnerabilities. Basic Clin Androl 2016; 26:17. [PMID: 28031843 PMCID: PMC5175393 DOI: 10.1186/s12610-016-0044-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/12/2016] [Indexed: 01/07/2023] Open
Abstract
Sperm cells are remarkably complex and highly specialized compared to somatic cells. Their function is to deliver to the oocyte the paternal genomic blueprint along with a pool of proteins and RNAs so a new generation can begin. Reproductive success, including optimal embryonic development and healthy offspring, greatly depends on the integrity of the sperm chromatin structure. It is now well documented that DNA damage in sperm is linked to reproductive failures both in natural and assisted conception (Assisted Reproductive Technologies [ART]). This manuscript reviews recent important findings concerning - the unusual organization of mammalian sperm chromatin and its impact on reproductive success when modified. This review is focused on sperm chromatin damage and their impact on embryonic development and transgenerational inheritance.
Collapse
Affiliation(s)
- A. Champroux
- GReD “Genetics, Reproduction & Development” Laboratory, UMR CNRS 6293, INSERM U1103, Clermont Université, BP60026 - TSA60026, 63178 Aubière cedex, France
| | - J. Torres-Carreira
- Centro Universitário Rio Preto, UNIRP, Rodovia Br153, Km 69, CEP15093-450 São José do Rio Preto, São Paulo Brazil
| | - P. Gharagozloo
- CellOxess LLC, 830 Bear Tavern Road, Ewing, NJ 08628 USA
| | - J. R. Drevet
- GReD “Genetics, Reproduction & Development” Laboratory, UMR CNRS 6293, INSERM U1103, Clermont Université, BP60026 - TSA60026, 63178 Aubière cedex, France
| | - A. Kocer
- GReD “Genetics, Reproduction & Development” Laboratory, UMR CNRS 6293, INSERM U1103, Clermont Université, BP60026 - TSA60026, 63178 Aubière cedex, France
| |
Collapse
|
10
|
Xu ML, Hu J, Guo BP, Niu YR, Xiao C, Xu YX. Exploration of intrinsic and extrinsic apoptotic pathways in zearalenone-treated rat sertoli cells. ENVIRONMENTAL TOXICOLOGY 2016; 31:1731-1739. [PMID: 26460601 DOI: 10.1002/tox.22175] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 07/10/2015] [Accepted: 07/12/2015] [Indexed: 06/05/2023]
Abstract
Zearalenone (ZEA) is a nonsteroidal estrogenic mycotoxin produced mainly by Fusarium. ZEA causes reproductive disorders and is both cytotoxic and genotoxic in animals; however, little is known regarding the molecular mechanism(s) leading to ZEA toxicity. Sertoli cells are somatic cells that support the development of spermatogenic cells. The objective of this study was to explore the effects of ZEA on the proliferation, apoptosis, and necrosis of rat Sertoli cells to uncover signaling pathways underlying ZEA cytotoxicity. ZEA reduced the proliferation of rat Sertoli cells in a dose-dependent manner, as indicated by a CCK8 assay, while flow cytometry revealed that ZEA caused both apoptosis and necrosis. Immunoblotting revealed that ZEA treatment increased the ratio of Bax/Bcl-2, as well as the expression of FasL and caspases-3, -8, and -9, in a dose-dependent manner. Collectively, these data suggest that ZEA induced apoptosis and necrosis in rat Sertoli cells via extrinsic and intrinsic apoptotic pathways. This study provides new insights into the molecular mechanisms by which ZEA exhibits cytotoxicity. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1731-1739, 2016.
Collapse
Affiliation(s)
- Ming-Long Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jin Hu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Bao-Ping Guo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Ya-Ru Niu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Cheng Xiao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yin-Xue Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| |
Collapse
|
11
|
Topology of chromosome centromeres in human sperm nuclei with high levels of DNA damage. Sci Rep 2016; 6:31614. [PMID: 27558650 PMCID: PMC4997348 DOI: 10.1038/srep31614] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/20/2016] [Indexed: 11/09/2022] Open
Abstract
Several studies have shown that the 'poor' sperm DNA quality appears to be an important factor affecting male reproductive ability. In the case of sperm cells from males with the correct somatic karyotype but with deficient spermatogenesis, resulting in a high degree of sperm DNA fragmentation, we observed changes in the preferential topology of the chromosome 7, 9, 15, 18, X and Y centromeres. The changes occurred in radial localization and may have been directly linked to the sperm chromatin damage. This conclusion is mainly based on a comparison of FISH signals that were observed simultaneously in the TUNEL-positive and TUNEL-negative sperm cells. The analyzed cells originated from the same ejaculated sample and FISH was performed on the same slides, after in situ TUNEL reaction. Based on the observed changes and previous data, it appears that the sperm nucleus architecture can be disrupted by a variety of factors and has a negative influence on spermatogenesis at the same time. Often, these factors coexist (e.g. chromosomal translocations, aneuploidies, a higher DNA fragmentation, abnormal seminology), but no direct correlations between the factors were observed.
Collapse
|
12
|
Gupta N, Madapura MP, Bhat UA, Rao MRS. Mapping of Post-translational Modifications of Transition Proteins, TP1 and TP2, and Identification of Protein Arginine Methyltransferase 4 and Lysine Methyltransferase 7 as Methyltransferase for TP2. J Biol Chem 2015; 290:12101-22. [PMID: 25818198 DOI: 10.1074/jbc.m114.620443] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Indexed: 12/22/2022] Open
Abstract
In a unique global chromatin remodeling process during mammalian spermiogenesis, 90% of the nucleosomal histones are replaced by testis-specific transition proteins, TP1, TP2, and TP4. These proteins are further substituted by sperm-specific protamines, P1 and P2, to form a highly condensed sperm chromatin. In spermatozoa, a small proportion of chromatin, which ranges from 1 to 10% in mammals, retains the nucleosomal architecture and is implicated to play a role in transgenerational inheritance. However, there is still no mechanistic understanding of the interaction of chromatin machinery with histones and transition proteins, which facilitate this selective histone replacement from chromatin. Here, we report the identification of 16 and 19 novel post-translational modifications on rat endogenous transition proteins, TP1 and TP2, respectively, by mass spectrometry. By in vitro assays and mutational analysis, we demonstrate that protein arginine methyltransferase PRMT4 (CARM1) methylates TP2 at Arg(71), Arg(75), and Arg(92) residues, and lysine methyltransferase KMT7 (Set9) methylates TP2 at Lys(88) and Lys(91) residues. Further studies with modification-specific antibodies that recognize TP2K88me1 and TP2R92me1 modifications showed that they appear in elongating to condensing spermatids and predominantly associated with the chromatin-bound TP2. This work establishes the repertoire of post-translational modifications that occur on TP1 and TP2, which may play a significant role in various chromatin-templated events during spermiogenesis and in the establishment of the sperm epigenome.
Collapse
Affiliation(s)
- Nikhil Gupta
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - M Pradeepa Madapura
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - U Anayat Bhat
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - M R Satyanarayana Rao
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| |
Collapse
|
13
|
Noblanc A, Kocer A, Drevet JR. Recent knowledge concerning mammalian sperm chromatin organization and its potential weaknesses when facing oxidative challenge. Basic Clin Androl 2014; 24:6. [PMID: 26779341 PMCID: PMC4715350 DOI: 10.1186/2051-4190-24-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 02/26/2014] [Indexed: 01/08/2023] Open
Abstract
Spermatozoa are the smallest and most cyto-differentiated mammalian cells. From a somatic cell-like appearance at the beginning of spermatogenesis, the male germ cell goes through a highly sophisticated process to reach its final organization entirely devoted to its mission which is to deliver the paternal genome to the oocyte. In order to fit the paternal DNA into the tiny spermatozoa head, complete chromatin remodeling is necessary. This review essentially focuses on present knowledge of this mammalian sperm nucleus compaction program. Particular attention is given to most recent advances that concern the specific organization of mammalian sperm chromatin and its potential weaknesses. Emphasis is placed on sperm DNA oxidative damage that may have dramatic consequences including infertility, abnormal embryonic development and the risk of transmission to descendants of an altered paternal genome.
Collapse
Affiliation(s)
- Anais Noblanc
- GReD Laboratory, CNRS UMR 6293 - INSERM U1103 - Clermont Université, Aubière, France
| | - Ayhan Kocer
- GReD Laboratory, CNRS UMR 6293 - INSERM U1103 - Clermont Université, Aubière, France
| | - Joël R Drevet
- GReD Laboratory, CNRS UMR 6293 - INSERM U1103 - Clermont Université, Aubière, France
| |
Collapse
|
14
|
Rathke C, Baarends WM, Awe S, Renkawitz-Pohl R. Chromatin dynamics during spermiogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:155-68. [DOI: 10.1016/j.bbagrm.2013.08.004] [Citation(s) in RCA: 339] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/06/2013] [Accepted: 08/09/2013] [Indexed: 01/25/2023]
|
15
|
Codrington AM, Hales BF, Robaire B. Spermiogenic Germ Cell Phase-Specific DNA Damage Following Cyclophosphamide Exposure. ACTA ACUST UNITED AC 2013; 25:354-62. [PMID: 15064312 DOI: 10.1002/j.1939-4640.2004.tb02800.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The production of genetically competent spermatozoa is essential for normal embryo development. The chemotherapeutic drug cyclophosphamide creates cross-links and DNA strand breaks in many cell types, including germ cells. This study assessed the phase specificity of the susceptibility of spermiogenic germ cells to genetic damage induced by cyclophosphamide. Adult male rats were given cyclophosphamide using one of four schedules: 1) high dose/acute- day 1, 100 mg/kg; 2) low dose/subchronic, 4 days-days 1-4, 6.0 mg/kg/d; 3) high dose/subchronic, 4 days-day 1, 100 mg/kg, and days 2-4, 50 mg/kg/d; and 4) low dose/chronic-daily, 6.0 mg/kg/d for 14-28 days. To capture cauda epididymal spermatozoa exposed to cyclophosphamide during late, mid-, and early spermiogenesis, animals were sacrificed on days 14, 21, and 28, respectively. Spermatozoa were analyzed for DNA strand breaks using the comet assay. No dramatic increases in damage were seen after high-dose/acute exposure to cyclophosphamide. Subchronic exposure showed a dose-related increase in DNA damage; maximal damage, as demonstrated by comet tail parameters, was seen after 21 days, reflecting an increased susceptibility of step 9-14 spermatids. Low-dose chronic exposure to cyclophosphamide induced DNA damage, which reached a plateau by day 21. The magnitude of damage at all time points after low-dose chronic exposure was much greater than that following low-dose exposure for 4 days, indicating an accumulation of damage over time. Thus, the DNA damage induced by cyclophosphamide is germ cell phase-specific. The most damaging effects of cyclophosphamide occurred during a key point of sperm chromatin remodeling (histone hyperacetylation and transition protein deposition). We speculate that strand breaks disrupt chromatin remodeling, hence affecting chromatin structure and embryo development.
Collapse
Affiliation(s)
- Alexis M Codrington
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | | | | |
Collapse
|
16
|
Cacciola G, Chioccarelli T, Fasano S, Pierantoni R, Cobellis G. Estrogens and spermiogenesis: new insights from type 1 cannabinoid receptor knockout mice. Int J Endocrinol 2013; 2013:501350. [PMID: 24324492 PMCID: PMC3845505 DOI: 10.1155/2013/501350] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 09/26/2013] [Indexed: 12/01/2022] Open
Abstract
Spermatogenesis is a complex mechanism which allows the production of male gametes; it consists of mitotic, meiotic, and differentiation phases. Spermiogenesis is the terminal differentiation process during which haploid round spermatids undergo several biochemical and morphological changes, including extensive remodelling of chromatin and nuclear shape. Spermiogenesis is under control of endocrine, paracrine, and autocrine factors, like gonadotropins and testosterone. More recently, emerging pieces of evidence are suggesting that, among these factors, estrogens may have a role. To date, this is a matter of debate and concern because of the agonistic and antagonistic estrogenic effects that environmental chemicals may have on animal and human with damaging outcome on fertility. In this review, we summarize data which fuel this debate, with a particular attention to our recent results, obtained using type 1 cannabinoid receptor knockout male mice as animal model.
Collapse
Affiliation(s)
- Giovanna Cacciola
- Dipartimento di Medicina Sperimentale, Sez. Bottazzi, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy
| | - Teresa Chioccarelli
- Dipartimento di Medicina Sperimentale, Sez. Bottazzi, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy
| | - Silvia Fasano
- Dipartimento di Medicina Sperimentale, Sez. Bottazzi, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy
| | - Riccardo Pierantoni
- Dipartimento di Medicina Sperimentale, Sez. Bottazzi, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy
- *Riccardo Pierantoni:
| | - Gilda Cobellis
- Dipartimento di Medicina Sperimentale, Sez. Bottazzi, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy
| |
Collapse
|
17
|
Putative molecular mechanism underlying sperm chromatin remodelling is regulated by reproductive hormones. Clin Epigenetics 2012; 4:23. [PMID: 23241214 PMCID: PMC3549752 DOI: 10.1186/1868-7083-4-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 11/22/2012] [Indexed: 11/25/2022] Open
Abstract
Background The putative regulatory role of the male reproductive hormones in the molecular mechanism underlying chromatin condensation remains poorly understood. In the past decade, we developed two adult male rat models wherein functional deficits of testosterone or FSH, produced after treatments with 20 mg/Kg/d of cyproterone acetate (CPA) per os, for a period of 15 days or 3 mg/Kg/d of fluphenazine decanoate (FD) subcutaneously, for a period of 60 days, respectively, affected the rate of sperm chromatin decondensation in vitro. These rat models have been used in the current study in order to delineate the putative roles of testosterone and FSH in the molecular mechanism underlying remodelling of sperm chromatin. Results We report that deficits of both testosterone and FSH affected the turnover of polyubiquitylated histones and led to their accumulation in the testis. Functional deficits of testosterone reduced expression of MIWI, the 5-methyl cap binding RNA-binding protein (PIWIlike murine homologue of the Drosophila protein PIWI/P-element induced wimpy testis) containing a PAZ/Piwi-Argonaut-Zwille domain and levels of histone deacetylase1 (HDAC1), ubiquitin ligating enzyme (URE-B1/E3), 20S proteasome α1 concomitant with reduced expression of ubiquitin activating enzyme (ube1), conjugating enzyme (ube2d2), chromodomain Y like protein (cdyl), bromodomain testis specific protein (brdt), hdac6 (histone deacetylase6), androgen-dependent homeobox placentae embryonic protein (pem/RhoX5), histones h2b and th3 (testis-specific h3). Functional deficits of FSH reduced the expression of cdyl and brdt genes in the testis, affected turnover of ubiquitylated histones, stalled the physiological DNA repair mechanism and culminated in spermiation of DNA damaged sperm. Conclusions We aver that deficits of both testosterone and FSH differentially affected the process of sperm chromatin remodelling through subtle changes in the ‘chromatin condensation transcriptome and proteome’, thereby stalling the replacement of ‘dynamic’ histones with ‘inert’ protamines, and altering the epigenetic state of condensed sperm chromatin. The inappropriately condensed chromatin affected the sperm chromatin cytoarchitecture, evident from subtle ultrastructural changes in the nuclei of immature caput epididymal sperm of CPA- or FD-treated rats, incubated in vitro with dithiothreitol.
Collapse
|
18
|
|
19
|
Chioccarelli T, Cacciola G, Altucci L, Lewis SEM, Simon L, Ricci G, Ledent C, Meccariello R, Fasano S, Pierantoni R, Cobellis G. Cannabinoid receptor 1 influences chromatin remodeling in mouse spermatids by affecting content of transition protein 2 mRNA and histone displacement. Endocrinology 2010; 151:5017-29. [PMID: 20810562 DOI: 10.1210/en.2010-0133] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Marijuana smokers and animals treated with Δ9-tetrahydrocannabinol, the principal component of marijuana, show alterations of sperm morphology suggesting a role for cannabinoids in sperm differentiation and/or maturation. Because the cannabinoid receptor 1 (CNR1) activation appears to play a pivotal role in spermiogenesis, the developmental stage where DNA is remodeled, we hypothesized that CNR1 receptors might also influence chromatin quality in sperm. We used Cnr1 null mutant (Cnr1-/-) mice to study the possible role of endocannabinoids on sperm chromatin during spermiogenesis. We demonstrated that CNR1 activation regulated chromatin remodeling of spermatids by either increasing Tnp2 levels or enhancing histone displacement. Comparative analysis of wild-type, Cnr1+/-, and Cnr1-/- animals suggested the possible occurrence of haploinsufficiency for Tnp2 turnover control by CNR1, whereas histone displacement was disrupted to a lesser extent. Furthermore, flow cytometry analysis demonstrated that the genetic loss of Cnr1 decreased sperm chromatin quality and was associated with sperm DNA fragmentation. This damage increased during epididymal transit, from caput to cauda. Collectively, our results show that the expression/activity of CNR1 controls the physiological alterations of DNA packaging during spermiogenesis and epididymal transit. Given the deleterious effects of sperm DNA damage on male fertility, we suggest that the reproductive function of marijuana users may also be impaired by deregulation of the endogenous endocannabinoid system.
Collapse
Affiliation(s)
- Teresa Chioccarelli
- Dipartimento di Medicina Sperimentale, Sez. Bottazzi, Seconda Università di Napoli, 80138 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 2: changes in spermatid organelles associated with development of spermatozoa. Microsc Res Tech 2010; 73:279-319. [PMID: 19941292 DOI: 10.1002/jemt.20787] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spermiogenesis is a long process whereby haploid spermatids derived from the meiotic divisions of spermatocytes undergo metamorphosis into spermatozoa. It is subdivided into distinct steps with 19 being identified in rats, 16 in mouse and 8 in humans. Spermiogenesis extends over 22.7 days in rats and 21.6 days in humans. In this part, we review several key events that take place during the development of spermatids from a structural and functional point of view. During early spermiogenesis, the Golgi apparatus forms the acrosome, a lysosome-like membrane bound organelle involved in fertilization. The endoplasmic reticulum undergoes several topographical and structural modifications including the formation of the radial body and annulate lamellae. The chromatoid body is fully developed and undergoes structural and functional modifications at this time. It is suspected to be involved in RNA storing and processing. The shape of the spermatid head undergoes extensive structural changes that are species-specific, and the nuclear chromatin becomes compacted to accommodate the stream-lined appearance of the sperm head. Microtubules become organized to form a curtain or manchette that associates with spermatids at specific steps of their development. It is involved in maintenance of the sperm head shape and trafficking of proteins in the spermatid cytoplasm. During spermiogenesis, many genes/proteins have been implicated in the diverse dynamic events occurring at this time of development of germ cells and the absence of some of these have been shown to result in subfertility or infertility.
Collapse
Affiliation(s)
- Louis Hermo
- Faculty of Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 2B2.
| | | | | | | |
Collapse
|
21
|
Kolthur-Seetharam U, Pradeepa MM, Gupta N, Narayanaswamy R, Rao MRS. Spatiotemporal organization of AT- and GC-rich DNA and their association with transition proteins TP1 and TP2 in rat condensing spermatids. J Histochem Cytochem 2009; 57:951-62. [PMID: 19506090 PMCID: PMC2746728 DOI: 10.1369/jhc.2009.953414] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 05/27/2009] [Indexed: 11/22/2022] Open
Abstract
Transition protein 1 (TP1) and TP2 replace histones during midspermiogenesis (stages 12-15) and are finally replaced by protamines. TPs play a predominant role in DNA condensation and chromatin remodeling during mammalian spermiogenesis. TP2 is a zinc metalloprotein with two novel zinc finger modules that condenses DNA in vitro in a GC-preference manner. TP2 also localizes to the nucleolus in transfected HeLa and Cos-7 cells, suggesting a GC-rich preference, even in vivo. We have now studied the localization pattern of TP2 in the rat spermatid nucleus. Colocalization studies using GC-selective DNA-binding dyes chromomycin A3 and 7-amino actinomycin D and an AT-selective dye, 4',6-diamidino-2-phenylindole, indicate that TP2 is preferentially localized to GC-rich sequences. Interestingly, as spermatids mature, TP2 and GC-rich DNA moves toward the nuclear periphery, and in the late stages of spermatid maturation, TP2 is predominantly localized at the nuclear periphery. Another interesting observation is the mutually exclusive localization of GC- and AT-rich DNA in the elongating and elongated spermatids. A combined immunofluorescence experiment with anti-TP2 and anti-TP1 antibodies revealed several foci of overlapping localization, indicating that TP1 and TP2 may have concerted functional roles during chromatin remodeling in mammalian spermiogenesis.
Collapse
|
22
|
Zee YP, López-Fernández C, Arroyo F, Johnston SD, Holt WV, Gosalvez J. Evidence that single-stranded DNA breaks are a normal feature of koala sperm chromatin, while double-stranded DNA breaks are indicative of DNA damage. Reproduction 2009; 138:267-78. [DOI: 10.1530/rep-09-0021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, we have used single and double comet assays to differentiate between single- and double-stranded DNA damage in an effort to refine the interpretation of DNA damage in mature koala spermatozoa. We have also investigated the likelihood that single-stranded DNA breakage is part of the natural spermiogenic process in koalas, where its function would be the generation of structural bends in the DNA molecule so that appropriate packaging and compaction can occur. Koala spermatozoa were examined using the sperm chromatin dispersion test (SCDt) and comet assays to investigate non-orthodox double-stranded DNA. Comet assays were conducted under 1) neutral conditions; and 2) neutral followed by alkaline conditions (double comet assay); the latter technique enabled simultaneous visualisation of both single-stranded and double-stranded DNA breaks. Following the SCDt, there was a continuum of nuclear morphotypes, ranging from no apparent DNA fragmentation to those with highly dispersed and degraded chromatin. Dispersion morphotypes were mirrored by a similar diversity of comet morphologies that could be further differentiated using the double comet assay. The majority of koala spermatozoa had nuclei with DNA abasic-like residues that produced single-tailed comets following the double comet assay. The ubiquity of these residues suggests that constitutive alkali-labile sites are part of the structural configuration of the koala sperm nucleus. Spermatozoa with ‘true’ DNA fragmentation exhibited a continuum of comet morphologies, ranging from a more severe form of alkaline-susceptible DNA with a diffuse single tail to nuclei that exhibited both single- and double-stranded breaks with two comet tails.
Collapse
|
23
|
Leduc F, Nkoma GB, Boissonneault G. Spermiogenesis and DNA Repair: A Possible Etiology of Human Infertility and Genetic Disorders. Syst Biol Reprod Med 2009; 54:3-10. [DOI: 10.1080/19396360701876823] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Laberge RM, Boissonneault G. CHROMATIN REMODELING IN SPERMATIDS: A SENSITIVE STEP FOR THE GENETIC INTEGRITY OF THE MALE GAMETE. ACTA ACUST UNITED AC 2009; 51:125-33. [PMID: 15804867 DOI: 10.1080/014850190518134] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Several causes of male infertility remain idiopathic. Recently, the condensed state of the sperm head has been demonstrated as a discriminating parameter for the assessment of male infertility. Altered DNA condensation is associated with an increase in DNA strand breakage so the genetic integrity of the male gamete is threatened. The origin of the DNA strand breaks in unknown. However, transient DNA strand breaks appear in the whole population of elongating spermatids during mid-spermiogenesis steps. Most likely, these transient breaks are required to support the change in DNA topology associated with chromatin remodeling at these steps. Histones hyperacetylation is also coincident with the DNA strand breakage steps. Hyperacetylation of histones may represent a necessary condition for strand breakages to form allowing access to the yet unknown enzymatic activity involved in the removal of DNA supercoils. A better characterization of this enzyme activity at these steps is necessary as this may represent a very sensitive process where altercations in the genetic integrity of the male gamete may arise and persist up to the mature spermatozoa. During the chromatin remodeling in spermatids, the combined DNA-condensing activities provides by the basic transition proteins and protamines may optimize the strand repair process emphasizing the link between altered sperm DNA condensation and DNA fragmentation. The mutagenic potential of these events may have been overlooked as it may result in fertility and/or developmental problems.
Collapse
Affiliation(s)
- R-M Laberge
- Département de Biochimie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | | |
Collapse
|
25
|
Worawittayawong P, Leigh C, Weerachatyanukul W, Manochantr S, Sobhon P, Breed WG, Sretarugsa P. Changes in distribution of basic nuclear proteins and chromatin organization during spermiogenesis in the greater bandicoot rat, Bandicota indica. Cell Tissue Res 2008; 334:135-44. [DOI: 10.1007/s00441-008-0668-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 06/30/2008] [Indexed: 10/21/2022]
|
26
|
Marchetti F, Wyrobek AJ. DNA repair decline during mouse spermiogenesis results in the accumulation of heritable DNA damage. DNA Repair (Amst) 2008; 7:572-81. [PMID: 18282746 DOI: 10.1016/j.dnarep.2007.12.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 11/01/2007] [Accepted: 12/19/2007] [Indexed: 10/22/2022]
Abstract
The postmeiotic phase of mouse spermatogenesis (spermiogenesis) is very sensitive to the genomic effects of environmental mutagens because as male germ cells form mature sperm they progressively lose the ability to repair DNA damage. We hypothesized that repeated exposures to mutagens during this repair-deficient phase result in the accumulation of heritable genomic damage in mouse sperm that leads to chromosomal aberrations in zygotes after fertilization. We used a combination of single or fractionated exposures to diepoxybutane (DEB), a component of tobacco smoke, to investigate how differential DNA repair efficiencies during the 3 weeks of spermiogenesis affected the accumulation of DEB-induced heritable damage in early spermatids (21-15 days before fertilization (dbf)), late spermatids (14-8dbf) and sperm (7-1dbf). Analysis of chromosomal aberrations in zygotic metaphases using PAINT/DAPI showed that late spermatids and sperm are unable to repair DEB-induced DNA damage as demonstrated by significant increases (P<0.001) in the frequencies of zygotes with chromosomal aberrations. Comparisons between single and fractionated exposures suggested that the DNA repair-deficient window during late spermiogenesis may be less than 2 weeks in the mouse and that during this repair-deficient window there is accumulation of DNA damage in sperm. Finally, the dose-response study in sperm indicated a linear response for both single and repeated exposures. These findings show that the differential DNA repair capacity of postmeiotic male germ cells has a major impact on the risk of paternally transmitted heritable damage and suggest that chronic exposures that may occur in the weeks prior to fertilization because of occupational or lifestyle factors (i.e., smoking) can lead to an accumulation of genetic damage in sperm and result in heritable chromosomal aberrations of paternal origin.
Collapse
Affiliation(s)
- Francesco Marchetti
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | | |
Collapse
|
27
|
Leduc F, Maquennehan V, Nkoma GB, Boissonneault G. DNA Damage Response During Chromatin Remodeling in Elongating Spermatids of Mice1. Biol Reprod 2008; 78:324-32. [DOI: 10.1095/biolreprod.107.064162] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
28
|
The DNA-repair Ku70 protein is located in the nucleus and tail of elongating spermatids in grasshoppers. Chromosome Res 2007; 15:1093-100. [DOI: 10.1007/s10577-007-1183-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 10/18/2007] [Accepted: 10/18/2007] [Indexed: 01/10/2023]
|
29
|
D'Occhio MJ, Hengstberger KJ, Johnston SD. Biology of sperm chromatin structure and relationship to male fertility and embryonic survival. Anim Reprod Sci 2007; 101:1-17. [PMID: 17303352 DOI: 10.1016/j.anireprosci.2007.01.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 01/02/2007] [Accepted: 01/02/2007] [Indexed: 11/19/2022]
Abstract
Embryonic mortality in mammals is typically thought to result from 'female factor' infertility. There is growing evidence, however, that the status of sperm chromatin (DNA) at the time of fertilisation can also influence embryonic survival. During the final stages of spermatogenesis (spermiogenesis) a number of unique biochemical, morphological and physiological processes take place that are associated with marked changes in the structure of sperm chromatin. In early stages of spermatogenesis, sperm DNA is associated with histone nucleoproteins and structured into classical nucleosome core particles similar to other somatic cells. As spermiogenesis proceeds, the histone nucleoproteins are replaced by transition proteins which are subsequently replaced by protamines. At the completion of spermiogenesis the chromatin of mature sperm has a toroidal structure that is tightly compacted and resistant to denaturation. The compaction is necessary to protect sperm chromatin during transit through the epididymis and female reproductive tract. Disruption to chromatin remodelling during spermiogenesis results in chromatin that is susceptible to denaturation. Inappropriate chromatin structure has been shown in a number of mammalian species to be related to male infertility, and specifically the failure of embryonic development. A range of techniques are available to assess chromatin status in sperm but arguably the most informative is the sperm chromatin structure assay (SCSA). The SCSA is a flow cytometric assay that uses the metachromatic properties of acridine orange to measure the susceptibility of sperm chromatin to acid-induced denaturation. A relationship has been demonstrated, primarily in men, between the SCSA outcome and the probability of continued embryonic development and the establishment of pregnancy after fertilisation. The contribution of sperm chromatin instability to reproductive wastage in both natural mating and assisted reproduction warrants further investigation as it may prove valuable as a means of decreasing the incidence of embryonic mortality. In this regard, it is possible that 'male factor' infertility may emerge as an even more important component in embryonic development.
Collapse
Affiliation(s)
- M J D'Occhio
- School of Animal Studies, Faculty of Natural Resources, Agriculture and Veterinary Science, The University of Queensland, Gatton Campus, Gatton, Qld 4343, Australia.
| | | | | |
Collapse
|
30
|
Angelopoulou R, Plastira K, Msaouel P. Spermatozoal sensitive biomarkers to defective protaminosis and fragmented DNA. Reprod Biol Endocrinol 2007; 5:36. [PMID: 17760963 PMCID: PMC2000879 DOI: 10.1186/1477-7827-5-36] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Accepted: 08/30/2007] [Indexed: 11/24/2022] Open
Abstract
Human sperm DNA damage may have adverse effects on reproductive outcome. Infertile men possess substantially more spermatozoa with damaged DNA compared to fertile donors. Although the extent of this abnormality is closely related to sperm function, the underlying etiology of ensuing male infertility is still largely controversial. Both intra-testicular and post-testicular events have been postulated and different mechanisms have been proposed to explain the presence of damaged DNA in human spermatozoa. Three among them, i.e. abnormal chromatin packaging, oxidative stress and apoptosis, are the most studied and discussed in the present review. Furthermore, results from numerous investigations are presented, including our own findings on these pathological conditions, as well as the techniques applied for their evaluation. The crucial points of each methodology on the successful detection of DNA damage and their validity on the appraisal of infertile patients are also discussed. Along with the conventional parameters examined in the standard semen analysis, evaluation of damaged sperm DNA seems to complement the investigation of factors affecting male fertility and may prove an efficient diagnostic tool in the prediction of pregnancy outcome.
Collapse
Affiliation(s)
- Roxani Angelopoulou
- Experimental Embryology Unit, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Greece
| | - Konstantina Plastira
- Experimental Embryology Unit, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Greece
| | - Pavlos Msaouel
- Experimental Embryology Unit, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
31
|
Carrell DT, Emery BR, Hammoud S. Altered protamine expression and diminished spermatogenesis: what is the link? Hum Reprod Update 2007; 13:313-27. [PMID: 17208950 DOI: 10.1093/humupd/dml057] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During the elongating spermatid stage of spermiogenesis, human sperm chromatin undergoes a complex transition in which histones are extensively replaced by protamines in a carefully regulated transition including histone modifications and intermediate and temporary replacement of the histones by sperm-specific transition proteins. The replacement of most histones by protamines 1 and 2 facilitates a high order of chromatin packaging necessary for normal sperm function and may also be necessary for DNA silencing and imprinting changes within the sperm cell. Protamines 1 and 2 are usually expressed in nearly equal quantities, but elevated or diminished protamine 1/protamine 2 ratios are observed in some infertile men and is often associated with severe spermatogenesis defects. Human and animal studies demonstrate that expression of the protamine proteins is uniquely regulated by transcription/translation factors, including storage of the mRNA in ribonucleoprotein (RNP) particles composed of the mRNA, transcription factors and a kinesin molecule necessary for transport of the RNP to the cytoplasm and removal of transcriptional activators from the nucleus. Recent studies indicate that most patients with abnormal protamine protein levels have elevated levels of protamine transcript in the mature sperm cell, indicating a possible defect in transcription or translation. The regulation of protamine expression is unique and includes several possible mechanisms which may be responsible for dysregulation of protamine expression and concurrent broad spectrum defects in spermatogenesis. We suggest two hypotheses: (i) that abnormal protamine expression is indicative of a generalized defect in mRNA storage and/or translation which affects other mRNA transcripts or (ii) that protamines may act as a checkpoint of spermatogenesis.
Collapse
Affiliation(s)
- Douglas T Carrell
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84108, USA.
| | | | | |
Collapse
|
32
|
Aleem M, Padwal V, Choudhari J, Balasinor N, Parte P, Gill-Sharma MK. Estradiol affects androgen-binding protein expression and fertilizing ability of spermatozoa in adult male rats. Mol Cell Endocrinol 2006; 253:1-13. [PMID: 16707209 DOI: 10.1016/j.mce.2006.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 01/16/2006] [Accepted: 01/18/2006] [Indexed: 11/24/2022]
Abstract
The estrogenicity of certain environmental pollutants is being increasingly correlated to decline in sperm counts and fertility of the males. Qualitative effects, if any, of estrogen(s) on terminal differentiation of spermatids have been less reported. The present study suggests that exposure to estrogen(s) can also alter the status of condensed chromatin in testicular spermatozoa and reduce their fertilizing potential. A significant reduction was evident in the serum gonadotropins, testosterone, weights of reproductive organs, sperm counts and litters sired by male rats after 10 days of estradiol exposure to a dose of 0.1mg/kg/day. Estradiol treatment led to retardation of in vitro decondensation rates of sperm chromatin, reduction in the uptake of acridine orange dye by chromatin, reduction in susceptibility of chromatin to acid denaturation in vitro, reduced uptake of thiol reactive monobromobimane dye and reduced levels of immunoreactive protamine 1 in caput epididymal sperms. Concomitantly, testicular levels of immunoreactive protamine 1, transition proteins 1/2 and cyclic adenosyl response element modulator-tau (CREMtau) were significantly reduced whilst their mRNA levels were unaffected after estradiol treatment. A significant increase was observed in the testicular mRNA levels of androgen-binding protein (ABP) in estradiol treated sires. An inverse correlation was observed between ABP mRNA levels and uptake of acridine orange by estradiol treated caput sperm chromatin. The results suggest that estradiol-induced increase in ABP mRNA underlies the mechanism(s) involved in the reduction in levels of certain proteins involved in nuclear chromatin condensation during spermiogenesis.
Collapse
Affiliation(s)
- Mukhtar Aleem
- Department of Urology, Medical University of Ohio, Toledo, OH 43614, USA
| | | | | | | | | | | |
Collapse
|
33
|
Aleem M, Padwal V, Choudhari J, Balasinor N, Parte P, Gill-Sharma M. Cyproterone acetate affects protamine gene expression in the testis of adult male rat. Contraception 2006; 71:379-91. [PMID: 15854640 DOI: 10.1016/j.contraception.2004.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Accepted: 11/05/2004] [Indexed: 11/18/2022]
Abstract
The temporal effects of oral administration of cyproterone acetate (CPA), a progestational androgen receptor blocker, were studied on the fertility of adult male rat sires, at a dose of 20 mg kg-1 day-1 after 15 days of gavage. The treatment reduced the fertility and weights of accessory sex glands, without altering the serum levels of luteinizing hormone, follicle-stimulating hormone (FSH) and testosterone (T). Sperm counts were significantly reduced after treatment. Several changes were evident in caput epididymal sperm chromatin in treated rats. The in vitro decondensation rates of sperm chromatin and total fluorescent acridine orange (AO) dye uptake were enhanced. The fluorescent AO dye uptake by the double- and single-stranded sperm chromatin increased. The uptake of thiol-specific monobromobimane fluorescent dye by sperm chromatin was significantly reduced. Sperm of treated rats exhibited hypoprotamination. Protamine levels in the testis were significantly reduced after treatment. Androgen-binding protein (ABP) expression was significantly reduced in testis after treatment. A slight but significant increase was observed in cyclic AMP immunoexpression in testis after treatment. The expression and levels of transition proteins 1 (TP1) and 2 (TP2) as well as cyclic AMP response element modulator protein-tau were maintained at control levels in the testis of treated rats. The present study reports that androgen receptor occupation by CPA preferentially reduces the levels of spermatidal protamine in testis and spermatozoa involved in nuclear chromatin condensation. It is inferred that ABP could be mediating the effects of T in modulating the sequential expression of TPs and protamines during nuclear chromatin condensation. It is likely that indirect effects of T involve its aromatization in spermatids.
Collapse
Affiliation(s)
- Mukhtar Aleem
- Department of Neuroendocrinology, National Institute for Research in Reproductive Health (ICMR), Mumbai 400 012, India
| | | | | | | | | | | |
Collapse
|
34
|
Ehmcke J, Simorangkir DR, Schlatt S. Identification of the starting point for spermatogenesis and characterization of the testicular stem cell in adult male rhesus monkeys. Hum Reprod 2005; 20:1185-93. [PMID: 15705623 DOI: 10.1093/humrep/deh766] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Spermatogonial expansion in man and non-human primates has been studied for decades. Controversy persists about the cell type representing the testicular stem cell and the exact kinetics of spermatogonial proliferation. We recently determined the starting point of spermatogenesis and proposed a model for clonal expansion of spermatogonia in adult macaques. Here we want to confirm the initiation event, study and compare the details of the kinetics of spermatogonial expansion in vivo and in vitro, and characterize a population of A spermatogonia acting as testicular stem cells. METHODS AND RESULTS We localized BrdU-positive spermatogonia in whole mounts and sections of adult rhesus monkey testes. Culture of testicular tissue was used to determine the expansion and differentiation of premeiotic germ cells. We confirm that A(pale) spermatogonia divide equally at stage VII and produce two types of progeny after mitosis at stage IX of the seminiferous cycle following defined clonal patterns. Small numbers of proliferating single A spermatogonia exist which present a population of label-retaining cells. CONCLUSIONS In the rhesus monkey the population of A(pale) spermatogonia cycle continuously and initiate spermatogenesis by a self-renewing division at stage VII of the seminiferous epithelial cycle. Rarely dividing single A spermatogonia exist which potentially are the male germline stem cells in the primate testis.
Collapse
Affiliation(s)
- Jens Ehmcke
- University of Pittsburgh School of Medicine, Center for Research in Reproductive Physiology, Department of Cell Biology and Physiology, PA 15261, USA
| | | | | |
Collapse
|
35
|
Sergerie M, Bleau G, Teulé R, Daudin M, Bujan L. Intégrité de l'ADN des spermatozoïdes comme élément diagnostique et pronostique de la fertilité masculine. ACTA ACUST UNITED AC 2005; 33:89-101. [PMID: 15848079 DOI: 10.1016/j.gyobfe.2005.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Accepted: 11/08/2004] [Indexed: 12/24/2022]
Abstract
Recent progress in reproductive biology has improved comprehension physiology of the spermatozoa and on the fertilization mechanisms. This new knowledge has carried out the elaboration of tests on male fertility based on sperm genomic integrity. This review presents some of these techniques and brings a reflexion element on the application and use of sperm DNA integrity in the investigation of male fertility. The single cell gel electrophoresis (COMET assay), Sperm Chromatin Structure Assay (SCSA), In Situ Nick Translation (NT: Nick Translation) and Terminal Uridine Nick-End Labelling (TUNEL assay) are actually the most currently used techniques for the measure of sperm DNA integrity in research clinic. From a certain point of view, TUNEL assay, SCSA, COMET assay and NT assay are complementary. The TUNEL and COMET can measure single and double strand breaks of DNA, the SCSA can detect the abnormalities in the chromatin compaction and the NT assay can detect the single strand breaks of DNA. The exact origin of sperm DNA fragmentation is not established yet. However, several mechanisms have been proposed: defect in the chromatin compaction during spermiogenesis; reactive oxygen species production by immature spermatozoa; apoptosis during spermatogenesis. It becomes important to consider the possible consequences of the oocyte fertilization by a spermatozoon having a high degree of DNA fragmentation. The use in routine of some of these tests must however pass by a standardization of the inter laboratory protocols and obviously, by the establishment of both in vivo and in vitro discriminating threshold values in order for these tests to present a good predictive value for pregnancy outcome.
Collapse
Affiliation(s)
- M Sergerie
- CECOS Midi-Pyrénées, centre de stérilité masculine et équipe d'accueil Fertilité Humaine (EA 3694), hôpital Paule-de-Viguier, 330, avenue de Grande-Bretagne, TSA 70034, 31059 Toulouse cedex 09, France
| | | | | | | | | |
Collapse
|
36
|
Rousseaux S, Caron C, Govin J, Lestrat C, Faure AK, Khochbin S. Establishment of male-specific epigenetic information. Gene 2005; 345:139-53. [PMID: 15716030 DOI: 10.1016/j.gene.2004.12.004] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 11/11/2004] [Accepted: 12/06/2004] [Indexed: 11/25/2022]
Abstract
The setting of male-specific epigenetic information is a complex process, which involves a major global re-organisation, as well as localized changes of the nucleus structure during the pre-meiotic, meiotic and post-meiotic stages of the male germ cell differentiation. Although it has long been known that DNA methylation in targeted regions of the genome is associated with male-specific genomic imprinting, or that most core histones are hyperacetylated and then replaced by sperm-specific proteins during the post-meiotic condensation of the nucleus, many questions remain unanswered. How these changes interact, how they affect the epigenetic information and how the paternal epigenetic marks contribute to the future genome are indeed major issues remaining to be explored.
Collapse
Affiliation(s)
- Sophie Rousseaux
- Unite INSERM U309, Institut Albert Bonniot, Domaine de la Merci, 38706 La Tronche Cedex, France.
| | | | | | | | | | | |
Collapse
|
37
|
Aleem M, Choudhari J, Padwal V, Balasinor N, Parte P, Gill-Sharma MK. Hyperprolactinemia affects spermiogenesis in adult male rats. J Endocrinol Invest 2005; 28:39-48. [PMID: 15816370 DOI: 10.1007/bf03345528] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The mechanisms underlying the antifertility effects of hyperprolactinemia have yet to be established in an appropriate experimental model. Hyperprolactinemia is a known side effect of fluphenazine, a broad spectrum, long-acting phenothiazine known to be dopamine type-D2 receptor antagonist. In our earlier study in adult male rats, we reported that fluphenazine at a dose of 3 mg/kg/day suppressed serum FSH but not testosterone (T) through increasing dopamine (DA) metabolism in the pituitary gland, within 60 days. Fluphenazine treatment affected sperm quality and male rats treated with fluphenazine sired fewer litters. The effects of fluphenazine-induced hyperprolactinemia on sperm quality appeared to be related to reduced FSH. We now report that FSH suppression enhanced the uptake of acridine orange (AO), a DNA intercalating, fluorescent dye by the fluphenazine-treated caput epididymal sperms with concomitant reduction in the uptake of thiol-specific monobromobimane (mBBr) fluorescent dye in vitro, suggesting greater accessibility of DNA intercalating dye to sperm chromatin and reduction in free sperm protein thiols. The concomitant increase in AO and decrease in mBBr fluorescence was suggestive of loose chromatin packaging in caput epididymal sperms after treatment with fluphenazine at 3 mg/kg/day for 60 days. The suppression in levels of protamine (P1) in caput epididymal sperms suggested that chromatin hypocompaction was due to reduced deposition of protamines in sperm chromatin. Reduction in testicular levels of cyclic adenosyl 3', 5' monophosphate response element modulator (CREMtau) and P1 further suggested that reduced deposition was indeed due to reduced synthesis. The concomitant reduction in testicular levels of transition protein 1 (TP1) and transition protein 2 (TP2) also suggested that hypoprotamination was due to reduced synthesis of these proteins crucial for facilitating P1 deposition. The effect appeared to have occurred at the level of translation of CREMtau, since its transcript levels were unaffected whereas those of TP1, TP2 and P1 and protamine were upregulated. The study led to the view that the effects of FSH suppression were manifest on the posttranscriptional modifications of CREMtau, as also on transcript repression of TP1, TP2, P1, which do the RNA- binding proteins bring about. Reduction in FSH did not decrease ABP expression in the testis, which has recently been implicated in the expression of transition protein 1 in vitro. However, a significant reduction was evident after fluphenazine treatment, in the immunoexpression of testicular cAMP, the mediator of FSH effects in the Sertoli cells and putative mediator of ABP effects in the spermatids. The study suggests that fluphenazine-induced hyperprolactinemia suppressed FSH and affected a putative cAMP-dependent mechanism underlying posttranscriptional modification of spermatidal genes involved in chromatin condensation, presumably by reducing the availability/secretion of ABP, a paracrine regulator of spermiogenesis in vitro.
Collapse
Affiliation(s)
- M Aleem
- Department of Urology, Medical College of Ohio, Toledo, Ohio, USA
| | | | | | | | | | | |
Collapse
|
38
|
Caron C, Govin J, Rousseaux S, Khochbin S. How to pack the genome for a safe trip. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 38:65-89. [PMID: 15881891 DOI: 10.1007/3-540-27310-7_3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The transformation of the somatic chromatin into a unique and highly compact structure occurring during the post-meiotic phase of spermatogenesis is one of the most dramatic known processes of chromatin remodeling. Paradoxically, no information is available on the mechanisms controlling this specific reorganization of the haploid cell genome. The only existing hints suggest a role for histone variants, as well as for stage-specific post-translational histone modifications,before and during the incorporation of testis-specific basic nuclear proteins. Moreover, the exact functions of the latter remain obscure. This chapter summarizes the major chromatin-associated events taking place during the post-meiotic differentiation of male haploid cells in mammals and discusses some of the basic issues that remain to be solved to finally understand chromatin remodeling during spermatogenesis.
Collapse
Affiliation(s)
- Cécile Caron
- Laboratoire de Biologie Moléculaire et Cellulaire de la Différenciation - INSERM U309, Equipe "Chromatine et Expression des Gènes", Institut Albert Bonniot, Faculté de Médecine, Domaine de la Merci, 38706 La Tronche Cedex, France
| | | | | | | |
Collapse
|
39
|
Van Kooij RJ, de Boer P, De Vreeden-Elbertse JMT, Ganga NA, Singh N, Te Velde ER. The neutral comet assay detects double strand DNA damage in selected and unselected human spermatozoa of normospermic donors. ACTA ACUST UNITED AC 2004; 27:140-6. [PMID: 15139968 DOI: 10.1111/j.1365-2605.2004.00463.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The occurrence of DNA breaks in human sperm is of concern to genetic safety in artificial reproduction techniques. Here, we have explored the neutral comet assay (NCA) for evaluating the frequency of spermatozoa with double strand (ds) DNA breaks in normospermic donors. The NCA results into DNA tail formation by fibre extension and by the separation of DNA fragments. Gamma-irradiated native, lysed and lysed plus RNA and protein degraded human sperm nuclei have been used to assess sensitivity and specificity of fragment formation as an indication for ds DNA breaks. At 5 and 10 Gy gamma irradiation, the sensitivity increases in the order: native, lysed, lysed plus RNA and protein degraded. At 10 Gy, a uniform response between donors was obtained. For technical and biological reasons, the NCA underestimates the true incidence of ds DNA breaks by an unknown factor. Semen samples of six healthy normospermic donors were differentiated by swim up and by Percoll density centrifugation, followed by the NCA. In native semen, percentages of sperm nuclei with ds DNA breaks ranged from 15 to 25%. Swim up and selection for high-density sperm nuclei (high Percoll fraction) reduced the frequency of sperm with ds DNA breaks by about one third, whereas an increased frequency was found in the low Percoll fraction. In conclusion, the response to gamma irradiation of DNA fragment formation indicates the NCA to demonstrate ds DNA breaks which is in keeping with theory and experimental results from somatic cells. Ds DNA breaks are a characteristic of the sperm population of normal donors. Current sperm selection procedures reduce the fractions of sperm with ds DNA breaks, yet are not effective in eliminating these cells.
Collapse
Affiliation(s)
- R J Van Kooij
- Division of Perinatology and Gynaecology, University Medical Center, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
40
|
Zhao M, Shirley CR, Hayashi S, Marcon L, Mohapatra B, Suganuma R, Behringer RR, Boissonneault G, Yanagimachi R, Meistrich ML. Transition nuclear proteins are required for normal chromatin condensation and functional sperm development. Genesis 2004; 38:200-13. [PMID: 15083521 DOI: 10.1002/gene.20019] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The histone-to-protamine transition is important in the formation of spermatozoa. In mammals this involves two steps: replacement of histones by transition nuclear proteins (TPs) and replacement of TPs by protamines. To determine the functions of the TPs and their importance for sperm development, we generated mice lacking both TPs, since mice lacking only TP1 or TP2 were fertile. Our results indicated that TP1 and TP2 had partially complemented each other. In mice lacking both TPs, nuclear shaping, transcriptional repression, histone displacement, and protamine deposition proceeded relatively normally, but chromatin condensation was irregular in all spermatids, many late spermatids showed DNA breaks, and protamine 2 was not posttranslationally processed. Nevertheless, genomic integrity was maintained in mature spermatids, since efficient fertilization and production of offspring were achieved by intracytoplasmic sperm injection. However, many mature spermatids were retained in the testis, epididymal spermatozoa were drastically reduced in number and were highly abnormal, and the mice were sterile. Most epididymal spermatozoa were incapable of fertilization even using intracytoplasmic sperm injection. Thus, in mammals TPs are required for normal chromatin condensation, for reducing the number of DNA breaks, and for preventing the formation of secondary defects in spermatozoa, eventual loss of genomic integrity, and sterility.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Experimental Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Marcon L, Boissonneault G. Transient DNA Strand Breaks During Mouse and Human Spermiogenesis:New Insights in Stage Specificity and Link to Chromatin Remodeling1. Biol Reprod 2004; 70:910-8. [PMID: 14645105 DOI: 10.1095/biolreprod.103.022541] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In the course of mammalian spermiogenesis, a unique chromatin remodeling process takes place within elongating and condensing spermatid nuclei. The histone-to-protamine exchange results in efficient packaging and increased stability of the paternal genome. Although not fully understood, this change in chromatin architecture must require a global but transient appearance of endogenous DNA strand breaks because most of the DNA supercoiling is eliminated in the mature sperm. To establish the extent of DNA strand breakage and the stage specificity at which these breaks are created and repaired, we performed a sensitive terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) assay to detect in situ DNA strand breaks on both mice and human testis cross sections. In the mouse, we established that DNA strand breaks are indeed detected in the whole population of elongating spermatids between stages IX and XI of the seminiferous epithelium cycle perfectly coincident with the chromatin remodeling as revealed by histone H4 hyperacetylation. Similarly, TUNEL analyses performed on human testis sections revealed an elevated and global increase in the levels of DNA strand breaks present in nuclei of round-shaped spermatids also coincident with chromatin remodeling. The demonstration of the global character of the transient DNA strand breaks in mammalian spermiogenesis suggests that deleterious consequences on genetic integrity of the male gamete may arise from any disturbance in the process. In addition, this investigation may shed some light on the origin of the low success rate that has been encountered so far with intracytoplasmic injection procedures making use of round spermatids in humans.
Collapse
Affiliation(s)
- Ludovic Marcon
- Department of Biochemistry, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | | |
Collapse
|
42
|
Dadoune JP, Siffroi JP, Alfonsi MF. Transcription in haploid male germ cells. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 237:1-56. [PMID: 15380665 DOI: 10.1016/s0074-7696(04)37001-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Major modifications in chromatin organization occur in spermatid nuclei, resulting in a high degree of DNA packaging within the spermatozoon head. However, before arrest of transcription during midspermiogenesis, high levels of mRNA are found in round spermatids. Some transcripts are the product of genes expressed ubiquitously, whereas some are generated from male germ cell-specific gene homologs of somatic cell genes. Others are transcript variants derived from genes with expression regulated in a testis-specific fashion. The haploid genome of spermatids also initiates the transcription of testis-specific genes. Various general transcription factors, distinct promoter elements, and specific transcription factors are involved in transcriptional regulation. After meiosis, spermatids are genetically but not phenotypically different, because of transcript and protein sharing through cytoplasmic bridges connecting spermatids of the same generation. Interestingly, different types of mRNAs accumulate in the sperm cell nucleus, raising the question of their origin and of a possible role after fertilization.
Collapse
Affiliation(s)
- Jean-Pierre Dadoune
- Laboratoire de Cytologie et Histologie, Centre Universitaire des Saints-Pères, 75270 Paris, France
| | | | | |
Collapse
|
43
|
Cobellis G, Meccariello R, Pierantoni R, Fasano S. Intratesticular signals for progression of germ cell stages in vertebrates. Gen Comp Endocrinol 2003; 134:220-8. [PMID: 14636628 DOI: 10.1016/s0016-6480(03)00281-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The mechanisms underlying the complexity of spermatogenesis and spermiogenesis have deeply been studied in recent years. Transgenic animals, gene-targeting techniques, and lower vertebrate animal models have led to the discovery of some of the intratesticular signals involved in germ cell progression. This review wish to give the state of the art about it with particular emphasis on the comparative approach.
Collapse
Affiliation(s)
- Gilda Cobellis
- Dipartimento di Medicina Sperimentale, II Università di Napoli, Via Costantinopoli, 16-80138 Naples, Italy
| | | | | | | |
Collapse
|
44
|
Meistrich ML, Mohapatra B, Shirley CR, Zhao M. Roles of transition nuclear proteins in spermiogenesis. Chromosoma 2003; 111:483-8. [PMID: 12743712 DOI: 10.1007/s00412-002-0227-z] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2002] [Revised: 11/26/2002] [Accepted: 11/26/2002] [Indexed: 10/22/2022]
Abstract
The transition nuclear proteins (TPs) constitute 90% of the chromatin basic proteins during the steps of spermiogenesis between histone removal and the deposition of the protamines. We first summarize the properties of the two major transition nuclear proteins, TP1 and TP2, and present concepts, based on their time of appearance in vivo and in vitro properties, regarding their roles. Distinct roles for the two TPs in histone displacement, sperm nuclear shaping, chromatin condensation, and maintenance of DNA integrity have been proposed. More definitive information on their roles in spermiogenesis has recently been obtained using mice with null mutations in the Tnp1 or Tnp2 genes for TP1 and TP2, respectively. In these mice, histone displacement and sperm nuclear shaping appear to progress quite normally. Spermatid nuclear condensation occurs, albeit in an abnormal fashion, and the mature sperm of the Tnp -null mutants are not as condensed as wild-type sperm. There is also evidence that sperm from these mutant mice contain an elevated level of DNA strand breaks. The mutant sperm showed several unexpected phenotypes, including a high incidence of configurational defects, such as heads bent back on midpieces, midpieces in hairpin configurations, coils, and clumps, other midpiece defects, reduced levels of proteolytic processing of protamine 2 during maturation, and reduced motility. The two TPs appear partly to compensate for each other as both Tnp1 - and Tnp2 -null mice were able to produce offspring, and appear to have largely overlapping functions as the two mutants had similar phenotypes.
Collapse
Affiliation(s)
- Marvin L Meistrich
- Department of Experimental Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
45
|
Abstract
Two transition proteins, TP1 and TP2, participate in the repackaging of the spermatid genome early in mammalian spermiogenesis, coincident with the first detectable changes in chromatin condensation. Using an optical trap and a two-channel flow cell to move single DNA molecules into buffer containing protein, we have measured the rates of DNA condensation and decondensation induced by the binding of Syrian hamster transition proteins TP1 and TP2 and protamines P1 and P2. The results show that both transition proteins condense free DNA, with rates similar to those of protamine 1 and 2. DNA molecules condensed with TP1 were significantly less stable than DNA condensed by protamine or by TP2. Experiments conducted with a peptide corresponding to the C-terminal 25 residues of TP2 showed that this domain is responsible for condensing DNA. Experiments conducted with two fragments of TP1 containing arginine and lysine residues demonstrated that DNA binding by TP1 must involve more than these basic sequences. Zinc facilitated the condensation of DNA by P2 but not by TP2. The dissociation rates of TP2 and P2 from DNA were not affected by the addition of zinc.
Collapse
Affiliation(s)
- Laurence Brewer
- Electronics Engineering Technologies Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
| | | | | |
Collapse
|
46
|
Abstract
Cancer treatments are well known to adversely affect male fertility. Reduction of sperm output arises from the cytotoxic effects of chemo- or radiotherapy upon the spermatogenic epithelium. However, if the epithelium survives there is a hazard to reproduction as the treatments are also mutagenic. The presence of DNA damage in the male genome is shown in animal experiments where there is transgenerational expression as a variety of effects ranging from miscarriage to carcinogenesis. The application of DNA damage methodology to sperm provides the opportunity for direct assessment. The Comet and Chromatin structure assays (SCSA) measure DNA damage by different principles, however, conclusions arising from the data are similar. DNA damage is present in sperm from fertile and infertile men and there is some association with infertility. Both assays detect sperm DNA damage after in vivo treatment with genotoxic agents. In a man treated with chemotherapy for cancer there was increased and persistent DNA damage in sperm. This information is consistent with the generation of human genetic diseases after conception with sperm carrying high loads of DNA damage. Whilst studies have not supported any association between paternal cytotoxic cancer therapy and genetic disease in their children, it would be unwise to discount these observations. The institution of better surveillance of genetic disease in the offspring of men surviving cytotoxic therapies may provide more robust risk assessment.
Collapse
Affiliation(s)
- Ian D Morris
- School of Biological Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
47
|
Aguilar-Mahecha A, Hales BF, Robaire B. Chronic cyclophosphamide treatment alters the expression of stress response genes in rat male germ cells. Biol Reprod 2002; 66:1024-32. [PMID: 11906922 DOI: 10.1095/biolreprod66.4.1024] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Increases in the survival rate of men treated with chemotherapeutic drugs and their desire to have children precipitate concerns about the effects of these drugs on germ cells. Azoospermia, oligospermia, and infertility are common outcomes resulting from treatment with cyclophosphamide, an alkylating agent. Exposure of male rats to cyclophosphamide results in dose-dependent and time-specific adverse effects on progeny outcome. Elucidation of the effects of chronic low-dose cyclophosphamide treatment on the expression of stress response genes in male germ cells may provide insight into the mechanisms underlying such adverse effects. Male rats were gavaged with saline or cyclophosphamide (6 mg/kg) for 4-5 wk; pachytene spermatocytes, round spermatids, and elongating spermatids were isolated; RNA was extracted and probed on cDNA arrays containing 216 cDNAs. After saline treatment, 125 stress response genes were expressed in pachytene spermatocytes (57% of genes studied), 122 in round spermatids (56%), and 83 in elongating spermatids (38%). Cyclophosphamide treatment reduced the number of genes detected in all germ cell types. The predominant effect of chronic cyclophosphamide exposure was to decrease the expression level of genes in pachytene spermatocytes (34% of genes studied), round spermatids (29%), and elongating spermatids (4%). In elongating spermatids only, drug treatment increased the expression of 8% of the genes studied. The expression profiles of genes involved in DNA repair, posttranslational modification, and antioxidant defense in male germ cells were altered by chronic cyclophosphamide treatment. We hypothesize that the effects of cyclophosphamide exposure on germ cell gene expression during spermatogenesis may have adverse consequences on male fertility and progeny outcome.
Collapse
Affiliation(s)
- Adriana Aguilar-Mahecha
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec, Canada H3G 1Y6
| | | | | |
Collapse
|
48
|
Boissonneault G. Chromatin remodeling during spermiogenesis: a possible role for the transition proteins in DNA strand break repair. FEBS Lett 2002; 514:111-4. [PMID: 11943135 DOI: 10.1016/s0014-5793(02)02380-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
An important chromatin remodeling process is taking place during spermiogenesis in mammals and DNA strand breaks must be produced to allow the accompanying change in DNA topology. Endogenous DNA strand breaks are indeed detected at mid-spermiogenesis steps but are no longer present in mature sperm. Both in vitro and in vivo evidence suggests that the DNA-binding and condensing activities of a set of basic nuclear "transition proteins" may be crucial to the integrity of the chromatin remodeling process. We propose that these proteins are necessary for the repair of the strand breaks so that DNA fragmentation is minimized in the mature sperm.
Collapse
Affiliation(s)
- Guylain Boissonneault
- Département de Biochimie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4.
| |
Collapse
|
49
|
Evenson DP, Larson KL, Jost LK. Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with other techniques. JOURNAL OF ANDROLOGY 2002; 23:25-43. [PMID: 11780920 DOI: 10.1002/j.1939-4640.2002.tb02599.x] [Citation(s) in RCA: 659] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Donald P Evenson
- Olson Biochemistry Laboratories, South Dakota State University, Brookings 57006, USA.
| | | | | |
Collapse
|
50
|
Zhao M, Shirley CR, Yu YE, Mohapatra B, Zhang Y, Unni E, Deng JM, Arango NA, Terry NH, Weil MM, Russell LD, Behringer RR, Meistrich ML. Targeted disruption of the transition protein 2 gene affects sperm chromatin structure and reduces fertility in mice. Mol Cell Biol 2001; 21:7243-55. [PMID: 11585907 PMCID: PMC99899 DOI: 10.1128/mcb.21.21.7243-7255.2001] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During mammalian spermiogenesis, major restructuring of chromatin takes place. In the mouse, the histones are replaced by the transition proteins, TP1 and TP2, which are in turn replaced by the protamines, P1 and P2. To investigate the role of TP2, we generated mice with a targeted deletion of its gene, Tnp2. Spermatogenesis in Tnp2 null mice was almost normal, with testis weights and epididymal sperm counts being unaffected. The only abnormality in testicular histology was a slight increase of sperm retention in stage IX to XI tubules. Epididymal sperm from Tnp2-null mice showed an increase in abnormal tail, but not head, morphology. The mice were fertile but produced small litters. In step 12 to 16 spermatid nuclei from Tnp2-null mice, there was normal displacement of histones, a compensatory translationally regulated increase in TP1 levels, and elevated levels of precursor and partially processed forms of P2. Electron microscopy revealed abnormal focal condensations of chromatin in step 11 to 13 spermatids and progressive chromatin condensation in later spermatids, but condensation was still incomplete in epididymal sperm. Compared to that of the wild type, the sperm chromatin of these mutants was more accessible to intercalating dyes and more susceptible to acid denaturation, which is believed to indicate DNA strand breaks. We conclude that TP2 is not a critical factor for shaping of the sperm nucleus, histone displacement, initiation of chromatin condensation, binding of protamines to DNA, or fertility but that it is necessary for maintaining the normal processing of P2 and, consequently, the completion of chromatin condensation.
Collapse
Affiliation(s)
- M Zhao
- Department of Experimental Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|