1
|
Bahmanpour A, Ghoreishian SM, Sepahvandi A. Electromagnetic Modulation of Cell Behavior: Unraveling the Positive Impacts in a Comprehensive Review. Ann Biomed Eng 2024; 52:1941-1954. [PMID: 38652384 DOI: 10.1007/s10439-024-03519-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
There are numerous effective procedures for cell signaling, in which humans directly transmit detectable signals to cells to govern their essential behaviors. From a biomedical perspective, the cellular response to the combined influence of electrical and magnetic fields holds significant promise in various domains, such as cancer treatment, targeted drug delivery, gene therapy, and wound healing. Among these modern cell signaling methods, electromagnetic fields (EMFs) play a pivotal role; however, there remains a paucity of knowledge concerning the effects of EMFs across all wavelengths. It's worth noting that most wavelengths are incompatible with human cells, and as such, this study excludes them from consideration. In this review, we aim to comprehensively explore the most effective and current EMFs, along with their therapeutic impacts on various cell types. Specifically, we delve into the influence of alternating electromagnetic fields (AEMFs) on diverse cell behaviors, encompassing proliferation, differentiation, biomineralization, cell death, and cell migration. Our findings underscore the substantial potential of these pivotal cellular behaviors in advancing the treatment of numerous diseases. Moreover, AEMFs wield a significant role in the realms of biomaterials and tissue engineering, given their capacity to decisively influence biomaterials, facilitate non-invasive procedures, ensure biocompatibility, and exhibit substantial efficacy. It is worth mentioning that AEMFs often serve as a last-resort treatment option for various diseases. Much about electromagnetic fields remains a mystery to the scientific community, and we have yet to unravel the precise mechanisms through which wavelengths control cellular fate. Consequently, our understanding and knowledge in this domain predominantly stem from repeated experiments yielding similar effects. In the ensuing sections of this article, we delve deeper into our extended experiments and research.
Collapse
|
2
|
K R, Roy Choudury AN, Dubey AK, Kumaran V, Basu B. On the origin of the biological effects of time varying magnetic fields: quantitative insights. J Mater Chem B 2024. [PMID: 38958687 DOI: 10.1039/d4tb00362d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
In a number of recently published experimental studies from our research group, the positive impact of magnetic stimuli (static/pulsed) on cell functionality modulation or bactericidal effects, in vitro, has been established. In order to develop a theoretical understanding of such magnetobiological effects, the present study aimed to present two quantitative models to determine magnetic Maxwell stresses as well as pressure acting on the cell membrane, under the influence of a time varying magnetic field. The model predicts that magnetic field-induced stress on the cell/bacteria is dependent on the conductivity properties of the extracellular region, which is determined to be too low to cause any significant effect. However, the force on the cell/bacteria due to the induced electric field is more influential than that of the magnetic field, which has been used to determine the membrane tension that can cause membrane poration. With a known critical membrane tension for cells, the field parameters necessary to cause membrane rupture have been estimated. Based on the experimental results and theoretically predicted values, the field parameters can be classified into three regimes, wherein the magnetic fields cause no effect or result in biophysical stimulation or induce cell death due to membrane damage. Taken together, this work provides some quantitative insights into the impact of magnetic fields on biological systems.
Collapse
Affiliation(s)
- Ravikumar K
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA, USA
| | - Aditya N Roy Choudury
- Department of Energy Science and Engineering, Indian Institute of Technology, Mumbai, India
| | - Ashutosh Kumar Dubey
- Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - V Kumaran
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Bikramjit Basu
- Materials Research Centre, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
3
|
Sarimov RM, Serov DA, Gudkov SV. Hypomagnetic Conditions and Their Biological Action (Review). BIOLOGY 2023; 12:1513. [PMID: 38132339 PMCID: PMC10740674 DOI: 10.3390/biology12121513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
The geomagnetic field plays an important role in the existence of life on Earth. The study of the biological effects of (hypomagnetic conditions) HMC is an important task in magnetobiology. The fundamental importance is expanding and clarifying knowledge about the mechanisms of magnetic field interaction with living systems. The applied significance is improving the training of astronauts for long-term space expeditions. This review describes the effects of HMC on animals and plants, manifested at the cellular and organismal levels. General information is given about the probable mechanisms of HMC and geomagnetic field action on living systems. The main experimental approaches are described. We attempted to systematize quantitative data from various studies and identify general dependencies of the magnetobiology effects' value on HMC characteristics (induction, exposure duration) and the biological parameter under study. The most pronounced effects were found at the cellular level compared to the organismal level. Gene expression and protein activity appeared to be the most sensitive to HMC among the molecular cellular processes. The nervous system was found to be the most sensitive in the case of the organism level. The review may be of interest to biologists, physicians, physicists, and specialists in interdisciplinary fields.
Collapse
Affiliation(s)
| | | | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (R.M.S.); (D.A.S.)
| |
Collapse
|
4
|
Sarimov RM, Serov DA, Gudkov SV. Biological Effects of Magnetic Storms and ELF Magnetic Fields. BIOLOGY 2023; 12:1506. [PMID: 38132332 PMCID: PMC10740910 DOI: 10.3390/biology12121506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Magnetic fields are a constant and essential part of our environment. The main components of ambient magnetic fields are the constant part of the geomagnetic field, its fluctuations caused by magnetic storms, and man-made magnetic fields. These fields refer to extremely-low-frequency (<1 kHz) magnetic fields (ELF-MFs). Since the 1980s, a huge amount of data has been accumulated on the biological effects of magnetic fields, in particular ELF-MFs. However, a unified picture of the patterns of action of magnetic fields has not been formed. Even though a unified mechanism has not yet been generally accepted, several theories have been proposed. In this review, we attempted to take a new approach to analyzing the quantitative data on the effects of ELF-MFs to identify new potential areas for research. This review provides general descriptions of the main effects of magnetic storms and anthropogenic fields on living organisms (molecular-cellular level and whole organism) and a brief description of the main mechanisms of magnetic field effects on living organisms. This review may be of interest to specialists in the fields of biology, physics, medicine, and other interdisciplinary areas.
Collapse
Affiliation(s)
| | | | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova Street, 119991 Moscow, Russia; (R.M.S.); (D.A.S.)
| |
Collapse
|
5
|
Intermittent ELF-MF Induce an Amplitude-Window Effect on Umbilical Cord Blood Lymphocytes. Int J Mol Sci 2022; 23:ijms232214391. [PMID: 36430865 PMCID: PMC9699011 DOI: 10.3390/ijms232214391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
In a previous study of the effects of intermittent extremely low frequency (ELF) magnetic fields (MF) on umbilical cord blood lymphocytes (UCBL), we evaluated MF amplitudes between 6 µT and 24 µT and found an effect only for those below 13 µT. This suggested the existence of an amplitude window. In this brief communication, we further tested this hypothesis. UCBLs from healthy newborns were isolated and exposed for 72 h to an intermittent ELF-MF (triangular, 7.8 Hz, 250 s ON/250 s OFF) with 6 different amplitudes between 3 µT and 12 µT, utilizing an oblong coil. Percentage of viable, early apoptotic (EA), and late apoptotic/necrotic (LAN) cells were determined by flow cytometry. Moreover, reactive oxygen species (ROS) were determined at 1 h and 3 h of the exposure. Like in our previous work, neither EA, nor LAN, nor ROS were statistically significantly affected by the intermittent ELF-MF. However, the percentage of viable cells was decreased by exposure to the fields with intensities of 6.5 µT and 12 µT (p < 0.05; and p = 0.057 for 8.5 µT). ELF-MF decreased the percentage of viable cells for fields down to 6.5 µT, but not for 5 µT, 4 µT, or 3 µT. Combined with our previous findings, the results reported here indicate an amplitude window effect between 6 µT and 13 µT. The obtained data are in line with a notion of amplitude and frequency windows, which request scanning of both amplitude and frequency while studying the ELF-MF effects.
Collapse
|
6
|
Makinistian L, Zastko L, Tvarožná A, Días LE, Belyaev I. Static magnetic fields from earphones: Detailed measurements plus some open questions. ENVIRONMENTAL RESEARCH 2022; 214:113907. [PMID: 35870506 DOI: 10.1016/j.envres.2022.113907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/09/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Earphones (EP) are a worldwide, massively adopted product, assumed to be innocuous provided the recommendations on sound doses limits are followed. Nevertheless, sound is not the only physical stimulus that derives from EP use, since they include a built-in permanent magnet from which a static magnetic field (SMF) originates. We performed 2D maps of the SMF at several distances from 6 models of in-ear EP, showing that they produce an exposure that spans from ca. 20 mT on their surface down to tens of μT in the inner ear. The numerous reports of bioeffects elicited by SMF in that range of intensities (applied both acutely and chronically), together with the fact that there is no scientific consensus over the possible mechanisms of interaction with living tissues, suggest that caution could be recommendable. In addition, more research is warranted on the possible effects of the combination of SMF with extremely low frequency and radiofrequency fields, which has so far been scarcely studied. Overall, while several open questions about bioeffects of SMF remain to be addressed by the scientific community, we find sensible to suggest that the use of air-tube earphones is probably the more conservative, cautious choice.
Collapse
Affiliation(s)
- L Makinistian
- Department of Physics, Universidad Nacional de San Luis (UNSL), San Luis, Argentina; Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis (UNSL)-CONICET, San Luis, Argentina.
| | - L Zastko
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia; Department of Laboratory Medicine, Faculty of Health Care, Catholic University in Ružomberok, Ružomberok, Slovakia
| | - A Tvarožná
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - L E Días
- Department of Physics, Universidad Nacional de San Luis (UNSL), San Luis, Argentina
| | - I Belyaev
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
7
|
D’Ercole S, Di Lodovico S, Iezzi G, Pierfelice TV, D’Amico E, Cipollina A, Piattelli A, Cellini L, Petrini M. Complex Electromagnetic Fields Reduce Candida albicans Planktonic Growth and Its Adhesion to Titanium Surfaces. Biomedicines 2021; 9:biomedicines9091261. [PMID: 34572449 PMCID: PMC8466218 DOI: 10.3390/biomedicines9091261] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/29/2022] Open
Abstract
This study evaluates the effects of different programs of complex electromagnetic fields (C.M.F.s) on Candida albicans, in planktonic and sessile phase and on human gingival fibroblasts (HGF cells). In vitro cultures of C. albicans ATCC 10231 and HGF cells were exposed to different cycles of C.M.F.s defined as: oxidative stress, oxidative stress/antibacterial, antibacterial, antibacterial/oxidative stress. Colony forming units (CFUs), metabolic activity, cells viability (live/dead), cell morphology, filamentation analysis, and cytotoxicity assay were performed. The broth cultures, exposed to the different C.M.F.s, were grown on titanium discs for 48 h. The quantity comparisons of adhered C. albicans on surfaces were determined by CFUs and scanning electron microscopy. The C. albicans growth could be readily controlled with C.M.F.s reducing the number of cultivable planktonic cells vs. controls, independently by the treatment applied. In particular, the antibacterial program was associated with lower levels of CFUs. The quantification of the metabolic activity was significantly lower by using the oxidative stress program. Live/dead images showed that C.M.F.s significantly decreased the viability of C. albicans. C.M.F.s inhibited C. albicans virulence traits reducing hyphal morphogenesis, adhesion, and biofilm formation on titanium discs. The MTS assay showed no negative effects on the viability of HGF. Independent of the adopted protocol, C.M.F.s exert antifungal and anti-virulence action against C. albicans, no cytotoxicity effects on HGF and can be useful in the prevention and treatment of yeast biofilm infections.
Collapse
Affiliation(s)
- Simonetta D’Ercole
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66013 Chieti, Italy; (G.I.); (T.V.P.); (E.D.); (A.P.); (M.P.)
- Correspondence:
| | - Silvia Di Lodovico
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66013 Chieti, Italy; (S.D.L.); (L.C.)
| | - Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66013 Chieti, Italy; (G.I.); (T.V.P.); (E.D.); (A.P.); (M.P.)
| | - Tania Vanessa Pierfelice
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66013 Chieti, Italy; (G.I.); (T.V.P.); (E.D.); (A.P.); (M.P.)
| | - Emira D’Amico
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66013 Chieti, Italy; (G.I.); (T.V.P.); (E.D.); (A.P.); (M.P.)
| | | | - Adriano Piattelli
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66013 Chieti, Italy; (G.I.); (T.V.P.); (E.D.); (A.P.); (M.P.)
- Faculty of Medicine and Odontology, University of Valencia, 46004 Valencia, Spain
- Biomaterial Engineering, Catholic University of San Antonio de Murcia (UCAM), Av. de los Jerónimos, 135, 30107 Murcia, Spain
- Villa Serena Foundation for Research, Via Leonardo Petruzzi 42, 65013 Città Sant’Angelo, Italy
- Casa di Cura Villa Serena del Dott. L. Petruzzi, Via Leonardo Petruzzi 42, 65013 Città Sant’Angelo, Italy
| | - Luigina Cellini
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66013 Chieti, Italy; (S.D.L.); (L.C.)
| | - Morena Petrini
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66013 Chieti, Italy; (G.I.); (T.V.P.); (E.D.); (A.P.); (M.P.)
| |
Collapse
|
8
|
Effects of Complex Electromagnetic Fields on Candida albicans Adhesion and Proliferation on Polyacrylic Resin. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11156786] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
(1) Background: The objectives of this study were to evaluate the effect of several sessions of the antibacterial protocol of complex electromagnetic fields (CMFs) on planktonic Candida albicans and fungal ability, after treatment with CMFs, to adhere and proliferate on acrylic resin materials. (2) Methods: Planktonic overnight cultures of Candida albicans were subjected to different entities of CMFs treatments. Four test groups were compared: “p1”: treated only with the first program of the antibacterial protocol; “p1–p5” subjected to the first five programs; “1 antibacterial” received one complete session of the protocol and “2 antibacterial” received two complete sessions. After the treatments, the number of colony forming units (CFUs) were recorded. Then, C. albicans broth cultures were cultivated on polyacrylic resin discs and evaluated for CFUs and subjected to scanning electron microscope (SEM) analysis. (3) Results: Microbiological analysis showed that CMFs promoted a significant reduction of C. albicans CFUs when the protocol “p1–p5” was applied. No statistically significant differences between test groups were observed if the time of exposure to CMFs was increased. SEM observations and CFUs showed that CMFs treatments have the ability to reduce C. albicans adherence and proliferation on discs. (4) Conclusions: The CMFs showed an antifungal effect as well as a decrease in C. albicans adhesion on polyacrylic resin.
Collapse
|
9
|
Wang Y, Gu X, Quan J, Xing G, Yang L, Zhao C, Wu P, Zhao F, Hu B, Hu Y. Application of magnetic fields to wastewater treatment and its mechanisms: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145476. [PMID: 33588219 DOI: 10.1016/j.scitotenv.2021.145476] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Magnetic field (MF) has been applied widely and successfully as an efficient, low-cost and easy-to-use technique to enhance wastewater treatment (WWT) performance. Although the effects of MF on WWT were revealed and summarized by some works, they are still mysterious and complex. This review summarizes the application of MF in magnetic adsorption-separation of heavy metals and dyes, treatment of domestic wastewater and photo-magnetic coupling technology. Furthermore, the mechanisms of MF-enhanced WWT are critically elaborated from the perspective of magnetic physicochemical and biological effects, such as magnetoresistance, Lorentz force, and intracellular radical pair mechanism. At last, the challenges and opportunities for MF application in WWT are discussed. For overcoming the limitations and taking advantages of MFs in WWT, fundamental research of the mechanisms of the application of MFs should be carried out in the future.
Collapse
Affiliation(s)
- Yilin Wang
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Xin Gu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Jianing Quan
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Guohua Xing
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Liwei Yang
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Chuanliang Zhao
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Pei Wu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Fan Zhao
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China
| | - Bo Hu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Chang' an University, Xi'an, China.
| | - Yuansheng Hu
- School of Civil Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| |
Collapse
|
10
|
Moditma M, Singh P, Sharma R, Verma AK, Annapoorni S. FeCo nanoparticles as antibacterial agents with improved response in magnetic field: An insight into the associated toxicity mechanism. NANOTECHNOLOGY 2021; 32:335101. [PMID: 33882473 DOI: 10.1088/1361-6528/abfa53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The emergence of multi-drug resistant bacterial infections has resulted in increased interest in the development of alternative systems which can sensitize bacteria to overcome resistance. In an attempt to contribute to the existing literature of potential antibacterial agents, we present here, a first report of the antibacterial potential of FeCo nanoparticles, both as stand-alone devices and in presence of magnetic field, against the bacterial strains of S. aureus and E. coli. A relatively simple polyol process was employed for nanoparticle synthesis. Formation of FeCo alloy in the desired BCC phase was confirmed by X-Ray Diffraction with a high saturation magnetization (Ms~180 Am2kg-1). Uniformly sized spherical structures with sharp edges were obtained. Solution stability was confirmed by the zeta potential value of -27.8 mV. Dose dependent bacterial growth inhibition was observed, the corresponding linear correlation coefficients being, R2 = 0.74 for S. aureus and R2 = 0.76 for E. coli. Minimum inhibitory concentration was accordingly ascertained to be >1024 μg/ml for both. Bacterial growth curves have been examined upon concomitant application of external magnetic field of varying intensities and revealed considerable enhancement in the antibacterial response upto 63% in a field of 100 mT. An effort has been made to understand the bacterial inhibitory mechanism by relating with the chemical and physical properties of the nanoparticles. The ease of field assisted targeting and retrieval of these highly magnetic, antibacterial nano-devices, with considerably improved response with magnetic fields, make them promising for several medical and environment remediation technologies.
Collapse
Affiliation(s)
- Moditma Moditma
- Department of Physics and Astrophysics, University of Delhi, New Delhi, INDIA
| | - Priyanka Singh
- Nano-biotech Lab, Zoology Department, University of Delhi, New Delhi, Delhi, INDIA
| | - Raksha Sharma
- Physics Department, University of Delhi, New Delhi, Delhi, INDIA
| | - Anita Kamra Verma
- Nano-biotech Lab, Zoology Department, University of Delhi, New Delhi, Delhi, INDIA
| | - S Annapoorni
- Department of Physics and Astrophysics, University of Delhi, New Delhi, Delhi, INDIA
| |
Collapse
|
11
|
Obhođaš J, Valković V, Kollar R, Hrenović J, Nađ K, Vinković A, Orlić Ž. The Growth and Sporulation of Bacillus subtilis in Nanotesla Magnetic Fields. ASTROBIOLOGY 2021; 21:323-331. [PMID: 33370540 DOI: 10.1089/ast.2020.2288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The order of magnitude of increased growth, multiplication rate, and decreased sporulation of Bacillus subtilis after exposure to nanotesla magnetic fields (MFs) relative to control samples were observed experimentally. Earth's total magnetic field intensity was reduced from 47.9 ± 0.4 μT to cover the range from 97.5 ± 1.7 nT to 1115 ± 158 nT in eight subsequent experiments by using three pairs of Helmholtz coils combined with Mu-metal shielding. The growth, multiplication rate, sporulation, and potassium content were measured in the probe and control containing B. subtilis cultures after 24 h of exposure to nanotesla and Earth's magnetic fields, respectively. The observed effect is discussed with regard to its possible repercussions on Earth's living species during geomagnetic reversals that occurred when the magnetic field was much weaker than the field that exists today. In addition, effects on future manned voyages into deep space, an environment with reduced magnetic field intensity, are considered.
Collapse
Affiliation(s)
- Jasmina Obhođaš
- Laboratory for Nuclear Analytical Techniques, Institute Ruđer Bošković, Zagreb, Croatia
| | | | | | - Jasna Hrenović
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Karlo Nađ
- Laboratory for Nuclear Analytical Techniques, Institute Ruđer Bošković, Zagreb, Croatia
| | - Andrija Vinković
- Laboratory for Nuclear Analytical Techniques, Institute Ruđer Bošković, Zagreb, Croatia
| | - Željko Orlić
- Laboratory for Nuclear Analytical Techniques, Institute Ruđer Bošković, Zagreb, Croatia
| |
Collapse
|
12
|
Fernandes MM, Martins P, Correia DM, Carvalho EO, Gama FM, Vazquez M, Bran C, Lanceros-Mendez S. Magnetoelectric Polymer-Based Nanocomposites with Magnetically Controlled Antimicrobial Activity. ACS APPLIED BIO MATERIALS 2021. [DOI: 10.1021/acsabm.0c01125] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Margarida M. Fernandes
- Centre of Physics, University of Minho, Braga 4710-057, Portugal
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Pedro Martins
- Centre of Physics, University of Minho, Braga 4710-057, Portugal
| | - Daniela M. Correia
- Centre of Physics, University of Minho, Braga 4710-057, Portugal
- Centre of Chemistry, University of Trás-os-Montes e Alto Douro, Vila Real 5001-801, Portugal
| | - Estela O. Carvalho
- Centre of Physics, University of Minho, Braga 4710-057, Portugal
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Francisco M. Gama
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Manuel Vazquez
- Instituto de Ciencia de Materiales de Madrid, ICMM, CSIC, Madrid 28049, Spain
| | - Cristina Bran
- Instituto de Ciencia de Materiales de Madrid, ICMM, CSIC, Madrid 28049, Spain
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48009, Spain
| |
Collapse
|
13
|
Fernandes MM, Carvalho EO, Lanceros-Mendez S. Electroactive Smart Materials: Novel Tools for Tailoring Bacteria Behavior and Fight Antimicrobial Resistance. Front Bioeng Biotechnol 2019; 7:277. [PMID: 31681752 PMCID: PMC6813912 DOI: 10.3389/fbioe.2019.00277] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/02/2019] [Indexed: 11/13/2022] Open
Abstract
Despite being very simple organisms, bacteria possess an outstanding ability to adapt to different environments. Their long evolutionary history, being exposed to vastly different physicochemical surroundings, allowed them to detect and respond to a wide range of signals including biochemical, mechanical, electrical, and magnetic ones. Taking into consideration their adapting mechanisms, it is expected that novel materials able to provide bacteria with specific stimuli in a biomimetic context may tailor their behavior and make them suitable for specific applications in terms of anti-microbial and pro-microbial approaches. This review maintains that electroactive smart materials will be a future approach to be explored in microbiology to obtain novel strategies for fighting the emergence of live threatening antibiotic resistance.
Collapse
Affiliation(s)
- Margarida M. Fernandes
- Centre of Biological Engineering, University of Minho, Braga, Portugal
- Centre of Physics, University of Minho, Braga, Portugal
| | - Estela O. Carvalho
- Centre of Biological Engineering, University of Minho, Braga, Portugal
- Centre of Physics, University of Minho, Braga, Portugal
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
14
|
El-Khatib AM, Khalil AM, El-Kaliuoby MI, Elkhatib M. The combined effects of multisized silver nanoparticles and pulsed magnetic field on K. pneumoniae. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2019. [DOI: 10.1680/jbibn.18.00042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Silver nanoparticles have been shown to have antimicrobial effects and remarkable disinfection efficacy against a range of water microorganisms. In the present work, Klebsiella pneumoniae was used as a water treatment model, as it survives in a wide range of water environments. Silver nanoparticles of higher stability and different sizes were synthesized by the arc discharge method. The combination of 30 min exposure to 0·32 mT, 20 Hz pulsed magnetic field and treatment with silver nanoparticles with serial concentrations (10:500 parts per million) and different sizes (94, 38 and 17 nm) was used to study the antibacterial effects against K. pneumoniae. Confirmation of silver nanoparticles by using an ultraviolet–visible spectrometer, a particle size analyzer and a high-resolution transmission electron microscope depicted three sizes (∼94, ∼38 and ∼17 nm) at rotational speeds (0, 350 and 950 revolutions/min, respectively). The antibacterial results indicated serially more inhibition of bacterial growth with increase in silver nanoparticle concentration, with the maximum effect of more than 70% inhibition produced by 17 nm silver nanoparticles. Particularly, the combination of pulsed magnetic field and silver nanoparticles (17 nm) indicated significant enhancement in growth inhibition by 56·7% compared to each alone. The study presents a new trend for water disinfection with significant impact of such combination effects on K. pneumoniae with low silver nanoparticle concentrations and less toxicity.
Collapse
Affiliation(s)
| | | | | | - Mostafa Elkhatib
- Faculty of Engineering, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
15
|
Makinistian L, Marková E, Belyaev I. A high throughput screening system of coils for ELF magnetic fields experiments: proof of concept on the proliferation of cancer cell lines. BMC Cancer 2019; 19:188. [PMID: 30819144 PMCID: PMC6396543 DOI: 10.1186/s12885-019-5376-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/18/2019] [Indexed: 12/26/2022] Open
Abstract
Background It has been demonstrated that relatively small variations of the parameters of exposure to extremely low frequency magnetic fields (ELF-MF) can change significantly the outcome of experiments. Hence, either in trying to elucidate if these fields are carcinogenic, or in exploring their possible therapeutic use, it is desirable to screen through as many different exposures as possible. The purpose of this work is to provide a proof of concept of how a recently reported system of coils allows testing different field exposures, in a single experiment. Methods Using a novel exposure system, we subjected a glioblastoma cancer cell line (U251) to three different time modulations of an ELF-MF at 60 different combinations of the alternated current (AC) and direct current (DC) components of the field. One of those three time modulations was also tested on another cell line, MDA-MB-231 (breast cancer). After exposure, proliferation was assessed by colorimetric assays. Results For the U251 cells, a total of 180 different exposures were tested in three different experiments. Depending on exposure modulation and AC field intensity (but, remarkably, not on DC intensity), we found the three possible outcomes: increase (14.3% above control, p < 0.01), decrease (16.6% below control, p < 0.001), and also no-effect on proliferation with respect to control. Only the time modulation that inhibited proliferation of U251 was also tested on MDA-MB-231 cells which, in contrast, showed no alteration of their proliferation on any of the 60 AC/DC field combinations tested. Conclusions We demonstrated, for the first time, the use of a novel system of coils for magnetobiology research, which allowed us to find that differences of only a few μT resulted in statistically different results. Not only does our study demonstrate the relevance of the time modulation and the importance of finely sweeping through the AC and DC amplitudes, but also, and most importantly, provides a proof of concept of a system that sensibly reduces the time and costs of screening. Electronic supplementary material The online version of this article (10.1186/s12885-019-5376-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leonardo Makinistian
- Department of Radiobiology, Cancer Research Institute, Biomedical Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia.,Department of Physics and Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis-CONICET, Ejército de los Andes 950, CP5700, San Luis, Argentina
| | - Eva Marková
- Department of Radiobiology, Cancer Research Institute, Biomedical Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Igor Belyaev
- Department of Radiobiology, Cancer Research Institute, Biomedical Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia.
| |
Collapse
|
16
|
Dhiman SK, Galland P. Effects of weak static magnetic fields on the gene expression of seedlings of Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2018; 231:9-18. [PMID: 30199755 DOI: 10.1016/j.jplph.2018.08.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/26/2018] [Accepted: 08/29/2018] [Indexed: 05/20/2023]
Abstract
Magnetic-field reception of animals and plants is currently discussed in the framework of a cryptochrome-based radical-pair mechanism. Efforts to unravel magnetoreception in plants suffered historically from several shortcomings, most prominently, the conspicuous absence of detailed stimulus-response relationships. To determine the sensitivity of seedlings of Arabidopsis thaliana to weak static magnetic fields we generated stimulus-response curves between near zero and 188 μT for the transcript levels of the genes rbcl, cab4, pal4 and ef1. The moderate magneto-responsiveness of dark-grown seedlings was greatly enhanced under blue light, and for rbcl and pal4 also under red light. The stimulus-response curves obtained under blue light of constant photon-fluence rate displayed multiple maxima and thus a pattern fundamentally different from that prevalent in plant and animal physiology. A double mutant lacking cryptochromes 1 and 2 displayed altered stimulus-response curves without losing, however, magneto-responsiveness completely. A reversal of the magnetic field direction substantially affected the gene expression and the quantity of CAB-protein (chlorophyll a,b-binding protein). The majority of our results are at variance with the notion of cryptochromes acting as the only magnetic-field sensors. They do not, however, exclude the possibility that cryptochromes participate in the magnetic field reception of Arabidopsis. The findings have the unexpected implication that cryptochrome- and phytochrome-mediated plant responses can be modulated by the strength and the orientation of the local geomagnetic field.
Collapse
Affiliation(s)
- Sunil K Dhiman
- Faculty of Biology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, D-35032 Marburg, Germany; Kirori Mal College, Delhi University (North Campus), Delhi-110007, India.
| | - Paul Galland
- Faculty of Biology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, D-35032 Marburg, Germany.
| |
Collapse
|
17
|
Evaluation of the Effectiveness of Protective Patches on Acupoints to Preserve the Bioenergetic Status against Magnetic Fields. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4732130. [PMID: 30305830 PMCID: PMC6166365 DOI: 10.1155/2018/4732130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/02/2018] [Indexed: 12/02/2022]
Abstract
The potentially harmful nature of electromagnetic fields (EMF) and static magnetic fields (SMF) has become a major problem in recent years. All these elements could be combined to produce cellular responses. For example, the orientation of molecules of water or other complex molecules, growth and cell viability, cell morphology, and intracellular metabolic pathways have demonstrated binding to magnetic fields. The effect of EMF and SMF on humans is a topic of great importance, especially because modern technology has introduced artificial magnetic fields such as those generated by power lines, mobile communications, and medical imaging equipment. A relevant problem is certainly that of professional exposure. The aim of this study was the evaluation of the effectiveness of a commercially available device, Skudo® patches (Edil Natura S.r.l., Novara, Italy), in protecting magnetic resonance operators from the influence of magnetic fields such as those present in the workplace. Skudo® patches are designed to protect microareas of the body from external electromagnetic disturbances. In this study, 10 male Italian volunteers aged between 50 and 60 were enrolled in the hospital. All participants were subjected to measurements at 4 specific time points to evaluate the effectiveness of Skudo® to counteract both EMF and SMF magnetic fields by evaluating the level of bioenergetic reactivity. To perform the measurements, a variant of the Ryodoraku method has been used, based upon the assessment of electropermeability. In particular, 12 acupoints were measured, one for each of the main meridians. This study shows that both SMF and EMF cause an alteration of the body's water system. The application of Skudo® patches determines a regularization of bioenergetic levels related to the water system. The application of Skudo® on the EMF source has suppressed the imbalance effect of the water system found in the subject without any protection.
Collapse
|
18
|
Binhi VN, Prato FS. Rotations of macromolecules affect nonspecific biological responses to magnetic fields. Sci Rep 2018; 8:13495. [PMID: 30202025 PMCID: PMC6131245 DOI: 10.1038/s41598-018-31847-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/24/2018] [Indexed: 12/19/2022] Open
Abstract
We have previously proposed that there are at least two initial molecular transduction mechanisms needed to explain specific and nonspecific biological effects of weak magnetic fields. For the specific effect associated with animal magnetic navigation, the radical pair mechanism is the leading hypothesis; it associates the specialised magnetic sense with the radical pairs located in the eye retina. In contrast to the magnetic sense, nonspecific effects occur through the interaction of magnetic fields with magnetic moments dispersed over the organism. However, it is unlikely that the radical pair mechanism can explain such nonspecific phenomena. In order to explain these, we further develop our physical model for the case of magnetic moments residing in rotating molecules. It is shown that, in some conditions, the precession of the magnetic moments that reside on rotating molecules can be slowed relative to the immediate biophysical structures. In terms of quantum mechanics this corresponds to the mixing of the quantum levels of magnetic moments. Hence this mechanism is called the Level Mixing Mechanism, or the LMM. The results obtained are magnetic field-dependences that are in good agreement with known experiments where biological effects arise in response to the reversal of the magnetic field vector.
Collapse
Affiliation(s)
| | - Frank S Prato
- Lawson Health Research Institute, Ontario, N6A 4V2, Canada.
| |
Collapse
|
19
|
Makinistian L, Belyaev I. Magnetic field inhomogeneities due to CO 2 incubator shelves: a source of experimental confounding and variability? ROYAL SOCIETY OPEN SCIENCE 2018; 5:172095. [PMID: 29515902 PMCID: PMC5830791 DOI: 10.1098/rsos.172095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/15/2018] [Indexed: 12/27/2023]
Abstract
A thorough assessment of the static magnetic field (SMF) inside a CO2 incubator allowed us to identify non-negligible inhomogeneities close to the floor, ceiling, walls and the door. Given that incubator's shelves are made of a non-magnetic stainless steel alloy, we did not expect any important effect of them on the SMF. Surprisingly, we did find relatively strong distortion of the SMF due to shelves. Indeed, our high-resolution maps of the SMF revealed that distortion is such that field intensities differing by a factor of up to 36 were measured on the surface of the shelf at locations only few millimetres apart from each other. Furthermore, the most intense of these fields was around five times greater than the ones found inside the incubator (without the metallic shelves in), while the lowest one was around 10 times lower, reaching the so-called hypomagnetic field range. Our findings, together with a survey of the literature on biological effects of hypomagnetic fields, soundly support the idea that SMF inhomogeneities inside incubators, especially due to shelves' holes, are a potential source of confounding and variability in experiments with cell cultures kept in an incubator.
Collapse
Affiliation(s)
- L. Makinistian
- Department of Radiobiology, Cancer Research Institute, Biomedical Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Physics and Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas, Ejército de los Andes 950, 5700 San Luis, Argentina
| | - I. Belyaev
- Department of Radiobiology, Cancer Research Institute, Biomedical Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Laboratory of Radiobiology, General Physics Institute, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
20
|
Binhi VN, Prato FS. Biological effects of the hypomagnetic field: An analytical review of experiments and theories. PLoS One 2017; 12:e0179340. [PMID: 28654641 PMCID: PMC5487043 DOI: 10.1371/journal.pone.0179340] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/26/2017] [Indexed: 11/19/2022] Open
Abstract
During interplanetary flights in the near future, a human organism will be exposed to prolonged periods of a hypomagnetic field that is 10,000 times weaker than that of Earth's. Attenuation of the geomagnetic field occurs in buildings with steel walls and in buildings with steel reinforcement. It cannot be ruled out also that a zero magnetic field might be interesting in biomedical studies and therapy. Further research in the area of hypomagnetic field effects, as shown in this article, is capable of shedding light on a fundamental problem in biophysics-the problem of primary magnetoreception. This review contains, currently, the most extensive bibliography on the biological effects of hypomagnetic field. This includes both a review of known experimental results and the putative mechanisms of magnetoreception and their explanatory power with respect to the hypomagnetic field effects. We show that the measured correlations of the HMF effect with HMF magnitude and inhomogeneity and type and duration of exposure are statistically absent. This suggests that there is no general biophysical MF target similar for different organisms. This also suggests that magnetoreception is not necessarily associated with evolutionary developed specific magnetoreceptors in migrating animals and magnetotactic bacteria. Independently, there is nonspecific magnetoreception that is common for all organisms, manifests itself in very different biological observables as mostly random reactions, and is a result of MF interaction with magnetic moments at a physical level-moments that are present everywhere in macromolecules and proteins and can sometimes transfer the magnetic signal at the level of downstream biochemical events. The corresponding universal mechanism of magnetoreception that has been given further theoretical analysis allows one to determine the parameters of magnetic moments involved in magnetoreception-their gyromagnetic ratio and thermal relaxation time-and so to better understand the nature of MF targets in organisms.
Collapse
Affiliation(s)
- Vladimir N. Binhi
- A.M. Prokhorov General Physics Institute, Moscow, Russia
- M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Frank S. Prato
- Lawson Health Research Institute, Ontario, Canada
- University of Western Ontario, Ontario, Canada
| |
Collapse
|
21
|
Makinistian L. A novel system of coils for magnetobiology research. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:114304. [PMID: 27910547 DOI: 10.1063/1.4968200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A novel system of coils for testing in vitro magnetobiological effects was designed, simulated, and built. Opposite to what is usual, the system generates a controlled gradient of magnetic field. This feature is introduced to allow the assessment of multiple values of the field in a single experiment. The apparatus consists of two flattened orthogonal coils, which permit independent control of two of the spatial components of the field. Geometry of design, combined with the use of a standard multi-well microplate for cellular culture, allows for simultaneous testing of 96 different field conditions. The system, intended to increase the efficiency of evaluating biological effects throughout ranges of the field parameters, was fully characterized injecting DC currents to the coils (i.e., generating static magnetic fields) in order to assess the spatial distribution of both the field's and field-gradient's components. Temperature load was carefully evaluated and the maximum values of 350 μT and 9 μT/mm (for the field and its gradient) could be generated without excessive heating of the cellular cultures.
Collapse
Affiliation(s)
- L Makinistian
- Department of Physics and Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas, Ejército de los Andes 950, 5700 San Luis, Argentina
| |
Collapse
|
22
|
Mhamdi L, Mhamdi N, Mhamdi N, Lejeune P, Jaffrezic N, Burais N, Scorretti R, Pokorny J, Ponsonnet L. Effect of a static magnetic field on Escherichia coli adhesion and orientation. Can J Microbiol 2016; 62:944-952. [PMID: 27590823 DOI: 10.1139/cjm-2015-0839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This preliminary study focused on the effect of exposure to 0.5 T static magnetic fields on Escherichia coli adhesion and orientation. We investigated the difference in bacterial adhesion on the surface of glass and indium tin oxide-coated glass when exposed to a magnetic field either perpendicular or parallel to the adhesion surface (vectors of magnetic induction are perpendicular or parallel to the adhesion surface, respectively). Control cultures were simultaneously grown under identical conditions but without exposure to the magnetic field. We observed a decrease in cell adhesion after exposure to the magnetic field. Orientation of bacteria cells was affected after exposure to a parallel magnetic field. On the other hand, no effect on the orientation of bacteria cells was observed after exposure to a perpendicular magnetic field.
Collapse
Affiliation(s)
- Lotfi Mhamdi
- a Institut de Biotechnologie de Monastir, B.P. 74, Avenue Tahar Haddad, 5000 Monastir, Tunisie
| | - Nejib Mhamdi
- b Ecole polytechnique de Montréal, Montréal, QC, Canada
| | | | - Philippe Lejeune
- d Unité de Microbiologie et Génétique, UMR CNRS 5122, Villeurbanne, France
| | - Nicole Jaffrezic
- e Laboratoire Ampère, Université Lyon 1, 69622 Villeurbanne CEDEX, Lyon, France
| | - Nöel Burais
- e Laboratoire Ampère, Université Lyon 1, 69622 Villeurbanne CEDEX, Lyon, France
| | - Riccardo Scorretti
- e Laboratoire Ampère, Université Lyon 1, 69622 Villeurbanne CEDEX, Lyon, France
| | - Jiry Pokorny
- f Institute of Photonics and Electronics, Academy of Sciences of Czech Republic, Chaberska 57, 18251 Prague 8, Czech Republic
| | - Laurence Ponsonnet
- g Laboratoire des Polymères, Biopolymères et Membranes, UMR CNRS, 6522, Rouen, France
| |
Collapse
|
23
|
Belyaev I, Dean A, Eger H, Hubmann G, Jandrisovits R, Kern M, Kundi M, Moshammer H, Lercher P, Müller K, Oberfeld G, Ohnsorge P, Pelzmann P, Scheingraber C, Thill R. EUROPAEM EMF Guideline 2016 for the prevention, diagnosis and treatment of EMF-related health problems and illnesses. REVIEWS ON ENVIRONMENTAL HEALTH 2016; 31:363-397. [PMID: 27454111 DOI: 10.1515/reveh-2016-0011] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/29/2016] [Indexed: 06/06/2023]
Abstract
Chronic diseases and illnesses associated with non-specific symptoms are on the rise. In addition to chronic stress in social and work environments, physical and chemical exposures at home, at work, and during leisure activities are causal or contributing environmental stressors that deserve attention by the general practitioner as well as by all other members of the health care community. It seems necessary now to take "new exposures" like electromagnetic fields (EMF) into account. Physicians are increasingly confronted with health problems from unidentified causes. Studies, empirical observations, and patient reports clearly indicate interactions between EMF exposure and health problems. Individual susceptibility and environmental factors are frequently neglected. New wireless technologies and applications have been introduced without any certainty about their health effects, raising new challenges for medicine and society. For instance, the issue of so-called non-thermal effects and potential long-term effects of low-dose exposure were scarcely investigated prior to the introduction of these technologies. Common electromagnetic field or EMF sources: Radio-frequency radiation (RF) (3 MHz to 300 GHz) is emitted from radio and TV broadcast antennas, Wi-Fi access points, routers, and clients (e.g. smartphones, tablets), cordless and mobile phones including their base stations, and Bluetooth devices. Extremely low frequency electric (ELF EF) and magnetic fields (ELF MF) (3 Hz to 3 kHz) are emitted from electrical wiring, lamps, and appliances. Very low frequency electric (VLF EF) and magnetic fields (VLF MF) (3 kHz to 3 MHz) are emitted, due to harmonic voltage and current distortions, from electrical wiring, lamps (e.g. compact fluorescent lamps), and electronic devices. On the one hand, there is strong evidence that long-term exposure to certain EMFs is a risk factor for diseases such as certain cancers, Alzheimer's disease, and male infertility. On the other hand, the emerging electromagnetic hypersensitivity (EHS) is more and more recognized by health authorities, disability administrators and case workers, politicians, as well as courts of law. We recommend treating EHS clinically as part of the group of chronic multisystem illnesses (CMI), but still recognizing that the underlying cause remains the environment. In the beginning, EHS symptoms occur only occasionally, but over time they may increase in frequency and severity. Common EHS symptoms include headaches, concentration difficulties, sleep problems, depression, a lack of energy, fatigue, and flu-like symptoms. A comprehensive medical history, which should include all symptoms and their occurrences in spatial and temporal terms and in the context of EMF exposures, is the key to making the diagnosis. The EMF exposure is usually assessed by EMF measurements at home and at work. Certain types of EMF exposure can be assessed by asking about common EMF sources. It is very important to take the individual susceptibility into account. The primary method of treatment should mainly focus on the prevention or reduction of EMF exposure, that is, reducing or eliminating all sources of high EMF exposure at home and at the workplace. The reduction of EMF exposure should also be extended to public spaces such as schools, hospitals, public transport, and libraries to enable persons with EHS an unhindered use (accessibility measure). If a detrimental EMF exposure is reduced sufficiently, the body has a chance to recover and EHS symptoms will be reduced or even disappear. Many examples have shown that such measures can prove effective. To increase the effectiveness of the treatment, the broad range of other environmental factors that contribute to the total body burden should also be addressed. Anything that supports homeostasis will increase a person's resilience against disease and thus against the adverse effects of EMF exposure. There is increasing evidence that EMF exposure has a major impact on the oxidative and nitrosative regulation capacity in affected individuals. This concept also may explain why the level of susceptibility to EMF can change and why the range of symptoms reported in the context of EMF exposures is so large. Based on our current understanding, a treatment approach that minimizes the adverse effects of peroxynitrite - as has been increasingly used in the treatment of multisystem illnesses - works best. This EMF Guideline gives an overview of the current knowledge regarding EMF-related health risks and provides recommendations for the diagnosis, treatment and accessibility measures of EHS to improve and restore individual health outcomes as well as for the development of strategies for prevention.
Collapse
|
24
|
Boda SK, Basu B. Engineered biomaterial and biophysical stimulation as combinatorial strategies to address prosthetic infection by pathogenic bacteria. J Biomed Mater Res B Appl Biomater 2016; 105:2174-2190. [PMID: 27404048 DOI: 10.1002/jbm.b.33740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/08/2016] [Accepted: 06/20/2016] [Indexed: 12/25/2022]
Abstract
A plethora of antimicrobial strategies are being developed to address prosthetic infection. The currently available methods for implant infection treatment include the use of antibiotics and revision surgery. Among the bacterial strains, Staphylococcus species pose significant challenges particularly, with regard to hospital acquired infections. In order to combat such life threatening infectious diseases, researchers have developed implantable biomaterials incorporating nanoparticles, antimicrobial reinforcements, surface coatings, slippery/non-adhesive and contact killing surfaces. This review discusses a few of the biomaterial and biophysical antimicrobial strategies, which are in the developmental stage and actively being pursued by several research groups. The clinical efficacy of biophysical stimulation methods such as ultrasound, electric and magnetic field treatments against prosthetic infection depends critically on the stimulation protocol and parameters of the treatment modality. A common thread among the three biophysical stimulation methods is the mechanism of bactericidal action, which is centered on biophysical rupture of bacterial membranes, the generation of reactive oxygen species (ROS) and bacterial membrane depolarization evoked by the interference of essential ion-transport. Although the extent of antimicrobial effect, normally achieved through biophysical stimulation protocol is insufficient to warrant therapeutic application, a combination of antibiotic/ROS inducing agents and biophysical stimulation methods can elicit a clinically relevant reduction in viable bacterial numbers. In this review, we present a detailed account of both the biomaterial and biophysical approaches for achieving maximum bacterial inactivation. Summarizing, the biophysical stimulation methods in a combinatorial manner with material based strategies can be a more potent solution to control bacterial infections. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2174-2190, 2017.
Collapse
Affiliation(s)
- Sunil Kumar Boda
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
25
|
Albuquerque WWC, Costa RMPB, Fernandes TDSE, Porto ALF. Evidences of the static magnetic field influence on cellular systems. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:16-28. [DOI: 10.1016/j.pbiomolbio.2016.03.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 03/10/2016] [Indexed: 01/29/2023]
|
26
|
Differential viability response of prokaryotes and eukaryotes to high strength pulsed magnetic stimuli. Bioelectrochemistry 2015; 106:276-89. [PMID: 26254844 DOI: 10.1016/j.bioelechem.2015.07.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 07/24/2015] [Accepted: 07/24/2015] [Indexed: 10/23/2022]
Abstract
The present study examines the efficacy of a high strength pulsed magnetic field (PMF) towards bacterial inactivation in vitro, without compromising eukaryotic cell viability. The differential response of prokaryotes [Staphylococcus aureus (MRSA), Staphylococcus epidermidis, and Escherichia coli], and eukaryotes [C2C12 mouse myoblasts and human mesenchymal stem cells, hMSCs] upon exposure to varying PMF stimuli (1-4 T, 30 pulses, 40 ms pulse duration) is investigated. Among the prokaryotes, ~60% and ~70% reduction was recorded in the survival of staphylococcal species and E. coli, respectively at 4 T PMF as evaluated by colony forming unit (CFU) analysis and flow cytometry. A 2-5 fold increase in intracellular ROS (reactive oxygen species) levels suggests oxidative stress as the key mediator in PMF induced bacterial death/injury. The 4 T PMF treated staphylococci also exhibited longer doubling times. Both TEM and fluorescence microscopy revealed compromised membranes of PMF exposed bacteria. Under similar PMF exposure conditions, no immediate cytotoxicity was recorded in C2C12 mouse myoblasts and hMSCs, which can be attributed to the robust resistance towards oxidative stress. The ion interference of iron containing bacterial proteins is invoked to analytically explain the PMF induced ROS accumulation in prokaryotes. Overall, this study establishes the potential of PMF as a bactericidal method without affecting eukaryotic viability. This non-invasive stimulation protocol coupled with antimicrobial agents can be integrated as a potential methodology for the localized treatment of prosthetic infections.
Collapse
|
27
|
Zhang G, Qi F, Jia H, Zou C, Li C. Advances in bioprocessing for efficient bio manufacture. RSC Adv 2015. [DOI: 10.1039/c5ra07699d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The strategies involving molecular, cellular and community levels for improving various bioprocesses are reviewed with specific examples presented.
Collapse
Affiliation(s)
- Genlin Zhang
- School of Life Sciences
- Beijing Institute of Technology
- Beijing 100081
- China
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
| | - Feng Qi
- School of Life Sciences
- Beijing Institute of Technology
- Beijing 100081
- China
- College of Life Sciences/Engineering Research Center of Industrial Microbiology
| | - Haiyang Jia
- School of Life Sciences
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Changling Zou
- School of Physics
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Chun Li
- School of Life Sciences
- Beijing Institute of Technology
- Beijing 100081
- China
| |
Collapse
|
28
|
Benhal P, Chase JG, Gaynor P, Oback B, Wang W. AC electric field induced dipole-based on-chip 3D cell rotation. LAB ON A CHIP 2014; 14:2717-27. [PMID: 24933556 DOI: 10.1039/c4lc00312h] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The precise rotation of suspended cells is one of the many fundamental manipulations used in a wide range of biotechnological applications such as cell injection and enucleation in nuclear transfer (NT) cloning. Noticeably scarce among the existing rotation techniques is the three-dimensional (3D) rotation of cells on a single chip. Here we present an alternating current (ac) induced electric field-based biochip platform, which has an open-top sub-mm square chamber enclosed by four sidewall electrodes and two bottom electrodes, to achieve rotation about the two axes, thus 3D cell rotation. By applying an ac potential to the four sidewall electrodes, an in-plane (yaw) rotating electric field is generated and in-plane rotation is achieved. Similarly, by applying an ac potential to two opposite sidewall electrodes and the two bottom electrodes, an out-of-plane (pitch) rotating electric field is generated and rolling rotation is achieved. As a prompt proof-of-concept, bottom electrodes were constructed with transparent indium tin oxide (ITO) using the standard lift-off process and the sidewall electrodes were constructed using a low-cost micro-milling process and then assembled to form the chip. Through experiments, we demonstrate rotation of bovine oocytes of ~120 μm diameter about two axes, with the capability of controlling the rotation direction and the rate for each axis through control of the ac potential amplitude, frequency, and phase shift, and cell medium conductivity. The maximum observed rotation rate reached nearly 140° s⁻¹, while a consistent rotation rate reached up to 40° s⁻¹. Rotation rate spectra for zona pellucida-intact and zona pellucida-free oocytes were further compared and found to have no effective difference. This simple, transparent, cheap-to-manufacture, and open-top platform allows additional functional modules to be integrated to become a more powerful cell manipulation system.
Collapse
Affiliation(s)
- Prateek Benhal
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
29
|
Bajpai I, Balani K, Basu B. Synergistic effect of static magnetic field and HA-Fe3O4 magnetic composites on viability of S. aureus and E. coli bacteria. J Biomed Mater Res B Appl Biomater 2013; 102:524-32. [PMID: 24142888 DOI: 10.1002/jbm.b.33031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 08/10/2013] [Accepted: 08/18/2013] [Indexed: 11/08/2022]
Abstract
In addressing the issue of prosthetic infection, this work demonstrated the synergistic effect of the application of static magnetic field (SMF) and ferrimagnetic substrate properties on the bactericidal property in vitro. This aspect was studied using hydroxyapatite (HA)-xFe3 O4 (x=10, 20, and 40 wt.%) substrates, which have different saturation magnetization properties. During bacteria culture experiments, 100 mT SMF was applied to growth medium (with HA-xFe3 O4 substrate) in vitro for 30, 120, and 240 min. A combination of MTT assay, membrane rupture assays, live/dead assay, and fluorescence microscopic analysis showed that the bactericidal effect of SMF increases with the exposure duration as well as increasing Fe3 O4 content in biomaterial substrates. Importantly, the synergistic bactericidal effect was found to be independent of bacterial cell type, as similar qualitative trend is measured with both gram negative Escherichia coli (E. coli) and gram positive Staphylococcus aureus (S. aureus) strains. The reduction in E. coli viability was 83% higher on HA-40 Wt % Fe3 O4 composite after 4 h exposure to SMF as compared to nonexposed control. Interestingly, any statistically significant difference in ROS was not observed in bacterial growth medium after magnetic field exposure, indicating the absence of ROS enhancement due to magnetic field. Overall, this study illustrates significant role being played by magnetic substrate compositions towards bactericidal property than by magnetic field exposure alone.
Collapse
Affiliation(s)
- Indu Bajpai
- Department of Materials Science and Engineering, Laboratory for Biomaterials, Indian Institute of Technology, Kanpur, 208016, Uttar Pradesh, India
| | | | | |
Collapse
|
30
|
Portelli LA, Schomay TE, Barnes FS. Inhomogeneous background magnetic field in biological incubators is a potential confounder for experimental variability and reproducibility. Bioelectromagnetics 2013; 34:337-48. [DOI: 10.1002/bem.21787] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 01/29/2013] [Indexed: 01/03/2023]
|
31
|
Portelli LA, Madapatha DR, Martino C, Hernandez M, Barnes FS. Reduction of the background magnetic field inhibits ability of Drosophila melanogaster to survive ionizing radiation. Bioelectromagnetics 2012; 33:706-9. [PMID: 22532126 PMCID: PMC3426623 DOI: 10.1002/bem.21720] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 01/30/2012] [Indexed: 11/12/2022]
Abstract
The effects of exposure to an environment where the background magnetic field (BMF) has been reduced were studied on wild-type Drosophila melanogaster by measuring its ability to survive a single exposure to ionizing radiation (IR) during its larval stage. The experimental design presented shows a timeframe, IR dose, and BMF parameters that will cause a significant and reproducible reduction of survival on this insect model. These results suggest that BMFs may play a fundamental role in the recovery or harm of a biological system that is exposed to single doses of IR.
Collapse
Affiliation(s)
- Lucas A Portelli
- Department of Electrical, Computer and Energy Engineering, University of Colorado at Boulder, Colorado 80309-0425, USA.
| | | | | | | | | |
Collapse
|
32
|
Radhakrishnan R, Leelapriya T, Kumari BDR. Effects of pulsed magnetic field treatment of soybean seeds on calli growth, cell damage, and biochemical changes under salt stress. Bioelectromagnetics 2012; 33:670-81. [PMID: 22674795 DOI: 10.1002/bem.21735] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 04/18/2012] [Indexed: 12/16/2023]
Abstract
The effects of magnetic field (MF) treatments of soybean seeds on calli growth, cell damage, and biochemical changes under salt stress were investigated under controlled conditions. Soybean seeds were exposed to a 1.0 Hz sinusoidal uniform pulsed magnetic field (PMF) of 1.5 µT for 5 h/day for 20 days. Non-treated seeds were considered as controls. For callus regeneration, the embryonic axis explants were taken from seeds and inoculated in a saline medium with a concentration of 10 mM NaCl for calli growth analysis and biochemical changes. The combined treatment of MF and salt stress was found to significantly increase calli fresh weight, total soluble sugar, total protein, and total phenol contents, but it decreased the ascorbic acid, lipid peroxidation, and catalase activity of calli from magnetically exposed seeds compared to the control calli. PMF treatment significantly improved calli tolerance to salt stress in terms of an increase in flavonoid, flavone, flavonole, alkaloid, saponin, total polyphenol, genistein, and daidzein contents under salt stress. The results suggest that PMF treatment of soybean seeds has the potential to counteract the adverse effects of salt stress on calli growth by improving primary and secondary metabolites under salt stress conditions.
Collapse
Affiliation(s)
- Ramalingam Radhakrishnan
- Stress Physiology and Plant Biotechnology Unit, Department of Plant Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | | | | |
Collapse
|
33
|
Armadillo E, Bozzo E, Gambetta M, Rizzello D. Impact of human activities on the geomagnetic field of Antarctica: a high resolution aeromagnetic survey over Mario Zucchelli Station. ENVIRONMENT INTERNATIONAL 2012; 47:1-7. [PMID: 22706521 DOI: 10.1016/j.envint.2012.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 05/17/2012] [Accepted: 05/24/2012] [Indexed: 06/01/2023]
Abstract
Environmental protection of Antarctica is a fundamental principle of the Antarctic Treaty. Impact assessment and significance evaluation are due for every human activity on the remote continent. While chemical and biological contaminations are widely studied, very little is known about the electromagnetic pollution levels. In this frame, we have evaluated the significance of the impact of Mario Zucchelli Antarctic Station (Northern Victoria Land) on the local geomagnetic field. We have flown a high resolution aeromagnetic survey in drape mode at 320m over the Station, covering an area of 2km(2). The regional and the local field have been separated by a third order polynomial fitting. After the identification of the anthropic magnetic anomaly due to the Station, we have estimated the magnetic field at the ground level by downward continuation with an original inversion scheme regularized by a minimum gradient support functional to avoid high frequency noise effects. The resulting anthropic static magnetic field at ground extends up to 650m far from the Station and reaches a maximum peak to peak value of about 2800nT. This anthropic magnetic anomaly may interact with biological systems, raising the necessity to evaluate the significance of the static magnetic impact of human installations in order to protect the electromagnetic environment and the biota of Antarctica.
Collapse
|
34
|
Martirosyan V, Baghdasaryan N, Ayrapetyan S. Bidirectional frequency-dependent effect of extremely low-frequency electromagnetic field onE. coliK-12. Electromagn Biol Med 2012; 32:291-300. [DOI: 10.3109/15368378.2012.712587] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Bajpai I, Saha N, Basu B. Moderate intensity static magnetic field has bactericidal effect on E. coli and S. epidermidis on sintered hydroxyapatite. J Biomed Mater Res B Appl Biomater 2012; 100:1206-17. [DOI: 10.1002/jbm.b.32685] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 10/18/2011] [Accepted: 11/13/2011] [Indexed: 01/18/2023]
|
36
|
Snoussi S, May AE, Coquet L, Chan P, Jouenne T, Landoulsi A, Dé E. Adaptation of Salmonella enterica Hadar under static magnetic field: effects on outer membrane protein pattern. Proteome Sci 2012; 10:6. [PMID: 22304719 PMCID: PMC3292939 DOI: 10.1186/1477-5956-10-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 02/03/2012] [Indexed: 12/29/2022] Open
Abstract
Background Salmonella enterica serovar Hadar (S. Hadar) is a highly prevalent foodborne pathogen and therefore a major cause of human gastroenteritis worldwide. Outer membrane proteins whose production is often regulated by environmental conditions also play important roles in the adaptability of bacterial pathogens to various environments. Results The present study investigated the adaptation of S. Hadar under the effect of acute static magnetic field exposure (200 mT, 9 h) and the impact on the outer membrane protein pattern. Via two-dimensional electrophoresis (2-DE) and LC-MS/MS spectrometry, we compared the proteome of enriched-outer membrane fraction before and after exposure to a magnetic field. A total of 11 proteins, displaying more than a two-fold change, were differentially expressed in exposed cells, among which 7 were up-regulated and 4 down-regulated. These proteins were involved in the integrity of cell envelope (TolB, Pal), in the response to oxidative stress (OmpW, dihydrolipoamide dehydrogenase, UspF), in the oxidative stress status (bacterioferritin), in virulence (OmpX, Yfgl) or in motility (FlgE and UspF). Complementary experiments associated the down-regulation of FlgE and UspF with an alteration of swarming, a flagella-driven motility, under SMF. Furthermore, the antibiotic disc diffusion method confirmed a decrease of gentamicin susceptibility in exposed cells. This decrease could be partly associated with the up-regulation of TolC, outer membrane component of an efflux pump. OmpA, a multifunctional protein, was up-regulated. Conclusions SMF (200 mT) seems to maintain the cell envelope integrity and to submit the exposed cells to an oxidative stress. Some alterations suggest an increase of the ability of exposed cells to form biofilms.
Collapse
Affiliation(s)
- Sarra Snoussi
- Laboratoire de Biochimie et Biologie Moléculaire, Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna, Bizerte, Tunisie.
| | | | | | | | | | | | | |
Collapse
|
37
|
Sarimov R, Alipov ED, Belyaev IY. Fifty hertz magnetic fields individually affect chromatin conformation in human lymphocytes: Dependence on amplitude, temperature, and initial chromatin state. Bioelectromagnetics 2011; 32:570-9. [DOI: 10.1002/bem.20674] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 03/19/2011] [Indexed: 11/10/2022]
|
38
|
Abstract
The biological functions of light emission in bacterial bioluminescence are not always obvious, especially if the bacteria are in a free-living mode. Experimental evidence suggests that light emission confers benefit to the bacteria themselves such as through photoreactivation and involves as much as 20% of cell energy metabolism. A theoretical model shows if the effect is mediated solely by light then cells should be luminescent at both high and low cell densities, therefore raising doubt over the photoreactivation hypothesis and suggesting that another cofactor is involved. It has been postulated that bioelectromagnetics may be involved in biological processes and be involved with coordinated activity in quorate cells. The cell densities associated with autoinduction coincide with a large change in coupling efficiency in the millimeter and submillimeter spectral region. In this paper it is suggested that one function of bioluminescence is as a pump, involving millimeter and submillimeter wave coupling that is of benefit to the quorum. This may be related to the observation that millimeter wave radiation exposure has been reported to induce changes in DNA conformation and possibly gene expression. Agents that change DNA conformation in bioluminescent bacteria can cause increases in light emission. This work may have implications for electromagnetic fields as quorum-quenching agents.
Collapse
Affiliation(s)
- David T Pooley
- Cardiff School of Engineering, Cardiff University, Cardiff, UK.
| |
Collapse
|
39
|
László J, Kutasi J. Static magnetic field exposure fails to affect the viability of different bacteria strains. Bioelectromagnetics 2010; 31:220-5. [PMID: 19821495 DOI: 10.1002/bem.20551] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The viability of the microbes Saccharomyces cerevisiae, Bacillus circulans, Escherichia coli, Micrococcus luteus, Pseudomonas fluorescens, Salmonella enteritidis, Serratia marcescens, and Staphylococcus aureus was tested under static magnetic field exposure up to 24 h in either a homogeneous (159.2 +/- 13.4 mT) or three types of inhomogeneous static magnetic fields: (i) peak-to-peak magnetic flux density 476.7 +/- 0.1 mT with a lateral magnetic flux density gradient of 47.7 T/m, (ii) 12.0 +/- 0.1 mT with 1.2 T/m, or (iii) 2.8 +/- 0.1 mT with 0.3 T/m. Even the longest period of exposure failed to produce any effect in the growth of bacteriae that could be correlated with static magnetic field exposure.
Collapse
Affiliation(s)
- János László
- Section for Mathematics, Hungarian Academy of Sciences, Nádor u. 7, Budapest, Hungary.
| | | |
Collapse
|
40
|
Hristov J. Magnetic field assisted fluidization – a unified approach. Part 8. Mass transfer: magnetically assisted bioprocesses. REV CHEM ENG 2010. [DOI: 10.1515/revce.2010.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Effects of static magnetic fields on Escherichia coli. Micron 2009; 40:894-8. [DOI: 10.1016/j.micron.2009.05.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 05/25/2009] [Accepted: 05/30/2009] [Indexed: 11/19/2022]
|
42
|
Muehsam DJ, Pilla AA. A Lorentz model for weak magnetic field bioeffects: part II--secondary transduction mechanisms and measures of reactivity. Bioelectromagnetics 2009; 30:476-88. [PMID: 19437458 DOI: 10.1002/bem.20493] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In Part I it was shown that the thermal component of the motion of a charged particle in an oscillator potential, that is, within a molecular binding site, rotates at the Larmor frequency in an applied magnetic field. It was also shown that the Larmor angular frequency is independent of the thermal noise strength and thus offers a mechanism for the biological detection of weak (microT-range) magnetic fields. Part II addresses the question of how the Larmor trajectory could affect biological reactivity. The projection of the motion onto a Cartesian axis measures the nonuniformity of the Larmor trajectory in AC and combined AC/DC magnetic fields, suggesting a means of assessing resonances. A physically meaningful measure of reactivity based upon the classical oscillator trajectory is suggested, and the problem of initial conditions is addressed through averaging over AC phases. AC resonance frequencies occur at the Larmor frequency and at other frequencies, and are dependent upon the ratio of AC/DC amplitudes and target kinetics via binding lifetime. The model is compared with experimental data reported for a test of the ion parametric resonance (IPR) model on data from Ca2+ flux in membrane vesicles, neurite outgrowth from PC-12 cells and a cell-free calmodulin-dependent myosin phosphorylation system, and suggests Mg2+ is the target for these systems. The results do not require multiple-ion targets, selection of isotopes, or additional curve fitting. The sole fitting parameter is the binding lifetime of the target system and the results shown are consistent with the literature on binding kinetics.
Collapse
Affiliation(s)
- David J Muehsam
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | | |
Collapse
|
43
|
Belyaev I. Nonthermal Biological Effects of Microwaves: Current Knowledge, Further Perspective, and Urgent Needs. Electromagn Biol Med 2009. [DOI: 10.1080/15368370500381844] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Obermeier A, Matl FD, Friess W, Stemberger A. Growth inhibition ofStaphylococcus aureusinduced by low-frequency electric and electromagnetic fields. Bioelectromagnetics 2009; 30:270-9. [DOI: 10.1002/bem.20479] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Pazur A, Rassadina V. Transient effect of weak electromagnetic fields on calcium ion concentration in Arabidopsis thaliana. BMC PLANT BIOLOGY 2009; 9:47. [PMID: 19405943 PMCID: PMC2681476 DOI: 10.1186/1471-2229-9-47] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 04/30/2009] [Indexed: 05/24/2023]
Abstract
BACKGROUND Weak magnetic and electromagnetic fields can influence physiological processes in animals, plants and microorganisms, but the underlying way of perception is poorly understood. The ion cyclotron resonance is one of the discussed mechanisms, predicting biological effects for definite frequencies and intensities of electromagnetic fields possibly by affecting the physiological availability of small ions. Above all an influence on Calcium, which is crucial for many life processes, is in the focus of interest. We show that in Arabidopsis thaliana, changes in Ca2+-concentrations can be induced by combinations of magnetic and electromagnetic fields that match Ca2+-ion cyclotron resonance conditions. RESULTS An aequorin expressing Arabidopsis thaliana mutant (Col0-1 Aeq Cy+) was subjected to a magnetic field around 65 microtesla (0.65 Gauss) and an electromagnetic field with the corresponding Ca2+ cyclotron frequency of 50 Hz. The resulting changes in free Ca2+ were monitored by aequorin bioluminescence, using a high sensitive photomultiplier unit. The experiments were referenced by the additional use of wild type plants. Transient increases of cytosolic Ca2+ were observed both after switching the electromagnetic field on and off, with the latter effect decreasing with increasing duration of the electromagnetic impact. Compared with this the uninfluenced long-term loss of bioluminescence activity without any exogenic impact was negligible. The magnetic field effect rapidly decreased if ion cyclotron resonance conditions were mismatched by varying the magnetic fieldstrength, also a dependence on the amplitude of the electromagnetic component was seen. CONCLUSION Considering the various functions of Ca2+ as a second messenger in plants, this mechanism may be relevant for perception of these combined fields. The applicability of recently hypothesized mechanisms for the ion cyclotron resonance effect in biological systems is discussed considering it's operating at magnetic field strengths weak enough, to occur occasionally in our all day environment.
Collapse
Affiliation(s)
- Alexander Pazur
- Department Biology I (Botany), Ludwig Maximilians University Munich, Menzinger Str. 67, D-80638 Munich, Germany
| | - Valentina Rassadina
- Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, Academicheskaya 27, Minsk 220072, Belarus
| |
Collapse
|
46
|
Funk RHW, Monsees T, Ozkucur N. Electromagnetic effects - From cell biology to medicine. ACTA ACUST UNITED AC 2008; 43:177-264. [PMID: 19167986 DOI: 10.1016/j.proghi.2008.07.001] [Citation(s) in RCA: 230] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 07/25/2008] [Indexed: 01/03/2023]
Abstract
In this review we compile and discuss the published plethora of cell biological effects which are ascribed to electric fields (EF), magnetic fields (MF) and electromagnetic fields (EMF). In recent years, a change in paradigm took place concerning the endogenously produced static EF of cells and tissues. Here, modern molecular biology could link the action of ion transporters and ion channels to the "electric" action of cells and tissues. Also, sensing of these mainly EF could be demonstrated in studies of cell migration and wound healing. The triggers exerted by ion concentrations and concomitant electric field gradients have been traced along signaling cascades till gene expression changes in the nucleus. Far more enigmatic is the way of action of static MF which come in most cases from outside (e.g. earth magnetic field). All systems in an organism from the molecular to the organ level are more or less in motion. Thus, in living tissue we mostly find alternating fields as well as combination of EF and MF normally in the range of extremely low-frequency EMF. Because a bewildering array of model systems and clinical devices exits in the EMF field we concentrate on cell biological findings and look for basic principles in the EF, MF and EMF action. As an outlook for future research topics, this review tries to link areas of EF, MF and EMF research to thermodynamics and quantum physics, approaches that will produce novel insights into cell biology.
Collapse
Affiliation(s)
- Richard H W Funk
- Technische Universität Dresden, Medizinische Fakultät Carl Gustav Carus, Institut für Anatomie, Germany.
| | | | | |
Collapse
|
47
|
Abstract
AbstractThe ability to respond to magnetic fields is ubiquitous among the five kingdoms of organisms. Apart from the mechanisms that are at work in bacterial magnetotaxis, none of the innumerable magnetobiological effects are as yet completely understood in terms of their underlying physical principles. Physical theories on magnetoreception, which draw on classical electrodynamics as well as on quantum electrodynamics, have greatly advanced during the past twenty years, and provide a basis for biological experimentation. This review places major emphasis on theories, and magnetobiological effects that occur in response to weak and moderate magnetic fields, and that are not related to magnetotaxis and magnetosomes. While knowledge relating to bacterial magnetotaxis has advanced considerably during the past 27 years, the biology of other magnetic effects has remained largely on a phenomenological level, a fact that is partly due to a lack of model organisms and model responses; and in great part also to the circumstance that the biological community at large takes little notice of the field, and in particular of the available physical theories. We review the known magnetobiological effects for bacteria, protists and fungi, and try to show how the variegated empirical material could be approached in the framework of the available physical models.
Collapse
|
48
|
Funk RHW, Monsees TK. Effects of electromagnetic fields on cells: physiological and therapeutical approaches and molecular mechanisms of interaction. A review. Cells Tissues Organs 2006; 182:59-78. [PMID: 16804297 DOI: 10.1159/000093061] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2006] [Indexed: 01/22/2023] Open
Abstract
This review concentrates on findings described in the recent literature on the response of cells and tissues to electromagnetic fields (EMF). Models of the causal interaction between different forms of EMF and ions or biomolecules of the cell will be presented together with our own results in cell surface recognition. Naturally occurring electric fields are not only important for cell-surface interactions but are also pivotal for the normal development of the organism and its physiological functions. A further goal of this review is to bridge the gap between recent cell biological studies (which, indeed, show new data of EMF actions) and aspects of EMF-based therapy, e.g., in wounds and bone fractures.
Collapse
Affiliation(s)
- Richard H W Funk
- Department of Anatomy, University of Technology, Dresden, Germany.
| | | |
Collapse
|
49
|
Galland P, Pazur A. Magnetoreception in plants. JOURNAL OF PLANT RESEARCH 2005; 118:371-89. [PMID: 16283069 DOI: 10.1007/s10265-005-0246-y] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2005] [Accepted: 10/02/2005] [Indexed: 05/05/2023]
Abstract
This article reviews phenomena of magnetoreception in plants and provides a survey of the relevant literature over the past 80 years. Plants react in a multitude of ways to geomagnetic fields-strong continuous fields as well as alternating magnetic fields. In the past, physiological investigations were pursued in a somewhat unsystematic manner and no biological advantage of any magnetoresponse is immediately obvious. As a result, most studies remain largely on a phenomenological level and are in general characterised by a lack of mechanistic insight, despite the fact that physics provides several theories that serve as paradigms for magnetoreception. Beside ferrimagnetism, which is well proved for bacterial magnetotaxis and for some cases of animal navigation, two further mechanisms for magnetoreception are currently receiving major attention: (1) the "radical-pair mechanism" consisting of the modulation of singlet-triplet interconversion rates of a radical pair by weak magnetic fields, and (2) the "ion cyclotron resonance" mechanism. The latter mechanism centres around the fact that ions should circulate in a plane perpendicular to an external magnetic field with their Lamor frequencies, which can interfere with an alternating electromagnetic field. Both mechanisms provide a theoretical framework for future model-guided investigations in the realm of plant magnetoreception.
Collapse
Affiliation(s)
- Paul Galland
- Faculty of Biology, Philipps-Universität Marburg, 35032 Marburg, Germany.
| | | |
Collapse
|
50
|
Whitehead TD, Brownstein BH, Parry JJ, Thompson D, Cha BA, Moros EG, Rogers BE, Roti Roti JL. Expression of the Proto-oncogeneFosafter Exposure to Radiofrequency Radiation Relevant to Wireless Communications. Radiat Res 2005; 164:420-30. [PMID: 16187744 DOI: 10.1667/rr3446.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In this study the expression levels of the proto-oncogene Fos were measured after exposure to radiofrequency (RF) radiation at two relatively high specific absorption rates (SARs) of 5 and 10 W/kg for three types of modulated signals: 847.74 MHz code division multiple access (CDMA), 835.62 MHz frequency division multiple access (FDMA), and 836.55 MHz time division multiple access (TDMA). This work was undertaken to confirm a previous report by Goswami et al. (Radiat. Res. 151, 300-309, 1999) that CDMA and FDMA radiation caused small but statistically significant increases in Fos levels as cells entered plateau phase during exposure. No effects on Myc or Jun levels were observed in that study. Therefore, in the present study, analyses were restricted to Fos expression during the transition from exponential growth to plateau phase. Fos expression was measured using the real-time polymerase chain reaction (RT-PCR) technique. Serum-stimulated C3H 10T(1/2) cells were used as a positive control for Fos expression. Possible influences of final cell number or pH variability on Fos expression were evaluated. Expression of Fos mRNA in C3H 10T(1/2) cells was not significantly different from that found after sham exposure at either SAR level for any signal modulation. Therefore, the results of Goswami et al. could not be confirmed.
Collapse
Affiliation(s)
- Timothy D Whitehead
- Washington University School of Medicine, Radiation Oncology Department, Radiation and Cancer Biology Division, St. Louis, Missouri 63108, USA
| | | | | | | | | | | | | | | |
Collapse
|