1
|
Elghobashy M, Pohl U, Bateman J. Late Presentation of McArdle's Disease Mimicking Polymyalgia Rheumatica: A Case Report and Review of the Literature. Case Rep Rheumatol 2025; 2025:8148736. [PMID: 39803349 PMCID: PMC11724029 DOI: 10.1155/crrh/8148736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
McArdle disease or glycogen storage disease Type V is a genetic condition caused by PYGM gene mutations leading to exercise intolerance and fatigability. The condition most commonly presents in childhood. In rare cases, patients have presented with late-onset McArdle disease. We present a case of a 64-year-old male presenting with myalgia who was initially presented with polymyalgia rheumatica-type symptoms of proximal muscle pain and a response to steroids. At review, his background musculoskeletal symptoms were evaluated in detail. Following a muscle biopsy, skeletal muscle enzymatic assay, and genetic testing, he was diagnosed with late-onset McArdle's disease (homozygous PYGM genotype). The importance of recognition and early diagnosis is highlighted to enable the accurate diagnosis and conservative lifestyle advice, with the avoidance of other medical therapies for other disease mimics.
Collapse
Affiliation(s)
- Maiar Elghobashy
- Department of Rheumatology, Royal Wolverhampton NHS Trust, Wolverhampton, UK
| | - Ute Pohl
- Department of Cellular Pathology, University Hospitals Birmingham NHS Trust, Birmingham, UK
| | - James Bateman
- Department of Rheumatology, Royal Wolverhampton NHS Trust, Wolverhampton, UK
- College of Medical and Dental Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
2
|
Løkken N, Khawajazada T, Slipsager A, Voermans NC, Vissing J. Repeated oral sucrose dosing after the second wind is unnecessary in patients with McArdle disease: Results from a randomized, placebo-controlled, double-blind, cross-over study. J Inherit Metab Dis 2023; 46:1139-1146. [PMID: 37431283 DOI: 10.1002/jimd.12656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
It is well-established that oral sucrose ingested shortly before exercise improves early exercise tolerance in individuals with McArdle disease. This is by supplying blood-borne glucose for muscle metabolism to compensate for the blocked glycogenolysis. The present study investigated if individuals with McArdle disease could benefit further from repeated sucrose ingestion during prolonged exercise. In this double-blind, placebo-controlled, cross-over study, the participants were randomized to ingest either sucrose or placebo first and subsequently the opposite on two separate days. The participants ingested the drink 10 min before and thrice (after 10, 25, and 40 min) during a 60-min submaximal exercise test on a cycle ergometer. The primary outcome was exercise capacity as indicated by heart rate (HR) and perceived exertion (PE) responses to exercise. Secondary outcomes included changes in blood metabolites, insulin and carbohydrate, and fatty acid oxidation rates during exercise. Nine participants with McArdle disease were included in the study. We confirmed improvement of exercise capacity with oral sucrose vs. placebo during early exercise (pre-second wind) indicated by lower peak HR and PE (p < 0.02). We found no further beneficial effect with repeated sucrose versus placebo ingestion during prolonged exercise, as indicated by no difference in HR or PE post-second wind (p > 0.05). Glucose, lactate, insulin, and carbohydrate oxidation rates increased, and fatty acid oxidation decreased with sucrose versus placebo (p ≤ 0.0002). We can conclude that repeated sucrose ingestion is not recommended during prolonged exercise. This finding can prevent excessive caloric intake and reduce the risk of obesity and insulin resistance.
Collapse
Affiliation(s)
- Nicoline Løkken
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Tahmina Khawajazada
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anna Slipsager
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Nicol C Voermans
- The Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, The Netherlands
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Bhai SF, Vissing J. Diagnosis and management of metabolic myopathies. Muscle Nerve 2023; 68:250-256. [PMID: 37226557 DOI: 10.1002/mus.27840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 05/26/2023]
Abstract
Metabolic myopathies are a set of rare inborn errors of metabolism leading to disruption in energy production. Relevant to skeletal muscle, glycogen storage disease and fatty acid oxidation defects can lead to exercise intolerance, rhabdomyolysis, and weakness in children and adults, distinct from the severe forms that involve multiple-organ systems. These nonspecific, dynamic symptoms along with conditions that mimic metabolic myopathies can make diagnosis challenging. Clinicians can shorten the time to diagnosis by recognizing the typical clinical phenotypes and performing next generation sequencing. With improved access and affordability of molecular testing, clinicians need to be well-versed in resolving variants of uncertain significance relevant to metabolic myopathies. Once identified, patients can improve quality of life, safely engage in exercise, and reduce episodes of rhabdomyolysis by modifying diet and lifestyle habits.
Collapse
Affiliation(s)
- Salman F Bhai
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Neuromuscular Center, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian, Dallas, Texas, USA
| | - John Vissing
- Department of Neurology, Rigshospitalet, Copenhagen Neuromuscular Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Adams L, Selvanathan A, Batten KJ, van Doorn N, Thompson S, Mitchell A, Sampaio H, Dalkeith T, Russell J, Ellaway CJ, Farrar M, Broderick C, Bhattacharya K. Diagnosis and management of children with McArdle Syndrome (GSD V) in New South Wales. JIMD Rep 2023; 64:327-336. [PMID: 37701325 PMCID: PMC10494502 DOI: 10.1002/jmd2.12389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 09/14/2023] Open
Abstract
Glycogen storage type V (GSD V-McArdle Syndrome) is a rare neuromuscular disorder characterised by severe pain early after the onset of physical activity. A recent series indicated a diagnostic delay of 29 years; hence reports of children affected by the disorder are uncommon (Lucia et al., 2021, Neuromuscul Disord, 31, 1296-1310). This paper presents eight patients with a median onset age of 5.5 years and diagnosis of 9.5 years. Six patients had episodes of rhabdomyolysis with creatine kinase elevations >50 000 IU/L. Most episodes occurred in relation to eccentric non-predicted activities rather than regular exercise. One of the patients performed a non-ischaemic forearm test. One patient was diagnosed subsequent to a skeletal muscle biopsy, and all had confirmatory molecular genetic diagnosis. Three were homozygous for the common PYGM:c.148C > T (p.Arg50*) variant. All but one patient had truncating variants. All patients were managed with structured exercise testing to help them identify 'second-wind', and plan an exercise regimen. In addition all also had an exercise test with 25 g maltodextrin which had statistically significant effect on ameliorating ratings of perceived exertion. GSD V is under-recognised in paediatric practice. Genetic testing can readily diagnose the condition. Careful identification of second-wind symptomatology during exercise with the assistance of a multi-disciplinary team, allows children to manage activities and tolerate exercise. Maltodextrin can be used for structured exercise, but excessive utilisation may lead to weight gain. Early intervention and education may improve outcomes into adult life.
Collapse
Affiliation(s)
- Louisa Adams
- Genetic Metabolic Disorders ServiceSydney Children's Hospitals' Network (Randwick and Westmead)SydneyAustralia
| | - Arthavan Selvanathan
- Genetic Metabolic Disorders ServiceSydney Children's Hospitals' Network (Randwick and Westmead)SydneyAustralia
| | - Kiera J. Batten
- Genetic Metabolic Disorders ServiceSydney Children's Hospitals' Network (Randwick and Westmead)SydneyAustralia
- School of Health SciencesUniversity of New South WalesSydneyAustralia
| | - Nancy van Doorn
- School of Health SciencesUniversity of New South WalesSydneyAustralia
- Children's Institute of Sports MedicineChildren's Hospital at WestmeadWestmeadAustralia
| | - Susan Thompson
- Genetic Metabolic Disorders ServiceSydney Children's Hospitals' Network (Randwick and Westmead)SydneyAustralia
- Faculty of Medicine and Health, Westmead CampusUniversity of SydneyWestmeadAustralia
| | - Ashleigh Mitchell
- Genetic Metabolic Disorders ServiceSydney Children's Hospitals' Network (Randwick and Westmead)SydneyAustralia
| | - Hugo Sampaio
- Discipline of Paediatrics, School of Women's and Children's HealthUNSW MedicineSydneyAustralia
- Department of NeurologySydney Children's Hospital RandwickRandwickAustralia
| | - Troy Dalkeith
- Genetic Metabolic Disorders ServiceSydney Children's Hospitals' Network (Randwick and Westmead)SydneyAustralia
- Faculty of Medicine and Health, Westmead CampusUniversity of SydneyWestmeadAustralia
| | - Jacqui Russell
- Genetic Metabolic Disorders ServiceSydney Children's Hospitals' Network (Randwick and Westmead)SydneyAustralia
- Department of NeurologySydney Children's Hospital RandwickRandwickAustralia
| | - Carolyn J. Ellaway
- Genetic Metabolic Disorders ServiceSydney Children's Hospitals' Network (Randwick and Westmead)SydneyAustralia
- Faculty of Medicine and Health, Westmead CampusUniversity of SydneyWestmeadAustralia
| | - Michelle Farrar
- Discipline of Paediatrics, School of Women's and Children's HealthUNSW MedicineSydneyAustralia
- Department of NeurologySydney Children's Hospital RandwickRandwickAustralia
| | - Carolyn Broderick
- School of Health SciencesUniversity of New South WalesSydneyAustralia
- Children's Institute of Sports MedicineChildren's Hospital at WestmeadWestmeadAustralia
| | - Kaustuv Bhattacharya
- Genetic Metabolic Disorders ServiceSydney Children's Hospitals' Network (Randwick and Westmead)SydneyAustralia
- Faculty of Medicine and Health, Westmead CampusUniversity of SydneyWestmeadAustralia
- Discipline of Paediatrics, School of Women's and Children's HealthUNSW MedicineSydneyAustralia
| |
Collapse
|
5
|
Ramdharry G, Buscemi V, Boaz A, Dawes H, Jaki T, Jones F, Marsden J, Paul L, Playle R, Randell E, Robling M, Rochester L, Busse M. Proposing a Core Outcome Set for Physical Activity and Exercise Interventions in People With Rare Neurological Conditions. FRONTIERS IN REHABILITATION SCIENCES 2021; 2:705474. [PMID: 36188845 PMCID: PMC9397985 DOI: 10.3389/fresc.2021.705474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/23/2021] [Indexed: 12/21/2022]
Abstract
Rare neurological conditions (RNCs) encompass a variety of diseases that differ in progression and symptoms but typically include muscle weakness, sensory and balance impairment and difficulty with coordinating voluntary movement. This can limit overall physical activity, so interventions to address this are recommended. The aim of this study was to agree a core outcome measurement set for physical activity interventions in people living with RNCs. We followed established guidelines to develop core outcome sets. Broad ranging discussions in a series of stakeholder workshops led to the consensus that (1) physical well-being; (2) psychological well-being and (3) participation in day-to-day activities should be evaluated in interventions. Recommendations were further informed by a scoping review of physical activity interventions for people living with RNCs. Nearly 200 outcome measures were identified from the review with a specific focus on activities or functions (e.g, on lower limb function, ability to perform daily tasks) but limited consideration of participation based outcomes (e.g., social interaction, work and leisure). Follow on searches identified two instruments that matched the priority areas: the Oxford Participation and Activities Questionnaire and the Sources of Self-Efficacy for Physical Activity. We propose these scales as measures to assess outcomes that are particularly relevant to assess when evaluating physical activity interventions mong people with RNCs. Validation work across rare neurological conditions is now required to inform application of this core outcome set in future clinical trials to facilitate syntheses of results and meta-analyses.
Collapse
Affiliation(s)
- Gita Ramdharry
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, United Kingdom
- Institute of Neurology, University College London, London, United Kingdom
| | - Valentina Buscemi
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, United Kingdom
- Institute of Neurology, University College London, London, United Kingdom
| | - Annette Boaz
- Faculty of Health, Social Care and Education, St. George's, University of London, London, United Kingdom
| | - Helen Dawes
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Thomas Jaki
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
- Department of Mathematics and Statistics, University of Lancaster, Lancaster, United Kingdom
| | - Fiona Jones
- Faculty of Health, Social Care and Education, St. George's, University of London, London, United Kingdom
- Faculty of Health, Social Care and Education, Kingston University, Surrey, United Kingdom
| | - Jonathan Marsden
- Faculty of Health, Plymouth University, Plymouth, United Kingdom
| | - Lorna Paul
- Department of Physiotherapy and Paramedicine, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Rebecca Playle
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom
| | - Elizabeth Randell
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom
| | - Michael Robling
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom
| | - Lynn Rochester
- Institute of Neuroscience, Newcastle University, Newcastle, United Kingdom
| | - Monica Busse
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom
- *Correspondence: Monica Busse
| |
Collapse
|
6
|
Jones K, Hawke F, Newman J, Miller JA, Burns J, Jakovljevic DG, Gorman G, Turnbull DM, Ramdharry G. Interventions for promoting physical activity in people with neuromuscular disease. Cochrane Database Syst Rev 2021; 5:CD013544. [PMID: 34027632 PMCID: PMC8142076 DOI: 10.1002/14651858.cd013544.pub2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The World Health Organization (WHO) recommends that people of all ages take regular and adequate physical activity. If unable to meet the recommendations due to health conditions, international guidance advises being as physically active as possible. Evidence from community interventions of physical activity indicate that people living with medical conditions are sometimes excluded from participation in studies. In this review, we considered the effects of activity-promoting interventions on physical activity and well-being in studies, as well as any adverse events experienced by participants living with inherited or acquired neuromuscular diseases (NMDs). OBJECTIVES: To assess the effects of interventions designed to promote physical activity in people with NMD compared with no intervention or alternative interventions. SEARCH METHODS On 30 April 2020, we searched Cochrane Neuromuscular Specialised Register, CENTRAL, Embase, MEDLINE, and ClinicalTrials.Gov. WHO ICTRP was not accessible at the time. SELECTION CRITERIA We considered randomised or quasi-randomised trials, including cross-over trials, of interventions designed to promote physical activity in people with NMD compared to no intervention or alternative interventions. We specifically included studies that reported physical activity as an outcome measure. Our main focus was studies in which promoting physical activity was a stated aim but we also included studies in which physical activity was assessed as a secondary or exploratory outcome. DATA COLLECTION AND ANALYSIS We used standard Cochrane procedures. MAIN RESULTS The review included 13 studies (795 randomised participants from 12 studies; number of participants unclear in one study) of different interventions to promote physical activity. Most studies randomised a minority of invited participants. No study involved children or adolescents and nine studies reported minimal entry criteria for walking. Participants had one of nine inherited or acquired NMDs. Types of intervention included structured physical activity support, exercise support (as a specific form of physical activity), and behaviour change support that included physical activity or exercise. Only one included study clearly reported that the aim of intervention was to increase physical activity. Other studies reported or planned to analyse the effects of intervention on physical activity as a secondary or exploratory outcome measure. Six studies did not report results for physical activity outcomes, or the data were not usable. We judged 10 of the 13 included studies at high or unclear risk of bias from incomplete physical activity outcome reporting. We did not perform a meta-analysis for any comparison because of differences in interventions and in usual care. We also found considerable variation in how studies reported physical activity as an outcome measure. The studies that reported physical activity measurement did not always clearly report intention-to-treat (ITT) analysis or whether final assessments occurred during or after intervention. Based on prespecified measures, we included three comparisons in our summary of findings. A physical activity programme (weight-bearing) compared to no physical activity programme One study involved adults with diabetic peripheral neuropathy (DPN) and reported weekly duration of walking during and at the end of a one-year intervention using a StepWatch ankle accelerometer. Based on the point estimate and low-certainty evidence, intervention may have led to an important increase in physical activity per week; however, the 95% confidence interval (CI) included the possibility of no difference or an effect in either direction at three months (mean difference (MD) 34 minutes per week, 95% CI -92.19 to 160.19; 69 participants), six months (MD 68 minutes per week, 95% CI -55.35 to 191.35; 74 participants), and 12 months (MD 49 minutes per week, 95% CI -75.73 to 173.73; 70 participants). Study-reported effect estimates for foot lesions and full-thickness ulcers also included the possibility of no difference, a higher, or lower risk with intervention. A sensor-based, interactive exercise programme compared to no sensor-based, interactive exercise programme One study involved adults with DPN and reported duration of walking over 48 hours at the end of four weeks' intervention using a t-shirt embedded PAMSys sensor. It was not possible to draw conclusions about the effectiveness of the intervention from the very low-certainty evidence (MD -0.64 hours per 48 hours, 95% CI -2.42 to 1.13; 25 participants). We were also unable to draw conclusions about impact on the Physical Component Score (PCS) for quality of life (MD 0.24 points, 95% CI -5.98 to 6.46; 35 participants; very low-certainty evidence), although intervention may have made little or no difference to the Mental Component Score (MCS) for quality of life (MD 5.10 points, 95% CI -0.58 to 10.78; 35 participants; low-certainty evidence). A functional exercise programme compared to a stretching exercise programme One study involved adults with spinal and bulbar muscular atrophy and reported a daily physical activity count at the end of 12 weeks' intervention using an Actical accelerometer. It was not possible to draw conclusions about the effectiveness of either intervention (requiring compliance) due to low-certainty evidence and unconfirmed measurement units (MD -8701, 95% CI -38,293.30 to 20,891.30; 43 participants). Functional exercise may have made little or no difference to quality of life compared to stretching (PCS: MD -1.10 points, 95% CI -5.22 to 3.02; MCS: MD -1.10 points, 95% CI -6.79 to 4.59; 49 participants; low-certainty evidence). Although studies reported adverse events incompletely, we found no evidence of supported activity increasing the risk of serious adverse events. AUTHORS' CONCLUSIONS We found a lack of evidence relating to children, adolescents, and non-ambulant people of any age. Many people living with NMD did not meet randomised controlled trial eligibility criteria. There was variation in the components of supported activity intervention and usual care, such as physical therapy provision. We identified variation among studies in how physical activity was monitored, analysed, and reported. We remain uncertain of the effectiveness of promotional intervention for physical activity and its impact on quality of life and adverse events. More information is needed on the ITT population, as well as more complete reporting of outcomes. While there may be no single objective measure of physical activity, the study of qualitative and dichotomous change in self-reported overall physical activity might offer a pragmatic approach to capturing important change at an individual and population level.
Collapse
Affiliation(s)
- Katherine Jones
- Cochrane Pain, Palliative and Supportive Care, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Mental Health and Neuroscience Network and Acute and Emergency Care Network, Cochrane, London, UK
| | - Fiona Hawke
- School of Health Sciences, Faculty of Health and Medicine, The University of Newcastle, Ourimbah, Australia
| | - Jane Newman
- Wellcome Centre for Mitochondrial Research, Newcastle University and NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - James Al Miller
- c/o Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Joshua Burns
- University of Sydney School of Health Sciences, Faculty of Medicine and Health, Sydney, Australia
| | - Djordje G Jakovljevic
- Cardiovascular and Lifestyle Medicine Theme, Faculty of Health and Life Sciences, Coventry University, Coventry, UK
| | - Grainne Gorman
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Douglass M Turnbull
- Mitochondrial Research Group, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Gita Ramdharry
- Queen Square Centre for Neuromuscular Diseases, University College Hospital NHS Foundation Trust and UCL Institute of Neurology, London, UK
| |
Collapse
|
7
|
Manta A, Spendiff S, Lochmüller H, Thompson R. Targeted Therapies for Metabolic Myopathies Related to Glycogen Storage and Lipid Metabolism: a Systematic Review and Steps Towards a 'Treatabolome'. J Neuromuscul Dis 2021; 8:401-417. [PMID: 33720849 PMCID: PMC8203237 DOI: 10.3233/jnd-200621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Metabolic myopathies are a heterogenous group of muscle diseases typically characterized by exercise intolerance, myalgia and progressive muscle weakness. Effective treatments for some of these diseases are available, but while our understanding of the pathogenesis of metabolic myopathies related to glycogen storage, lipid metabolism and β-oxidation is well established, evidence linking treatments with the precise causative genetic defect is lacking. OBJECTIVE The objective of this study was to collate all published evidence on pharmacological therapies for the aforementioned metabolic myopathies and link this to the genetic mutation in a format amenable to databasing for further computational use in line with the principles of the "treatabolome" project. METHODS A systematic literature review was conducted to retrieve all levels of evidence examining the therapeutic efficacy of pharmacological treatments on metabolic myopathies related to glycogen storage and lipid metabolism. A key inclusion criterion was the availability of the genetic variant of the treated patients in order to link treatment outcome with the genetic defect. RESULTS Of the 1,085 articles initially identified, 268 full-text articles were assessed for eligibility, of which 87 were carried over into the final data extraction. The most studied metabolic myopathies were Pompe disease (45 articles), multiple acyl-CoA dehydrogenase deficiency related to mutations in the ETFDH gene (15 articles) and systemic primary carnitine deficiency (8 articles). The most studied therapeutic management strategies for these diseases were enzyme replacement therapy, riboflavin, and carnitine supplementation, respectively. CONCLUSIONS This systematic review provides evidence for treatments of metabolic myopathies linked with the genetic defect in a computationally accessible format suitable for databasing in the treatabolome system, which will enable clinicians to acquire evidence on appropriate therapeutic options for their patient at the time of diagnosis.
Collapse
Affiliation(s)
- A. Manta
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - S. Spendiff
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - H. Lochmüller
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center –University of Freiburg, Faculty of Medicine, Freiburg, Germany
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
- Division of Neurology, Department of Medicine, The Ottawa Hospital, University of Ottawa, Ottawa, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - R. Thompson
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| |
Collapse
|
8
|
Rodríguez-Gómez I, Santalla A, Diez-Bermejo J, Munguía-Izquierdo D, Alegre LM, Nogales-Gadea G, Arenas J, Martín MA, Lucia A, Ara I. Sex Differences and the Influence of an Active Lifestyle on Adiposity in Patients with McArdle Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17124334. [PMID: 32560448 PMCID: PMC7344565 DOI: 10.3390/ijerph17124334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 11/30/2022]
Abstract
McArdle disease (glycogenosis-V) is associated with exercise intolerance, however, how it affects an important marker of cardiometabolic health as it is adiposity remains unknown. We evaluated the association between physical activity (PA) and adiposity in patients with McArdle disease. We assessed 199 adults of both sexes (51 McArdle patients (36 ± 11 years) and 148 healthy controls (35 ± 10 years)). Body fat (BF) was determined using dual-energy X-ray absorptiometry (DXA) method and each patient’s PA was assessed with the International PA Questionnaire (IPAQ). Although body mass index values did not differ between patients and controls, McArdle patients had significantly higher values of BF in all body regions (p < 0.05) and higher risk of suffering obesity (odds ratio (OR): 2.54, 95% confidence interval (95% CI): 1.32–4.88). Male patients had higher BF and obesity risk (OR: 3.69, 95% CI: 1.46−9.34) than their sex-matched controls, but no differences were found within the female sex (p < 0.05). In turn, active female patients had lower trunk BF than their inactive peers (p < 0.05). Males with McArdle seem to have adiposity problems and a higher risk of developing obesity than people without the condition, while female patients show similar or even better levels in the trunk region with an active lifestyle. Therefore, special attention should be given to decrease adiposity and reduce obesity risk in males with McArdle disease.
Collapse
Affiliation(s)
- Irene Rodríguez-Gómez
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, 45071 Toledo, Spain; (I.R.-G.); (L.M.A.)
- CIBER of Frailty and Healthy Aging (CIBERFES), 28029 Madrid, Spain; (A.S.); (D.M.-I.); (A.L.)
| | - Alfredo Santalla
- CIBER of Frailty and Healthy Aging (CIBERFES), 28029 Madrid, Spain; (A.S.); (D.M.-I.); (A.L.)
- Department of Sport and Computer Science, Section of Physical Education and Sports, Faculty of Sport, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Jorge Diez-Bermejo
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain; (J.D.-B.); (J.A.); (M.A.M.)
| | - Diego Munguía-Izquierdo
- CIBER of Frailty and Healthy Aging (CIBERFES), 28029 Madrid, Spain; (A.S.); (D.M.-I.); (A.L.)
- Department of Sport and Computer Science, Section of Physical Education and Sports, Faculty of Sport, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Luis M. Alegre
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, 45071 Toledo, Spain; (I.R.-G.); (L.M.A.)
- CIBER of Frailty and Healthy Aging (CIBERFES), 28029 Madrid, Spain; (A.S.); (D.M.-I.); (A.L.)
| | - Gisela Nogales-Gadea
- Department of Neurosciences, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol I Campus Can Ruti, Universitat Autònoma de Barcelona, 08041 Badalona, Spain;
- CIBER of Rare Disorders (CIBERER), 28029 Madrid, Spain
| | - Joaquín Arenas
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain; (J.D.-B.); (J.A.); (M.A.M.)
- CIBER of Rare Disorders (CIBERER), 28029 Madrid, Spain
| | - Miguel A. Martín
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain; (J.D.-B.); (J.A.); (M.A.M.)
- CIBER of Rare Disorders (CIBERER), 28029 Madrid, Spain
| | - Alejandro Lucia
- CIBER of Frailty and Healthy Aging (CIBERFES), 28029 Madrid, Spain; (A.S.); (D.M.-I.); (A.L.)
- School of Research and Doctorate Studies, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Ignacio Ara
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, 45071 Toledo, Spain; (I.R.-G.); (L.M.A.)
- CIBER of Frailty and Healthy Aging (CIBERFES), 28029 Madrid, Spain; (A.S.); (D.M.-I.); (A.L.)
- Correspondence: ; Tel.: +34-925-268-800 (ext. 5543)
| |
Collapse
|
9
|
Stefanetti RJ, Blain A, Jimenez-Moreno C, Errington L, Ng YS, McFarland R, Turnbull DM, Newman J, Gorman GS. Measuring the effects of exercise in neuromuscular disorders: a systematic review and meta-analyses. Wellcome Open Res 2020; 5:84. [PMID: 32671231 PMCID: PMC7331112 DOI: 10.12688/wellcomeopenres.15825.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2020] [Indexed: 12/11/2022] Open
Abstract
Background: The benefit and safety of exercise training for patients with neuromuscular disorders (NMDs) has long been a contentious topic. This is, in part, due to recognised challenges associated with rare diseases including small and heterogenous patient populations. We performed a systematic review and meta-analyses to evaluate the effectiveness and safety of interventional exercise and establish minimal clinically important differences (MCID) in outcomes to facilitate clinical interpretation. Methods: We searched six databases from inception to Mar 2018. Aerobic, strength, and combined (aerobic and strength) intervention were eligible. Meta-analyses compared outcomes at baseline with those after at least six weeks (before-after exercise within individuals). A further meta-analysis compared outcomes before-after exercise between groups (exercise training versus usual care). Disease heterogeneity was explored using a random effect model. This study was registered (PROSPERO, CRD42018102183). An interactive database was developed to facilitate full interrogations of data. Results: We identified 130 articles describing 1,805 participants with 35 different forms of NMD. Of these studies, 76 were suitable for meta-analyses. Within group and between group meta-analyses detected an increase in peak aerobic capacity (p=0·04), and peak power (p=0·01). Six-minute walk test (p=0·04), sit-to-stand (STS) (repetitions) (p=0·03), STS (seconds) (p=0·04), rise from supine (p=0·008), SF-36 (p=0·0003), fatigue severity (p=<0·0001), citrate synthase (p=0·0002), central nuclei (p=0·04), type 1 (p=0·002) and type II muscle fibre area (p=0·003), were only able to detect change within group meta-analyses. Substantial I 2 statistic heterogeneity was revealed for STS (seconds) ( I²=58·5%; p=0·04) and citrate synthase ( I²=70·90%; p=0·002), otherwise heterogeneity for all outcomes was low. No study-related serious adverse events were reported nor significant increases in creatine kinase. Conclusions: Exercise training in patients with NMDs appears to cause no harm across a range of outcomes. With the emergence of new therapeutic strategies, defining MCID is vital in informing future clinical trial design.
Collapse
Affiliation(s)
- Renae J. Stefanetti
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle Upon Tyne, Tyne and Wear, NE2 4HH, UK
| | - Alasdair Blain
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle Upon Tyne, Tyne and Wear, NE2 4HH, UK
| | - Cecilia Jimenez-Moreno
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle Upon Tyne, Tyne and Wear, NE2 4HH, UK
| | - Linda Errington
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, Tyne and Wear, NE2 4HH, UK
| | - Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle Upon Tyne, Tyne and Wear, NE2 4HH, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle Upon Tyne, Tyne and Wear, NE2 4HH, UK
| | - Doug M. Turnbull
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle Upon Tyne, Tyne and Wear, NE2 4HH, UK
| | - Jane Newman
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle Upon Tyne, Tyne and Wear, NE2 4HH, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, Tyne and Wear, NE4 5PL, UK
| | - Gráinne S Gorman
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle Upon Tyne, Tyne and Wear, NE2 4HH, UK
| |
Collapse
|
10
|
Jones K, Hawke F, Newman J, Miller JAL, Burns J, Jakovljevic DG, Gorman G, Turnbull DM, Ramdharry G. Interventions for promoting physical activity in people with neuromuscular disease. Hippokratia 2020. [DOI: 10.1002/14651858.cd013544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Katherine Jones
- Queen Square Centre for Neuromuscular Diseases; Cochrane Neuromuscular; Queen Square London UK
- Cochrane; Mental Health and Neuroscience Network; London UK
| | - Fiona Hawke
- The University of Newcastle; School of Health Sciences, Faculty of Health and Medicine; BE 131 Health Precinct Ourimbah Campus Ourimbah NSW Australia 2258
| | - Jane Newman
- Newcastle University; Wellcome Centre for Mitochondrial Research, Newcastle University and NIHR Newcastle Biomedical Research Centre; Framlington Place Newcastle upon Tyne UK NE2 4HH
| | - James AL Miller
- Royal Victoria Infirmary; c/o Department of Neurology, Newcastle upon Tyne Hospitals Trust; Queen Victoria Road Newcastle upon Tyne UK NE1 4LP
| | - Joshua Burns
- The University of Sydney & Sydney Children’s Hospitals Network; Sydney New South Wales Australia
| | - Djordje G Jakovljevic
- Newcastle University; Institute of Cellular Medicine; Framlington Place Newcastle upon Tyne UK NE4 2HH
| | - Grainne Gorman
- Newcastle University; Wellcome Centre for Mitochondrial Research; 4th Floor Cookson Building Newcastle upon Tyne UK NE2 4HH
| | - Douglass M Turnbull
- Newcastle University; Mitochondrial Research Group, The Medical School; Framlington Place Newcastle upon Tyne UK NE2 4HH
| | - Gita Ramdharry
- University College Hospital NHS Foundation Trust and UCL Institute of Neurology; Queen Square Centre for Neuromuscular Diseases; 8-11 Queen Square London Greater London UK WC1N 3BG
| |
Collapse
|
11
|
Voet NBM, van der Kooi EL, van Engelen BGM, Geurts ACH. Strength training and aerobic exercise training for muscle disease. Cochrane Database Syst Rev 2019; 12:CD003907. [PMID: 31808555 PMCID: PMC6953420 DOI: 10.1002/14651858.cd003907.pub5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Strength training or aerobic exercise programmes, or both, might optimise muscle and cardiorespiratory function and prevent additional disuse atrophy and deconditioning in people with a muscle disease. This is an update of a review first published in 2004 and last updated in 2013. We undertook an update to incorporate new evidence in this active area of research. OBJECTIVES To assess the effects (benefits and harms) of strength training and aerobic exercise training in people with a muscle disease. SEARCH METHODS We searched Cochrane Neuromuscular's Specialised Register, CENTRAL, MEDLINE, Embase, and CINAHL in November 2018 and clinical trials registries in December 2018. SELECTION CRITERIA Randomised controlled trials (RCTs), quasi-RCTs or cross-over RCTs comparing strength or aerobic exercise training, or both lasting at least six weeks, to no training in people with a well-described muscle disease diagnosis. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. MAIN RESULTS We included 14 trials of aerobic exercise, strength training, or both, with an exercise duration of eight to 52 weeks, which included 428 participants with facioscapulohumeral muscular dystrophy (FSHD), dermatomyositis, polymyositis, mitochondrial myopathy, Duchenne muscular dystrophy (DMD), or myotonic dystrophy. Risk of bias was variable, as blinding of participants was not possible, some trials did not blind outcome assessors, and some did not use an intention-to-treat analysis. Strength training compared to no training (3 trials) For participants with FSHD (35 participants), there was low-certainty evidence of little or no effect on dynamic strength of elbow flexors (MD 1.2 kgF, 95% CI -0.2 to 2.6), on isometric strength of elbow flexors (MD 0.5 kgF, 95% CI -0.7 to 1.8), and ankle dorsiflexors (MD 0.4 kgF, 95% CI -2.4 to 3.2), and on dynamic strength of ankle dorsiflexors (MD -0.4 kgF, 95% CI -2.3 to 1.4). For participants with myotonic dystrophy type 1 (35 participants), there was very low-certainty evidence of a slight improvement in isometric wrist extensor strength (MD 8.0 N, 95% CI 0.7 to 15.3) and of little or no effect on hand grip force (MD 6.0 N, 95% CI -6.7 to 18.7), pinch grip force (MD 1.0 N, 95% CI -3.3 to 5.3) and isometric wrist flexor force (MD 7.0 N, 95% CI -3.4 to 17.4). Aerobic exercise training compared to no training (5 trials) For participants with DMD there was very low-certainty evidence regarding the number of leg revolutions (MD 14.0, 95% CI -89.0 to 117.0; 23 participants) or arm revolutions (MD 34.8, 95% CI -68.2 to 137.8; 23 participants), during an assisted six-minute cycle test, and very low-certainty evidence regarding muscle strength (MD 1.7, 95% CI -1.9 to 5.3; 15 participants). For participants with FSHD, there was low-certainty evidence of improvement in aerobic capacity (MD 1.1 L/min, 95% CI 0.4 to 1.8, 38 participants) and of little or no effect on knee extension strength (MD 0.1 kg, 95% CI -0.7 to 0.9, 52 participants). For participants with dermatomyositis and polymyositis (14 participants), there was very low-certainty evidence regarding aerobic capacity (MD 14.6, 95% CI -1.0 to 30.2). Combined aerobic exercise and strength training compared to no training (6 trials) For participants with juvenile dermatomyositis (26 participants) there was low-certainty evidence of an improvement in knee extensor strength on the right (MD 36.0 N, 95% CI 25.0 to 47.1) and left (MD 17 N 95% CI 0.5 to 33.5), but low-certainty evidence of little or no effect on maximum force of hip flexors on the right (MD -9.0 N, 95% CI -22.4 to 4.4) or left (MD 6.0 N, 95% CI -6.6 to 18.6). This trial also provided low-certainty evidence of a slight decrease of aerobic capacity (MD -1.2 min, 95% CI -1.6 to 0.9). For participants with dermatomyositis and polymyositis (21 participants), we found very low-certainty evidence for slight increases in muscle strength as measured by dynamic strength of knee extensors on the right (MD 2.5 kg, 95% CI 1.8 to 3.3) and on the left (MD 2.7 kg, 95% CI 2.0 to 3.4) and no clear effect in isometric muscle strength of eight different muscles (MD 1.0, 95% CI -1.1 to 3.1). There was very low-certainty evidence that there may be an increase in aerobic capacity, as measured with time to exhaustion in an incremental cycle test (17.5 min, 95% CI 8.0 to 27.0) and power performed at VO2 max (maximal oxygen uptake) (18 W, 95% CI 15.0 to 21.0). For participants with mitochondrial myopathy (18 participants), we found very low-certainty evidence regarding shoulder muscle (MD -5.0 kg, 95% CI -14.7 to 4.7), pectoralis major muscle (MD 6.4 kg, 95% CI -2.9 to 15.7), and anterior arm muscle strength (MD 7.3 kg, 95% CI -2.9 to 17.5). We found very low-certainty evidence regarding aerobic capacity, as measured with mean time cycled (MD 23.7 min, 95% CI 2.6 to 44.8) and mean distance cycled until exhaustion (MD 9.7 km, 95% CI 1.5 to 17.9). One trial in myotonic dystrophy type 1 (35 participants) did not provide data on muscle strength or aerobic capacity following combined training. In this trial, muscle strength deteriorated in one person and one person had worse daytime sleepiness (very low-certainty evidence). For participants with FSHD (16 participants), we found very low-certainty evidence regarding muscle strength, aerobic capacity and VO2 peak; the results were very imprecise. Most trials reported no adverse events other than muscle soreness or joint complaints (low- to very low-certainty evidence). AUTHORS' CONCLUSIONS The evidence regarding strength training and aerobic exercise interventions remains uncertain. Evidence suggests that strength training alone may have little or no effect, and that aerobic exercise training alone may lead to a possible improvement in aerobic capacity, but only for participants with FSHD. For combined aerobic exercise and strength training, there may be slight increases in muscle strength and aerobic capacity for people with dermatomyositis and polymyositis, and a slight decrease in aerobic capacity and increase in muscle strength for people with juvenile dermatomyositis. More research with robust methodology and greater numbers of participants is still required.
Collapse
Affiliation(s)
- Nicoline BM Voet
- Radboud University Medical CentreDepartment of Rehabilitation, Donders Institute for Brain, Cognition and BehaviourPO Box 9101NijmegenNetherlands6500 HB
- Rehabilitation Centre KlimmendaalArnhemNetherlands
| | | | - Baziel GM van Engelen
- Radboud University Medical CentreDepartment of Neurology, Donders Institute for Brain, Behaviour and CognitionNijmegenNetherlands
| | - Alexander CH Geurts
- Radboud University Medical CentreDepartment of Rehabilitation, Donders Institute for Brain, Cognition and BehaviourPO Box 9101NijmegenNetherlands6500 HB
| | | |
Collapse
|
12
|
Weitgasser L, Ihra G, Schäfer B, Markstaller K, Radtke C. Update on hyperbaric oxygen therapy in burn treatment. Wien Klin Wochenschr 2019; 133:137-143. [PMID: 31701218 DOI: 10.1007/s00508-019-01569-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 06/26/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022]
Abstract
Hyperbaric oxygen therapy (HBOT) has been shown to improve tissue hypoxia, neovascularization and ischemia reperfusion injury and reduce pathologic inflammation in various clinical settings and was proposed to be a game changer in treatment of burns. Improved and faster wound healing as well as a reduction of morbidity and mortality after thermal and concomitant carbon monoxide poisoning are expected. In defiance of the observed benefits for burn wounds and carbon monoxide poisoning in animal models and few randomized controlled trials there is an ongoing controversy regarding its use, indications and cost effectiveness. Furthermore, the use of HBOT, its indications and the evidence behind its efficiency are still widely unknown to most physicians involved in the treatment of burn patients. Therefore, a review of the up to date evidence-based literature was performed with a focus on available data of HBOT in burn care, to elaborate its use in acute thermal injury and carbon monoxide intoxication. Although beneficial effects of HBOT seem very likely insufficient evidence to support or disprove the routine use of HBOT in the treatment of burn care was found. Although difficult to carry out because of the high interindividual variability of burns and chronic wounds, the need for larger high-quality prospective randomized double-blinded controlled multicenter trials are necessary to be able to evaluate useful applications, expense and cost-efficiency of HBOT for burn care.
Collapse
Affiliation(s)
- Laurenz Weitgasser
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Gerald Ihra
- Department of Anesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Bruno Schäfer
- Department of Anesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Klaus Markstaller
- Department of Anesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Christine Radtke
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
13
|
Abstract
Most of the glycogen metabolism disorders that affect skeletal muscle involve enzymes in glycogenolysis (myophosphorylase (PYGM), glycogen debranching enzyme (AGL), phosphorylase b kinase (PHKB)) and glycolysis (phosphofructokinase (PFK), phosphoglycerate mutase (PGAM2), aldolase A (ALDOA), β-enolase (ENO3)); however, 3 involve glycogen synthesis (glycogenin-1 (GYG1), glycogen synthase (GSE), and branching enzyme (GBE1)). Many present with exercise-induced cramps and rhabdomyolysis with higher-intensity exercise (i.e., PYGM, PFK, PGAM2), yet others present with muscle atrophy and weakness (GYG1, AGL, GBE1). A failure of serum lactate to rise with exercise with an exaggerated ammonia response is a common, but not invariant, finding. The serum creatine kinase (CK) is often elevated in the myopathic forms and in PYGM deficiency, but can be normal and increase only with rhabdomyolysis (PGAM2, PFK, ENO3). Therapy for glycogen storage diseases that result in exercise-induced symptoms includes lifestyle adaptation and carefully titrated exercise. Immediate pre-exercise carbohydrate improves symptoms in the glycogenolytic defects (i.e., PYGM), but can exacerbate symptoms in glycolytic defects (i.e., PFK). Creatine monohydrate in low dose may provide a mild benefit in PYGM mutations.
Collapse
Affiliation(s)
- Mark A Tarnopolsky
- Division of Neuromuscular & Neurometabolic Disorders, Departments of Pediatrics and Medicine, McMaster University, Hamilton Health Sciences Centre, Rm 2H26, Hamilton, ON, L8S 4L8, Canada.
| |
Collapse
|
14
|
Abstract
We present a case of a 51-year-old man who went to the emergency department after an almost-drowning episode, presenting with muscular weakness, myalgia and dark urine. Laboratory data showed a severe rhabdomyolysis (creatine kinase 497 510 U/L). Despite aggressive fluid therapy, an oliguric acute kidney injury was established with temporary need of haemodialysis. The patient had a longtime history of exercise intolerance and family history of a metabolic myopathy, namely a sister with McArdle's disease. The genetic test was positive. McArdle's disease is an autosomal recessive disorder caused by mutations in the muscle glycogen phosphorylase gene that encodes the myophosphorylase. The main symptom consists in exercise intolerance and the most severe complication is rhabdomyolysis with acute renal failure. Metabolic myopathies, such as McArdle's disease, should be considered in patients with acute renal failure due to unexplained severe rhabdomyolysis, especially if there are chronic complaints of exercise intolerance and positive family history.
Collapse
Affiliation(s)
- Helena Pinto
- Department of Nephrology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Ana Catarina Teixeira
- Department of Nephrology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Nuno Oliveira
- Department of Nephrology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Rui Alves
- Department of Nephrology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Clínica Universitária de Nefrologia, Universidade de Coimbra Faculdade de Medicina, Coimbra, Portugal
| |
Collapse
|
15
|
Lilleker JB, Keh YS, Roncaroli F, Sharma R, Roberts M. Metabolic myopathies: a practical approach. Pract Neurol 2017; 18:14-26. [PMID: 29223996 DOI: 10.1136/practneurol-2017-001708] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2017] [Indexed: 12/20/2022]
Abstract
Metabolic myopathies are a diverse group of rare genetic disorders and their associated muscle symptoms may be subtle. Patients may present with indolent myopathic features, exercise intolerance or recurrent rhabdomyolysis. Diagnostic delays are common and clinicians need a high index of suspicion to recognise and differentiate metabolic myopathies from other conditions that present in a similar fashion. Standard laboratory tests may be normal or non-specific, particularly between symptomatic episodes. Targeted enzyme activity measurement and next-generation genetic sequencing are increasingly used. There are now specific enzyme replacement therapies available, and other metabolic strategies and gene therapies are undergoing clinical trials. Here, we discuss our approach to the adult patient with suspected metabolic myopathy. We outline key features in the history and examination and discuss some mimics of metabolic myopathies. We highlight some disorders of glycogen and fatty acid utilisation that present in adulthood and outline current recommendations on management.
Collapse
Affiliation(s)
- James B Lilleker
- Greater Manchester Neurosciences Centre, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, UK
| | - Yann Shern Keh
- Greater Manchester Neurosciences Centre, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, UK
| | - Federico Roncaroli
- Greater Manchester Neurosciences Centre, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, UK.,Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Reena Sharma
- The Mark Holland Metabolic Unit, Salford Royal NHS Foundation Trust, Salford, UK
| | - Mark Roberts
- Greater Manchester Neurosciences Centre, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, UK
| |
Collapse
|
16
|
Nogales-Gadea G, Godfrey R, Santalla A, Coll-Cantí J, Pintos-Morell G, Pinós T, Arenas J, Martín MA, Lucia A. Genes and exercise intolerance: insights from McArdle disease. Physiol Genomics 2016; 48:93-100. [DOI: 10.1152/physiolgenomics.00076.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
McArdle disease (glycogen storage disease type V) is caused by inherited deficiency of a key enzyme in muscle metabolism, the skeletal muscle-specific isoform of glycogen phosphorylase, “myophosphorylase,” which is encoded by the PYGM gene. Here we review the main pathophysiological, genotypic, and phenotypic features of McArdle disease and their interactions. To date, moderate-intensity exercise (together with pre-exercise carbohydrate ingestion) is the only treatment option that has proven useful for these patients. Furthermore, regular physical activity attenuates the clinical severity of McArdle disease. This is quite remarkable for a monogenic disorder that consistently leads to the same metabolic defect at the muscle tissue level, that is, complete inability to use muscle glycogen stores. Further knowledge of this disorder would help patients and enhance understanding of exercise metabolism as well as exercise genomics. Indeed, McArdle disease is a paradigm of human exercise intolerance and PYGM genotyping should be included in the genetic analyses that might be applied in the coming personalized exercise medicine as well as in future research on genetics and exercise-related phenotypes.
Collapse
Affiliation(s)
- Gisela Nogales-Gadea
- Translational Research Laboratory in Neuromuscular Diseases, Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Richard Godfrey
- Centre for Sports Medicine and Human Performance, Brunel University, London, United Kingdom
| | - Alfredo Santalla
- Universidad Pablo de Olavide, Seville, Spain
- Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Hospital 12 de Octubre, Madrid, Spain
| | - Jaume Coll-Cantí
- Translational Research Laboratory in Neuromuscular Diseases, Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain
- Servicio de Neurología, Unidad Neuromuscular, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Guillem Pintos-Morell
- Translational Research Laboratory in Neuromuscular Diseases, Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain
- Servicio de Pediatría, Unidad de Enfermedades Minoritarias, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Tomàs Pinós
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Departament de Patologia Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Joaquín Arenas
- Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Hospital 12 de Octubre, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain; and
| | - Miguel Angel Martín
- Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Hospital 12 de Octubre, Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain; and
| | - Alejandro Lucia
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain; and
- Universidad Europea, Madrid, Spain
| |
Collapse
|
17
|
van den Berg LEM, Favejee MM, Wens SCA, Kruijshaar ME, Praet SFE, Reuser AJJ, Bussmann JBJ, van Doorn PA, van der Ploeg AT. Safety and efficacy of exercise training in adults with Pompe disease: evalution of endurance, muscle strength and core stability before and after a 12 week training program. Orphanet J Rare Dis 2015; 10:87. [PMID: 26187632 PMCID: PMC4506616 DOI: 10.1186/s13023-015-0303-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/07/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Pompe disease is a proximal myopathy. We investigated whether exercise training is a safe and useful adjuvant therapy for adult Pompe patients, receiving enzyme replacement therapy. METHODS Training comprised 36 sessions of standardized aerobic, resistance and core stability exercises over 12 weeks. Before and after, the primary outcome measures safety, endurance (aerobic exercise capacity and distance walked on the 6 min walk test) and muscle strength, and secondary outcome measures core stability, muscle function and body composition, were evaluated. RESULTS Of 25 patients enrolled, 23 successfully completed the training. Improvements in endurance were shown by increases in maximum workload capacity (110 W before to 122 W after training, [95 % CI of the difference 6 · 0 to 19 · 7]), maximal oxygen uptake capacity (69 · 4 % and 75 · 9 % of normal, [2 · 5 to 10 · 4]), and maximum walking distance (6 min walk test: 492 meters and 508, [-4 · 4 to 27 · 7] ). There were increases in muscle strength of the hip flexors (156 · 4 N to 180 · 7 N [1 · 6 to 13 · 6) and shoulder abductors (143 · 1 N to 150 · 7 N [13 · 2 to 35 · 2]). As an important finding in secondary outcome measures the number of patients who were able to perform the core stability exercises rose, as did the core stability balancing time (p < 0.05, for all four exercises). Functional tests showed small reductions in the time needed to climb four steps (2 · 4 sec to 2 · 1, [- 0 · 54 to -0 · 04 ]) and rise to standing position (5 · 8 sec to 4 · 8, [-2 · 0 to 0 · 0]), while time to run, the quick motor function test results and body composition remained unchanged. CONCLUSIONS Our study shows that a combination of aerobic, strength and core stability exercises is feasible, safe and beneficial to adults with Pompe disease.
Collapse
Affiliation(s)
- Linda E M van den Berg
- Center for Lysosomal and Metabolic Diseases, Department of Pediatrics, Erasmus MC University Medical Center - Sophia Children's Hospital, PO Box 2040, 3000, CA, Rotterdam, The Netherlands
| | - Marein M Favejee
- Center for Lysosomal and Metabolic Diseases, Department of Pediatrics, Erasmus MC University Medical Center - Sophia Children's Hospital, PO Box 2040, 3000, CA, Rotterdam, The Netherlands.,Department of Rehabilitation Medicine & Physical Therapy, Erasmus MC University Medical Center, PO Box 2040, 3000, CA, Rotterdam, The Netherlands
| | - Stephan C A Wens
- Center for Lysosomal and Metabolic Diseases, Department of Neurology, Erasmus MC University Medical Center, PO Box 2040, 3000, CA, Rotterdam, The Netherlands
| | - Michelle E Kruijshaar
- Center for Lysosomal and Metabolic Diseases, Department of Pediatrics, Erasmus MC University Medical Center - Sophia Children's Hospital, PO Box 2040, 3000, CA, Rotterdam, The Netherlands
| | - Stephan F E Praet
- Department of Rehabilitation Medicine & Physical Therapy, Erasmus MC University Medical Center, PO Box 2040, 3000, CA, Rotterdam, The Netherlands
| | - Arnold J J Reuser
- Center for Lysosomal and Metabolic Diseases, Department of Clinical Genetics, Erasmus MC University Medical Center, PO Box 2040, 3000, CA, Rotterdam, The Netherlands
| | - Johannes B J Bussmann
- Department of Rehabilitation Medicine & Physical Therapy, Erasmus MC University Medical Center, PO Box 2040, 3000, CA, Rotterdam, The Netherlands
| | - Pieter A van Doorn
- Center for Lysosomal and Metabolic Diseases, Department of Neurology, Erasmus MC University Medical Center, PO Box 2040, 3000, CA, Rotterdam, The Netherlands
| | - Ans T van der Ploeg
- Center for Lysosomal and Metabolic Diseases, Department of Pediatrics, Erasmus MC University Medical Center - Sophia Children's Hospital, PO Box 2040, 3000, CA, Rotterdam, The Netherlands.
| |
Collapse
|
18
|
Petrou P, Pantzaris M, Dionysiou M, Drousiotou A, Kyriakides T. Minimally symptomatic mcardle disease, expanding the genotype-phenotype spectrum. Muscle Nerve 2015; 52:891-5. [PMID: 26032558 DOI: 10.1002/mus.24716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2015] [Indexed: 11/07/2022]
Abstract
INTRODUCTION We report the clinical, biochemical, and molecular findings in a Cypriot family with minimally symptomatic McArdle disease. METHODS Myophosphorylase in muscle was assessed by histochemistry, quantitative spectrophotometry, and western blot analysis. Mutation identification was performed by PCR amplification of all PYGM exons, followed by bidirectional sequencing. Screening for the new mutation was performed by restriction enzyme analysis. RESULTS We found that a novel c.1151C>T transition in exon 10 of the myophosphorylase gene (PYGM) is associated with minimally symptomatic McArdle disease. Homozygous carriers displayed an ischemic exercise response characterized by a blunted increase in post-exercise blood lactate levels in conjunction with an exaggerated increase in ammonia. Myophosphorylase activity in muscle was 3.75% of normal, whereas the size and abundance of the enzyme were unaffected. CONCLUSIONS These findings expand the genotype-phenotype spectrum of McArdle disease and suggest that enzymatic activity as low as 4% may be sufficient to ameliorate the phenotype.
Collapse
Affiliation(s)
- Petros Petrou
- Department of Biochemical Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marios Pantzaris
- Neurology Clinics A & C, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683, Nicosia, Cyprus
| | - Maria Dionysiou
- Department of Biochemical Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Anthi Drousiotou
- Department of Biochemical Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Theodoros Kyriakides
- Neurology Clinics A & C, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683, Nicosia, Cyprus
| |
Collapse
|
19
|
Preisler N, Haller RG, Vissing J. Exercise in muscle glycogen storage diseases. J Inherit Metab Dis 2015; 38:551-63. [PMID: 25326273 DOI: 10.1007/s10545-014-9771-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 09/09/2014] [Indexed: 12/11/2022]
Abstract
Glycogen storage diseases (GSD) are inborn errors of glycogen or glucose metabolism. In the GSDs that affect muscle, the consequence of a block in skeletal muscle glycogen breakdown or glucose use, is an impairment of muscular performance and exercise intolerance, owing to 1) an increase in glycogen storage that disrupts contractile function and/or 2) a reduced substrate turnover below the block, which inhibits skeletal muscle ATP production. Immobility is associated with metabolic alterations in muscle leading to an increased dependence on glycogen use and a reduced capacity for fatty acid oxidation. Such changes may be detrimental for persons with GSD from a metabolic perspective. However, exercise may alter skeletal muscle substrate metabolism in ways that are beneficial for patients with GSD, such as improving exercise tolerance and increasing fatty acid oxidation. In addition, a regular exercise program has the potential to improve general health and fitness and improve quality of life, if executed properly. In this review, we describe skeletal muscle substrate use during exercise in GSDs, and how blocks in metabolic pathways affect exercise tolerance in GSDs. We review the studies that have examined the effect of regular exercise training in different types of GSD. Finally, we consider how oral substrate supplementation can improve exercise tolerance and we discuss the precautions that apply to persons with GSD that engage in exercise.
Collapse
Affiliation(s)
- Nicolai Preisler
- Neuromuscular Research Unit, Section 3342, Department of Neurology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark,
| | | | | |
Collapse
|
20
|
Quinlivan R, Martinuzzi A, Schoser B. Pharmacological and nutritional treatment for McArdle disease (Glycogen Storage Disease type V). Cochrane Database Syst Rev 2014; 2014:CD003458. [PMID: 25391139 PMCID: PMC7173724 DOI: 10.1002/14651858.cd003458.pub5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Background McArdle disease (Glycogen Storage Disease type V) is caused by an absence of muscle phosphorylase leading to exercise intolerance,myoglobinuria rhabdomyolysis and acute renal failure. This is an update of a review first published in 2004.Objectives To review systematically the evidence from randomised controlled trials (RCTs) of pharmacological or nutritional treatments for improving exercise performance and quality of life in McArdle disease.Search methods We searched the Cochrane Neuromuscular Disease Group Specialized Register, CENTRAL, MEDLINE and EMBASE on 11 August 2014.Selection criteria We included RCTs (including cross-over studies) and quasi-RCTs. We included unblinded open trials and individual patient studies in the discussion. Interventions included any pharmacological agent or nutritional supplement. Primary outcome measures included any objective assessment of exercise endurance (for example aerobic capacity (VO2) max, walking speed, muscle force or power and fatigability). Secondary outcome measures included metabolic changes (such as reduced plasma creatine kinase and a reduction in the frequency of myoglobinuria), subjective measures (including quality of life scores and indices of disability) and serious adverse events.Data collection and analysis Three review authors checked the titles and abstracts identified by the search and reviewed the manuscripts. Two review authors independently assessed the risk of bias of relevant studies, with comments from a third author. Two authors extracted data onto a specially designed form.Main results We identified 31 studies, and 13 fulfilled the criteria for inclusion. We described trials that were not eligible for the review in the Discussion. The included studies involved a total of 85 participants, but the number in each individual trial was small; the largest treatment trial included 19 participants and the smallest study included only one participant. There was no benefit with: D-ribose,glucagon, verapamil, vitamin B6, branched chain amino acids, dantrolene sodium, and high-dose creatine. Minimal subjective benefit was found with low dose creatine and ramipril only for patients with a polymorphism known as the D/Dangiotens in converting enzyme(ACE) phenotype. A carbohydrate-rich diet resulted in better exercise performance compared with a protein-rich diet. Two studies of oral sucrose given at different times and in different amounts before exercise showed an improvement in exercise performance. Four studies reported adverse effects. Oral ribose caused diarrhoea and symptoms suggestive of hypoglycaemia including light-headedness and hunger. In one study, branched chain amino acids caused a deterioration of functional outcomes. Dantrolene was reported to cause a number of adverse effects including tiredness, somnolence, dizziness and muscle weakness. Low dose creatine (60 mg/kg/day) did not cause side-effects but high-dose creatine (150 mg/kg/day) worsened the symptoms of myalgia.Authors' conclusions Although there was low quality evidence of improvement in some parameters with creatine, oral sucrose, ramipril and a carbohydrate rich diet, none was sufficiently strong to indicate significant clinical benefit.
Collapse
Affiliation(s)
- Rosaline Quinlivan
- UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery and Great Ormond StreetMRC Centre for Neuromuscular Diseases and Dubowitz Neuromuscular CentrePO Box 114LondonUKWC1B 3BN
| | - Andrea Martinuzzi
- Medea Scientific InstituteThe Conegliano‐Pieve Research CentreVia Costa Alta 37ConeglianoItaly31015
| | - Benedikt Schoser
- Friedrich‐Baur Institute Ludwig‐Maximilians University MunichDepartment of NeurologyZiemssenstr. 1aD‐80336 MunichGermany
| | | |
Collapse
|
21
|
McArdle Disease and Exercise Physiology. BIOLOGY 2014; 3:157-66. [PMID: 24833339 PMCID: PMC4009758 DOI: 10.3390/biology3010157] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 11/17/2022]
Abstract
McArdle disease (glycogen storage disease Type V; MD) is a metabolic myopathy caused by a deficiency in muscle glycogen phosphorylase. Since muscle glycogen is an important fuel for muscle during exercise, this inborn error of metabolism provides a model for understanding the role of glycogen in muscle function and the compensatory adaptations that occur in response to impaired glycogenolysis. Patients with MD have exercise intolerance with symptoms including premature fatigue, myalgia, and/or muscle cramps. Despite this, MD patients are able to perform prolonged exercise as a result of the “second wind” phenomenon, owing to the improved delivery of extra-muscular fuels during exercise. The present review will cover what this disease can teach us about exercise physiology, and particularly focuses on the compensatory pathways for energy delivery to muscle in the absence of glycogenolysis.
Collapse
|
22
|
Angelini C, Nascimbeni AC, Semplicini C. Therapeutic advances in the management of Pompe disease and other metabolic myopathies. Ther Adv Neurol Disord 2013; 6:311-21. [PMID: 23997816 DOI: 10.1177/1756285613487570] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The world of metabolic myopathies has been dramatically modified by the advent of enzyme replacement therapy (ERT), the first causative treatment for glycogenosis type II (GSDII) or Pompe disease, which has given new impetus to research into that disease and also other pathologies. This article reviews new advances in the treatment of GSDII, the consensus about ERT, and its limitations. In addition, the most recent knowledge regarding the pathophysiology, phenotype, and genotype of the disease is discussed. Pharmacological, immunotherapy, nutritional, and physical/rehabilitative treatments for late-onset Pompe disease and other metabolic myopathies are covered, including treatments for defects in glycogen metabolism, such as glycogenosis type V (McArdle disease), and glycogenosis type III (debrancher enzyme deficiency), and defects in lipid metabolism, such as carnitine palmitoyltransferase II deficiency and electron transferring flavoprotein dehydrogenase deficiency, or riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency.
Collapse
|
23
|
Dahlqvist JR, Voss LG, Lauridsen T, Krag TO, Vissing J. A pilot study of muscle plasma protein changes after exercise. Muscle Nerve 2013; 49:261-6. [PMID: 23716353 DOI: 10.1002/mus.23909] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2013] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Creatine kinase (CK) and myoglobin (Mb) do not possess all good qualities as biomarkers of skeletal muscle damage. We investigated the utility of troponin I (TnI) and telethonin (Tcap) as markers and examined their temporal profiles after skeletal muscle damage. METHODS Plasma profiles were measured before and after exercise in 3 groups: subjects affected by either Becker muscular dystrophy or McArdle disease, and healthy subjects. RESULTS Mb and TnI appeared early in the blood, and the increase of TnI was only observed in patients with muscle disease. The CK increase was more delayed in plasma. Tcap was not detectable at any time. CONCLUSIONS Our results suggest that TnI is a marker of more severe damage signifying sarcomeric damage, and it could therefore be an important supplement to CK and Mb in clinical practice. Tcap is not useful as a marker for skeletal muscle damage.
Collapse
Affiliation(s)
- Julia R Dahlqvist
- Neuromuscular Research Unit 3342, Department of Neurology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
24
|
Voet NBM, van der Kooi EL, Riphagen II, Lindeman E, van Engelen BGM, Geurts ACH. Strength training and aerobic exercise training for muscle disease. Cochrane Database Syst Rev 2013:CD003907. [PMID: 23835682 DOI: 10.1002/14651858.cd003907.pub4] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Strength training or aerobic exercise programmes might optimise muscle and cardiorespiratory function and prevent additional disuse atrophy and deconditioning in people with a muscle disease. This is an update of a review first published in 2004. OBJECTIVES To examine the safety and efficacy of strength training and aerobic exercise training in people with a muscle disease. SEARCH METHODS We searched the Cochrane Neuromuscular Disease Group Specialized Register (July 2012), CENTRAL (2012 Issue 3 of 4), MEDLINE (January 1946 to July 2012), EMBASE (January 1974 to July 2012), EMBASE Classic (1947 to 1973) and CINAHL (January 1982 to July 2012). SELECTION CRITERIA Randomised or quasi-randomised controlled trials comparing strength training or aerobic exercise programmes, or both, to no training, and lasting at least six weeks, in people with a well-described diagnosis of a muscle disease.We did not use the reporting of specific outcomes as a study selection criterion. DATA COLLECTION AND ANALYSIS Two authors independently assessed trial quality and extracted the data obtained from the full text-articles and from the original investigators. We collected adverse event data from included studies. MAIN RESULTS We included five trials (170 participants). The first trial compared the effect of strength training versus no training in 36 people with myotonic dystrophy. The second trial compared aerobic exercise training versus no training in 14 people with polymyositis and dermatomyositis. The third trial compared strength training versus no training in a factorial trial that also compared albuterol with placebo, in 65 people with facioscapulohumeral muscular dystrophy (FSHD). The fourth trial compared combined strength training and aerobic exercise versus no training in 18 people with mitochondrial myopathy. The fifth trial compared combined strength training and aerobic exercise versus no training in 35 people with myotonic dystrophy type 1.In both myotonic dystrophy trials and the dermatomyositis and polymyositis trial there were no significant differences between training and non-training groups for primary and secondary outcome measures. The risk of bias of the strength training trial in myotonic dystrophy and the aerobic exercise trial in polymyositis and dermatomyositis was judged as uncertain, and for the combined strength training and aerobic exercise trial, the risk of bias was judged as adequate. In the FSHD trial, for which the risk of bias was judged as adequate, a +1.17 kg difference (95% confidence interval (CI) 0.18 to 2.16) in dynamic strength of elbow flexors in favour of the training group reached statistical significance. In the mitochondrial myopathy trial, there were no significant differences in dynamic strength measures between training and non-training groups. Exercise duration and distance cycled in a submaximal endurance test increased significantly in the training group compared to the control group. The differences in mean time and mean distance cycled till exhaustion between groups were 23.70 min (95% CI 2.63 to 44.77) and 9.70 km (95% CI 1.51 to 17.89), respectively. The risk of bias was judged as uncertain. In all trials, no adverse events were reported. AUTHORS' CONCLUSIONS Moderate-intensity strength training in myotonic dystrophy and FSHD and aerobic exercise training in dermatomyositis and polymyositis and myotonic dystrophy type I appear to do no harm, but there is insufficient evidence to conclude that they offer benefit. In mitochondrial myopathy, aerobic exercise combined with strength training appears to be safe and may be effective in increasing submaximal endurance capacity. Limitations in the design of studies in other muscle diseases prevent more general conclusions in these disorders.
Collapse
Affiliation(s)
- Nicoline B M Voet
- Department of Rehabilitation, Nijmegen Centre for Evidence Based Practice, Radboud University Medical Centre, Nijmegen, Netherlands.
| | | | | | | | | | | |
Collapse
|
25
|
Lucia A, Quinlivan R, Wakelin A, Martín MA, Andreu AL. The ‘McArdle paradox’: exercise is a good advice for the exercise intolerant. Br J Sports Med 2012; 47:728-9. [DOI: 10.1136/bjsports-2012-091130] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|