1
|
Zhan H, Chen Y, Cui Y, Zeng Y, Feng X, Tan C, Huang C, Lin E, Huang Y, Chen Z. Pure-Shift-Based Proton Magnetic Resonance Spectroscopy for High-Resolution Studies of Biological Samples. Int J Mol Sci 2024; 25:4698. [PMID: 38731917 PMCID: PMC11083948 DOI: 10.3390/ijms25094698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Proton magnetic resonance spectroscopy (1H MRS) presents a powerful tool for revealing molecular-level metabolite information, complementary to the anatomical insight delivered by magnetic resonance imaging (MRI), thus playing a significant role in in vivo/in vitro biological studies. However, its further applications are generally confined by spectral congestion caused by numerous biological metabolites contained within the limited proton frequency range. Herein, we propose a pure-shift-based 1H localized MRS method as a proof of concept for high-resolution studies of biological samples. Benefitting from the spectral simplification from multiplets to singlet peaks, this method addresses the challenge of spectral congestion encountered in conventional MRS experiments and facilitates metabolite analysis from crowded NMR resonances. The performance of the proposed pure-shift 1H MRS method is demonstrated on different kinds of samples, including brain metabolite phantom and in vitro biological samples of intact pig brain tissue and grape tissue, using a 7.0 T animal MRI scanner. This proposed MRS method is readily implemented in common commercial NMR/MRI instruments because of its generally adopted pulse-sequence modules. Therefore, this study takes a meaningful step for MRS studies toward potential applications in metabolite analysis and disease diagnosis.
Collapse
Affiliation(s)
- Haolin Zhan
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
- Department of Biomedical Engineering, Anhui Provincial Engineering Research Center of Semiconductor Inspection Technology and Instrument, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, Hefei University of Technology, Hefei 230009, China
| | - Yulei Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Yinping Cui
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Yunsong Zeng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Xiaozhen Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Chunhua Tan
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Chengda Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Enping Lin
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Yuqing Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Rothe M, Wessel C, Cames S, Szendroedi J, Burkart V, Hwang JH, Roden M. In vivo absolute quantification of hepatic γ-ATP concentration in mice using 31 P MRS at 11.7 T. NMR IN BIOMEDICINE 2021; 34:e4422. [PMID: 33025629 DOI: 10.1002/nbm.4422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Measurement of ATP concentrations and synthesis in humans indicated abnormal hepatic energy metabolism in obesity, non-alcoholic fatty liver disease (NAFLD) and Type 2 diabetes. Further mechanistic studies on energy metabolism require the detailed phenotyping of specific mouse models. Thus, this study aimed to establish and evaluate a robust and fast single voxel 31 P MRS method to quantify hepatic γ-ATP concentrations at 11.7 T in three mouse models with different insulin sensitivities and liver fat contents (72-week-old C57BL/6 control mice, 72-week-old insulin resistant sterol regulatory-element binding protein-1c overexpressing (SREBP-1c+ ) mice and 10-12-week-old prediabetic non-obese diabetic (NOD) mice). Absolute quantification was performed by employing an external reference and a matching replacement ATP phantom with 3D image selected in vivo spectroscopy 31 P MRS. This single voxel 31 P MRS method non-invasively quantified hepatic γ-ATP within 17 min and the repeatability tests provided a coefficient of variation of 7.8 ± 1.1%. The mean hepatic γ-ATP concentrations were markedly lower in SREBP-1c+ mice (1.14 ± 0.10 mM) than in C57BL/6 mice (2.15 ± 0.13 mM; p < 0.0002) and NOD mice (1.78 ± 0.13 mM; p < 0.006, one-way ANOVA test). In conclusion, this method allows us to rapidly and precisely measure hepatic γ-ATP concentrations, and thereby to non-invasively detect abnormal hepatic energy metabolism in mice with different degrees of insulin resistance and NAFLD. Thus, this 31 P MRS will also be useful for future mechanistic as well as therapeutic translational studies in other murine models.
Collapse
Affiliation(s)
- Maik Rothe
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Institute for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Corinna Wessel
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Institute for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Sandra Cames
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Institute for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Institute for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Volker Burkart
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Institute for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Jong-Hee Hwang
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Institute for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Institute for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
3
|
Dorst J, Ruhm L, Avdievich N, Bogner W, Henning A. Comparison of four 31P single-voxel MRS sequences in the human brain at 9.4 T. Magn Reson Med 2021; 85:3010-3026. [PMID: 33427322 DOI: 10.1002/mrm.28658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 01/30/2023]
Abstract
PURPOSE In this study, different single-voxel localization sequences were implemented and systematically compared for the first time for phosphorous MRS (31 P-MRS) in the human brain at 9.4 T. METHODS Two multishot sequences, image-selected in vivo spectroscopy (ISIS) and a conventional slice-selective excitation combined with localization by adiabatic selective refocusing (semiLASER) variant of the spin-echo full intensity-acquired localized spectroscopy (SPECIAL-semiLASER), and two single-shot sequences, semiLASER and stimulated echo acquisition mode (STEAM), were implemented and optimized for 31 P-MRS in the human brain at 9.4 T. Pulses and coil setup were optimized, localization accuracy was tested in phantom experiments, and absolute SNR of the sequences was compared in vivo. The SNR per unit time (SNR/t) was derived and compared for all four sequences and verified experimentally for ISIS in two different voxel sizes (3 × 3 × 3 cm3 , 5 × 5 × 5 cm3 , 10-minute measurement time). Metabolite signals obtained with ISIS were quantified. The possible spectral quality in vivo acquired in clinically feasible time (3:30 minutes, 3 × 3 × 3 cm3 ) was explored for two different coil setups. RESULTS All evaluated sequences performed with good localization accuracy in phantom experiments and provided well-resolved spectra in vivo. However, ISIS has the lowest chemical shift displacement error, the best localization accuracy, the highest SNR/t for most metabolites, provides metabolite concentrations comparable to literature values, and is the only one of the sequences that allows for the detection of the whole 31 P spectrum, including β-adenosine triphosphate, with the used setup. The SNR/t of STEAM is comparable to the SNR/t of ISIS. The semiLASER and SPECIAL-semiLASER sequences provide good results for metabolites with long T2 . CONCLUSION At 9.4 T, high-quality single-voxel localized 31 P-MRS can be performed in the human brain with different localization methods, each with inherent characteristics suitable for different research issues.
Collapse
Affiliation(s)
- Johanna Dorst
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,IMPRS for Cognitive and Systems Neuroscience, University of Tübingen, Tübingen, Germany
| | - Loreen Ruhm
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,IMPRS for Cognitive and Systems Neuroscience, University of Tübingen, Tübingen, Germany
| | - Nikolai Avdievich
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Wolfgang Bogner
- High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Anke Henning
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
4
|
Dziadosz M, Bogner W, Kreis R. Non-water-excitation MR spectroscopy techniques to explore exchanging protons in human brain at 3 T. Magn Reson Med 2020; 84:2352-2363. [PMID: 32602971 DOI: 10.1002/mrm.28322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE To develop localization sequences for in vivo MR spectroscopy (MRS) on clinical scanners of 3 T to record spectra that are not influenced by magnetization transfer from water. METHODS Image-selected in vivo spectroscopy (ISIS) localization and chemical-shift-selective excitation (termed I-CSE) was combined in two ways: first, full ISIS localization plus a frequency-selective spin-echo and second, two-dimensional (2D) ISIS plus a frequency-selective excitation and slice-selective refocusing. The techniques were evaluated at 3 T in phantoms and human subjects in comparison to standard techniques with water presaturation or metabolite-cycling. ISIS included gradient-modulated offset-independent adiabatic (GOIA)-type adiabatic inversion pulses; echo times were 8-10 ms. RESULTS The novel 2D and 3D I-CSE methods yield upfield spectra that are comparable to those from standard MRS, except for shorter echo times and a limited frequency range. On the downfield/high-frequency side, they yield much more signal for exchangeable protons when compared to MRS with water presaturation or metabolite-cycling and longer echo times. CONCLUSION Novel non-water-excitation MRS sequences offer substantial benefits for the detection of metabolite signals that are otherwise suppressed by saturation transfer from water. Avoiding water saturation and using very short echo times allows direct observation of faster exchanging moieties than was previously possible at 3 T and additionally makes the methods less susceptible to fast T2 relaxation.
Collapse
Affiliation(s)
- Martyna Dziadosz
- Departments of Radiology and Biomedical Research, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Wolfgang Bogner
- High-field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Vienna, Austria
| | - Roland Kreis
- Departments of Radiology and Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Gonçalves SI, Ligneul C, Shemesh N. Short echo time relaxation‐enhanced MR spectroscopy reveals broad downfield resonances. Magn Reson Med 2019; 82:1266-1277. [DOI: 10.1002/mrm.27806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/28/2019] [Accepted: 04/17/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Sónia I. Gonçalves
- Champalimaud Research Champalimaud Centre for the Unknown Lisbon Portugal
| | - Clémence Ligneul
- Champalimaud Research Champalimaud Centre for the Unknown Lisbon Portugal
| | - Noam Shemesh
- Champalimaud Research Champalimaud Centre for the Unknown Lisbon Portugal
| |
Collapse
|
6
|
Kumaragamage C, Madularu D, Mathieu AP, De Feyter H, Rajah MN, Near J. In vivo proton observed carbon edited (POCE) 13
C magnetic resonance spectroscopy of the rat brain using a volumetric transmitter and receive-only surface coil on the proton channel. Magn Reson Med 2017; 79:628-635. [DOI: 10.1002/mrm.26751] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/15/2017] [Accepted: 04/19/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Chathura Kumaragamage
- Department of Biomedical Engineering; McGill University; Montreal QC Canada
- Brain Imaging Centre; Douglas Mental Health University Institute, McGill University; Montreal QC Canada
| | - Dan Madularu
- Brain Imaging Centre; Douglas Mental Health University Institute, McGill University; Montreal QC Canada
- Department of Psychiatry; Faculty of Medicine, McGill University; Montreal QC Canada
| | - Axel P. Mathieu
- Brain Imaging Centre; Douglas Mental Health University Institute, McGill University; Montreal QC Canada
- Department of Psychiatry; Faculty of Medicine, McGill University; Montreal QC Canada
| | - Henk De Feyter
- Radiology and Biomedical Imaging; Yale University; New Haven Connecticut USA
| | - M. Natasha Rajah
- Brain Imaging Centre; Douglas Mental Health University Institute, McGill University; Montreal QC Canada
- Department of Psychiatry; Faculty of Medicine, McGill University; Montreal QC Canada
- Department of Psychology; Faculty of Arts, McGill University; Montreal QC Canada
| | - Jamie Near
- Department of Biomedical Engineering; McGill University; Montreal QC Canada
- Brain Imaging Centre; Douglas Mental Health University Institute, McGill University; Montreal QC Canada
- Department of Psychiatry; Faculty of Medicine, McGill University; Montreal QC Canada
| |
Collapse
|
7
|
Niess F, Fiedler GB, Schmid AI, Goluch S, Kriegl R, Wolzt M, Moser E, Meyerspeer M. Interleaved multivoxel 31 P MR spectroscopy. Magn Reson Med 2017; 77:921-927. [PMID: 26914656 PMCID: PMC4996323 DOI: 10.1002/mrm.26172] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/16/2016] [Accepted: 01/27/2016] [Indexed: 12/27/2022]
Abstract
PURPOSE Separate measurements are required when investigating multiple exercising muscles with singlevoxel-localized dynamic 31 P-MRS. With multivoxel spectroscopy, 31 P-MRS time-series spectra are acquired from multiple independent regions during one exercise-recovery experiment with the same time resolution as for singlevoxel measurements. METHODS Multiple independently selected volumes were localized using temporally interleaved semi-LASER excitations at 7T. Signal loss caused by mutual saturation from shared excitation or refocusing slices was quantified at partial and full overlap, and potential contamination was investigated in phantom measurements. During an exercise-recovery experiment both gastrocnemius medialis and soleus of two healthy volunteers were measured using multivoxel acquisitions with a total TR of 6 s, while avoiding overlap of excitation slices. RESULTS Signal reduction by shared adiabatic refocusing slices selected 1 s after the preceding voxel was between 10% (full overlap) and 20% (half overlap), in a phantom measurement. In vivo data were acquired from both muscles within the same exercise experiment, with 13-18% signal reduction. Spectra show phosphocreatine, inorganic phosphate, adenosine-triposphate, phosphomonoesters, and phosphodiesters. CONCLUSION Signal decrease was relatively low compared to the 2-fold increase in information. The approach could help to improve the understanding in metabolic research and is applicable to other organs and nuclei. Magn Reson Med 77:921-927, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Fabian Niess
- Center for Medical Physics and Biomedical EngineeringMedical University of Vienna, ViennaAustria
- MR Center of Excellence, Medical University of ViennaViennaAustria
- Faculty of PhysicsTechnical University of ViennaViennaAustria
| | - Georg B. Fiedler
- Center for Medical Physics and Biomedical EngineeringMedical University of Vienna, ViennaAustria
- MR Center of Excellence, Medical University of ViennaViennaAustria
| | - Albrecht I. Schmid
- Center for Medical Physics and Biomedical EngineeringMedical University of Vienna, ViennaAustria
- MR Center of Excellence, Medical University of ViennaViennaAustria
| | - Sigrun Goluch
- Center for Medical Physics and Biomedical EngineeringMedical University of Vienna, ViennaAustria
- MR Center of Excellence, Medical University of ViennaViennaAustria
- Division of Endocrinology and Metabolism, Department of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Roberta Kriegl
- Center for Medical Physics and Biomedical EngineeringMedical University of Vienna, ViennaAustria
- MR Center of Excellence, Medical University of ViennaViennaAustria
| | - Michael Wolzt
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
| | - Ewald Moser
- Center for Medical Physics and Biomedical EngineeringMedical University of Vienna, ViennaAustria
- MR Center of Excellence, Medical University of ViennaViennaAustria
| | - Martin Meyerspeer
- Center for Medical Physics and Biomedical EngineeringMedical University of Vienna, ViennaAustria
- MR Center of Excellence, Medical University of ViennaViennaAustria
| |
Collapse
|
8
|
Valkovič L, Chmelík M, Krššák M. In-vivo 31P-MRS of skeletal muscle and liver: A way for non-invasive assessment of their metabolism. Anal Biochem 2017; 529:193-215. [PMID: 28119063 PMCID: PMC5478074 DOI: 10.1016/j.ab.2017.01.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 01/18/2023]
Abstract
In addition to direct assessment of high energy phosphorus containing metabolite content within tissues, phosphorus magnetic resonance spectroscopy (31P-MRS) provides options to measure phospholipid metabolites and cellular pH, as well as the kinetics of chemical reactions of energy metabolism in vivo. Even though the great potential of 31P-MR was recognized over 30 years ago, modern MR systems, as well as new, dedicated hardware and measurement techniques provide further opportunities for research of human biochemistry. This paper presents a methodological overview of the 31P-MR techniques that can be used for basic, physiological, or clinical research of human skeletal muscle and liver in vivo. Practical issues of 31P-MRS experiments and examples of potential applications are also provided. As signal localization is essential for liver 31P-MRS and is important for dynamic muscle examinations as well, typical localization strategies for 31P-MR are also described.
Collapse
Affiliation(s)
- Ladislav Valkovič
- High-field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, Oxford, United Kingdom; Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Marek Chmelík
- High-field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria; Institute for Clinical Molecular MRI in Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria
| | - Martin Krššák
- High-field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria; Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Chen X, Boesiger P, Henning A. J-refocused 1H PRESS DEPT for localized 13C MR spectroscopy. NMR IN BIOMEDICINE 2013; 26:1113-24. [PMID: 23440698 DOI: 10.1002/nbm.2925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/26/2012] [Accepted: 12/21/2012] [Indexed: 05/05/2023]
Abstract
Proton point-resolved spectroscopy (PRESS) localization has been combined with distortionless enhanced polarization transfer (DEPT) in multinuclear MRS to overcome the signal contamination problem in image-selected in vivo spectroscopy (ISIS)-combined DEPT, especially for lipid detection. However, homonuclear proton scalar couplings reduce the DEPT enhancement by modifying the spin coherence distribution under J modulation during proton PRESS localization. Herein, a J-refocused proton PRESS-localized DEPT sequence is presented to obtain simultaneously enhanced and localized signals from a large number of metabolites by in vivo (13) C MRS. The suppression of J modulation during PRESS and the substantial recovery of signal enhancement by J-refocused PRESS-localized DEPT were demonstrated theoretically by product operator formalism, numerically by the spin density matrix simulations for different scalar coupling conditions, and experimentally with a glutamate phantom at various TEs, as well as a colza oil phantom. The application of the sequence for localized detection of saturated and unsaturated fatty acids in the calf bone marrow and skeletal muscle of healthy subjects yielded high signal enhancements simultaneously obtained for all components.
Collapse
Affiliation(s)
- X Chen
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.
| | | | | |
Collapse
|
10
|
Bogner W, Chmelik M, Andronesi OC, Sorensen AG, Trattnig S, Gruber S. In vivo 31P spectroscopy by fully adiabatic extended image selected in vivo spectroscopy: a comparison between 3 T and 7 T. Magn Reson Med 2011; 66:923-30. [PMID: 21446033 DOI: 10.1002/mrm.22897] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 02/01/2011] [Accepted: 02/06/2011] [Indexed: 01/11/2023]
Abstract
An improved image selected in vivo spectroscopy (ISIS) sequence for localized (31)P magnetic resonance spectroscopy at 7 T was developed. To reduce errors in localization accuracy, adiabatic excitation, gradient offset independent adiabatic inversion pulses, and a special extended ISIS ordering scheme were used. The localization accuracy of extended ISIS was investigated in phantoms. The possible spectral quality and reproducibility in vivo was explored in a volunteer (brain, muscle, and liver). A comparison between 3 T and 7 T was performed in five volunteers. Adiabatic extended ISIS provided high spectral quality and accurate localization. The contamination in phantom experiments was only ∼5%, even if a pulse repetition time ∼ 1.2·T(1) was chosen to maximize the signal-to-noise ratio per unit time. High reproducibility was found in the calf muscle for 2.5 cm isotropic voxels at 7 T. When compared with 3 T, localized (31)P magnetic resonance spectroscopy in the human calf muscle at 7 T provided ∼3.2 times higher signal-to-noise ratio (as judged from phosphocreatine peak amplitude in frequency domain after matched filtering). At 7 T, extended ISIS allowed the performance of high-quality localized (31)P magnetic resonance spectroscopy in a short measurement time (∼3 to 4 min) and isotropic voxel sizes of ∼2.5 to 3 cm. With such short measurement times, localized (31)P magnetic resonance spectroscopy has the potential to be applied not only for clinical research but also for routine clinical practice.
Collapse
Affiliation(s)
- W Bogner
- Department of Radiology, MR Center of Excellence, Medical University Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
The ability to select a discrete region within the body for signal acquisition is a fundamental requirement of in vivo NMR spectroscopy. Ideally, it should be possible to tailor the selected volume to coincide exactly with the lesion or tissue of interest, without loss of signal from within this volume or contamination with extraneous signals. Many techniques have been developed over the past 25 years employing a combination of RF coil properties, static magnetic field gradients and pulse sequence design in an attempt to meet these goals. This review presents a comprehensive survey of these techniques, their various advantages and disadvantages, and implications for clinical applications. Particular emphasis is placed on the reliability of the techniques in terms of signal loss, contamination and the effect of nuclear relaxation and J-coupling. The survey includes techniques based on RF coil and pulse design alone, those using static magnetic field gradients, and magnetic resonance spectroscopic imaging. Although there is an emphasis on techniques currently in widespread use (PRESS, STEAM, ISIS and MRSI), the review also includes earlier techniques, in order to provide historical context, and techniques that are promising for future use in clinical and biomedical applications.
Collapse
Affiliation(s)
- Stephen F Keevil
- Department of Medical Physics, Guy's and St Thomas' NHS Foundation Trust, Guy's Hospital, London, SE1 9RT, UK.
| |
Collapse
|
12
|
Ljungberg M, Starck G, Vikhoff-Baaz B, Alpsten M, Ekholm S, Forssell-Aronsson E. The magnitude of signal errors introduced by ISIS in quantitative 31P MRS. MAGMA (NEW YORK, N.Y.) 2002; 14:30-8. [PMID: 11796250 DOI: 10.1007/bf02668184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
It is well known that the quality of a quantitative 31P MRS measurement relies largely on the performance of the volume selection method, and that image selected in vivo spectroscopy (ISIS) suffers from contaminating signal caused mostly by T1 smearing. However, these signal errors and their magnitude are seldom addressed in clinical studies. The aim of this study was therefore to investigate the magnitude of signal errors in 31P MRS when using ISIS. The results from the measurements with a homogeneous head phantom are as follows: at low TR/T1 ratios the contamination increases rapidly, especially for small (<27 cm3) VOI sizes; at TR/T1=1, the signal from a 27 cm3 VOI was 20% too high, and from an 8 cm3 VOI 150% too high. The signal obtained from different VOI positions varied between 80 and 127%. The signal varied linearly with the 31P concentration in the object. However, a too high signal was obtained when the concentration was lower in the region of interest (inner container) than in the rest of the phantom. The agreement between the simulations and measurements shows that the results of this study are generally applicable to the measurement geometry and the ISIS experiment order rather than being specific for the MR system studied. The errors obtained both experimentally and in computer simulations are too large to be ignored in clinical studies using the ISIS pulse sequence.
Collapse
Affiliation(s)
- Maria Ljungberg
- Department of Radiation Physics, Göteborg University, Sahlgrenska University Hospital, 413 45, Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
13
|
Wennerberg AB, Jonsson T, Forssberg H, Li TQ. Current awareness in NMR in biomedicine. NMR IN BIOMEDICINE 2001; 14:48-53. [PMID: 11252040 DOI: 10.1002/nbm.667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In order to keep subscribers up-to-date with the latest developments in their field, John Wiley & Sons are providing a current awareness service in each issue of the journal. The bibliography contains newly published material in the field of NMR in biomedicine. Each bibliography is divided into 9 sections: 1 Books, Reviews ' Symposia; 2 General; 3 Technology; 4 Brain and Nerves; 5 Neuropathology; 6 Cancer; 7 Cardiac, Vascular and Respiratory Systems; 8 Liver, Kidney and Other Organs; 9 Muscle and Orthopaedic. Within each section, articles are listed in alphabetical order with respect to author. If, in the preceding period, no publications are located relevant to any one of these headings, that section will be omitted.
Collapse
Affiliation(s)
- A B Wennerberg
- Department of KARO, Division of Diagnostic Radiology, Karolinska Institutet, Huddinge University Hospital, SE-141 86 Stockholm, Sweden
| | | | | | | |
Collapse
|