1
|
Pietropaolo A, Magrì A, Greco V, Losasso V, La Mendola D, Sciuto S, Carloni P, Rizzarelli E. Binding of Zn(II) to Tropomyosin Receptor Kinase A in Complex with Its Cognate Nerve Growth Factor: Insights from Molecular Simulation and in Vitro Essays. ACS Chem Neurosci 2018; 9:1095-1103. [PMID: 29281262 DOI: 10.1021/acschemneuro.7b00470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The binding of the human nerve growth factor (NGF) protein to tropomyosin receptor kinase A (TrkA) is associated with Alzhemeir's development. Owing to the large presence of zinc(II) ions in the synaptic compartments, the zinc ions might be bound to the complex in vivo. Here, we have identified a putative zinc binding site using a combination of computations and experiments. First, we have predicted structural features of the NGF/TrkA complex in an aqueous solution by molecular simulation. Metadynamics free energy calculations suggest that these are very similar to those in the X-ray structure. Here, the "crab" structure of the NGF shape binds tightly to two TrkA "pincers". Transient conformations of the complex include both more extended and more closed conformations. Interestingly, the latter features facial histidines (His60 and His61) among the N-terminal D1-D3 domains, each of which is a potential binding region for biometals. This suggests the presence of a four-His Zn binding site connecting the two chains. To address this issue, we investigated the binding of a D1-D3 domains' peptide mimic by stability constant and nuclear magnetic resonance measurements, complemented by density functional theory-based calculations. Taken together, these establish unambiguously a four-His coordination of the metal ion in the model systems, supporting the presence of our postulated binding site in the NGF/TrkA complex.
Collapse
Affiliation(s)
- Adriana Pietropaolo
- Dipartimento di Scienze della Salute, Università di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Antonio Magrì
- IBB-CNR, UOS Catania, via Paolo Gaifami 18, 95126 Catania, Italy
| | - Valentina Greco
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Valeria Losasso
- Institute for Computational Biomedicine (IAS-5/INM-9/INM-9) Forschungszentrum Jülich, 52425 Jülich, Germany
- Department of Physics, RWTH Aachen University, 52056 Aachen, Germany
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Sebastiano Sciuto
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Paolo Carloni
- Institute for Computational Biomedicine (IAS-5/INM-9/INM-9) Forschungszentrum Jülich, 52425 Jülich, Germany
- Department of Physics, RWTH Aachen University, 52056 Aachen, Germany
| | - Enrico Rizzarelli
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
2
|
Ferranco A, Basak S, Lough A, Kraatz HB. Metal coordination of ferrocene–histidine conjugates. Dalton Trans 2017; 46:4844-4859. [PMID: 28349138 DOI: 10.1039/c7dt00456g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Synthesis and complete structural characterization of ferrocene–histidine dipeptides including detailed analysis of the ligand–metal complexation.
Collapse
Affiliation(s)
- Annaleizle Ferranco
- Department of Physical and Environmental Sciences
- University of Toronto
- Toronto
- M1C 1A4 Canada
- Department of Chemistry
| | - Shibaji Basak
- Department of Physical and Environmental Sciences
- University of Toronto
- Toronto
- M1C 1A4 Canada
- Department of Chemistry
| | - Alan Lough
- Department of Chemistry
- University of Toronto
- Toronto
- M5S 3H6 Canada
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences
- University of Toronto
- Toronto
- M1C 1A4 Canada
- Department of Chemistry
| |
Collapse
|
3
|
Zastrow M, Pecoraro VL. Designing hydrolytic zinc metalloenzymes. Biochemistry 2014; 53:957-78. [PMID: 24506795 PMCID: PMC3985962 DOI: 10.1021/bi4016617] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 01/23/2014] [Indexed: 12/15/2022]
Abstract
Zinc is an essential element required for the function of more than 300 enzymes spanning all classes. Despite years of dedicated study, questions regarding the connections between primary and secondary metal ligands and protein structure and function remain unanswered, despite numerous mechanistic, structural, biochemical, and synthetic model studies. Protein design is a powerful strategy for reproducing native metal sites that may be applied to answering some of these questions and subsequently generating novel zinc enzymes. From examination of the earliest design studies introducing simple Zn(II)-binding sites into de novo and natural protein scaffolds to current studies involving the preparation of efficient hydrolytic zinc sites, it is increasingly likely that protein design will achieve reaction rates previously thought possible only for native enzymes. This Current Topic will review the design and redesign of Zn(II)-binding sites in de novo-designed proteins and native protein scaffolds toward the preparation of catalytic hydrolytic sites. After discussing the preparation of Zn(II)-binding sites in various scaffolds, we will describe relevant examples for reengineering existing zinc sites to generate new or altered catalytic activities. Then, we will describe our work on the preparation of a de novo-designed hydrolytic zinc site in detail and present comparisons to related designed zinc sites. Collectively, these studies demonstrate the significant progress being made toward building zinc metalloenzymes from the bottom up.
Collapse
Affiliation(s)
| | - Vincent L. Pecoraro
- Department of Chemistry, University
of Michigan, Ann Arbor, Michigan 48109, United
States
| |
Collapse
|
4
|
Santhiya D, Burghard Z, Greiner C, Jeurgens LPH, Subkowski T, Bill J. Bioinspired deposition of TiO2 thin films induced by hydrophobins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:6494-6502. [PMID: 20121159 DOI: 10.1021/la9039557] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The deposition of ceramic thin films from aqueous solutions at low temperature using biopolymers as templates has attracted much attention due to economic and environmental benefits. Titanium dioxide is one of the most attractive functional materials and shows a wide range of applications across vastly different areas because of its unique chemical, optical, and electrical properties. In the present work, we deposited smooth, nanocrystalline titania thin films by an aqueous deposition method on surface active and amphipathic proteins of fungal origin called hydrophobins. Initially, the hydrophobin molecules were self-assembled on a silicon substrate and characterized by angle-resolved X-ray photoelectron spectroscopy (AR-XPS), atomic force microscopy (AFM) and surface potential measurements. Thin films of titanium dioxide were deposited on the surface of hydrophobin self-assembled monolayers from aqueous titanium(IV) bis(ammonium lactate) dihydroxide solution at near-ambient conditions. The microstructure of the as-deposited films was analyzed by AFM, scanning and transmission electron microscopy, which revealed the presence of nanocrystals. The titania films were also characterized using AR-XPS and Fourier transform infrared spectroscopic (FTIR) techniques. Appropriate mechanisms involved in film deposition are suggested. Additionally, nanoindentation tests on as deposited titania films showed their high resistance against mechanical stress.
Collapse
Affiliation(s)
- D Santhiya
- Institute for Materials Science, University of Stuttgart, Germany.
| | | | | | | | | | | |
Collapse
|
5
|
Thermodynamic and structural characterization of the macrochelates formed in the reactions of copper(II) and zinc(II) ions with peptides of histidine. Inorganica Chim Acta 2009. [DOI: 10.1016/j.ica.2008.01.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Jakab NI, Jancsó A, Gajda T, Gyurcsik B, Rockenbauer A. Copper(II), nickel(II) and zinc(II) complexes of N-acetyl-His-Pro-His-His-NH2: Equilibria, solution structure and enzyme mimicking. J Inorg Biochem 2008; 102:1438-48. [DOI: 10.1016/j.jinorgbio.2008.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 12/29/2007] [Accepted: 01/02/2008] [Indexed: 11/28/2022]
|
7
|
Kállay C, Osz K, Dávid A, Valastyán Z, Malandrinos G, Hadjiliadis N, Sóvágó I. Zinc(ii) binding ability of tri-, tetra- and penta-peptides containing two or three histidyl residues. Dalton Trans 2007:4040-7. [PMID: 17828365 DOI: 10.1039/b706303b] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Macroscopic and microscopic protonation processes and zinc(II) complexes of a series of multihistidine peptides (Ac-HGH-OH, Ac-HGH-NHMe, Ac-HHGH-OH, Ac-HHGH-NHMe, Ac-HVGDH-NH(2), Ac-HHVGD-NH(2), Ac-HVHAH-NH(2), Ac-HAHVH-NH(2), Ac-HPHAH-NH(2) and Ac-HAHPH-NH(2)) were studied by potentiometric, NMR and ESI-MS spectroscopic techniques. Protonations of histidyl imidazole-N donor functions were not much affected by the number and location of histidyl residues, but the presence of C-terminal carboxylate groups had a significant impact on the basicities of the neighbouring histidyl sites. The formation of 2N(im) and 3N(im) macrochelates with the stoichiometry of [ZnL] was the major process in the complexation reactions of all peptides followed by the formation of hydroxo or amide bonded species. Thermodynamic stabilities of the zinc(II) complexes were primarily determined by the number of histidyl residues, but the presence of C-terminal carboxylate functions has also a significant contribution to metal binding. The stabilizing effect of the aspartyl beta-carboxylate group was also observed, but its extent is much weaker than that of the C-terminal carboxylate with a neighbouring histidyl residue. Zinc(II) promoted peptide amide deprotonation and co-ordination was observed only in the zinc(II)-Ac-HHVGD-NH(2) system above pH 8.
Collapse
Affiliation(s)
- Csilla Kállay
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4010, Debrecen, Hungary
| | | | | | | | | | | | | |
Collapse
|
8
|
Sui-Seng C, Hadzovic A, Lough AJ, Morris RH. Novel hydrido-ruthenium(ii) complexes with histidine derivatives and their application in the hydrogenation of ketones. Dalton Trans 2007:2536-41. [PMID: 17563789 DOI: 10.1039/b702803b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complexes RuHCl((R)-binap)(L-NH2) with L-NH2 = (S)-histidine-Me-ester (1), histamine (3), (S)-histidinol (4) or 1-Me-(S)-histidine-Me-ester (5), and RuHCl((S)-binap)(L-NH(2)) with L-NH2 = (S)-histidine-Me-ester (2) have been prepared in 60-81% overall yields in a one-pot, three-step procedure from the precursor RuCl2(PPh3)3. Their octahedral structures with hydride trans to chloride were deduced from their NMR spectra and confirmed by the results of a single crystal X-ray diffraction study for complex 3. Under H2 and in the presence of KOtBu, complexes 1-5 in 2-propanol form moderately active catalyst precursors for the asymmetric hydrogenation of acetophenone to 1-phenylethanol. Complex 5 is more active and enantioselective than complexes 1-4, allowing complete conversion to 1-phenylethanol in 46% e.e. (R) in 72 h at 20 degrees C under 1 MPa of H2 with substrate : catalyst : base = 2000 : 1 : 30. Complex 5, when activated, also catalyzes the hydrogenation of trans-4-phenyl-3-buten-2-one to exclusively the allyl alcohol 4-phenyl-3-buten-2-ol under 2.7 MPa of H2 at 50 degrees C in 2-propanol. This selectivity for C=O versus C=C hydrogenation is consistent with a mechanism involving the outer sphere transfer of hydride and proton to the polar bond. Further extensions to complexes with peptides with N-terminal histidine groups appear feasible on the basis of the current work.
Collapse
Affiliation(s)
- Christine Sui-Seng
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | | | | | | |
Collapse
|
9
|
Jószai V, Nagy Z, Osz K, Sanna D, Di Natale G, La Mendola D, Pappalardo G, Rizzarelli E, Sóvágó I. Transition metal complexes of terminally protected peptides containing histidyl residues. J Inorg Biochem 2006; 100:1399-409. [PMID: 16730799 DOI: 10.1016/j.jinorgbio.2006.04.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 04/10/2006] [Accepted: 04/14/2006] [Indexed: 11/26/2022]
Abstract
Histidine-containing peptide fragments of prion protein are efficient ligands to bind various transition metal ions and they have high selectivity in metal binding. The metal ion affinity follows the order: Pd(II)>>Cu(II)>>Ni(II)Zn(II)>Cd(II) approximately Co(II)>Mn(II). The high selectivity of metal binding is connected to the involvement of both imidazole and amide nitrogen atoms in metal binding for Pd(II), Cu(II) and Ni(II), while only the monodentate N(im)-coordination is possible with the other metal ions. The stoichiometry and binding mode of palladium(II) complexes show great variety depending on the metal ion to ligand ratio, pH and especially the presence of coordinating donor atoms in the side chains of peptide fragments. It is also clear from our data that the peptide fragments containing histidine outside the octarepeat (His96, His111 and His187) are more efficient ligands than the monomer peptide fragments of the octarepeat domain.
Collapse
Affiliation(s)
- Viktória Jószai
- Department of Inorganic and Analytical Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Galian RE, Pastor-Pérez L, Miranda MA, Pérez-Prieto J. Intramolecular Electron Transfer between Tyrosine and Tryptophan Photosensitized by a Chiral π,π* Aromatic Ketone. Chemistry 2005; 11:3443-8. [PMID: 15798972 DOI: 10.1002/chem.200401118] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The photochemical reaction of Trp and Tyr and related peptides with Suprofen (SUP) as sensitizer in H2O/CH3CN (28:1 v/v) solutions has been studied by time-resolved spectroscopy. The results show that SUP induces oxidation of both Trp and Tyr, as well as intramolecular-ET reactions in the related peptides. The influence of photosensitizer configuration on the involved processes has been studied by using the enantiomerically pure compounds. A significant chiral recognition is observed in which the concentration of the radicals formed after triplet quenching depends on the configuration of the chiral center; the quenching process is higher when using the (R)-SUP enantiomer.
Collapse
Affiliation(s)
- Raquel E Galian
- Departamento de Química Orgánica/ICMOL, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | | | | | | |
Collapse
|
11
|
Mylonas M, Krężel A, Plakatouras JC, Hadjiliadis N, Bal W. Interactions of transition metal ions with His-containing peptide models of histone H2A. J Mol Liq 2005. [DOI: 10.1016/j.molliq.2004.07.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Lenarcik B, Kierzkowska A. The Influence of Alkyl Chain Length and Steric Effect on Stability Constants and Extractability of Zn(II) Complexes with 1‐Alkyl‐4(5)‐Methylimidazoles. SEP SCI TECHNOL 2005. [DOI: 10.1081/ss-200033148] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Mylonas M, Plakatouras JC, Hadjiliadis N. Interactions of Ni(II) and Cu(II) ions with the hydrolysis products of the C-terminal -ESHH- motif of histone H2A model peptides. Association of the stability of the complexes formed with the cleavage of the -E-S- bond. Dalton Trans 2004:4152-60. [PMID: 15573167 DOI: 10.1039/b414679d] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We studied the interactions of Ni(II) and Cu(II) ions with the synthetic tetrapeptides SHHK- and SAHK-, which were blocked by amidation making them more realistic models of the hydrolysis peptidic products of the hexapeptides models of H2A histone. A combination of potentiometric and spectroscopic techniques (UV/Vis, CD, NMR and EPR) suggested that at pH > 7 both tetrapeptides coordinated equatorially through the imidazole ring of His in position 3, the N-terminal amino group and the two amide nitrogens existing between these groups {NH2, 2N-, NIm} forming 4N square-planar complexes. While in the case of the CuH(-1)L complex with SHHK- a possible axial coordination of the imidazole ring of His in position 2 was suggested, in the case of the analogous NiH(-1)L complex a completely different interaction of the same ring with metal ions was observed. As expected these complexes have the same structures with the hydrolysis products produced from the Ni(II)- or Cu(II)-assisted hydrolysis of previously studied hexapeptide models of the C-terminal of histone H2A, due to their predominance at pH > 7.4. In addition, the competition plots presented herein showed that the synthetic tetrapeptides SHHK- and SAHK- have higher affinity towards Ni(II) and Cu(II) ions than the previously studied hexapeptides, suggesting that metal ions remain bound to the peptidic products during the hydrolysis cleavage. Thus, it can be concluded that the stability of Ni(II) or Cu(II) complexes with the synthetic tetrapeptides and consequently with the real hydrolysis peptidic products is the driving force of the hydrolysis reaction of H2A histone blocked hexapeptide models, presented in previous studies.
Collapse
Affiliation(s)
- Marios Mylonas
- University of Ioannina, Department of Chemistry, Ioannina, 45110, Greece
| | | | | |
Collapse
|
14
|
|
15
|
Gelinsky M, Vogler R, Vahrenkamp H. Tripodal pseudopeptides with three histidine or cysteine donors: synthesis and zinc complexation. Inorg Chem 2002; 41:2560-4. [PMID: 11978127 DOI: 10.1021/ic011263c] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptide coupling of benzene-1,3,5-carboxylic acid with 3 equiv of histidine ethyl ester or cysteine ethyl ester has yielded the tripodal pseudopeptide ligands THB and H(3)TCB. Likewise, the combination of tris(carboxyethyl)nitromethane with 3 equiv of cysteine ethyl ester gave the tripod H(3)TCM. With zinc salts, the pseudopeptides form the insoluble compounds (THB)(2)Zn(5)Cl(10), Zn(3)(TCB)(2), and Zn(3)(TCM)(2) which are likely to be coordination polymers. Solution studies of THB with potentiometric methods have identified the complex species [(THB)(2)Zn](2+), [(THB)Zn-OH(2)](2+), and [(THB)Zn-OH](+). The pK(a) of the zinc-bound water molecule is 6.2, making the (THB)Zn complex a viable model of carbonic anhydrase.
Collapse
Affiliation(s)
- Michael Gelinsky
- Institut für Anorganische und Analytische Chemie der Universität Freiburg, Albertstr. 21, D-79104 Freiburg, Germany
| | | | | |
Collapse
|