1
|
Szomek M, Akkerman V, Lauritsen L, Walther HL, Juhl AD, Thaysen K, Egebjerg JM, Covey DF, Lehmann M, Wessig P, Foster AJ, Poolman B, Werner S, Schneider G, Müller P, Wüstner D. Ergosterol promotes aggregation of natamycin in the yeast plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184350. [PMID: 38806103 DOI: 10.1016/j.bbamem.2024.184350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/11/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
Polyene macrolides are antifungal substances, which interact with cells in a sterol-dependent manner. While being widely used, their mode of action is poorly understood. Here, we employ ultraviolet-sensitive (UV) microscopy to show that the antifungal polyene natamycin binds to the yeast plasma membrane (PM) and causes permeation of propidium iodide into cells. Right before membrane permeability became compromised, we observed clustering of natamycin in the PM that was independent of PM protein domains. Aggregation of natamycin was paralleled by cell deformation and membrane blebbing as revealed by soft X-ray microscopy. Substituting ergosterol for cholesterol decreased natamycin binding and caused a reduced clustering of natamycin in the PM. Blocking of ergosterol synthesis necessitates sterol import via the ABC transporters Aus1/Pdr11 to ensure natamycin binding. Quantitative imaging of dehydroergosterol (DHE) and cholestatrienol (CTL), two analogues of ergosterol and cholesterol, respectively, revealed a largely homogeneous lateral sterol distribution in the PM, ruling out that natamycin binds to pre-assembled sterol domains. Depletion of sphingolipids using myriocin increased natamycin binding to yeast cells, likely by increasing the ergosterol fraction in the outer PM leaflet. Importantly, binding and membrane aggregation of natamycin was paralleled by a decrease of the dipole potential in the PM, and this effect was enhanced in the presence of myriocin. We conclude that ergosterol promotes binding and aggregation of natamycin in the yeast PM, which can be synergistically enhanced by inhibitors of sphingolipid synthesis.
Collapse
Affiliation(s)
- Maria Szomek
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Vibeke Akkerman
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Line Lauritsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Hanna-Loisa Walther
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Alice Dupont Juhl
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Katja Thaysen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Jacob Marcus Egebjerg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Douglas F Covey
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO 63110, USA; Taylor Family Institute for Innovative Psychiatric Research, USA
| | - Max Lehmann
- Institute for Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
| | - Pablo Wessig
- Institute for Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
| | - Alexander J Foster
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 Groningen, the Netherlands
| | - Stephan Werner
- Department of X-Ray Microscopy, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Gerd Schneider
- Department of X-Ray Microscopy, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Peter Müller
- Department of Biology, Humboldt University Berlin, Invalidenstr. 43, D-10115 Berlin, Germany
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| |
Collapse
|
2
|
Marcelino HR, Solgadi A, Chéron M, do Egito EST, Ponchel G. Exploring the permeability of Amphotericin B trough serum albumin dispersions and lipid nanocarriers for oral delivery. Int J Pharm 2023; 646:123444. [PMID: 37757958 DOI: 10.1016/j.ijpharm.2023.123444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/12/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Amphotericin B (AmB) is a potent polyenic antifungal agent with leishmanicidal activity. Due to its low solubility and permeability in the gastrointestinal tract, AmB is usually administered intravenously. In this context, various approaches have been used to try to improve these properties. Some of the systems developed have shown proven successful, but there is still a lack of knowledge about the pathways AmB takes after oral administration. Therefore, the aim of this work was not only to obtain aqueous dispersions containing AmB at different aggregation states, but also to entrap this molecule in nanocarriers, and evaluate the influence of these conditions on the jejunal permeability of AmB. To observe the aggregation states of AmB, physicochemical characterization of AmB-albumin complexes and AmB-loaded formulations was performed. Different degrees of AmB aggregation states were obtained. Thus, permeability tests were performed in the Ussing chamber and a decrease in AmB concentration in the donor compartment was observed. Electrophysiological measurements showed different responses depending on the AmB formulation. In conclusion, although control of the AmB aggregation state was observed by physicochemical characterization, this approach does not seem to have a sufficient effect on AmB permeability, but on its toxicity. For a complete understanding of AmB-loaded nanocarriers, other pathways, such as lymphatic absorption, should also be investigated.
Collapse
Affiliation(s)
- Henrique Rodrigues Marcelino
- Graduate Program in Health Sciences (PPgCSa), Federal University of Rio Grande do Norte, Natal/RN 59012-570, Brazil; Institut Galien Paris-Saclay, CNRS UMR 8612, Université Paris-Saclay, Orsay 91190, France; College of Pharmacy, Federal University of Bahia, Salvador/BA 40170-115, Brazil (Recent affiliation)
| | - Audrey Solgadi
- SFR IPSIT (Paris-Saclay Institute of Therapeutic Innovation), University Paris-Saclay, Orsay 91190, France
| | - Monique Chéron
- College of Pharmacy, University Paris-Saclay, Orsay 91190, France
| | | | - Gilles Ponchel
- Institut Galien Paris-Saclay, CNRS UMR 8612, Université Paris-Saclay, Orsay 91190, France; College of Pharmacy, University Paris-Saclay, Orsay 91190, France
| |
Collapse
|
3
|
Todke PA, Devarajan PV. In-silico approach as a tool for selection of excipients for safer amphotericin B nanoformulations. JOURNAL OF CONTROLLED RELEASE : OFFICIAL JOURNAL OF THE CONTROLLED RELEASE SOCIETY 2022; 349:756-764. [PMID: 35905782 DOI: 10.1016/j.jconrel.2022.07.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/18/2022] [Accepted: 07/22/2022] [Indexed: 11/28/2022]
Abstract
Safer and efficacious Amphotericin B (AmB) nanoformulations can be designed by augmenting AmB in the monomeric or super-aggregated state, and restricting the aggregated state, by choosing the appropriate excipient, which can be facilitated by employing in-silico prediction as a tool. Excipients selected for the study included linear fatty acids from caprylic (C8) to stearic(C18) and the stearate based amphiphilic surfactants polyoxyl-15-hydroxystearate (PS15) and polyoxyl-40-stearate (PS40). Blend module was employed to determine the two miscibility parameters mixing energy (Emix) and interaction parameter (χ). AmB-excipient interactions were modelled using molecular docking software. The fatty acids revealed a decrease in Emix and χ values with increase in carbon chain length, suggesting enhanced affinity with increase in fatty acid hydrophobicity. Significantly higher affinity was observed with amphiphilic surfactants, in particular PS40 which exhibited negative values of Emix and χ proposing very high degree of miscibility. Molecular docking study confirmed extensive interaction of all the excipients with the AmB polyene chain. PS15 and PS40 displayed in addition hydrophilic interactions with the mycosamine and polyol moieties with PS40 exhibiting complete wrapping of the AmB molecule. PS15 demonstrated only partial wrapping, attributed to the shorter ethylene oxide chain. AmB nanosuspensions (NS) were prepared by in situ nanoprecipitation using the excipients and the AmB state identified by UV scanning between 300 and 500 nm. AmB NS with fatty acids and PS15-AmB NS revealed a high intensity peak between 330 nm-350 nm of aggregated AmB and low intensity monomeric peaks between 405 and 415 nm reflecting predominance of the aggregated state. PS40-AmB NS on the other hand revealed complete absence of aggregated state and a high intensity peak between 321 and 325 nm which corresponded to the super-aggregated state. Also, the super-aggregated state slowly released the safe monomeric form without aggregate formation. Furthermore, very low hemolysis seen with PS40-AmB NS confirmed low toxicity attributed to the safer super-aggregated state and while higher hemolysis as anticipated was seen with PS15-AmB NS (aggregated state). The basis for selection of the appropriate excipient for design of safer AmB nanoformulations would be those excipients that exhibit negative values of miscibility parameters Emix and χ, exhibit interaction with the hydrophobic and hydrophilic regions of AmB and demonstrate complete wrapping of AmB in the molecular docking study. Our study thus demonstrates feasibility of in-silico prediction as a practical tool for excipient selection for safer AmB nanoformulations.
Collapse
Affiliation(s)
- Pooja A Todke
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Deemed University, Elite Status and Centre of Excellence (Maharashtra), N.P. Marg, Matunga (E), Mumbai, 400019, Maharashtra, India
| | - Padma V Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Deemed University, Elite Status and Centre of Excellence (Maharashtra), N.P. Marg, Matunga (E), Mumbai, 400019, Maharashtra, India.
| |
Collapse
|
4
|
Self-assembling, supramolecular chemistry and pharmacology of amphotericin B: Poly-aggregates, oligomers and monomers. J Control Release 2021; 341:716-732. [PMID: 34933052 DOI: 10.1016/j.jconrel.2021.12.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 01/21/2023]
Abstract
Antifungal drugs such as amphotericin B (AmB) interact with lipids and phospholipids located on fungal cell membranes to disrupt them and create pores, leading to cell apoptosis and therefore efficacy. At the same time, the interaction can also take place with cell components from mammalian cells, leading to toxicity. AmB was selected as a model antifungal drug due to the complexity of its supramolecular chemical structure which can self-assemble in three different aggregation states in aqueous media: monomer, oligomer (also known as dimer) and poly-aggregate. The interplay between AmB self-assembly and its efficacy or toxicity against fungal or mammalian cells is not yet fully understood. To the best of our knowledge, this is the first report that investigates the role of excipients in the supramolecular chemistry of AmB and the impact on its biological activity and toxicity. The monomeric state was obtained by complexation with cyclodextrins resulting in the most toxic state, which was attributed to the greater production of highly reactive oxygen species upon disruption of mammalian cell membranes, a less specific mechanism of action compared to the binding to the ergosterol located in fungal cell membranes. The interaction between AmB and sodium deoxycholate resulted in the oligomeric and poly-aggregated forms which bound more selectively to the ergosterol of fungal cell membranes. NMR combined with XRD studies elucidated the interaction between drug and excipient to achieve the AmB aggregation states, and ultimately, their diffusivity across membranes. A linear correlation between particle size and the efficacy/toxicity ratio was established allowing to modulate the biological effect of the drug and hence, to improve pharmacological regimens. However, particle size is not the only factor modulating the biological response but also the equilibrium of each state which dictates the fraction of free monomeric form available. Tuning the aggregation state of AmB formulations is a promising strategy to trigger a more selective response against fungal cells and to reduce the toxicity in mammalian cells.
Collapse
|
5
|
Zhao H, Zhou M, Zheng Q, Zhu M, Yang Z, Hu C, Xu L. Clinical features and Outcomes of Cryptococcemia patients with and without HIV infection. Mycoses 2021; 64:656-667. [PMID: 33609302 DOI: 10.1111/myc.13261] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND The effects of cryptococcemia on patient outcomes in those with or without HIV remain unclear. METHODS One hundred and seventy-nine cryptococcemia patients were enrolled in this retrospective study. Demographic characteristics, blood test results and outcome were compared between the two groups. RESULTS The diagnosis time of Cryptococcus infection was 2.0(0-6.0) days for HIV-infected patients, 5.0 (1.5-8.0) days for HIV-uninfected patients (p = .008), 2.0 (1.0-6.0) days for cryptococcal meningitis (CM) patients and 6.0 (5.0-8.0) days for non-CM patients (p < .001). HIV infection [adjusted odds ratio (AOR) (95% confidence interval): 6.0(2.3-15.9)], CRP < 15 mg/L [AOR:3.7(1.7-8.1)) and haemoglobin > 110 g/L [AOR:2.5(1.2-5.4)] were risk factors for CM development. Forty-six (25.7%) patients died within 90 days. ICU stay [AOR:2.8(1.1-7.1)], hypoalbuminemia [AOR:2.7(1.4-5.3)], no anti-cryptococcal treatment [AOR:4.7(1.9-11.7)] and altered consciousness [AOR:2.4(1.0-5.5)] were independent risk factors for 90-day mortality in all patients. HIV infection did not increase the 90-day mortality of cryptococcemia patients when anti-Cryptococcus treatment was available. Non-Amphotericin B treatment [AOR:3.4(1.0-11.2)] was associated with 90-day mortality in HIV-infected patients, but age ≥ 50.0 years old [AOR:2.7(1.0-2.9)], predisposing disease [AOR:4.1(1.2-14.2)] and altered consciousness [AOR:3.7(1.1-12.9)] were associated with 90-day mortality in HIV-uninfected patients who accepted anti-Cryptococcus treatment. CONCLUSION HIV infection increased the incidence of CM rather than mortality in cryptococcemia patients. The predictive model was completely divergent in HIV-infected and HIV-uninfected patients, suggesting that novel strategies for diagnosis and treatment algorithms are urgently needed.
Collapse
Affiliation(s)
- Handan Zhao
- National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,College of Medicine, Zhejiang University, Hangzhou, China
| | - Minghan Zhou
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Qing Zheng
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Mingjian Zhu
- National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,College of Medicine, Zhejiang University, Hangzhou, China
| | - Zongxing Yang
- Department II of Infectious Diseases, Xixi Hospital of Hangzhou, Hangzhou, China
| | - Caiqin Hu
- National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,College of Medicine, Zhejiang University, Hangzhou, China
| | - Lijun Xu
- National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Shah SA, Sohail M, Khan S, Minhas MU, de Matas M, Sikstone V, Hussain Z, Abbasi M, Kousar M. Biopolymer-based biomaterials for accelerated diabetic wound healing: A critical review. Int J Biol Macromol 2019; 139:975-993. [PMID: 31386871 DOI: 10.1016/j.ijbiomac.2019.08.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023]
Abstract
Non-healing, chronic wounds place a huge burden on healthcare systems as well as individual patients. These chronic wounds especially diabetic wounds will ultimately lead to compromised mobility, amputation of limbs and even death. Currently, wounds and limb ulcers associated with diabetes remain significant health issues; the associated healthcare cost ultimately leads to the increased clinical burden. The presence of diabetes interrupts a highly coordinated cascade of events in the wound closure process. Advances in the understanding of pathophysiological conditions associated with diabetic wounds lead to the development of drug delivery systems which can enhance wound healing by targeting various phases of the impaired processes. Wound environments typically contain degradative enzymes, along with an elevated pH and demonstrate a physiological cascade involved in the regeneration of tissue, which requires the application of an effective delivery system. This article aims to review the pathophysiological conditions associated with chronic and diabetic wounds. The delivery systems, involved in their treatment are described, highlighting potential biomaterials and polymers for establishing drug delivery systems, specifically for the treatment of diabetic wounds and the promotion of the associated mechanisms involved in advanced wound healing. Emerging approaches and engineered devices for effective wound care are reported. The discussion will give insight into the mechanisms relevant to all stages of wound healing.
Collapse
Affiliation(s)
- Syed Ahmed Shah
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22060, Pakistan.
| | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Lower Dir, KPK, Pakistan; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409, USA.; Discipline of Pharmaceutical Sciences, School of Health Sciences, UKZN, Durban, South Africa
| | | | - Marcel de Matas
- SEDA Pharmaceutical Development Services, The BioHub at Alderley Park, Cheshire, UK
| | - Victoria Sikstone
- Division of Pharmacy and Optometry, School of Health Sciences, The University of Manchester, UK
| | - Zahid Hussain
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mudassir Abbasi
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Mubeen Kousar
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22060, Pakistan
| |
Collapse
|
7
|
Derdák D, Poór M, Kunsági-Máté S, Lemli B. Interaction of amphotericin B with human and bovine serum albumins: A fluorescence polarization study. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.03.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Xu L, Hu C, Hu H, Dai X, Gao H, Guo Y, Huang Y, Yang Z, Tao R, Zhu B, Xu Y. Importance of fibrosis 4 index score and mode of anti-fungal treatment to the outcome of Cryptococcal meningitis in hepatitis B virus-infected patients. Infect Dis (Lond) 2019; 51:113-121. [PMID: 30676149 DOI: 10.1080/23744235.2018.1523553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) and the associated cirrhosis are risk factors for cryptococcal meningitis (CM). However, the clinical features of co-infection with HBV and CM are unclear. METHODS Seventy-nine HBV-infected CM patients and 79 HBV-uninfected CM patients were enrolled in a case-control matching study from 476 CM patients. Fibrosis 4 index (FIB4) was used for assessment of HBV-related fibrosis/cirrhosis. Demographic characteristics, symptoms, routine blood tests, liver function and cerebrospinal fluid (CSF) profiles were compared between the two groups. Kaplan-Meier analysis and Cox proportional hazards model were used to assess factors associated with 10-week mortality. RESULTS Male gender was associated with HBV-infected CM patients (p = .006). CM patients with HBV experienced similar frequencies of symptoms but had lower white blood cell (WBC) (p < .001), platelet (p < .001) and albumin (p = .012), and increased aspartate amino transaminase (AST) (p = .009) and total bilirubin (TBIL) levels (p < .001). Patients with and without HBV infection had similar 10-week cumulative survival rates (85.9 ± 4.2% vs. 78.6 ± 5.4%, p = .569). The hazard ratio was 3.7 times higher for those with FIB4 ≥ 3.25 (p = .020) and 4.5 times higher for those with HBV infection not treated with Amphotericin B + flucytosine ± fluconazole (p = .023). CONCLUSION HBV-infected CM population experience lower WBC, platelet and albumin, and higher AST and TBIL. Ten-week survival rate was similar between HBV-infected and HBV-uninfected CM patients. CM patients with high FIB4 or not treated with Amphotericin B + flucytosine ± fluconazole are at a higher risk of death.
Collapse
Affiliation(s)
- Lijun Xu
- a The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China.,b Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Caiqin Hu
- a The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Hangbin Hu
- c Burn unit , Jinhua municipal Central hospital , Jinhua , China
| | - Xiahong Dai
- a The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China.,d Department of infectious diseases , Shulan hospital , Hangzhou , China
| | - Hainv Gao
- d Department of infectious diseases , Shulan hospital , Hangzhou , China
| | - Yongzheng Guo
- a The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China.,b Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Ying Huang
- a The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Zongxing Yang
- e Department of HIV/AIDS , Xixi Hospital of Hangzhou , Hangzhou , China
| | - Ran Tao
- a The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China.,b Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Biao Zhu
- a The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China.,b Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Yan Xu
- a The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| |
Collapse
|
9
|
Jansook P, Pichayakorn W, Ritthidej GC. Amphotericin B-loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carrier (NLCs): effect of drug loading and biopharmaceutical characterizations. Drug Dev Ind Pharm 2018; 44:1693-1700. [PMID: 29936874 DOI: 10.1080/03639045.2018.1492606] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The aim of this study was to further investigate the effect of drug loading, drug entrapment efficiency, the drug release profiles and biopharmaceutical point of views of amphotericin B (AmB) lipid formulations, that is, degree of aggregation by UV-spectroscopy, in vitro hemolytic and antifungal activities. The optimum drug loading was 2.5% by weight corresponded to lipid fraction in formulation. Increasing of the drug entrapment was achieved by blending small amount of phospholipid in solid lipid nanoparticle (SLN) dispersions. All AmB lipid dispersions were less aggregated species and hemolytic response than Fungizone® indicating that lipid nanoparticles could reduce its toxicity. The sustained release profiles of AmB formulations depended on its aggregated form and entrapment efficiency. Too high AmB loaded (5% w/w) showed a biphasic drug release profile probably due to some amounts of drug deposited on the nanosphere surface including in continuous phase which promptly released. For in vitro antifungal testing, all AmB lipid formulations were equal and more effective than both AmB itself and Fungizone®. These observations suggested that AmB loaded SLNs, nanostructured lipid carriers and modified SLNs by blending lecithin could enhance AmB solubility, prolong release characteristics, reduce toxicity and improve antifungal activity.
Collapse
Affiliation(s)
- Phatsawee Jansook
- a Faculty of Pharmaceutical Sciences , Chulalongkorn University , Bangkok, Thailand
| | - Wiwat Pichayakorn
- b Faculty of Pharmaceutical Sciences , Prince of Songkla University , Songkhla, Hat-Yai, Songkhla , Thailand
| | | |
Collapse
|
10
|
Ashraf MD, Farooqi JA, Javed K. Evaluation of macrophage injury and activation by amphotericin B-loaded polymeric nanoparticles. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1323216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- MD. Ashraf
- Department of Chemistry, Indira Gandhi National Open University, New Delhi, India
| | - Javed Abrar Farooqi
- Department of Chemistry, Indira Gandhi National Open University, New Delhi, India
| | - Kalim Javed
- Department of Chemistry, Jamia Hamdard, New Delhi, India
| |
Collapse
|
11
|
Alvarez C, Andes DR, Kang JY, Krug C, Kwon GS. Antifungal Efficacy of an Intravenous Formulation Containing Monomeric Amphotericin B, 5-Fluorocytosine, and Saline for Sodium Supplementation. Pharm Res 2017; 34:1115-1124. [PMID: 28205003 PMCID: PMC5383515 DOI: 10.1007/s11095-017-2121-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/08/2017] [Indexed: 01/05/2023]
Abstract
PURPOSE Amphotericin B (AmB) and 5-fluorocytosine (5-FC) exhibit additive to synergistic activity against systemic mycoses. Incompatibility of prescribed formulations precludes concomitant IV administration, a route with distinct advantages. Previously, we used PEG-DSPE micelles to produce a reformulation of Fungizone (AmB-SD), AmB solubilized by sodium deoxycholate, called mAmB-90. Herein, we describe a second reformulation that facilitates co-delivery of mAmB-90 and 5-FC, and evaluate the effect of PEG-DSPE micelles on the combination's activity against Candida albicans. METHODS We assessed the effect of 5-FC addition on the stability, in vitro toxicity, and antifungal efficacy of mAmB-90. The aggregation state and particle size of mAmB-90 combined with 5-FC (FmAmB-90) was evaluated over 48 h. Hemolytic activity was measured in vitro. Antifungal activity was determined in vitro against C. albicans. The efficacy of monotherapy and combination treatment was evaluated in a neutropenic mouse model of disseminated candidiasis. RESULTS The aggregation state, particle size, and hemolytic activity of mAmB-90 were unaffected by 5-FC. While antifungal activity was similar in vitro, mAmB-90 alone and combined with 5-FC was more potent than AmB-SD in vivo. CONCLUSIONS Short-term stability and in vivo efficacy of our formulation suggest potential to simultaneously deliver AmB and 5-FC for potent antifungal efficacy.
Collapse
Affiliation(s)
- Celeste Alvarez
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin, 53705-2222, USA
| | - David R Andes
- Section of Infectious Diseases, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, 53705-2281, USA
| | - Jeong Yeon Kang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin, 53705-2222, USA
| | - Carmen Krug
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin, 53705-2222, USA
| | - Glen S Kwon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin, 53705-2222, USA.
| |
Collapse
|
12
|
Alvarez C, Shin DH, Kwon GS. Reformulation of Fungizone by PEG-DSPE Micelles: Deaggregation and Detoxification of Amphotericin B. Pharm Res 2016; 33:2098-106. [PMID: 27198671 PMCID: PMC4967395 DOI: 10.1007/s11095-016-1948-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/12/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE Fungizone® (AmB-SD), amphotericin B solubilized by sodium deoxycholate, contains a highly aggregated form of the antifungal agent that causes dose-limiting renal toxicity. With the aim of reducing the formulation's toxicity by co-delivering monomeric amphotericin B (AmB) and sodium supplementation, we deaggregated AmB-SD with FDA-approved excipient PEG-DSPE in 0.9% NaCl-USP. Herein, we describe a reformulated AmB-SD with PEG-DSPE micelles that results in a less toxic drug with maintained antifungal activity. METHODS We compared the aggregation state and particle size of AmB-SD alone or combined with PEG-DSPE micelles. In vitro hemolytic activity and in vivo renal toxicity were measured to determine the toxicity of different formulations. In vitro antifungal assays were performed to determine differences in efficacy among formulations. RESULTS PEG-DSPE micelles in saline deaggregated AmB-SD. Deaggregated AmB-SD exhibited significantly reduced in vitro and in vivo toxicity. In vitro antifungal studies showed no difference in minimum inhibitory and fungicidal concentrations of AmB-SD combined with PEG-DSPE relative to the drug alone. CONCLUSIONS Reformulation of AmB-SD with PEG-DSPE micelles in saline facilitates co-delivery of monomeric AmB and sodium supplementation, potentially reducing the dose-limiting nephrotoxicity of AmB-SD. Ease of preparation and commercially available components lead us to acknowledge its potential for clinical use.
Collapse
Affiliation(s)
- Celeste Alvarez
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin, 53705-2222, USA
| | - Dae Hwan Shin
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin, 53705-2222, USA
| | - Glen S Kwon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin, 53705-2222, USA.
| |
Collapse
|
13
|
Hussain A, Samad A, Singh SK, Ahsan MN, Faruk A, Ahmed FJ. Enhanced stability and permeation potential of nanoemulsion containing sefsol-218 oil for topical delivery of amphotericin B. Drug Dev Ind Pharm 2014; 41:780-90. [DOI: 10.3109/03639045.2014.902957] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Jain S, Valvi PU, Swarnakar NK, Thanki K. Gelatin Coated Hybrid Lipid Nanoparticles for Oral Delivery of Amphotericin B. Mol Pharm 2012; 9:2542-53. [DOI: 10.1021/mp300320d] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sanyog Jain
- Centre for
Pharmaceutical Nanotechnology, Department
of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar
(Mohali), Punjab-160062, India
| | - Pankaj U. Valvi
- Centre for
Pharmaceutical Nanotechnology, Department
of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar
(Mohali), Punjab-160062, India
| | - Nitin K. Swarnakar
- Centre for
Pharmaceutical Nanotechnology, Department
of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar
(Mohali), Punjab-160062, India
| | - Kaushik Thanki
- Centre for
Pharmaceutical Nanotechnology, Department
of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar
(Mohali), Punjab-160062, India
| |
Collapse
|
15
|
Diezi TA, Kwon G. Amphotericin B/sterol co-loaded PEG-phospholipid micelles: effects of sterols on aggregation state and hemolytic activity of amphotericin B. Pharm Res 2011; 29:1737-44. [PMID: 22130733 DOI: 10.1007/s11095-011-0626-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/03/2011] [Indexed: 11/25/2022]
Abstract
PURPOSE To elucidate the effect of sterols on the aggregation of amphotericin B (AmB) in PEG-phospholipid micelles and its consequences on the hemolytic activity of AmB. METHODS AmB-incorporated PEG-phospholipid micelles co-loaded with ergosterol, cholesterol, or 7-dehydrocholesterol were prepared at 4:1:1 and 20:5:1 ratios of polymer-to-sterol-to-AmB. The aggregation state of AmB was elucidated by UV-vis spectroscopy. AmB/sterol co-loaded PEG-phospholipid micelles were incubated with red blood cells and the hemolytic activity of AmB assessed by measurement of free hemoglobin. RESULTS AmB in PEG-phospholipid micelles stayed mostly in a deaggregated state in the absence of sterol or with cholesterol, but aggregated in the presence of ergosterol or 7-dehydrocholesterol. The fraction of aggregated AmB in PEG-phospholipid micelles was lower at the 20:5:1 ratio. In an aggregated state or in the absence of sterol, AmB caused rapid and complete hemolysis. In contrast, deaggregated AmB co-loaded with cholesterol caused slower and incomplete hemolysis, especially at a 20:5:1 ratio. CONCLUSIONS The aggregation state of AmB in PEG-phospholipid micelles was sterol dependant. AmB/cholesterol co-loaded PEG-phospholipid micelles caused low in vitro hemolysis due to deaggregation of AmB and micellar stability, presumably owing to cholesterol/phospholipid versus cholesterol/AmB interactions in the interior core region.
Collapse
|
16
|
Diezi TA, Bae Y, Kwon GS. Enhanced stability of PEG-block-poly(N-hexyl stearate l-aspartamide) micelles in the presence of serum proteins. Mol Pharm 2010; 7:1355-60. [PMID: 20575526 DOI: 10.1021/mp100069p] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyethylene glycol-phospholipid micelles form a major class of nanocarriers in pharmacy and medicine due to proven capability in drug solubilization, sustained drug release, and evidence for targeted drug delivery in vivo. In this report, we have prepared micelles composed of PEG-block-poly(N-hexyl stearate l-aspartamide) (PEG-b-PHSA), having nine stearic acid side chains, and have studied their stability in the presence of serum proteins by Forster resonance energy transfer (FRET) experiments. In the presence of serum albumin, alpha and beta globulins, or gamma globulins, there are minimal changes in FRET over two hours in vitro, indicating integrity of PEG-b-PHSA micelles. In contrast, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-5000] (PEG-DSPE) micelles lose FRET over two hours in vitro, especially in the presence of alpha and beta globulins, indicating the disruption of PEG-DSPE micelles and leakage of fluorescent probes. Owing to the aliphatic nature of DSPE and PHSA, both PEG-b-PHSA and PEG-DSPE micelles efficiently solubilize amphotericin B (AmB), a poorly water-soluble antifungal agent used to combat systemic mycoses. However, only PEG-b-PHSA micelles gradually liberate AmB in the presence of alpha and beta globulins, based on time-dependent changes in the self-aggregation state of AmB, monitored by UV/vis spectroscopy. PEG-b-PHSA micelles are remarkably stable in the presence of serum proteins and a more stable alternative for poorly water-soluble drugs, which have been solubilized by PEG-DSPE micelles.
Collapse
Affiliation(s)
- Thomas A Diezi
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA
| | | | | |
Collapse
|
17
|
Falamarzian A, Lavasanifar A. Optimization of the hydrophobic domain in poly(ethylene oxide)-poly(varepsilon-caprolactone) based nano-carriers for the solubilization and delivery of Amphotericin B. Colloids Surf B Biointerfaces 2010; 81:313-20. [PMID: 20674292 DOI: 10.1016/j.colsurfb.2010.07.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 07/07/2010] [Accepted: 07/08/2010] [Indexed: 10/19/2022]
Abstract
The aim of the study was to develop a polymeric nano-carrier based on methoxy poly(ethylene oxide)-b-poly(epsilon-caprolactone) (MePEO-b-PCL) for the optimum solubilization and delivery of Amphotericin B (AmB). For this purpose, MePEO-b-PCL block co-polymers containing palmitoyl substituent on PCL (at a 100% substitution level) were synthesized through preparation of substituted monomer, that is, alpha-palmitoyl-epsilon-caprolactone, and further ring opening polymerization of this monomer by methoxy PEO (5000 g mol(-1)) using stannous octoate as catalyst. Prepared block co-polymers were characterized for their molecular weight by (1)H NMR and gel permeation chromatography, and assembled to polymeric nano-carriers. The self-assembly of synthesized MePEO-b-PPaCL to spherical particles of nanometer size range was shown by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The efficacy of nano-carriers formed from this structure (abbreviated as MePEO-b-PPaCL) in comparison to unmodified MePEO-b-PCL and those with benzyl and cholesteryl substituent on PCL (abbreviated as MePEO-b-PBCL and MePEO-b-PChCL, respectively) on the solubilization and hemolytic activity of AmB against rat red blood cells was assessed. Under identical conditions, the maximum solubilization of AmB was achieved by nano-carriers prepared from MePEO-b-PPaCL (436 microg/mL), followed by MePEO-b-PChCL (355 microg/mL), MePEO-b-PBCL (296 microg/mL) and MePEO-b-PCL (222 microg/mL). The hemolytic activity of AmB was reduced the most by its encapsulation in MePEO-b-PChCL nano-particles which showed only 7% hemolysis at 30 microg/mL AmB concentration. This was followed by MePEO-b-PCL nano-particles which illustrated 15% hemolysis, MePEO-b-PPaCL with 40% hemolysis and MePEO-b-PBCL with 60% hemolysis at 30 microg/mL AmB concentrations, respectively. In contrast Fungizone showed 90% hemolysis at 30 microg/mL AmB concentration. Based on the improved solubility and reduced hemolytic activity, the MePEO-b-PChCL nano-carriers are considered as optimum structures for AmB delivery.
Collapse
Affiliation(s)
- Arash Falamarzian
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
18
|
Falamarzian A, Lavasanifar A. Chemical Modification of Hydrophobic Block in Poly(Ethylene Oxide) Poly(Caprolactone) Based Nanocarriers: Effect on the Solubilization and Hemolytic Activity of Amphotericin B. Macromol Biosci 2010; 10:648-56. [DOI: 10.1002/mabi.200900387] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Gómez-López A, Zaragoza O, Rodríguez-Tudela JL, Cuenca-Estrella M. Pharmacotherapy of yeast infections. Expert Opin Pharmacother 2009; 9:2801-16. [PMID: 18937613 DOI: 10.1517/14656566.9.16.2801] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The rise of immunocompromised individuals in our society has provoked a significant emergence in the number of patients affected by opportunistic pathogenic yeast. The microorganisms with a major clinical incidence are species from the genera Candida (especially Candida albicans) and Cryptococcus (particularly Cryptococcus neoformans), although there has been a significant increase in other pathogenic yeasts, such as Trichosporon spp. and Rhodotorula spp. In addition, there are an increasing number of patients infected by yeasts that were not previously considered as pathogenic, such as Saccharomyces cerevisiae. The management of these infections is complicated and is highly dependent on the susceptibility profile not only of the species but also of the strain. The available antifungal compounds belong mainly to the polyene, azole and candin families, which show a distinct spectrum of activity. This review summarizes the current knowledge about the use of the main antifungals for treating infections caused by the yeast species with the most significant clinical relevance, including the susceptibility profiles exhibited by these species in vitro.
Collapse
Affiliation(s)
- Alicia Gómez-López
- Instituto de Salud Carlos III, Servicio de Micología, Centro Nacional de Microbiología, Carretera Majadahonda-Pozuelo, Km2, Majadahonda 28220, Madrid, Spain
| | | | | | | |
Collapse
|
20
|
Ramsdale M. Programmed cell death in pathogenic fungi. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1369-80. [DOI: 10.1016/j.bbamcr.2008.01.021] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 01/22/2008] [Accepted: 01/24/2008] [Indexed: 01/27/2023]
|
21
|
Torrado JJ, Espada R, Ballesteros MP, Torrado-Santiago S. Amphotericin B Formulations and Drug Targeting. J Pharm Sci 2008; 97:2405-25. [PMID: 17893903 DOI: 10.1002/jps.21179] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Amphotericin B is a low-soluble polyene antibiotic which is able to self-aggregate. The aggregation state can modify its activity and pharmacokinetical characteristics. In spite of its high toxicity it is still widely employed for the treatment of systemic fungal infections and parasitic disease and different formulations are marketed. Some of these formulations, such as liposomal formulations, can be considered as classical examples of drug targeting. The pharmacokinetics, toxicity and activity are clearly dependent on the type of amphotericin B formulation. New drug delivery systems such as liposomes, nanospheres and microspheres can result in higher concentrations of AMB in the liver and spleen, but lower concentrations in kidney and lungs, so decreasing its toxicity. Moreover, the administration of these drug delivery systems can enhance the drug accessibility to organs and tissues (e.g., bone marrow) otherwise inaccessible to the free drug. During the last few years, new AMB formulations (AmBisome, Abelcet, and Amphotec) with an improved efficacy/toxicity ratio have been marketed. This review compares the different formulations of amphotericin B in terms of pharmacokinetics, toxicity and activity and discusses the possible drug targeting effect of some of these new formulations.
Collapse
Affiliation(s)
- J J Torrado
- Dpto Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Complutense University of Madrid, Plaza Ramón y Cajal, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
22
|
Vakil R, Kwon GS. Effect of cholesterol on the release of amphotericin B from PEG-phospholipid micelles. Mol Pharm 2007; 5:98-104. [PMID: 18159926 DOI: 10.1021/mp700081v] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Micelles formed from PEG-DSPE solubilize high levels of the poorly water-soluble antifungal amphotericin B (AmB). AmB release from PEG-DSPE micelles is slow in buffer but remarkably rapid in the presence of bovine serum albumin (BSA). Sequential changes in the absorbance spectrum of AmB in PEG-DSPE micelles point to a rapid dissociation of incorporated drug in the presence of BSA. In this context, we have studied micelles formed from PEG-DSPE which coincorporate cholesterol (PEG-DSPE|cholesterol). (1)H NMR measurements point to a lower mobility of lipid in PEG-DSPE|cholesterol micelles compared to PEG-DSPE micelles. The absorbance spectrum of AmB incorporated in PEG-DSPE|cholesterol micelles is distinct from that in PEG-DSPE micelles, which may point to differences in the drug-micelle interaction. AmB release from PEG-DSPE|cholesterol micelles is slow in buffer and in the presence of BSA. The absorption spectrum of AmB in PEG-DSPE|cholesterol micelles remained unchanged in BSA, further supporting stable incorporation and the slow release from the carrier.
Collapse
Affiliation(s)
- Ronak Vakil
- Department of Pharmaceutical Sciences, University of Wisconsin, Madison, Wisconsin 53705, USA
| | | |
Collapse
|
23
|
Sokolsky-Papkov M, Domb AJ, Golenser J. Impact of aldehyde content on amphotericin B-dextran imine conjugate toxicity. Biomacromolecules 2006; 7:1529-35. [PMID: 16677035 DOI: 10.1021/bm050747n] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The biocompatibility of oxidized dextran (40 kDa) was investigated in vitro. The contribution of aldehyde groups to the toxicity of polymer-drug conjugates, such as dextran-amphotericin B (AmB) was evaluated. Oxidized dextran was proved to be toxic against the RAW 264.7 cell line with an IC50 of 3 micromol/mL aldehydes. Modification of aldehyde groups and their reaction with ethanolamine reduced the toxicity at least 15-fold. Accordingly, the antifungal and antileishmanial dextran-AmB imine conjugate, which contains unreacted aldehyde groups, was modified with ethanolamine and compared to dextran-AmB amine and imine conjugates. Modification of the imine conjugate with ethanolamine reduced its toxicity toward the RAW cell line by 100%. The effect on Leishmania major parasites was 5 times higher than that of the dextran-AmB amine conjugate. The dextran-AmB-ethanolamine conjugate was at least 15 times less hemolytic than free AmB. Stability and drug release profiles in buffer solution were investigated. The imine conjugates released free AmB while the amine conjugate did not. It is concluded that aldehyde groups may contribute to cell toxicity. This toxicity is reduced by converting the aldehyde groups into imine conjugates with ethanolamine. The results have direct implications toward the safety of AmB-polysaccharide conjugates used against fungal and leishmanial infections.
Collapse
Affiliation(s)
- Marina Sokolsky-Papkov
- Department of Medicinal Chemistry and Natural Products, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | | | | |
Collapse
|
24
|
Vandermeulen G, Rouxhet L, Arien A, Brewster ME, Préat V. Encapsulation of amphotericin B in poly(ethylene glycol)-block-poly(epsilon-caprolactone-co-trimethylenecarbonate) polymeric micelles. Int J Pharm 2006; 309:234-40. [PMID: 16406402 DOI: 10.1016/j.ijpharm.2005.11.031] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 11/21/2005] [Accepted: 11/26/2005] [Indexed: 11/21/2022]
Abstract
The aim of this work was to evaluate the potential of self-assembling poly(ethyleneglycol)(750)-block-poly(epsilon-caprolactone-co-trimethylenecarbonate)(4500) 50/50 copolymers (PEG-p(CL-co-TMC)) to solubilize amphotericin B in polymeric micelles and to disaggregate the drug to the less toxic monomeric form. Amphotericin B was encapsulated in the micelles upon dilution of a mixture of the liquid polymer and the drug in water. Its solubility was increased by two orders of magnitude depending on polymer concentration. The aggregation state of amphotericin B was decreased by PEG-p(CL-co-TMC). The preparation method and the loading of the polymeric micelles influenced it. The antifungal activity of the drug was reduced by encapsulation in the polymeric micelles whereas the onset of amphotericin B-induced hemolysis was delayed. PEG-p(CL-co-TMC) micelles could be an easy method for amphotericin B encapsulation.
Collapse
Affiliation(s)
- G Vandermeulen
- Université catholique de Louvain, Unité de pharmacie galénique, Avenue Mounier, 73 UCL 7320, 1200 Brussels, Belgium
| | | | | | | | | |
Collapse
|
25
|
Egito LCM, de Medeiros SRB, Medeiros MG, Price JC, Egito EST. Evaluation of the relationship of the molecular aggregation state of amphotericin B in medium to its genotoxic potential. J Pharm Sci 2005; 93:1557-65. [PMID: 15124213 DOI: 10.1002/jps.20038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This work analyzes the genotoxicity potential, in the G2 phase of the cellular cycle, of an amphotericin B (AmB) commercially available form (Fungizone), and correlates it with the physicochemical properties of this product in aqueous media. The genotoxic studies were performed using peripheral blood lymphocytes from human donors. The chromosome aberrations and mitotic index were determined. Absorption spectra of Fungizone were obtained by dispersion of the stock solution in water for injection at various AmB concentrations, and using different cuvette path lengths for spectrophotometric determination. The absorption spectra of Fungizone in water are concentration dependent. High concentrations of Fungizone present a spectrum with an intense band at 340 nm, characteristic of AmB self-association. Conversely, at low concentrations, the spectra are similar to those obtained with AmB in methanol, with a positive band at 409 nm, assigned to AmB monomeric form. Similarly, the cytogenetic analysis shows an important decrease on the mitotic index, which is also concentration dependent when compared with control. Furthermore, the chromosome aberrations present a small, not statistically significant, increase only at the highest concentration. The results suggest that the Fungizone presents a cytotoxicity similar to membrane pore formation in mammalian cells that depends on the existence of self-associated AmB. In the presence of only monomeric forms, this phenomenon disappears. However, no genotoxicity was observed in this study.
Collapse
Affiliation(s)
- Lucila C M Egito
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, P.O. Box 1575, 59072-970, Natal/RN, Brazil
| | | | | | | | | |
Collapse
|
26
|
Ehrenfreund-Kleinman T, Azzam T, Falk R, Polacheck I, Golenser J, Domb AJ. Synthesis and characterization of novel water soluble amphotericin B-arabinogalactan conjugates. Biomaterials 2002; 23:1327-35. [PMID: 11804288 DOI: 10.1016/s0142-9612(01)00251-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The coupling of amphotericin B (AmB), a water-insoluble antifungal agent, to arabinogalactan (AG) via an imine or amine bond was systematically investigated. AG was oxidized using potassium periodate, purified from the oxidizing agent using ion-exchange chromatography, and reacted with AmB to form the Schiff base. The Schiff base was reduced to the amine using borohydride. All reactions took place in aqueous media. The purification of the oxidized AG from the oxidizing agent was essential to prevent oxidative degradation of AmB at the coupling step. We investigated the effects of AmB to AG ratio, buffer type, and reaction pH on the reaction yield, molecular weight, conjugate activity against pathogenic yeast and hemolytic activity. The optimum coupling conditions were buffer borate 0.1 M, pH 11 at room temperature for 48 h. Lower toxicity in vivo was achieved by using low-pressure gel permeation chromatography and applying the solution of AmB-AG conjugate through a Sephadex column. Both amine and imine AmB-AG conjugates were soluble in water and exhibited improved stability in aqueous solutions as compared to the unbound drug. The conjugates showed comparable minimum inhibitory concentration (MIC) values against Candida albicans. The conjugates were about 60 times less hemolytic against sheep erythrocytes than the free drug, and about 40 times less toxic in BALB/c mice.
Collapse
Affiliation(s)
- T Ehrenfreund-Kleinman
- Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
27
|
Hartsel SC, Bauer E, Kwong EH, Wasan KM. The effect of serum albumin on amphotericin B aggregate structure and activity. Pharm Res 2001; 18:1305-9. [PMID: 11683244 DOI: 10.1023/a:1013090011952] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE Mild heat treatment of Fungizone (FZ, an amphotericin B:deoxycholate preparation) leads to a new self-associated form (HFZ) that demonstrates improved therapeutic index in vivo. The origin of the improvement may lie in the differential stability in the presence of serum proteins. The purpose of this study is to assess the effect of human serum albumin (HSA) on the structure and stability and in vitro channel forming ability of these two preparations against model fungal and mammalian membrane vesicles. METHODS Kinetic absorption and CD spectroscopy were used to assess the kinetic and equilibrium stability of the characteristic amphotericin B complexes in the presence of HSA. Kinetic fluorescence spectroscopy of pyranine entrapped in model fungal and mammalian membrane vesicles was used to measure the cation-selective channel forming ability of HZ and HFZ delivered from HSA. RESULTS It is shown that FZ is rapidly converted from its aggregated form to a protein-bound monomer in the presence of HSA, whereas HFZ demonstrates greater stability by persisting as a stable inactive aggregate. Fluorescence measurements of ion currents show that HSA attenuates the membrane-activity of both preparations. However, the activity of both HFZ and FZ remains significant against ergosterol-containing membranes. This is the first direct measurement of the intrinsic channel forming abilities of these amphotericin B preparations in the presence of serum proteins. CONCLUSION These data provide a mechanistic rationale for the similar efficacy and lower toxicity of HFZ.
Collapse
Affiliation(s)
- S C Hartsel
- Department of Chemistry, University of Wisconsin-Eau Claire, 54702-4004, USA.
| | | | | | | |
Collapse
|