1
|
Medina SP, Kim RG, Magee C, Stapper N, Khalili M. Cross-sectional study on stigma and motivation to adhere to lifestyle modification among vulnerable populations with fatty liver disease. Obes Sci Pract 2023; 9:581-589. [PMID: 38090690 PMCID: PMC10712403 DOI: 10.1002/osp4.688] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 10/16/2024] Open
Abstract
Objectives Adherence to lifestyle modification (diet, exercise, and alcohol cessation) for fatty liver disease (FLD) management remains challenging. The study examined stigma, barriers, and factors associated with motivation to adhere to lifestyle modification in a diverse and vulnerable population with FLD. Methods From 2/19/2020 to 2/28/2022, 249 FLD patients within San Francisco safety-net hepatology clinics were surveyed along with clinical data taken from medical records. Multivariable modeling assessed factors associated with motivation to adhere to lifestyle modification in a cross-sectional study. Results Median age was 53 years, 59% female, 59% Hispanic, 25% Asian/Pacific Islander, 9% White, and 2% Black, 79% were non-English speakers, 64% had ≤ high school education, and 82% reported <$30,000 annual income. Common comorbidities included hyperlipidemia (47%), hypertension (42%), diabetes (39%), and heavy alcohol use (22%). Majority (78%) reported experiencing stigma, 41% reported extreme motivation, and 58% reported ≥ two barriers. When controlling for age, sex, Hispanic ethnicity, alcohol consumption, BMI, >high school (coef 1.41, 95% CI 0.34-2.48), stigma (coef 0.34, 95% CI 0.07-0.62), and depression (coef -1.52, 95% CI -2.79 to -0.26) were associated with motivation. Conclusions Stigma is commonly reported among FLD patients. Interventions to enhance patient education and mental health support are critical to FLD management, especially in vulnerable populations.
Collapse
Affiliation(s)
- Sheyla P. Medina
- Department of MedicineDivision of Gastroenterology and HepatologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Rebecca G. Kim
- Department of MedicineDivision of Gastroenterology and HepatologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Catherine Magee
- Division of Gastroenterology and HepatologyZuckerberg San Francisco GeneralSan FranciscoCaliforniaUSA
| | - Noah Stapper
- Division of Gastroenterology and HepatologyZuckerberg San Francisco GeneralSan FranciscoCaliforniaUSA
| | - Mandana Khalili
- Department of MedicineDivision of Gastroenterology and HepatologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Division of Gastroenterology and HepatologyZuckerberg San Francisco GeneralSan FranciscoCaliforniaUSA
| |
Collapse
|
2
|
Guo J, Shi CX, Zhang QQ, Deng W, Zhang LY, Chen Q, Zhang DM, Gong ZJ. Interventions for non-alcoholic liver disease: a gut microbial metabolites perspective. Therap Adv Gastroenterol 2022; 15:17562848221138676. [PMID: 36506748 PMCID: PMC9730013 DOI: 10.1177/17562848221138676] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/28/2022] [Indexed: 12/12/2022] Open
Abstract
Over the past two decades, non-alcoholic fatty liver disease (NAFLD) has become a leading burden of hepatocellular carcinoma and liver transplantation. Although the exact pathogenesis of NAFLD has not been fully elucidated, recent hypotheses placed more emphasis on the crucial role of the gut microbiome and its derivatives. Reportedly, microbial metabolites such as short-chain fatty acids, amino acid metabolites (indole and its derivatives), bile acids (BAs), trimethylamine N-oxide (TMAO), and endogenous ethanol exhibit sophisticated bioactive properties. These molecules regulate host lipid, glucose, and BAs metabolic homeostasis via modulating nutrient absorption, energy expenditure, inflammation, and the neuroendocrine axis. Consequently, a broad range of research has studied the therapeutic effects of microbiota-derived metabolites. In this review, we explore the interaction of microbial products and NAFLD. We also discuss the regulatory role of existing NAFLD therapies on metabolite levels and investigate the potential of targeting those metabolites to relieve NAFLD.
Collapse
Affiliation(s)
- Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chun-Xia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing-Qi Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Deng
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lu-Yi Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qian Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dan-Mei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | | |
Collapse
|
3
|
Amiri P, Arefhosseini S, Bakhshimoghaddam F, Jamshidi Gurvan H, Hosseini SA. Mechanistic insights into the pleiotropic effects of butyrate as a potential therapeutic agent on NAFLD management: A systematic review. Front Nutr 2022; 9:1037696. [PMID: 36532559 PMCID: PMC9755748 DOI: 10.3389/fnut.2022.1037696] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/15/2022] [Indexed: 08/03/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic diseases worldwide. As a multifaceted disease, NAFLD's pathogenesis is not entirely understood, but recent evidence reveals that gut microbiota plays a significant role in its progression. Butyrate, a gut microbiota metabolite, has been reported to have hepato-protective effects in NAFLD animal models. The purpose of this systematic review is to determine how butyrate affects the risk factors for NAFLD. Searches were conducted using relevant keywords in electronic databases up to March 2022. According to the evidence presented in this study, butyrate contributes to a wide variety of biological processes in the gut-liver axis. Its beneficial properties include improving intestinal homeostasis and liver health as well as anti-inflammatory, metabolism regulatory and anti-oxidative effects. These effects may be attributed to butyrate's ability to regulate gene expression as an epigenetic modulator and trigger cellular responses as a signalling molecule. However, the exact underlying mechanisms remain unclear. Human trials have not been performed on the effect of butyrate on NAFLD, so there are concerns about whether the results of animal studies can be translated to humans. This review summarises the current knowledge about the properties of butyrate, particularly its potential effects and mechanisms on liver health and NAFLD management.
Collapse
Affiliation(s)
- Parichehr Amiri
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Arefhosseini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farnush Bakhshimoghaddam
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hannah Jamshidi Gurvan
- National Medical Emergency Organization, Ministry of Health and Medical Education, Tehran, Iran
| | - Seyed Ahmad Hosseini
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
4
|
Li H, Zhang O, Hui C, Huang Y, Shao H, Song M, Gao L, Jin S, Ding C, Xu L. Deuterium-Reinforced Polyunsaturated Fatty Acids Prevent Diet-Induced Nonalcoholic Steatohepatitis by Reducing Oxidative Stress. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:790. [PMID: 35744053 PMCID: PMC9228393 DOI: 10.3390/medicina58060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022]
Abstract
Background and Objectives: Oxidative stress is implicated in the progression of nonalcoholic steatohepatitis (NASH) through the triggering of inflammation. Deuterium-reinforced polyunsaturated fatty acids (D-PUFAs) are more resistant to the reactive oxygen species (ROS)-initiated chain reaction of lipid peroxidation than regular hydrogenated (H-) PUFAs. Here, we aimed to investigate the impacts of D-PUFAs on oxidative stress and its protective effect on NASH. Materials and Methods: C57BL/6 mice were randomly divided into three groups and were fed a normal chow diet, a methionine-choline-deficient (MCD) diet, and an MCD with 0.6% D-PUFAs for 5 weeks. The phenotypes of NASH in mice were determined. The levels of oxidative stress were examined both in vivo and in vitro. Results: The treatment with D-PUFAs attenuated the ROS production and enhanced the cell viability in tert-butyl hydroperoxide (TBHP)-loaded hepatocytes. Concurrently, D-PUFAs decreased the TBHP-induced oxidative stress in Raw 264.7 macrophages. Accordingly, D-PUFAs increased the cell viability and attenuated the lipopolysaccharide-stimulated proinflammatory cytokine expression of macrophages. In vivo, the administration of D-PUFAs reduced the phenotypes of NASH in MCD-fed mice. Specifically, D-PUFAs decreased the liver transaminase activity and attenuated the steatosis, inflammation, and fibrosis in the livers of NASH mice. Conclusion: D-PUFAs may be potential therapeutic agents to prevent NASH by broadly reducing oxidative stress.
Collapse
Affiliation(s)
- Haoran Li
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; (H.L.); (O.Z.); (C.H.); (Y.H.); (H.S.); (M.S.); (L.G.)
| | - Ouyang Zhang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; (H.L.); (O.Z.); (C.H.); (Y.H.); (H.S.); (M.S.); (L.G.)
| | - Chenmin Hui
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; (H.L.); (O.Z.); (C.H.); (Y.H.); (H.S.); (M.S.); (L.G.)
| | - Yaxin Huang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; (H.L.); (O.Z.); (C.H.); (Y.H.); (H.S.); (M.S.); (L.G.)
| | - Hengrong Shao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; (H.L.); (O.Z.); (C.H.); (Y.H.); (H.S.); (M.S.); (L.G.)
| | - Menghui Song
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; (H.L.); (O.Z.); (C.H.); (Y.H.); (H.S.); (M.S.); (L.G.)
| | - Lingjia Gao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; (H.L.); (O.Z.); (C.H.); (Y.H.); (H.S.); (M.S.); (L.G.)
| | - Shengnan Jin
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; (H.L.); (O.Z.); (C.H.); (Y.H.); (H.S.); (M.S.); (L.G.)
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou 325035, China
| | - Chunming Ding
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; (H.L.); (O.Z.); (C.H.); (Y.H.); (H.S.); (M.S.); (L.G.)
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou 325035, China
| | - Liang Xu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; (H.L.); (O.Z.); (C.H.); (Y.H.); (H.S.); (M.S.); (L.G.)
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
5
|
Antiplatelet therapy associated with lower prevalence of advanced liver fibrosis in non-alcoholic fatty liver disease: A systematic review and meta-analysis. Indian J Gastroenterol 2022; 41:119-126. [PMID: 35318571 DOI: 10.1007/s12664-021-01230-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/15/2021] [Indexed: 02/04/2023]
Abstract
Despite the growing disease burden of non-alcoholic fatty liver disease (NAFLD), approved medical treatments to improve or prevent liver fibrosis are effective only in a small number of patients. Recent studies have found the new use of antiplatelet agents for antifibrotic benefits in NAFLD, but human studies are still limited. The goal of this meta-analysis was to combine the findings of existing relevant studies to investigate the effects of antiplatelet therapy in reducing or preventing advanced liver fibrosis in patients with NAFLD. We conducted a systematic literature search in PubMed, EMBASE, and Web of Science databases from inception to January 2021 to identify all original studies that investigated the use of antiplatelet agents in patients with NAFLD. We used the National Institutes of Health's quality assessment tool for observational cohort and cross-sectional studies to assess study quality and risk of bias. The primary outcome was the prevalence of advanced liver fibrosis stage 3-4. Data from each study was combined using the random-effects, generic inverse variance method of DerSimonian and Laird to calculate pooled odds ratio (OR) and 95% confidence intervals (CIs). Of the 2,498 studies identified, 4 studies involving 2,593 patients with NAFLD were included in this study (949 antiplatelet agent users and 1,644 non-antiplatelet agent users). The use of aspirin and/or P2Y12 receptor inhibitors was associated with a lower pooled OR of advanced liver fibrosis in patients with NAFLD (pooled OR = 0.66; 95% CI: 0.53-0.81, I2 = 0.0%; p < 0.001). This study focuses on the outcome of advanced liver fibrosis in patients with NAFLD. Our study is limited by the small number of studies that were included. Preliminary evidence from this meta-analysis suggests a protective association between antiplatelet therapy and the prevalence of advanced liver fibrosis in patients with NAFLD. Our findings support future research into repositioning an antiplatelet agent as a novel NAFLD treatment.
Collapse
|
6
|
Yu X, Zhang H, Pan J, Zou L, Tang L, Miao H, Zheng P, Xing L. Jiang Zhi Granule protects immunological barrier of intestinal mucosa in rats with non-alcoholic steatohepatitis. PHARMACEUTICAL BIOLOGY 2021; 59:1359-1368. [PMID: 34915801 PMCID: PMC8725831 DOI: 10.1080/13880209.2021.1979594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/09/2021] [Accepted: 09/07/2021] [Indexed: 06/14/2023]
Abstract
CONTEXT Jiang Zhi Granule (JZG) is known to improve hepatic function, reduce liver fat deposition and inflammation in non-alcoholic fatty liver disease (NAFLD). OBJECTIVE To determine the protective mechanism of JZG on immunological barrier of intestinal mucosa in rats with diet-induced non-alcoholic steatohepatitis (NASH). MATERIALS AND METHODS A Sprague-Dawley (SD) model of NASH was established using a high-fat diet and 1% dextran sulphate sodium (DSS) through drinking water. The rats were randomized into four groups and treated for four weeks, respectively, including normal control (NC), model control (MC), positive control (PC) and JZG. Mesenteric lymph nodes (MLNs) cells were isolated and cultured to assess a potential disruption of the enteric immune barrier. Also, investigation of intestinal mucosal dendritic cell-toll-like-receptor-myeloid differentiation primary response 88 (DC-TLR-MyD88) signalling pathway in vitro was examined. RESULTS The lethal concentration 50 (LD50) of JZG was greater than 5 g/kg, while its inhibitory concentration 50 (IC50) was 1359 μg/mL in HepG2. In JZG group, the plasma levels of alanine transaminase (ALT), aspartate transaminase (AST), malondialdehyde (MDA), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), triglyceride (TG) and serum endotoxin were significantly (p < 0.01) reduced. In contrast, plasma concentrations of high-density lipoprotein cholesterol (HDL-C) and superoxide dismutase (SOD) were increased. Furthermore, proinflammatory factor, interferon-γ (IFN-γ)+ from CD4+ T cells in DSS-induced NASH rats increased significantly (p < 0.01) compared to NC group. Importantly, JZG treatment substantially decreased (p < 0.01) the relative expressions of TLR-44 and MyD88. CONCLUSIONS JZG treatment may protect immunological barrier of intestinal mucosa in NASH individual.
Collapse
Affiliation(s)
- Xiao Yu
- Department II of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haiyan Zhang
- Department II of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jielu Pan
- Department II of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Zou
- Experiment Center for Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Tang
- Department II of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongyu Miao
- Department II of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peiyong Zheng
- Department II of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lianjun Xing
- Department II of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Tang R, Li R, Li H, Ma XL, Du P, Yu XY, Ren L, Wang LL, Zheng WS. Design of Hepatic Targeted Drug Delivery Systems for Natural Products: Insights into Nomenclature Revision of Nonalcoholic Fatty Liver Disease. ACS NANO 2021; 15:17016-17046. [PMID: 34705426 DOI: 10.1021/acsnano.1c02158] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), recently renamed metabolic-dysfunction-associated fatty liver disease (MAFLD), affects a quarter of the worldwide population. Natural products have been extensively utilized in treating NAFLD because of their distinctive advantages over chemotherapeutic drugs, despite the fact that there are no approved drugs for therapy. Notably, the limitations of many natural products, such as poor water solubility, low bioavailability in vivo, low hepatic distribution, and lack of targeted effects, have severely restricted their clinical application. These issues could be resolved via hepatic targeted drug delivery systems (HTDDS) that boost clinical efficacy in treating NAFLD and decrease the adverse effects on other organs. Herein an overview of natural products comprising formulas, single medicinal plants, and their crude extracts has been presented to treat NAFLD. Also, the clinical efficacy and molecular mechanism of active monomer compounds against NAFLD are systematically discussed. The targeted delivery of natural products via HTDDS has been explored to provide a different nanotechnology-based NAFLD treatment strategy and to make suggestions for natural-product-based targeted nanocarrier design. Finally, the challenges and opportunities put forth by the nomenclature update of NAFLD are outlined along with insights into how to improve the NAFLD therapy and how to design more rigorous nanocarriers for the HTDDS. In brief, we summarize the up-to-date developments of the NAFLD-HTDDS based on natural products and provide viewpoints for the establishment of more stringent anti-NAFLD natural-product-targeted nanoformulations.
Collapse
Affiliation(s)
- Rou Tang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Rui Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - He Li
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiao-Lei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Peng Du
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiao-You Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ling Ren
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lu-Lu Wang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wen-Sheng Zheng
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
8
|
Fouda S, Khan A, Chan S, Mahzari A, Zhou X, Qin C, Vlahos R, Ye JM. Exposure to cigarette smoke precipitates simple hepatosteatosis to NASH in high-fat diet fed mice by inducing oxidative stress. Clin Sci (Lond) 2021; 135:2103-2119. [PMID: 34427662 PMCID: PMC8436265 DOI: 10.1042/cs20210628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022]
Abstract
Consumption of diet rich in fat and cigarette smoking (CS) are independent risk factors of non-alcoholic steatohepatitis (NASH), and they often occur together in some populations. The present study investigated the mechanisms of high-fat diet (HFD) and CS, individually and in combination, on the pathogenesis of NASH in mice. C57BL/6 male mice were subjected to either a low-fat chow (CH) or HFD with or without mainstream CS-exposure (4 cigarettes/day, 5 days/ week for 14 weeks). HFD alone caused hepatosteatosis (2.5-fold increase in TG content) and a significant increase in 3-nitrotyrisine (by ∼40-fold) but without an indication of liver injury, inflammation or fibrosis. CS alone in CH-fed mice increased in Tnfα expression and macrophage infiltration by 2-fold and relatively less increase in 3-nitrotyrosine (18-fold). Combination of HFD and CS precipitated hepatosteatosis to NASH reflected by exacerbated makers of liver inflammation and fibrosis which were associated with much severe liver oxidative stress (90-fold increase in 3-nitrotyrisine along with 6-fold increase in carbonylated proteins and 56% increase in lipid oxidations). Further studies were performed to administer the antioxidant tempol to CS exposed HFD mice and the results showed that the inhibition of liver oxidative stress prevented inflammatory and fibrotic changes in liver despite persisting hepatosteatosis. Our findings suggest that oxidative stress is a key mechanism underlying CS-promoted progression of simple hepatosteatosis to NASH. Targeting hepatic oxidative stress may be a viable strategy in halting the progression of metabolic associated fatty liver disease.
Collapse
Affiliation(s)
- Sherouk Fouda
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Anwar Khan
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Stanley M.H. Chan
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Ali Mahzari
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha 65527, Saudi Arabia
| | - Xiu Zhou
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Cheng Xue Qin
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, VIC, Australia
| | - Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Ji-Ming Ye
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Chen Y, Jiang Z, Xu J, Zhang J, Sun R, Zhou J, Lu Y, Gong Z, Huang J, Shen X, Du Q, Peng J. Improving the ameliorative effects of berberine and curcumin combination via dextran-coated bilosomes on non-alcohol fatty liver disease in mice. J Nanobiotechnology 2021; 19:230. [PMID: 34348707 PMCID: PMC8336351 DOI: 10.1186/s12951-021-00979-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Background The combination of berberine (BER) and curcumin (CUR) has been verified with ameliorative effects on non-alcohol fatty liver disease (NAFLD). However, discrepant bioavailability and biodistribution of BER and CUR remained an obstacle to achieve synergistic effects. Multilayer nanovesicles have great potential for the protection and oral delivery of drug combinations. Therein lies bile salts inserted liposomes, named as bilosomes, that possesses long residence time in the gastrointestinal tract (GIT) and permeability across the small intestine. Diethylaminoethyl dextran (DEAE-DEX) is generally used as an outside layer on the nanovesicles to increase the mucinous stability and promote oral absorption. Herein, we developed a DEAE-DEX-coated bilosome with BER and CUR encapsulated (DEAE-DEX@LSDBC) for the treatment of NAFLD. Results DEAE-DEX@LSDBC with 150 nm size exhibited enhanced permeation across mucus and Caco-2 monolayer. In vivo pharmacokinetics study demonstrated that DEAE-DEX@LSDBC profoundly prolonged the circulation time and improved the oral absorption of both BER and CUR. Intriguingly, synchronized biodistribution of BER and CUR and highest biodistribution at liver was achieved by DEAE-DEX@LSDBC, which contributed to the optimal ameliorative effects on NAFLD. It was further verified to be mainly mediated by anti-oxidation and anti-inflammation related pathways Conclusion DEAE-DEX coated bilosome displayed promoted oral absorption, prolonged circulation and synchronized biodistribution of BER and CUR, leading to improved ameliorative effects on NAFLD in mice, which provided a promising strategy for oral administration of drug combinations. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00979-1.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.,Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Zhaohui Jiang
- Department of Clinical Laboratory, The First People's Hospital of Guiyang, Guiyang, 550002, China
| | - Jinzhuan Xu
- Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Jiyuan Zhang
- Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Runbin Sun
- Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jia Zhou
- Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Yuan Lu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| | - Jing Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| | - Xiangchun Shen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.,Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Qianming Du
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China. .,Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Jianqing Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China. .,Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
10
|
Komolafe O, Buzzetti E, Linden A, Best LM, Madden AM, Roberts D, Chase TJ, Fritche D, Freeman SC, Cooper NJ, Sutton AJ, Milne EJ, Wright K, Pavlov CS, Davidson BR, Tsochatzis E, Gurusamy KS. Nutritional supplementation for nonalcohol-related fatty liver disease: a network meta-analysis. Cochrane Database Syst Rev 2021; 7:CD013157. [PMID: 34280304 PMCID: PMC8406904 DOI: 10.1002/14651858.cd013157.pub2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND The prevalence of non-alcohol-related fatty liver disease (NAFLD) varies between 19% and 33% in different populations. NAFLD decreases life expectancy and increases risks of liver cirrhosis, hepatocellular carcinoma, and the requirement for liver transplantation. Uncertainty surrounds relative benefits and harms of various nutritional supplements in NAFLD. Currently no nutritional supplement is recommended for people with NAFLD. OBJECTIVES • To assess the benefits and harms of different nutritional supplements for treatment of NAFLD through a network meta-analysis • To generate rankings of different nutritional supplements according to their safety and efficacy SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials, MEDLINE, Embase, Science Citation Index Expanded, Conference Proceedings Citation Index-Science, the World Health Organization International Clinical Trials Registry Platform, and trials registers until February 2021 to identify randomised clinical trials in people with NAFLD. SELECTION CRITERIA We included only randomised clinical trials (irrespective of language, blinding, or status) for people with NAFLD, irrespective of method of diagnosis, age and diabetic status of participants, or presence of non-alcoholic steatohepatitis (NASH). We excluded randomised clinical trials in which participants had previously undergone liver transplantation. DATA COLLECTION AND ANALYSIS We performed a network meta-analysis with OpenBUGS using Bayesian methods whenever possible and calculated differences in treatments using hazard ratios (HRs), odds ratios (ORs), and rate ratios with 95% credible intervals (CrIs) based on an available-case analysis, according to National Institute of Health and Care Excellence Decision Support Unit guidance. MAIN RESULTS We included in the review a total of 202 randomised clinical trials (14,200 participants). Nineteen trials were at low risk of bias. A total of 32 different interventions were compared in these trials. A total of 115 trials (7732 participants) were included in one or more comparisons. The remaining trials did not report any of the outcomes of interest for this review. Follow-up ranged from 1 month to 28 months. The follow-up period in trials that reported clinical outcomes was 2 months to 28 months. During this follow-up period, clinical events related to NAFLD such as mortality, liver cirrhosis, liver decompensation, liver transplantation, hepatocellular carcinoma, and liver-related mortality were sparse. We did not calculate effect estimates for mortality because of sparse data (zero events for at least one of the groups in the trial). None of the trials reported that they measured overall health-related quality of life using a validated scale. The evidence is very uncertain about effects of interventions on serious adverse events (number of people or number of events). We are very uncertain about effects on adverse events of most of the supplements that we investigated, as the evidence is of very low certainty. However, people taking PUFA (polyunsaturated fatty acid) may be more likely to experience an adverse event than those not receiving an active intervention (network meta-analysis results: OR 4.44, 95% CrI 2.40 to 8.48; low-certainty evidence; 4 trials, 203 participants; direct evidence: OR 4.43, 95% CrI 2.43 to 8.42). People who take other supplements (a category that includes nutritional supplements other than vitamins, fatty acids, phospholipids, and antioxidants) had higher numbers of adverse events than those not receiving an active intervention (network meta-analysis: rate ratio 1.73, 95% CrI 1.26 to 2.41; 6 trials, 291 participants; direct evidence: rate ratio 1.72, 95% CrI 1.25 to 2.40; low-certainty evidence). Data were sparse (zero events in all groups in the trial) for liver transplantation, liver decompensation, and hepatocellular carcinoma. So, we did not perform formal analysis for these outcomes. The evidence is very uncertain about effects of other antioxidants (antioxidants other than vitamins) compared to no active intervention on liver cirrhosis (HR 1.68, 95% CrI 0.23 to 15.10; 1 trial, 99 participants; very low-certainty evidence). The evidence is very uncertain about effects of interventions in any of the remaining comparisons, or data were sparse (with zero events in at least one of the groups), precluding formal calculations of effect estimates. Data were probably because of the very short follow-up period (2 months to 28 months). It takes follow-up of 8 to 28 years to detect differences in mortality between people with NAFLD and the general population. Therefore, it is unlikely that differences in clinical outcomes are noted in trials providing less than 5 to 10 years of follow-up. AUTHORS' CONCLUSIONS The evidence indicates considerable uncertainty about effects of nutritional supplementation compared to no additional intervention on all clinical outcomes for people with non-alcohol-related fatty liver disease. Accordingly, high-quality randomised comparative clinical trials with adequate follow-up are needed. We propose registry-based randomised clinical trials or cohort multiple randomised clinical trials (study design in which multiple interventions are trialed within large longitudinal cohorts of patients to gain efficiencies and align trials more closely to standard clinical practice) comparing interventions such as vitamin E, prebiotics/probiotics/synbiotics, PUFAs, and no nutritional supplementation. The reason for the choice of interventions is the impact of these interventions on indirect outcomes, which may translate to clinical benefit. Outcomes in such trials should be mortality, health-related quality of life, decompensated liver cirrhosis, liver transplantation, and resource utilisation measures including costs of intervention and decreased healthcare utilisation after minimum follow-up of 8 years (to find meaningful differences in clinically important outcomes).
Collapse
Affiliation(s)
| | - Elena Buzzetti
- Sheila Sherlock Liver Centre, Royal Free Hospital and the UCL Institute of Liver and Digestive Health, London, UK
| | - Audrey Linden
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Lawrence Mj Best
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Angela M Madden
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Danielle Roberts
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Thomas Jg Chase
- Department of General Surgery, Homerton University Hospital NHS Foundation Trust, London, UK
| | | | - Suzanne C Freeman
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Nicola J Cooper
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Alex J Sutton
- Department of Health Sciences, University of Leicester, Leicester, UK
| | | | - Kathy Wright
- Cochrane Hepato-Biliary Group, Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region of Denmark, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Chavdar S Pavlov
- Department of Therapy, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Brian R Davidson
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Emmanuel Tsochatzis
- Sheila Sherlock Liver Centre, Royal Free Hospital and the UCL Institute of Liver and Digestive Health, London, UK
| | - Kurinchi Selvan Gurusamy
- Division of Surgery and Interventional Science, University College London, London, UK
- Department of Therapy, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
11
|
Buzzetti E, Linden A, Best LM, Madden AM, Roberts D, Chase TJG, Freeman SC, Cooper NJ, Sutton AJ, Fritche D, Milne EJ, Wright K, Pavlov CS, Davidson BR, Tsochatzis E, Gurusamy KS. Lifestyle modifications for nonalcohol-related fatty liver disease: a network meta-analysis. Cochrane Database Syst Rev 2021; 6:CD013156. [PMID: 34114650 PMCID: PMC8193812 DOI: 10.1002/14651858.cd013156.pub2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The prevalence of nonalcohol-related fatty liver disease (NAFLD) varies between 19% and 33% in different populations. NAFLD decreases life expectancy and increases the risks of liver cirrhosis, hepatocellular carcinoma, and requirement for liver transplantation. There is uncertainty surrounding the relative benefits and harms of various lifestyle interventions for people with NAFLD. OBJECTIVES To assess the comparative benefits and harms of different lifestyle interventions in the treatment of NAFLD through a network meta-analysis, and to generate rankings of the different lifestyle interventions according to their safety and efficacy. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, Science Citation Index Expanded, Conference Proceedings Citation Index - Science, World Health Organization International Clinical Trials Registry Platform, and trials registers until February 2021 to identify randomised clinical trials in people with NAFLD. SELECTION CRITERIA We included only randomised clinical trials (irrespective of language, blinding, or status) in people with NAFLD, whatever the method of diagnosis, age, and diabetic status of participants, or presence of non-alcoholic steatohepatitis (NASH). We excluded randomised clinical trials in which participants had previously undergone liver transplantation. DATA COLLECTION AND ANALYSIS We planned to perform a network meta-analysis with OpenBUGS using Bayesian methods and to calculate the differences in treatments using hazard ratios (HRs), odds ratios (ORs), and rate ratios (RaRs) with 95% credible intervals (CrIs) based on an available-participant analysis, according to National Institute of Health and Care Excellence Decision Support Unit guidance. However, the data were too sparse for the clinical outcomes. We therefore performed only direct comparisons (head-to-head comparisons) with OpenBUGS using Bayesian methods. MAIN RESULTS We included a total of 59 randomised clinical trials (3631 participants) in the review. All but two trials were at high risk of bias. A total of 33 different interventions, ranging from advice to supervised exercise and special diets, or a combination of these and no additional intervention were compared in these trials. The reference treatment was no active intervention. Twenty-eight trials (1942 participants) were included in one or more comparisons. The follow-up ranged from 1 month to 24 months. The remaining trials did not report any of the outcomes of interest for this review. The follow-up period in the trials that reported clinical outcomes was 2 months to 24 months. During this short follow-up period, clinical events related to NAFLD such as mortality, liver cirrhosis, liver decompensation, liver transplantation, hepatocellular carcinoma, and liver-related mortality were sparse. This is probably because of the very short follow-up periods. It takes a follow-up of 8 years to 28 years to detect differences in mortality between people with NAFLD and the general population. It is therefore unlikely that differences by clinical outcomes will be noted in trials with less than 5 years to 10 years of follow-up. In one trial, one participant developed an adverse event. There were no adverse events in any of the remaining participants in this trial, or in any of the remaining trials, which seemed to be directly related to the intervention. AUTHORS' CONCLUSIONS The evidence indicates considerable uncertainty about the effects of the lifestyle interventions compared with no additional intervention (to general public health advice) on any of the clinical outcomes after a short follow-up period of 2 months to 24 months in people with nonalcohol-related fatty liver disease. Accordingly, high-quality randomised clinical trials with adequate follow-up are needed. We propose registry-based randomised clinical trials or cohort multiple randomised clinical trials (a study design in which multiple interventions are trialed within large longitudinal cohorts of participants to gain efficiencies and align trials more closely to standard clinical practice), comparing aerobic exercise and dietary advice versus standard of care (exercise and dietary advice received as part of national health promotion). The reason for the choice of aerobic exercise and dietary advice is the impact of these interventions on indirect outcomes which may translate to clinical benefit. The outcomes in such trials should be mortality, health-related quality of life, decompensated liver cirrhosis, liver transplantation, and resource use measures including costs of intervention and decreased healthcare use after a minimum follow-up of eight years, to find meaningful differences in the clinically important outcomes.
Collapse
Affiliation(s)
- Elena Buzzetti
- Sheila Sherlock Liver Centre, Royal Free Hospital and the UCL Institute of Liver and Digestive Health, London, UK
| | - Audrey Linden
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Lawrence Mj Best
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Angela M Madden
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Danielle Roberts
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Thomas J G Chase
- Department of General Surgery, Homerton University Hospital NHS Foundation Trust, London, UK
| | - Suzanne C Freeman
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Nicola J Cooper
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Alex J Sutton
- Department of Health Sciences, University of Leicester, Leicester, UK
| | | | | | - Kathy Wright
- Cochrane Hepato-Biliary Group, Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region of Denmark, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Chavdar S Pavlov
- Department of Therapy, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Brian R Davidson
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Emmanuel Tsochatzis
- Sheila Sherlock Liver Centre, Royal Free Hospital and the UCL Institute of Liver and Digestive Health, London, UK
| | - Kurinchi Selvan Gurusamy
- Division of Surgery and Interventional Science, University College London, London, UK
- Department of Therapy, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
12
|
Di Ciaula A, Passarella S, Shanmugam H, Noviello M, Bonfrate L, Wang DQH, Portincasa P. Nonalcoholic Fatty Liver Disease (NAFLD). Mitochondria as Players and Targets of Therapies? Int J Mol Sci 2021; 22:ijms22105375. [PMID: 34065331 PMCID: PMC8160908 DOI: 10.3390/ijms22105375] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and represents the hepatic expression of several metabolic abnormalities of high epidemiologic relevance. Fat accumulation in the hepatocytes results in cellular fragility and risk of progression toward necroinflammation, i.e., nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and eventually hepatocellular carcinoma. Several pathways contribute to fat accumulation and damage in the liver and can also involve the mitochondria, whose functional integrity is essential to maintain liver bioenergetics. In NAFLD/NASH, both structural and functional mitochondrial abnormalities occur and can involve mitochondrial electron transport chain, decreased mitochondrial β-oxidation of free fatty acids, excessive generation of reactive oxygen species, and lipid peroxidation. NASH is a major target of therapy, but there is no established single or combined treatment so far. Notably, translational and clinical studies point to mitochondria as future therapeutic targets in NAFLD since the prevention of mitochondrial damage could improve liver bioenergetics.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
| | - Salvatore Passarella
- School of Medicine, University of Bari Medical School, 70124 Bari, Italy
- Correspondence: (S.P.); (P.P.); Tel.: +39-328-468-7215 (P.P.)
| | - Harshitha Shanmugam
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
| | - Marica Noviello
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
| | - Leonilde Bonfrate
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Piero Portincasa
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
- Correspondence: (S.P.); (P.P.); Tel.: +39-328-468-7215 (P.P.)
| |
Collapse
|
13
|
Grattagliano I, Di Ciaula A, Baj J, Molina-Molina E, Shanmugam H, Garruti G, Wang DQH, Portincasa P. Protocols for Mitochondria as the Target of Pharmacological Therapy in the Context of Nonalcoholic Fatty Liver Disease (NAFLD). Methods Mol Biol 2021; 2310:201-246. [PMID: 34096005 PMCID: PMC8580566 DOI: 10.1007/978-1-0716-1433-4_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most frequent metabolic chronic liver diseases in developed countries and puts the populations at risk of progression to liver necro-inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma. Mitochondrial dysfunction is involved in the onset of NAFLD and contributes to the progression from NAFLD to nonalcoholic steatohepatitis (NASH). Thus, liver mitochondria could become the target for treatments for improving liver function in NAFLD patients. This chapter describes the most important steps used for potential therapeutic interventions in NAFLD patients, discusses current options gathered from both experimental and clinical evidence, and presents some novel options for potentially improving mitochondrial function in NAFLD.
Collapse
Affiliation(s)
- Ignazio Grattagliano
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
- Italian College of General Practitioners and Primary Care, Bari, Italy
| | - Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, Lublin, Poland
| | - Emilio Molina-Molina
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Harshitha Shanmugam
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Gabriella Garruti
- Section of Endocrinology, Department of Emergency and Organ Transplantations, University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - David Q-H Wang
- Division of Gastroenterology and Liver Diseases, Department of Medicine and Genetics, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
14
|
Pani A, Giossi R, Menichelli D, Fittipaldo VA, Agnelli F, Inglese E, Romandini A, Roncato R, Pintaudi B, Del Sole F, Scaglione F. Inositol and Non-Alcoholic Fatty Liver Disease: A Systematic Review on Deficiencies and Supplementation. Nutrients 2020; 12:nu12113379. [PMID: 33153126 PMCID: PMC7694137 DOI: 10.3390/nu12113379] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022] Open
Abstract
Liver lipid accumulation is a hallmark of non-alcoholic fatty liver disease (NAFLD), broadly associated with insulin resistance. Inositols (INS) are ubiquitous polyols implied in many physiological functions. They are produced endogenously, are present in many foods and in dietary supplements. Alterations in INS metabolism seems to play a role in diseases involving insulin resistance such as diabetes and polycystic ovary syndrome. Given its role in other metabolic syndromes, the hypothesis of an INS role as a supplement in NAFLD is intriguing. We performed a systematic review of the literature to find preclinical and clinical evidence of INS supplementation efficacy in NAFLD patients. We retrieved 10 studies on animal models assessing Myoinosiol or Pinitol deficiency or supplementation and one human randomized controlled trial (RCT). Overall, INS deficiency was associated with increased fatty liver in animals. Conversely, INS supplementation in animal models of fatty liver reduced hepatic triglycerides and cholesterol accumulation and maintained a normal ultrastructural liver histopathology. In the one included RCT, Pinitol supplementation obtained similar results. Pinitol significantly reduced liver fat, post-prandial triglycerides, AST levels, lipid peroxidation increasing glutathione peroxidase activity. These results, despite being limited, indicate the need for further evaluation of INS in NAFLD in larger clinical trials.
Collapse
Affiliation(s)
- Arianna Pani
- Department of Oncology and Hemato-oncology, Postgraduate School of Clinical Pharmacology, University of Milan, 20129 Milan, Italy; (A.P.); (R.G.); (A.R.); (R.R.); (F.S.)
- Department of Neuroimmunology and Neuromuscular Diseases, Fondazione I.R.C.C.S., Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Riccardo Giossi
- Department of Oncology and Hemato-oncology, Postgraduate School of Clinical Pharmacology, University of Milan, 20129 Milan, Italy; (A.P.); (R.G.); (A.R.); (R.R.); (F.S.)
- Department of Neuroimmunology and Neuromuscular Diseases, Fondazione I.R.C.C.S., Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Danilo Menichelli
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Atherothrombosis Center, I Medical Clinic l, Sapienza University of Rome, 00161 Rome, Italy;
- Correspondence:
| | | | - Francesca Agnelli
- Internal Medicine Department, ASST Great Metropolitan Hospital Niguarda, 20162 Milan, Italy;
| | - Elvira Inglese
- Department of Laboratory Medicine, ASST Great Metropolitan Hospital Niguarda, 20162 Milan, Italy;
| | - Alessandra Romandini
- Department of Oncology and Hemato-oncology, Postgraduate School of Clinical Pharmacology, University of Milan, 20129 Milan, Italy; (A.P.); (R.G.); (A.R.); (R.R.); (F.S.)
| | - Rossana Roncato
- Department of Oncology and Hemato-oncology, Postgraduate School of Clinical Pharmacology, University of Milan, 20129 Milan, Italy; (A.P.); (R.G.); (A.R.); (R.R.); (F.S.)
- Experimental & Clinical Pharmacology Unit, Oncology Referral Center (CRO), IRCCS, 33081 Aviano, Italy
| | - Basilio Pintaudi
- SSD Diabetes Unit, ASST Great Metropolitan Hospital Niguarda, 20162 Milan, Italy;
| | - Francesco Del Sole
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Atherothrombosis Center, I Medical Clinic l, Sapienza University of Rome, 00161 Rome, Italy;
| | - Francesco Scaglione
- Department of Oncology and Hemato-oncology, Postgraduate School of Clinical Pharmacology, University of Milan, 20129 Milan, Italy; (A.P.); (R.G.); (A.R.); (R.R.); (F.S.)
- Department of Laboratory Medicine, ASST Great Metropolitan Hospital Niguarda, 20162 Milan, Italy;
| |
Collapse
|
15
|
Hypothyroidism-Induced Nonalcoholic Fatty Liver Disease (HIN): Mechanisms and Emerging Therapeutic Options. Int J Mol Sci 2020; 21:ijms21165927. [PMID: 32824723 PMCID: PMC7460638 DOI: 10.3390/ijms21165927] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is an emerging worldwide problem and its association with other metabolic pathologies has been one of the main research topics in the last decade. The aim of this review article is to provide an up-to-date correlation between hypothyroidism and NAFLD. We followed evidence regarding epidemiological impact, immunopathogenesis, thyroid hormone-liver axis, lipid and cholesterol metabolism, insulin resistance, oxidative stress, and inflammation. After evaluating the influence of thyroid hormone imbalance on liver structure and function, the latest studies have focused on developing new therapeutic strategies. Thyroid hormones (THs) along with their metabolites and thyroid hormone receptor β (THR-β) agonist are the main therapeutic targets. Other liver specific analogs and alternative treatments have been tested in the last few years as potential NAFLD therapy. Finally, we concluded that further research is necessary as well as the need for an extensive evaluation of thyroid function in NAFLD/NASH patients, aiming for better management and outcome.
Collapse
|
16
|
Turankova T, Blyuss O, Brazhnikov A, Svistunov A, Gurusamy KS, Pavlov CS. Transient elastography with controlled attenuation parameter (CAP) for diagnosis of moderate or severe steatosis in people with suspected non-alcoholic fatty liver disease. Hippokratia 2020. [DOI: 10.1002/14651858.cd013670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Taisiia Turankova
- Department of Therapy; I.M. Sechenov First Moscow State Medical University; Moscow Russian Federation
| | - Oleg Blyuss
- School of Physics, Astronomy and Mathematics; University of Hertfordshire; Hatfield UK
- Department of Paediatrics and Paediatric Infectious Diseases; I.M. Sechenov First Moscow State Medical University; Moscow Russian Federation
- Department of Applied Mathematics; Lobachevsky State University of Nizhny Novgorod; Nizhny Novgorod Russian Federation
| | - Alexey Brazhnikov
- Department of Epidemiology and Evidence-Based Medicine; I.M. Sechenov First Moscow State Medical University; Moscow Russian Federation
| | - Andrey Svistunov
- I.M. Sechenov First Moscow State Medical University; Moscow Russian Federation
| | - Kurinchi Selvan Gurusamy
- Department of Therapy; I.M. Sechenov First Moscow State Medical University; Moscow Russian Federation
- Division of Surgery and Interventional Science; University College London; London UK
| | - Chavdar S Pavlov
- Department of Therapy; I.M. Sechenov First Moscow State Medical University; Moscow Russian Federation
- Cochrane Hepato-Biliary Group; Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University Hospital; Copenhagen Denmark
| |
Collapse
|
17
|
Gut metabolites and inflammation factors in non-alcoholic fatty liver disease: A systematic review and meta-analysis. Sci Rep 2020; 10:8848. [PMID: 32483129 PMCID: PMC7264254 DOI: 10.1038/s41598-020-65051-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/23/2020] [Indexed: 01/30/2023] Open
Abstract
The interaction of gut microbiota, related metabolites and inflammation factors with nonalcoholic fatty liver disease (NAFLD) remains unclearly defined. The aim of this systematic review and meta-analysis was to synthesize previous study findings to better understand this interaction. Relevant research articles published not later than September, 2019 were searched in the following databases: Web of Science, PubMed, Embase, and Cochrane Library. The search strategy and inclusion criteria for this study yielded a total of 47 studies, of which only 11 were eligible for meta-analysis. The narrative analysis of these articles found that there is interplay between the key gut microbiota, related metabolites and inflammation factors, which modulate the development and progression of NAFLD. In addition, the results of meta-analysis showed that probiotic supplementation significantly decreased tumor necrosis factor-α (TNF-α) in NAFLD patients (standardized mean difference (SMD) = −0.52, confidence interval (CI): −0.86 to −0.18, and p = 0.003) and C-reactive protein (CRP) (SMD = −0.62, CI: −0.80 to −0.43, and p < 0.001). However, whether therapies can target TNF-α and CRP in order treat NAFLD still needs further investigation. Therefore, these results suggest that the interaction of the key gut microbiota, related metabolites and inflammation factors with NAFLD may provide a novel therapeutic target for the clinical and pharmacological treatment of NAFLD.
Collapse
|
18
|
Verzijl CRC, Van De Peppel IP, Struik D, Jonker JW. Pegbelfermin (BMS-986036): an investigational PEGylated fibroblast growth factor 21 analogue for the treatment of nonalcoholic steatohepatitis. Expert Opin Investig Drugs 2020; 29:125-133. [PMID: 31899984 DOI: 10.1080/13543784.2020.1708898] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction: Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide and is strongly associated with obesity and insulin resistance. NAFLD refers to a spectrum of disorders ranging from asymptomatic hepatic steatosis (nonalcoholic fatty liver, NAFL) to nonalcoholic steatohepatitis (NASH), which increases the risk of developing more severe forms of liver disease such as progressive fibrosis, cirrhosis, and liver cancer. Currently, there are no food and drug administration (FDA) approved drugs to treat NASH. Pegbelfermin (BMS-986036) is a PEGylated fibroblast growth factor 21 (FGF21) analogue that is under investigation for the treatment of NASH.Areas covered: We reviewed the (pre)clinical pegbelfermin studies and compared these with other studies that assessed FGF21 and FGF21 analogues in the treatment of NASH.Expert opinion: With no FDA approved treatments available for NASH, there is an urgent need for novel therapies. Pegbelfermin is a systemic treatment with pleiotropic effects on various tissues. Short-term adverse effects are limited, but more research is required to study potential long-term safety issues. In a phase 2a trial, pegbelfermin has shown promising improvements in several NASH related outcomes. However, clinical trials demonstrating long-term benefits on hard outcomes such as liver histology, cirrhosis development, or survival are required for further validation.
Collapse
Affiliation(s)
- Cristy R C Verzijl
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ivo P Van De Peppel
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dicky Struik
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Johan W Jonker
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
19
|
Wang X, Sommerfeld MR, Jahn-Hofmann K, Cai B, Filliol A, Remotti HE, Schwabe RF, Kannt A, Tabas I. A Therapeutic Silencing RNA Targeting Hepatocyte TAZ Prevents and Reverses Fibrosis in Nonalcoholic Steatohepatitis in Mice. Hepatol Commun 2019; 3:1221-1234. [PMID: 31497743 PMCID: PMC6719739 DOI: 10.1002/hep4.1405] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/28/2019] [Indexed: 12/31/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is emerging as a major public health issue and is associated with significant liver-related morbidity and mortality. At present, there are no approved drug therapies for NASH. The transcriptional coactivator with PDZ-binding motif (TAZ; encoded by WW domain-containing transcription regulator 1 [WWTR1]) is up-regulated in hepatocytes in NASH liver from humans and has been shown to causally promote inflammation and fibrosis in mouse models of NASH. As a preclinical test of targeting hepatocyte TAZ to treat NASH, we injected stabilized TAZ small interfering RNA (siRNA) bearing the hepatocyte-specific ligand N-acetylgalactosamine (GalNAc-siTAZ) into mice with dietary-induced NASH. As a preventative regimen, GalNAc-siTAZ inhibited inflammation, hepatocellular injury, and the expression of profibrogenic mediators, accompanied by decreased progression from steatosis to NASH. When administered to mice with established NASH, GalNAc-siTAZ partially reversed hepatic inflammation, injury, and fibrosis. Conclusion: Hepatocyte-targeted siTAZ is potentially a novel and clinically feasible treatment for NASH.
Collapse
Affiliation(s)
- Xiaobo Wang
- Department of Medicine Columbia University Irving Medical Center New York NY
| | | | | | - Bishuang Cai
- Department of Medicine Columbia University Irving Medical Center New York NY
| | - Aveline Filliol
- Department of Medicine Columbia University Irving Medical Center New York NY
| | - Helen E Remotti
- Department of Pathology and Cell Biology Columbia University Irving Medical Center New York NY
| | - Robert F Schwabe
- Department of Medicine Columbia University Irving Medical Center New York NY
| | - Aimo Kannt
- Sanofi-Aventis Deutschland GmbH Frankfurt am Main Germany.,Institute of Experimental Pharmacology, Medical Faculty Mannheim University of Heidelberg Mannheim Germany
| | - Ira Tabas
- Department of Medicine Columbia University Irving Medical Center New York NY.,Department of Pathology and Cell Biology Columbia University Irving Medical Center New York NY.,Department of Physiology and Cellular Biophysics Columbia University Irving Medical Center New York NY
| |
Collapse
|
20
|
Nakada EM, Bhakta NR, Korwin-Mihavics BR, Kumar A, Chamberlain N, Bruno SR, Chapman DG, Hoffman SM, Daphtary N, Aliyeva M, Irvin CG, Dixon AE, Woodruff PG, Amin S, Poynter ME, Desai DH, Anathy V. Conjugated bile acids attenuate allergen-induced airway inflammation and hyperresponsiveness by inhibiting UPR transducers. JCI Insight 2019; 4:98101. [PMID: 31045581 DOI: 10.1172/jci.insight.98101] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/02/2019] [Indexed: 12/14/2022] Open
Abstract
Conjugated bile acids (CBAs), such as tauroursodeoxycholic acid (TUDCA), are known to resolve the inflammatory and unfolded protein response (UPR) in inflammatory diseases, such as asthma. Whether CBAs exert their beneficial effects on allergic airway responses via 1 arm or several arms of the UPR, or alternatively through the signaling pathways for conserved bile acid receptor, remains largely unknown. We used a house dust mite-induced (HDM-induced) murine model of asthma to evaluate and compare the effects of 5 CBAs and 1 unconjugated bile acid in attenuating allergen-induced UPR and airway responses. Expression of UPR-associated transcripts was assessed in airway brushings from human patients with asthma and healthy subjects. Here we show that CBAs, such as alanyl β-muricholic acid (AβM) and TUDCA, significantly decreased inflammatory, immune, and cytokine responses; mucus metaplasia; and airway hyperresponsiveness, as compared with other CBAs in a model of allergic airway disease. CBAs predominantly bind to activating transcription factor 6α (ATF6α) compared with the other canonical transducers of the UPR, subsequently decreasing allergen-induced UPR activation and resolving allergic airway disease, without significant activation of the bile acid receptors. TUDCA and AβM also attenuated other HDM-induced ER stress markers in the lungs of allergic mice. Quantitative mRNA analysis of airway epithelial brushings from human subjects demonstrated that several ATF6α-related transcripts were significantly upregulated in patients with asthma compared with healthy subjects. Collectively, these results demonstrate that CBA-based therapy potently inhibits the allergen-induced UPR and allergic airway disease in mice via preferential binding of the canonical transducer of the UPR, ATF6α. These results potentially suggest a novel avenue to treat allergic asthma using select CBAs.
Collapse
Affiliation(s)
- Emily M Nakada
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Nirav R Bhakta
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, UCSF School of Medicine, San Francisco, California, USA
| | - Bethany R Korwin-Mihavics
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Amit Kumar
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Nicolas Chamberlain
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Sierra R Bruno
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - David G Chapman
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA.,Translational Airways Group, Discipline of Medical Science, University of Technology Sydney, Ultimo, Australia.,Woolcock Institute of Medical Research, University of Sydney, Glebe, Australia
| | - Sidra M Hoffman
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Nirav Daphtary
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Minara Aliyeva
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Charles G Irvin
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Anne E Dixon
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Prescott G Woodruff
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, UCSF School of Medicine, San Francisco, California, USA
| | - Shantu Amin
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Matthew E Poynter
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Dhimant H Desai
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| |
Collapse
|
21
|
Varganova DL, Pavlov CS, Casazza G, Nikolova D, Gluud C. Essential phospholipids for people with non-alcoholic fatty liver disease. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2019. [DOI: 10.1002/14651858.cd013301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Daria L Varganova
- Ulyanovsk Regional Clinical Hospital; Department of Gastroenterology; International 3 Ulyanovsk Russian Federation 432063
- Center for Evidence-Based Medicine; 'Sechenov' First Moscow State Medical University; Pogodinskaya 1 Moscow Russian Federation 119991
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University Hospital; Cochrane Hepato-Biliary Group; Blegdamsvej 9 Copenhagen Sjaelland Denmark DK-2100
| | - Chavdar S Pavlov
- Center for Evidence-Based Medicine; 'Sechenov' First Moscow State Medical University; Pogodinskaya 1 Moscow Russian Federation 119991
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University Hospital; Cochrane Hepato-Biliary Group; Blegdamsvej 9 Copenhagen Sjaelland Denmark DK-2100
- Kazan Federal University; 18 Kremlyovskaya Kazan Russian Federation 420008
| | - Giovanni Casazza
- Università degli Studi di Milano; Dipartimento di Scienze Biomediche e Cliniche "L. Sacco"; via GB Grassi 74 Milan Italy 20157
| | - Dimitrinka Nikolova
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University Hospital; Cochrane Hepato-Biliary Group; Blegdamsvej 9 Copenhagen Sjaelland Denmark DK-2100
| | - Christian Gluud
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University Hospital; Cochrane Hepato-Biliary Group; Blegdamsvej 9 Copenhagen Sjaelland Denmark DK-2100
| |
Collapse
|
22
|
Gurusamy KS, Walmsley M, Davidson BR, Frier C, Fuller B, Madden A, Masson S, Morley R, Safarik I, Tsochatzis EA, Ahmed I, Cowlin M, Dillon JF, Ellicott G, Elsharkawy AM, Farrington L, Glachan A, Kumar N, Milne EJ, Rushbrook SM, Smith A, Stafford L, Yeoman A. Top research priorities in liver and gallbladder disorders in the UK. BMJ Open 2019; 9:e025045. [PMID: 30850408 PMCID: PMC6429888 DOI: 10.1136/bmjopen-2018-025045] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES There is a mismatch between research questions considered important by patients, carers and healthcare professionals and the research performed in many fields of medicine. The non-alcohol-related liver and gallbladder disorders priority setting partnership was established to identify the top research priorities in the prevention, diagnostic and treatment of gallbladder disorders and liver disorders not covered by the James-Lind Alliance (JLA) alcohol-related liver disease priority setting partnership. DESIGN The methods broadly followed the principles of the JLA guidebook. The one major deviation from the JLA methodology was the final step of identifying priorities: instead of prioritisation by group discussions at a consensus workshop involving stakeholders, the prioritisation was achieved by a modified Delphi consensus process. RESULTS A total of 428 unique valid diagnostic or treatment research questions were identified. A literature review established that none of these questions were considered 'answered' that is, high-quality systematic reviews suggest that further research is not required on the topic. The Delphi panel achieved consensus (at least 80% Delphi panel members agreed) that a research question was a top research priority for six questions. Four additional research questions with highest proportion of Delphi panel members ranking the question as highly important were added to constitute the top 10 research priorities. CONCLUSIONS A priority setting process involving patients, carers and healthcare professionals has been used to identify the top 10priority areas for research related to liver and gallbladder disorders. Basic, translational, clinical and public health research are required to address these uncertainties.
Collapse
Affiliation(s)
- Kurinchi S Gurusamy
- Division of Surgery and Interventional Science, University College London, London, UK
| | | | - Brian R Davidson
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Claire Frier
- HPB Surgery, Royal Free London NHS Foundation Trust, London, UK
| | - Barry Fuller
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Angela Madden
- Nutrition and Dietetics, University of Hertfordshire, Hatfield, UK
| | - Steven Masson
- Hepatology, Freeman Hospital, Newcastle upon Tyne, UK
| | | | | | | | | | | | - John F Dillon
- Hepatology and Gastroenterology, NHS Tayside, Dundee, UK
| | | | | | - Liz Farrington
- Hepatology, Royal Cornwall Hospitals NHS Trust, Truro, UK
| | | | | | | | - Simon M Rushbrook
- Hepatology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Amanda Smith
- Pharmacy, Queen Elizabeth Hospital, Birmingham, UK
| | | | | |
Collapse
|
23
|
Gurusamy KS, Tsochatzis E, Madden AM. Nutritional supplementation for non-alcohol-related fatty liver disease: a network meta-analysis. Cochrane Database Syst Rev 2018. [DOI: 10.1002/14651858.cd013157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Kurinchi Selvan Gurusamy
- Royal Free Campus, UCL Medical School; Department of Surgery; Royal Free Hospital Rowland Hill Street London UK NW3 2PF
| | - Emmanuel Tsochatzis
- Royal Free Hospital and the UCL Institute of Liver and Digestive Health; Sheila Sherlock Liver Centre; Pond Street London UK NW3 2QG
| | - Angela M Madden
- University of Hertfordshire; Biological & Environmental Sciences; College Lane Hatfield Hertfordshire UK AL10 9AB
| |
Collapse
|
24
|
Gurusamy KS, Tsochatzis E, Madden AM. Lifestyle modifications for non-alcohol related fatty liver disease: a network meta-analysis. Hippokratia 2018. [DOI: 10.1002/14651858.cd013156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Kurinchi Selvan Gurusamy
- Royal Free Campus, UCL Medical School; Department of Surgery; Royal Free Hospital Rowland Hill Street London UK NW3 2PF
| | - Emmanuel Tsochatzis
- Royal Free Hospital and the UCL Institute of Liver and Digestive Health; Sheila Sherlock Liver Centre; Pond Street London UK NW3 2QG
| | - Angela M Madden
- University of Hertfordshire; Biological & Environmental Sciences; College Lane Hatfield Hertfordshire UK AL10 9AB
| |
Collapse
|
25
|
Connolly JJ, Ooka K, Lim JK. Future Pharmacotherapy for Non-alcoholic Steatohepatitis (NASH): Review of Phase 2 and 3 Trials. J Clin Transl Hepatol 2018; 6:264-275. [PMID: 30271738 PMCID: PMC6160309 DOI: 10.14218/jcth.2017.00056] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 02/16/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) results from inflammation and hepatocyte injury in the setting of hepatic steatosis. Non-alcoholic steatohepatitis increases the risk of progression to liver fibrosis and cirrhosis, and is the most rapidly growing etiology for liver failure and indication for liver transplantation in the USA. Weight loss and lifestyle modification remain the standard first-line treatment, as no USA Food and Drug Administration-approved pharmacotherapy currently exists. The past decade has seen an explosion of interest in drug development targeting pathologic pathways in non-alcoholic steatohepatitis, with numerous phase 2 and 3 trials currently in progress. Here, we concisely review the major targets and mechanisms of action by class, summarize results from completed pivotal phase 2 studies, and provide a detailed outline of key active studies with trial data for drugs in development, including obeticholic acid, elafibranor, cenicriviroc and selonsertib.
Collapse
Affiliation(s)
- James J. Connolly
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Kohtaro Ooka
- Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Joseph K. Lim
- Yale Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
- *Correspondence to: Joseph K. Lim, Yale Liver Center, Section of Digestive Diseases, Yale University School of Medicine, 333 Cedar Street, LMP 1080, New Haven, CT 06520-8019, USA. Tel: +1-203-737-6063, Fax: +1-203-785-7273, E-mail:
| |
Collapse
|
26
|
Liang J, Liu Y, Liu J, Li Z, Fan Q, Jiang Z, Yan F, Wang Z, Huang P, Feng N. Chitosan-functionalized lipid-polymer hybrid nanoparticles for oral delivery of silymarin and enhanced lipid-lowering effect in NAFLD. J Nanobiotechnology 2018; 16:64. [PMID: 30176941 PMCID: PMC6122632 DOI: 10.1186/s12951-018-0391-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/25/2018] [Indexed: 12/15/2022] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a chronic disease that causes excessive hepatic lipid accumulation. Reducing hepatic lipid deposition is a key issue in treatment and inhibition of NAFLD evolution. Silymarin is a potent hepatoprotective agent; however, it has low oral bioavailability due to its poor aqueous solubility and low membrane permeability. Unfortunately, few studies have addressed the development of convenient oral nanocarriers that can efficiently deliver silymarin to the liver and enhance its lipid-lowering effect. We designed silymarin-loaded lipid polymer hybrid nanoparticles containing chitosan (CS-LPNs) to improve silymarin bioavailability and evaluated their lipid-lowering effect in adiponutrin/patatin-like phospholipase-3 I148M transgenic mice, an NAFLD model. Results Compared to chitosan-free nanoparticles, CS-LPNs showed 1.92-fold higher uptake by fatty liver cells. Additionally, CS-LPNs significantly reduced TG levels in fatty liver cells in an in vitro lipid deposition assay, suggesting their potential lipid-lowering effects. The oral bioavailability of silymarin from CS-LPNs was 14.38-fold higher than that from suspensions in rats. Moreover, compared with chitosan-free nanoparticles, CS-LPNs effectively reduced blood lipid levels (TG), improved liver function (AST and ALT), and reduced lipid accumulation in the livers of mice in vivo. Reduced macrovesicular steatosis in pathological tissue after CS-LPN treatment indicated their protective effect against liver steatosis in NAFLD. Conclusions CS-LPNs enhanced oral delivery of silymarin and exhibited a desirable lipid-lowering effect in a mouse model. These findings suggest that CS-LPNs may be a promising oral nanocarrier for NAFLD therapeutics. Electronic supplementary material The online version of this article (10.1186/s12951-018-0391-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Liang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jinguang Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhe Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qiangyuan Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zifei Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fei Yan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhi Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Peiwen Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Nianping Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
27
|
Iogna Prat L, Tsochatzis EA. The effect of antidiabetic medications on non-alcoholic fatty liver disease (NAFLD). Hormones (Athens) 2018; 17:219-229. [PMID: 29858843 DOI: 10.1007/s42000-018-0021-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 02/21/2018] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome and is prevalent in more than 50% of patients with type II diabetes. At present, there is no approved therapy for NASH. Until now, the only proven effective interventions in improving biochemical and histological features of NASH, including fibrosis, are weight loss and physical activity even without weight loss. Because of the common epidemiological and pathophysiological features between NAFLD and T2DM, many antidiabetics drugs have been tested in patients with NAFLD over the years. Among these, pioglitazone and liraglutide seem to improve some histological features of NASH but have no clear effect on fibrosis. Metformin has been largely studied in the past years without convincing evidence of improving NAFLD. Data on other compounds such as DDP-4 and SGLT-2 inhibitors are limited. The rational and results of such studies are discussed in the present review.
Collapse
Affiliation(s)
- Laura Iogna Prat
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London, UK
| | - Emmanuel A Tsochatzis
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London, UK.
| |
Collapse
|
28
|
Reduction of Liver Span and Parameters of Inflammation in Nonalcoholic Fatty Liver Disease Patients Treated with Lycosome Formulation of Phosphatidylcholine: A Preliminary Report. Int J Chronic Dis 2018; 2018:4549614. [PMID: 29805971 PMCID: PMC5899869 DOI: 10.1155/2018/4549614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 01/25/2018] [Accepted: 02/12/2018] [Indexed: 02/07/2023] Open
Abstract
Twenty-nine newly diagnosed individuals with Nonalcoholic Fatty Liver Disease (NAFLD) remaining on habitual dietary regimen were supplemented with regular or lycosome formulations of phosphatidylcholine (PC) during a pilot, randomized, double-blinded clinical study. After two months of oral PC intake (450 mg daily) the liver size as well as serum levels of hepatic enzymes and markers of inflammation were evaluated by ultrasonography and biochemical analysis. It was shown that there was a statistically significant reduction of medians for the Mid-Clavicular liver size from 16.0 cm (95/5% CI: 17.1/15.5) to 15.1 cm (95/5% CI: 17.2/14.4, P = 0.021) in participants ingesting the lycosome-formulated PC (L-PC) whereas regular formulation of PC (R-PC) had only a marginal effect on this parameter (P = 0.044). A similar tendency was observed in the Mid-Sternal liver size. Moreover, there was a reduction of medians for ALT values at the end point of the study (P = 0.026) after ingestion of L-PC, while R-PC had no statistically significant effect. On the other hand, ingestion of both formulations was accompanied by reductions in values for Inflammatory Oxidative Damage (IOD) and oxidized LDL in serum. However, L-PC had superior activity in these terms, presumably due to the presence of lycopene, a powerful antioxidant, in the L-PC-Lycosome structure. C-reactive protein level was moderately decreased (reduction of medians from 6.5 [95/5% CI: 7.7/5.8] mg/L to 5.1 [95/5% CI: 5.6/4.3] mg/L) only after ingestion of L-PC. The greater efficacy of L-PC seen in NAFLD volunteers may reflect improved bioavailability of PC owing to better protection of the microencapsulated PC from gastrointestinal enzymes and possibly enhanced hepatic delivery of L-PC particles.
Collapse
|
29
|
Tacke F. Cenicriviroc for the treatment of non-alcoholic steatohepatitis and liver fibrosis. Expert Opin Investig Drugs 2018; 27:301-311. [PMID: 29448843 DOI: 10.1080/13543784.2018.1442436] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Nonalcoholic fatty liver disease (NAFLD) has an increasing prevalence worldwide. At present, no specific pharmacotherapy is approved for NAFLD. Simple steatosis and nonalcoholic steatohepatitis (NASH) can progress to liver fibrosis that is associated with mortality in NAFLD. The recruitment of inflammatory monocytes and macrophages via chemokine receptor CCR2 as well as of lymphocytes and hepatic stellate cells via CCR5 promote the progression of NASH to fibrosis. Areas covered: I summarize preclinical and clinical data on the efficacy and safety of the dual CCR2/CCR5 inhibitor cenicriviroc (CVC, also TBR-652 or TAK-652) for the treatment of NASH and fibrosis. In animal models of liver diseases, CVC potently inhibits macrophage accumulation in the liver and ameliorates fibrosis. In a phase 2b clinical trial (CENTAUR) on 289 patients with NASH and fibrosis, CVC consistently demonstrated liver fibrosis improvement after 1 year of therapy and had an excellent safety profile, leading to the implementation of a phase 3 trial (AURORA). Expert opinion: Preclinical and clinical data support the development of CVC as a safe and potent antifibrotic agent. However, open questions around CVC are the durability of antifibrotic responses, divergent effects on NASH versus fibrosis, potential long-term concerns and the expected path to approval.
Collapse
Affiliation(s)
- Frank Tacke
- a Department of Medicine III , University Hospital Aachen , Aachen , Germany
| |
Collapse
|
30
|
Labarca G, Cruz R, Jorquera J. Continuous Positive Airway Pressure in Patients With Obstructive Sleep Apnea and Non-Alcoholic Steatohepatitis: A Systematic Review and Meta-Analysis. J Clin Sleep Med 2018; 14:133-139. [PMID: 29151428 DOI: 10.5664/jcsm.6900] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/14/2017] [Indexed: 12/13/2022]
Abstract
STUDY OBJECTIVES Several studies have reported an association between obstructive sleep apnea (OSA) and several extra-pulmonary issues, such as arterial hypertension and insulin resistance. In recent years, the associations between OSA, non-alcoholic fatty liver disease, and non-alcoholic steatohepatitis (NASH) have been published; however, there is a gap between experimental and clinical studies regarding the efficacy of continuous positive airway pressure (CPAP) treatment in patient populations with these conditions. This issue should be considered when deciding on CPAP treatment in patients with OSA, especially in patients with moderate OSA. METHODS We performed a systematic review and meta-analysis of randomized controlled trials (RCTs) using the following databases: MEDLINE, Lilacs, and CENTRAL. Two independent reviewers performed the search, analysis, data extraction, and critical analysis. RESULTS From 622 identified studies, we included 5 RCTs that involved patients with OSA and NASH and who were treated with a CPAP device. After CPAP treatment, no changes in liver steatosis, liver fibrosis, and aminotransferase levels (alanine aminotransferase and aspartate aminotransferase) were found. Finally, the quality of evidence using the GRADE approach was low and very low for several outcomes. CONCLUSIONS According to the current analysis, no data regarding the efficacy of CPAP in patients with NASH are available to make recommendations. SYSTEMATIC REVIEW REGISTRATION PROSPERO; ID: CRD42015027981; URL: https://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42015027981.
Collapse
Affiliation(s)
- Gonzalo Labarca
- Universidad San Sebastián, Concepción, Chile.,Departamento de Medicina Interna, Complejo Asistencial Víctor Ríos Ruiz, Los Ángeles, Chile
| | - Rodrigo Cruz
- Gastroenterology, Hospital Dipreca, Santiago, Chile
| | - Jorge Jorquera
- Sleep Center and Respiratory Disease, Clinica Las Condes, Santiago, Chile
| |
Collapse
|
31
|
Kowalik MA, Columbano A, Perra A. Thyroid Hormones, Thyromimetics and Their Metabolites in the Treatment of Liver Disease. Front Endocrinol (Lausanne) 2018; 9:382. [PMID: 30042736 PMCID: PMC6048875 DOI: 10.3389/fendo.2018.00382] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/22/2018] [Indexed: 12/13/2022] Open
Abstract
The signaling pathways activated by thyroid hormone receptors (THR) are of fundamental importance for organogenesis, growth and differentiation, and significantly influence energy metabolism, lipid utilization and glucose homeostasis. Pharmacological control of these pathways would likely impact the treatment of several human diseases characterized by altered metabolism, growth or differentiation. Not surprisingly, biomedical research has been trying for the past decades to pharmacologically target the 3,5,3'-triiodothyronine (T3)/THR axis. In vitro and in vivo studies have provided evidence of the potential utility of the activation of the T3-dependent pathways in metabolic syndrome, non-alcoholic fatty liver disease (NAFLD), and in the treatment of hepatocellular carcinoma (HCC). Unfortunately, supra-physiological doses of the THR agonist T3 cause severe thyrotoxicosis thus hampering its therapeutic use. However, the observation that most of the desired beneficial effects of T3 are mediated by the activation of the beta isoform of THR (THRβ) in metabolically active organs has led to the synthesis of a number of THRβ-selective thyromimetics. Among these drugs, GC-1, GC-24, KB141, KB2115, and MB07344 displayed a promising therapeutic strategy for liver diseases. However, although these drugs exhibited encouraging results when tested in the treatment of experimentally-induced obesity, dyslipidemia, and HCC, significant adverse effects limited their use in clinical trials. More recently, evidence has been provided that some metabolites of thyroid hormones (TH), mono and diiodothyronines, could also play a role in the treatment of liver disease. These molecules, for a long time considered inactive byproducts of the metabolism of thyroid hormones, have now been proposed to be able to modulate and control lipid and cell energy metabolism. In this review, we will summarize the current knowledge regarding T3, its metabolites and analogs with reference to their possible clinical application in the treatment of liver disease. In particular, we will focus our attention on NAFLD, non-alcoholic steatohepatitis (NASH) and HCC. In addition, the possible therapeutic use of mono- and diiodothyronines in metabolic and/or neoplastic liver disease will be discussed.
Collapse
|
32
|
Guo Y, Li JX, Mao TY, Zhao WH, Liu LJ, Wang YL. Targeting Sirt1 in a rat model of high-fat diet-induced non-alcoholic fatty liver disease: Comparison of Gegen Qinlian decoction and resveratrol. Exp Ther Med 2017; 14:4279-4287. [PMID: 29104641 PMCID: PMC5658732 DOI: 10.3892/etm.2017.5076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/29/2017] [Indexed: 12/19/2022] Open
Abstract
The present study aimed to explore the mechanism of action of Gegen Qinlian decoction (GGQLD) in experimental non-alcoholic fatty liver disease (NAFLD). A total of 30 rats were randomly divided into five groups: The chow, model, high- and low-dose GGQLD (GGQLD-H and GGQLD-L, respectively) and resveratrol (Resl) groups, and were treated with saline, GGQLD and Resl when a model of high-fat diet (HFD)-induced NAFLD was established. Blood lipid and liver enzymes were detected following treatment for 8 weeks and liver tissue pathology was observed using Oil Red O and haematoxylin and eosin staining. Furthermore, the liver protein and mRNA expression of sirtuin (Sirt)1, peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) were measured using western blotting and reverse transcription-quantitative polymerase chain reaction. Compared with the chow group, the model group demonstrated significantly increased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels (P<0.01). GGQLD doses and Resl attenuated the elevated serum ALT and AST levels. GGQLD-H and Resl significantly increased the serum high-density lipoprotein cholesterol level compared with that in the model group (P<0.01), while GGQLD-L and Resl significantly decreased serum low-density lipoprotein cholesterol levels (P<0.01). The GGQLDs and Resl groups revealed an evident improvement in Sirt1 protein and mRNA expression. Although GGQLD and Resl significantly decreased NF-κB gene expression compared with the model group (P<0.01), the effect on NF-κB protein expression was not significant. Furthermore, the PGC-1α gene and protein expression in the HFD rat group slightly decreased compared to the levels in the chow group, but the decrease was insignificant. However, an evident increase in PGC-1α mRNA expression was observed in the GGQLD-H group compared with the model group (P<0.01). Histological staining revealed that GGQLD and Resl decreased the lipid droplets in hepatocytes and normalized steatosis in rats fed with a HFD. The results indicated that GGQLD treatment may be a potent strategy for managing NAFLD by managing lipid metabolism and inflammatory and histological abnormalities by triggering the Sirt1 pathway.
Collapse
Affiliation(s)
- Yi Guo
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, P.R. China.,Graduate School, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Jun-Xiang Li
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, P.R. China
| | - Tang-You Mao
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, P.R. China.,Graduate School, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Wei-Han Zhao
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, P.R. China.,Graduate School, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Li-Juan Liu
- Department of Gastroenterology of Traditional Chinese Medicine, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Yun-Liang Wang
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, P.R. China
| |
Collapse
|
33
|
Effects of Dapagliflozin on Body Composition and Liver Tests in Patients with Nonalcoholic Steatohepatitis Associated with Type 2 Diabetes Mellitus: A Prospective, Open-label, Uncontrolled Study. Curr Ther Res Clin Exp 2017; 87:13-19. [PMID: 28912902 PMCID: PMC5587885 DOI: 10.1016/j.curtheres.2017.07.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2017] [Indexed: 02/07/2023] Open
Abstract
Background Nonalcoholic steatohepatitis (NASH) is an active form of nonalcoholic fatty liver disease. Risk factors for NASH include type 2 diabetes mellitus (T2DM) and obesity. Sodium–glucose cotransporter 2 (SGLT2) inhibitors used to treat T2DM prevent glucose reabsorption in the kidney and increase glucose urinary excretion. Dapagliflozin is a potent, selective SGLT2 inhibitor that reduces hyperglycemia in patients with T2DM and has been demonstrated to reduce some complications associated with NASH in rodent models. Objective To assess the efficacy and safety profile of dapagliflozin for the treatment of NASH-associated with T2DM. Methods In this single-arm, nonrandomized, open-label study, 16 patients with percutaneous liver biopsy-confirmed NASH and T2DM were enrolled to be prescribed dapagliflozin 5 mg/d for 24 weeks. Of these, 11 patients were evaluable. Patients with chronic liver disease other than NASH were excluded. Body composition, laboratory variables related to liver tests and metabolism, and glucose homeostasis were assessed at baseline and periodically during the study. Changes from baseline were evaluated with the Wilcoxon signed-rank test. Results Administration of dapagliflozin for 24 weeks was associated with significant decreases in body mass index (P < 0.01), waist circumference (P < 0.01), and waist-to-hip ratio (P < 0.01). Changes in body composition were driven by reductions in body fat mass (P < 0.01) and percent body fat (P < 0.01), without changes in lean mass or total body water. Liver tests (ie, serum concentrations of aspartate aminotransferase, alanine aminotransferase, ferritin, and type IV collagen 7S) also significantly improved during the study. Insulin concentrations decreased (P < 0.01 by Week 24) in combination with significant reductions in fasting plasma glucose (P < 0.01) and glycated hemoglobin (P < 0.01) levels and increases in adiponectin (P < 0.01) levels from Week 4 onward. Conclusions Dapagliflozin was associated with improvements in body composition, most likely a reduction in visceral fat, which occurred together with improvements in liver tests and metabolic variables in patients with NASH-associated with T2DM. UMIN Clinical Trial Registry identifier: UMIN000023574.
Collapse
|