1
|
Liachenko S, Ramu J, Paule MG, Hanig J. Comparison of quantitative T 2 and ADC mapping in the assessment of 3-nitropropionic acid-induced neurotoxicity in rats. Neurotoxicology 2018; 65:52-59. [PMID: 29427612 DOI: 10.1016/j.neuro.2018.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/05/2018] [Indexed: 10/18/2022]
Abstract
To assess the relative performance of MRI T2 relaxation and ADC mapping as potential biomarkers of neurotoxicity, a model of 3-nitropropionic acid (NP)-induced neurodegeneration in rats was employed. Male Sprague-Dawley rats received NP (N = 20, 16-20 mg/kg, ip or sc) or saline (N = 6, 2 ml/kg, ip) daily for 3 days. MRI was performed using a 7 T system employing quantitative T2 and ADC mapping based on spin echo pulse sequence. All maps were skull stripped and co-registered and the changes were quantified using baseline subtraction and anatomical segmentation. Following the in vivo portion of the study, rat brains were histologically examined. Four NP-treated rats were considered responders based on their MRI and histology data. T2 values always increased in the presence of toxicity, while ADC changes were bidirectional, decreasing in some lesion areas and increasing in others. In contrast to T2 in some cases, ADC did not change. The effect sizes of T2 and ADC signals suggestive of neurotoxicity were 2.64 and 1.66, respectively, and the variability of averaged T2 values among anatomical regions was consistently lower than that for ADC. The histopathology data confirmed the presence of neurotoxicity, however, a more detailed assessment of the correlation of MRI with histology is needed. T2 mapping provides more sensitive and specific information than ADC about changes in the rat brain thought to be associated with neurotoxicity due to a higher signal-to-noise ratio, better resolution, and unidirectional changes, and presents a better opportunity for biomarker development.
Collapse
Affiliation(s)
- Serguei Liachenko
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States.
| | - Jaivijay Ramu
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States
| | - Merle G Paule
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States
| | - Joseph Hanig
- Center for Drug Evaluation and Research, US Food and Drug Administration, White Oak, MD, United States
| |
Collapse
|
2
|
Ishikawa M. [Application of magnetic resonance imaging in drug discovery and development]. Nihon Yakurigaku Zasshi 2012; 140:161-5. [PMID: 23059898 DOI: 10.1254/fpj.140.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
3
|
Shemesh N, Sadan O, Melamed E, Offen D, Cohen Y. Longitudinal MRI and MRSI characterization of the quinolinic acid rat model for excitotoxicity: peculiar apparent diffusion coefficients and recovery of N-acetyl aspartate levels. NMR IN BIOMEDICINE 2010; 23:196-206. [PMID: 19950122 DOI: 10.1002/nbm.1443] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Quinolinic acid (QA) induced striatal lesion is an important model for excitotoxicity that is also used for efficacy studies. To date, the morphological and spectroscopic indices of this model have not been studied longitudinally by MRI; therefore the objectives of this study were aimed at following the lesion progression and changes in N-acetyl aspartate (NAA) as viewed by MRI and MRSI, respectively, in-vivo over a period of 49 days. We found that the affected areas exhibited both high and low apparent diffusion coefficients (ADC) even 49 days post QA injection in three of the six tested animals. MRI-guided histological analysis correlated areas characterized by high ADCs on day 49 with cellular loss, while areas characterized by lower ADCs were correlated with macrophage infiltration (CD68 positive stain). Our MRSI study revealed an initial reduction of NAA levels in the lesioned striatum, which significantly recovered with time, although not to control levels. Total-striatum normalized NAA levels recovered from 0.67 +/- 0.15 (of the contralateral row) on day 1 to 0.90 +/- 0.12 on day 49. Our findings suggest that NAA should be considered as a marker for neuronal dysfunction, in addition to neuronal viability. Some behavioral indices could be correlated to permanent neuronal damage while others demonstrated a spontaneous recovery parallel to the NAA recovery. Our findings may have implications in efficacy-oriented studies performed on the QA model.
Collapse
Affiliation(s)
- Noam Shemesh
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Israel
| | | | | | | | | |
Collapse
|
4
|
Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AMA. N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol 2007; 81:89-131. [PMID: 17275978 PMCID: PMC1919520 DOI: 10.1016/j.pneurobio.2006.12.003] [Citation(s) in RCA: 1006] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 12/07/2006] [Accepted: 12/11/2006] [Indexed: 01/02/2023]
Abstract
The brain is unique among organs in many respects, including its mechanisms of lipid synthesis and energy production. The nervous system-specific metabolite N-acetylaspartate (NAA), which is synthesized from aspartate and acetyl-coenzyme A in neurons, appears to be a key link in these distinct biochemical features of CNS metabolism. During early postnatal central nervous system (CNS) development, the expression of lipogenic enzymes in oligodendrocytes, including the NAA-degrading enzyme aspartoacylase (ASPA), is increased along with increased NAA production in neurons. NAA is transported from neurons to the cytoplasm of oligodendrocytes, where ASPA cleaves the acetate moiety for use in fatty acid and steroid synthesis. The fatty acids and steroids produced then go on to be used as building blocks for myelin lipid synthesis. Mutations in the gene for ASPA result in the fatal leukodystrophy Canavan disease, for which there is currently no effective treatment. Once postnatal myelination is completed, NAA may continue to be involved in myelin lipid turnover in adults, but it also appears to adopt other roles, including a bioenergetic role in neuronal mitochondria. NAA and ATP metabolism appear to be linked indirectly, whereby acetylation of aspartate may facilitate its removal from neuronal mitochondria, thus favoring conversion of glutamate to alpha ketoglutarate which can enter the tricarboxylic acid cycle for energy production. In its role as a mechanism for enhancing mitochondrial energy production from glutamate, NAA is in a key position to act as a magnetic resonance spectroscopy marker for neuronal health, viability and number. Evidence suggests that NAA is a direct precursor for the enzymatic synthesis of the neuron specific dipeptide N-acetylaspartylglutamate, the most concentrated neuropeptide in the human brain. Other proposed roles for NAA include neuronal osmoregulation and axon-glial signaling. We propose that NAA may also be involved in brain nitrogen balance. Further research will be required to more fully understand the biochemical functions served by NAA in CNS development and activity, and additional functions are likely to be discovered.
Collapse
Affiliation(s)
- John R Moffett
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Building C, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA.
| | | | | | | | | |
Collapse
|
5
|
Mavroudis G, Prior MJW, Lister T, Nolan CC, Ray DE. Neurochemical and oedematous changes in 1,3-dinitrobenzene-induced astroglial injury in rat brain from a 1H-nuclear magnetic resonance perspective. J Neural Transm (Vienna) 2005; 113:1263-78. [PMID: 16362630 DOI: 10.1007/s00702-005-0395-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 10/09/2005] [Indexed: 12/19/2022]
Abstract
1,3-Dinitrobenzene (1,3-DNB), an intermediate used in the chemical industry, has toxic effects in the brain and testes. It produces focal lesions with marked astroglial necrosis in the rat brain upon repeated administration. Astrocytic death occurs in parallel with elevated local blood flow and is followed by damage to the cerebral vasculature and neurones. (1)H-nuclear magnetic resonance spectroscopic analysis before the onset of astrocytic damage, showed a global elevation of lactate, whereas choline containing compounds increased in the non-vulnerable cerebral cortex, yet decreased in the vulnerable brainstem. Similarly, glutamate increased in the cerebral cortex, cerebellum and midbrain, but decreased in the susceptible brainstem. In vivo T2-weighted NMR imaging showed high signal intensities in brain nuclei shown to develop astroglial loss by conventional neuropathology at 24 hours after completion of dosing, but not at 6-10 hours. Hence the early neurochemical changes in susceptible areas contribute to the aetiology of degeneration, and those seen elsewhere may represent adaptive responses dependent on the particular phenotype of different cell groups and underlying metabolic relationships.
Collapse
Affiliation(s)
- G Mavroudis
- MRC Toxicology Unit, University of Leicester, Hodgkin Building, Leicester, United Kingdom.
| | | | | | | | | |
Collapse
|
6
|
Schauwecker PE. Susceptibility to excitotoxic and metabolic striatal neurodegeneration in the mouse is genotype dependent. Brain Res 2005; 1040:112-20. [PMID: 15804432 DOI: 10.1016/j.brainres.2005.01.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 01/21/2005] [Accepted: 01/21/2005] [Indexed: 11/21/2022]
Abstract
Previously, we had reported that hippocampal susceptibility to the neurotoxic effects of excitotoxin administration is strain dependent [Schauwecker and Steward, Proc. Natl. Acad. Sci. U.S.A. 94 (1997) 4103]. However, it has been unclear whether strain-related gene products may play a similar role in providing protection against drugs that produce striatal lesions. The present series of experiments sought to elucidate whether genetic background alters neuronal viability within the striatum following metabolic or excitotoxic injury. Thus, we have examined the effect of mouse strain on susceptibility to striatal injury using well-characterized animal models of Huntington's disease by examining whether C57BL/6 mice, previously identified as resistant to excitotoxin-induced hippocampal cell death, are resistant to quinolinate, malonate, and 3-nitropropionic acid (3-NP). Intrastriatal injection of either malonate or quinolinate and systemic administration of 3-NP resulted in significantly smaller striatal lesions in C57BL/6 mice as compared to FVB/N mice, previously identified as susceptible to hippocampal excitotoxic injury. The existence of an animal strain with decreased resistance to striatal lesions suggests that there are mediating factors involved in the preferential vulnerability of the striatum to neurotoxic lesioning. The identification of these factors could provide strategies for therapeutic intervention in Huntington's disease.
Collapse
Affiliation(s)
- Paula Elyse Schauwecker
- Department of Cell and Neurobiology, University of Southern California Keck School of Medicine, BMT 401, 1333 San Pablo Street, Los Angeles, CA 90089-9112, USA.
| |
Collapse
|
7
|
Seaman RL, Phelix CF. Acute effects of pulsed microwaves and 3-nitropropionic acid on neuronal ultrastructure in the rat caudate-putamen. Bioelectromagnetics 2005; 26:82-101. [PMID: 15672367 DOI: 10.1002/bem.20054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ultrastructure of the medium sized "spiny" neuron in rat dorsal-lateral caudate-putamen was assessed after administration of 3-nitropropionic acid (3-NP) and exposure to pulsed microwaves. Sprague-Dawley male rats were given two daily intraperitoneal doses of 0 or 10 mg/kg 3-NP and 1.5 h after each dose were exposed to microwave radiation at a whole body averaged specific absorption rate (SAR) of 0 (sham exposure), 0.6, or 6 W/kg for 30 min. Microwave exposure consisted of 1.25 GHz radiation delivered as 5.9 micros pulses with repetition frequency 10 Hz. Tissue samples taken 2-3 h after the second sham or microwave exposure showed no injury with light microscope methods. Blinded qualitative assessment of ultrastructure of randomly selected neurons from the same samples did reveal differences. Subsequent detailed, quantitative measurements showed that, when followed by sham exposure, administration of 3-NP significantly increased endoplasmic reticulum (ER) intracisternal width, ER area density, and nuclear envelope thickness. Microwave exposure at 6 W/kg alone also significantly increased these measures. Exposure of 3-NP treated animals at 6 W/kg significantly increased effects of 3-NP on ultrastructure. Although exposure at 0.6 W/kg alone did not affect ultrastructure measures, exposure of 3-NP treated animals at 0.6 W/kg reduced the effects of 3-NP. We concluded that 3-NP changed neuronal ultrastructure and that the microwave exposures used here changed neuronal ultrastructure in ways that depended on microwave SAR and neuron metabolic status. The apparent cancellation of 3-NP induced changes by exposure to pulsed microwaves at 0.6 W/kg indicated the possibility that such exposure can protect against the effects of mitochondrial toxins on the nervous system.
Collapse
Affiliation(s)
- Ronald L Seaman
- McKesson BioServices Corporation and Microwave Bioeffects Branch, US Army Medical Research Detachment, Brooks City-Base, Texas 78235, USA.
| | | |
Collapse
|
8
|
Lee WT, Chang C. Magnetic resonance imaging and spectroscopy in assessing 3-nitropropionic acid-induced brain lesions: an animal model of Huntington’s disease. Prog Neurobiol 2004; 72:87-110. [PMID: 15063527 DOI: 10.1016/j.pneurobio.2004.02.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2003] [Accepted: 02/03/2004] [Indexed: 10/26/2022]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disease, in which there is progressive motor and cognitive deterioration, and for which the pathogenesis of neuronal death remains controversial. Mitochondrial toxins like 3-nitropropionic acid (3-NP) and malonate, functioning as the inhibitors of the complex II of mitochondrial respiratory chain, have been found to effectively induce specific behavioral changes and selective striatal lesions in rats and non-human primates mimicking those in HD. Furthermore, several kinds of transgenic mouse models of HD have been recently developed, and used in the development and assessment of novel treatments for HD. In the past, most studies evaluating the animal models for HD were based on histological changes or in vitro neuronal cultures. With the emergence of advanced magnetic resonance technologies, non-invasive magnetic resonance imaging (MRI) and spectroscopy provide more detail of cerebral alterations, including the changes of cerebral structure, function and metabolites. These studies support the hypothesis that mitochondrial dysfunction with increased excitation of N-methyl-D-aspartate (NMDA) receptors can replicate the neurobehavioral changes, selective brain injury and neurochemical alterations in HD. The present review focuses on our work as well as that of others regarding 3-NP-induced neurotoxicity and other animal models of HD. Using both conventional and advanced MRI and spectroscopy, we summarize the pathogenesis and possible therapeutic strategies in chemical and transgenic models of HD. The results show magnetic resonance techniques to be powerful techniques in the evaluation of pathogenesis and therapeutic intervention for both chemical and transgenic models of HD.
Collapse
Affiliation(s)
- Wang-Tso Lee
- Department of Pediatrics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | | |
Collapse
|
9
|
Choi IY, Lee SP, Guilfoyle DN, Helpern JA. In vivo NMR studies of neurodegenerative diseases in transgenic and rodent models. Neurochem Res 2003; 28:987-1001. [PMID: 12737523 DOI: 10.1023/a:1023370104289] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In vivo magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) provide unique quality to attain neurochemical, physiological, anatomical, and functional information non-invasively. These techniques have been increasingly applied to biomedical research and clinical usage in diagnosis and prognosis of diseases. The ability of MRS to detect early yet subtle changes of neurochemicals in vivo permits the use of this technology for the study of cerebral metabolism in physiological and pathological conditions. Recent advances in MR technology have further extended its use to assess the etiology and progression of neurodegeneration. This review focuses on the current technical advances and the applications of MRS and MRI in the study of neurodegenerative disease animal models including amyotrophic lateral sclerosis, Alzheimer's, Huntington's, and Parkinson's diseases. Enhanced MR measurable neurochemical parameters in vivo are described in regard to their importance in neurodegenerative disorders and their investigation into the metabolic alterations accompanying the pathogenesis of neurodegeneration.
Collapse
Affiliation(s)
- In-Young Choi
- The Nathan S. Kline Institute, Center for Advanced Brain Imaging, Orangeburg, New York 10962, USA.
| | | | | | | |
Collapse
|
10
|
Henry PG, Lebon V, Vaufrey F, Brouillet E, Hantraye P, Bloch G. Decreased TCA cycle rate in the rat brain after acute 3-NP treatment measured by in vivo 1H-[13C] NMR spectroscopy. J Neurochem 2002; 82:857-66. [PMID: 12358791 DOI: 10.1046/j.1471-4159.2002.01006.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inhibition of succinate dehydrogenase (SDH) by the mitochondrial toxin 3-nitropropionic acid (3-NP) has gained acceptance as an animal model of Huntington's disease. In this study 13C NMR spectroscopy was used to measure the tricarboxylic acid (TCA) cycle rate in the rat brain after 3-NP treatment. The time course of both glutamate C4 and C3 13C labelling was monitored in vivo during an infusion of [1-13C]glucose. Data were fitted by a mathematical model to yield the TCA cycle rate (Vtca) and the exchange rate between alpha-ketoglutarate and glutamate (Vx). 3-NP treatment induced a 18% decrease in Vtca from 0.71 +/- 0.02 micro mol/g/min in the control group to 0.58 +/- 0.02 micro mol/g/min in the 3-NP group (p < 0.001). Vx increased from 0.88 +/- 0.08 micro mol/g/min in the control group to 1.33 +/- 0.24 micro mol/g/min in the 3-NP group (p < 0.07). Fitting the C4 glutamate time course alone under the assumption that Vx is much higher than Vtca yielded Vtca=0.43 micro mol/g/min in both groups. These results suggest that both Vtca and Vx are altered during 3-NP treatment, and that both glutamate C4 and C3 labelling time courses are necessary to obtain a reliable measurement of Vtca.
Collapse
Affiliation(s)
- Pierre-Gilles Henry
- CEA and UMR CEA-CNRS 2210, Service Hospitalier Frédéric Joliot, Orsay, France
| | | | | | | | | | | |
Collapse
|
11
|
Tkác I, Keene CD, Pfeuffer J, Low WC, Gruetter R. Metabolic changes in quinolinic acid-lesioned rat striatum detected non-invasively by in vivo (1)H NMR spectroscopy. J Neurosci Res 2001; 66:891-8. [PMID: 11746416 DOI: 10.1002/jnr.10112] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Intrastriatal injection of quinolinic acid (QA) provides an animal model of Huntington disease. In vivo (1)H NMR spectroscopy was used to measure the neurochemical profile non-invasively in seven animals 5 days after unilateral injection of 150 nmol of QA. Concentration changes of 16 metabolites were measured from 22 microl volume at 9.4 T. The increase of glutamine ((+25 +/- 14)%, mean +/- SD, n = 7) and decrease of glutamate (-12 +/- 5)%, N-acetylaspartate (-17 +/- 6)%, taurine (-14 +/- 6)% and total creatine (-9 +/- 3%) were discernible in each individual animal (P < 0.005, paired t-test). Metabolite concentrations in control striata were in excellent agreement with biochemical literature. The change in glutamate plus glutamine was not significant, implying a shift in the glutamate-glutamine interconversion, consistent with a metabolic defect at the level of neuronal-glial metabolic trafficking. The most significant indicator of the lesion, however, were the changes in glutathione ((-19 +/- 9)%, P < 0.002)), consistent with oxidative stress. From a comparison with biochemical literature we conclude that high-resolution in vivo (1)H NMR spectroscopy accurately reflects the neurochemical changes induced by a relatively modest dose of QA, which permits one to longitudinally follow mitochondrial function, oxidative stress and glial-neuronal metabolic trafficking as well as the effects of treatment in this model of Huntington disease.
Collapse
Affiliation(s)
- I Tkác
- Department of Radiology, University of Minnesota, 2021 6th Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
12
|
Abstract
Thiamine deficiency (TD) in rats produces lesions similar to those found in humans with Wernicke's encephalopathy, an organic mental disorder associated with alcoholism. Male Sprague-Dawley rats (n = 24) were deprived of thiamine in a regimen of thiamine-deficient chow and daily intraperitoneal injections of the thiamine antagonist pyrithiamine hydrobromide for 12 days (0.5 mg/kg). In rats with TD, significant changes were observed in the choline peak (reduction and dose-dependent recovery after thiamine replenishment), which was confirmed by the extraction study. Changes were mainly due to the reduction in glycerophosphorylcholine (GPC), suggesting that a reduction in GPC may be relevant to the primary biochemical lesion in TD. These data are compatible with the hypothesis that a decrease in choline compounds is the cause of the biochemical abnormalities that precede neuroanatomic damage characteristic of Wernicke's encephalopathy.
Collapse
Affiliation(s)
- H Lee
- Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.
| | | | | |
Collapse
|
13
|
Williams RE, Prior M, Bachelard HS, Waterton JC, Checkley D, Lock EA. MRI studies of the neurotoxic effects of l -2-chloropropionic acid on rat brain. Magn Reson Imaging 2001; 19:133-42. [PMID: 11358650 DOI: 10.1016/s0730-725x(01)00231-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
L-2-Chloropropionic acid (L-CPA) is selectively toxic to rat cerebellar granule cells; necrosis is first observed about 36 hours after administration of L-CPA (750 mg/kg p.o.) becoming more marked by 48 h. Parallel to the onset of cell death an increase in cerebellar water content and sodium concentration has been reported suggesting an oedematous reaction. In this study T(2)-weighted (T(2)WI) and diffusion weighted (DWI) imaging were used to detect the development of neuronal damage in the cerebellum of rats as a result of exposure to L-CPA. T(2)WI and DWI were not able to detect cerebellar abnormalities at 37 h post-dosing except for a slight swelling of the cerebellum. However, at 48 h post-dosing when cerebellar swelling and granule cell necrosis were marked, T(2)WI and DWI hyperintensities were observed in the cerebellum. Therefore, under the conditions of this study, MRI was not able to detect abnormalities in the cerebellum prior to the onset of the clinical signs of neurotoxicity or at the time of early histological changes. T(2)WI also suggested a marked increase in the amount of fluid in the ventricular system of rats 37 and 48 h after dosing; fluid accumulation was observed in all animals studied whether or not necrosis was detected. The occurrence of T(2)WI hyperintensity in the forebrain lead us to discover a new lesion in the habenular nucleus.
Collapse
Affiliation(s)
- R E Williams
- Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | | | | | | | | | | |
Collapse
|