1
|
Coorssen JR, Padula MP. Proteomics-The State of the Field: The Definition and Analysis of Proteomes Should Be Based in Reality, Not Convenience. Proteomes 2024; 12:14. [PMID: 38651373 PMCID: PMC11036260 DOI: 10.3390/proteomes12020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
With growing recognition and acknowledgement of the genuine complexity of proteomes, we are finally entering the post-proteogenomic era. Routine assessment of proteomes as inferred correlates of gene sequences (i.e., canonical 'proteins') cannot provide the necessary critical analysis of systems-level biology that is needed to understand underlying molecular mechanisms and pathways or identify the most selective biomarkers and therapeutic targets. These critical requirements demand the analysis of proteomes at the level of proteoforms/protein species, the actual active molecular players. Currently, only highly refined integrated or integrative top-down proteomics (iTDP) enables the analytical depth necessary to provide routine, comprehensive, and quantitative proteome assessments across the widest range of proteoforms inherent to native systems. Here we provide a broad perspective of the field, taking in historical and current realities, to establish a more balanced understanding of where the field has come from (in particular during the ten years since Proteomes was launched), current issues, and how things likely need to proceed if necessary deep proteome analyses are to succeed. We base this in our firm belief that the best proteomic analyses reflect, as closely as possible, the native sample at the moment of sampling. We also seek to emphasise that this and future analytical approaches are likely best based on the broad recognition and exploitation of the complementarity of currently successful approaches. This also emphasises the need to continuously evaluate and further optimize established approaches, to avoid complacency in thinking and expectations but also to promote the critical and careful development and introduction of new approaches, most notably those that address proteoforms. Above all, we wish to emphasise that a rigorous focus on analytical quality must override current thinking that largely values analytical speed; the latter would certainly be nice, if only proteoforms could thus be effectively, routinely, and quantitatively assessed. Alas, proteomes are composed of proteoforms, not molecular species that can be amplified or that directly mirror genes (i.e., 'canonical'). The problem is hard, and we must accept and address it as such, but the payoff in playing this longer game of rigorous deep proteome analyses is the promise of far more selective biomarkers, drug targets, and truly personalised or even individualised medicine.
Collapse
Affiliation(s)
- Jens R. Coorssen
- Department of Biological Sciences, Faculty of Mathematics and Science, Brock University, St. Catharines, ON L2S 3A1, Canada
- Institute for Globally Distributed Open Research and Education (IGDORE), St. Catharines, ON L2N 4X2, Canada
| | - Matthew P. Padula
- School of Life Sciences and Proteomics, Lipidomics and Metabolomics Core Facility, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
2
|
Zhang T, Cain AK, Semenec L, Liu L, Hosokawa Y, Inglis DW, Yalikun Y, Li M. Microfluidic Separation and Enrichment of Escherichia coli by Size Using Viscoelastic Flows. Anal Chem 2023; 95:2561-2569. [PMID: 36656064 DOI: 10.1021/acs.analchem.2c05084] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Here, we achieve the separation and enrichment of Escherichia coli clusters from its singlets in a viscoelastic microfluidic device. E. coli, an important prokaryotic model organism and a widely used microbial factory, can aggregate in clusters, leading to biofilm development that can be detrimental to human health and industrial processes. The ability to obtain high-purity populations of E. coli clusters is of significance for biological, biomedical, and industrial applications. In this study, polystyrene particles of two different sizes, 1 and 4.8 μm, are used to mimic E. coli singlets and clusters, respectively. Experimental results show that particles migrate toward the channel center in a size-dependent manner, due to the combined effects of inertial and elastic forces; 4.8 and 1 μm particles are found to have lateral equilibrium positions closer to the channel centerline and sidewalls, respectively. The size-dependent separation performance of the microdevice is demonstrated to be affected by three main factors: channel length, the ratio of sheath to sample flow rate, and poly(ethylene oxide) (PEO) concentration. Further, the separation of E. coli singlets and clusters is achieved at the outlets, and the separation efficiency is evaluated in terms of purity and enrichment factor.
Collapse
Affiliation(s)
- Tianlong Zhang
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia.,Division of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Amy K Cain
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Lucie Semenec
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ling Liu
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Yoichiroh Hosokawa
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - David W Inglis
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Yaxiaer Yalikun
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Ming Li
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia.,Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
3
|
Dkhili S, Ribeiro M, Ghariani S, Yahia HB, Hillion M, Poeta P, Slama KB, Hébraud M, Igrejas G. Bacteriophages as Antimicrobial Agents? Proteomic Insights on Three Novel Lytic Bacteriophages Infecting ESBL-Producing Escherichia coli. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:626-640. [PMID: 34559008 DOI: 10.1089/omi.2021.0122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
With the emergence of multiresistant bacteria, the use of bacteriophages is gaining renewed interest as potential antimicrobial agents. The aim of this study was to analyze the structure of three lytic bacteriophages infecting Escherichia coli (SD1, SD2, and SD3) using a gel-based proteomics approach and the cellular response of this bacterium to phage SD1 infection at the proteome level. The combination of the results of 1-DE and 2-DE followed by mass spectrometry led to the identification of 3, 14, and 9 structure proteins for SD1, SD2, and SD3 phages, respectively. Different protein profiles with common proteins were noticed. We also analyzed phage-induced effects by comparing samples from infected cells to those of noninfected cells. We verified important changes in E. coli proteins expression during phage SD1 infection, where there was an overexpression of proteins involved in stress response. Our results indicated that viral infection caused bacterial oxidative stress and bacterial cells response to stress was orchestrated by antioxidant defense mechanisms. This article makes an empirical scientific contribution toward the concept of bacteriophages as potential antimicrobial agents. With converging ecological threats in the 21st century, novel approaches to address the innovation gaps in antimicrobial development are more essential than ever. Further research on bacteriophages is called for in this broader context of planetary health and integrative biology.
Collapse
Affiliation(s)
- Sadika Dkhili
- Laboratoire des Microorganismes et Biomolécules actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisie.,Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Miguel Ribeiro
- Department of Genetics and Biotechnology and University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal
| | - Salma Ghariani
- Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Houssem Ben Yahia
- Laboratoire des Microorganismes et Biomolécules actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisie.,Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Mélanie Hillion
- University Clermont Auvergne, INRAE, UMR0454 Microbiology Digestive Environment Health (MEDiS), Saint-Genès Champanelle, France.,INRAE, Metabolism Exploration Platform, Proteomic Component (PFEMcp), Saint-Genès Champanelle, France
| | - Patricia Poeta
- Department of Genetics and Biotechnology and University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Karim Ben Slama
- Laboratoire des Microorganismes et Biomolécules actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisie.,Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Michel Hébraud
- University Clermont Auvergne, INRAE, UMR0454 Microbiology Digestive Environment Health (MEDiS), Saint-Genès Champanelle, France.,INRAE, Metabolism Exploration Platform, Proteomic Component (PFEMcp), Saint-Genès Champanelle, France
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology and University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal
| |
Collapse
|
4
|
Gao L, Ma X, Hu J, Zhang X, Chai T. Proteomic analysis of ESBL-producing Escherichia coli under bentonite condition. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:22305-22311. [PMID: 31154643 DOI: 10.1007/s11356-019-05429-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
The dissemination of extended spectrum beta-lactamases (ESBL) genes through gene transfer attracts wide attention. Bentonite is widely used as a feed additive in an animal-breeding environment. In order to obtain a better understanding of the effect of bentonite on Escherichia coli carrying ESBL gene, proteomic analysis was carried out to screen the key proteins. The results showed that a total of 31 proteins were differentially expressed, including 21 up-regulated proteins and 10 down-regulated proteins. These proteins were involved in biosynthetic process, metabolic process, stress response, transport, anaerobic respiration, proteolysis, hydrolase, protein folding, transcription, salvage, and other. The transcriptional level of four genes (mipA, gntY, tldD, and arcA) was in consensus with proteomic results. This study revealed the differentially expressed proteins involved when E. coli was incubated under bentonite and PBS condition, which implied the possibility that bentonite may promote the transfer of ESBL gene between E. coli.
Collapse
Affiliation(s)
- Lili Gao
- Department of Microbiology, College of Basic Medicine, Zunyi Medical University, Huichuan District, Zunyi, 563003, Guizhou, China.
| | - Xiaochun Ma
- Department of Microbiology, College of Basic Medicine, Zunyi Medical University, Huichuan District, Zunyi, 563003, Guizhou, China
| | - Jiaqing Hu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Xiaodan Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Tongjie Chai
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
5
|
Battchikova N, Muth-Pawlak D, Aro EM. Proteomics of cyanobacteria: current horizons. Curr Opin Biotechnol 2018; 54:65-71. [DOI: 10.1016/j.copbio.2018.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/31/2018] [Accepted: 02/13/2018] [Indexed: 12/01/2022]
|
6
|
Atshan SS, Shamsudin MN, Sekawi Z, Thian Lung LT, Barantalab F, Liew YK, Alreshidi MA, Abduljaleel SA, Hamat RA. Comparative proteomic analysis of extracellular proteins expressed by various clonal types of Staphylococcus aureus and during planktonic growth and biofilm development. Front Microbiol 2015; 6:524. [PMID: 26089817 PMCID: PMC4454047 DOI: 10.3389/fmicb.2015.00524] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 05/12/2015] [Indexed: 12/02/2022] Open
Abstract
Staphylococcus aureus is well known for its biofilm formation with rapid emergence of new clones circulating worldwide. The main objectives of the study were (1) to identify possible differences in protein expression among various and closely related clonal types of S. aureus, (2) to establish the differences in protein expression in terms of size of protein spots and its intensities between bacteria which are grown statically (biofilm formation) with that of under aeration and agitation, and (3) to compare the differences in protein expression as a function of time (in hours). In this study, we selected six clinical isolates comprising two similar (MRSA-527 and MRSA-524) and four different (MRSA-139, MSSA-12E, MSSA-22d, and MSSA-10E) types identified by spa typing, MLST and SCCmec typing. We performed 2D gel migration comparison. Also, two MRSA isolates (527 and 139) were selected to determine quantitative changes in the level of extracellular proteins at different biofilm growth time points of 12, 24, and 48 h. The study was done using a strategy that combines 2-DGE and LC-MS/MS analysis for absolute quantification and identification of the extracellular proteins. The 2DGE revealed that the proteomic profiles for the isolates belonging to the similar spa, MLST, and SCCmec types were still quite different. Among the extracellular proteins secreted at different time points of biofilm formation, significant changes in protein expression were observed at 48 h incubation as compared to the exponential growth at 12 h incubation. The main conclusion of the work is that the authors do observe differences among isolates, and growth conditions do influence the protein content at different time points of biofilm formation.
Collapse
Affiliation(s)
- Salman S Atshan
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia Serdang, Malaysia ; Department of Medical Laboratory Sciences, University College of Humanity Studies Najaf, Iraq ; Department of Clinical Laboratory Sciences, Faculty of Pharmacy, Basrah University Basrah, Iraq
| | - Mariana N Shamsudin
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia Serdang, Malaysia
| | - Zamberi Sekawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia Serdang, Malaysia
| | - Leslie T Thian Lung
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia Serdang, Malaysia
| | - Fatemeh Barantalab
- Department of Immunology, Faculty of Medicine and Health Science, Universiti Putra Malaysia Serdang, Malaysia
| | - Yun K Liew
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia Serdang, Malaysia
| | - Mateg Ali Alreshidi
- Department of Basic Medical Sciences, Faculty of Medicine, Sulaiman Alrajhi Colleges Albukairiyah, Saudi Arabia
| | | | - Rukman A Hamat
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia Serdang, Malaysia
| |
Collapse
|
7
|
Napoli A, Aiello D, Aiello G, Cappello MS, Di Donna L, Mazzotti F, Materazzi S, Fiorillo M, Sindona G. Mass Spectrometry-Based Proteomic Approach in Oenococcus oeni Enological Starter. J Proteome Res 2014; 13:2856-66. [DOI: 10.1021/pr4012798] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Anna Napoli
- Department
of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12/D, 87036 Arcavacata di Rende (CS), Italy
| | - Donatella Aiello
- Department
of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12/D, 87036 Arcavacata di Rende (CS), Italy
| | - Gilda Aiello
- Department
of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12/D, 87036 Arcavacata di Rende (CS), Italy
| | | | - Leonardo Di Donna
- Department
of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12/D, 87036 Arcavacata di Rende (CS), Italy
| | - Fabio Mazzotti
- Department
of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12/D, 87036 Arcavacata di Rende (CS), Italy
| | | | - Marco Fiorillo
- Department
of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12/D, 87036 Arcavacata di Rende (CS), Italy
| | - Giovanni Sindona
- Department
of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12/D, 87036 Arcavacata di Rende (CS), Italy
| |
Collapse
|
8
|
Rabilloud T, Chevallet M, Luche S, Leize-Wagner E. Oxidative stress response: a proteomic view. Expert Rev Proteomics 2014; 2:949-56. [PMID: 16307523 DOI: 10.1586/14789450.2.6.949] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The oxidative stress response is characterized by various effects on a range of biologic molecules. When examined at the protein level, both expression levels and protein modifications are altered by oxidative stress. While these effects have been studied in the past by classic biochemical methods, the recent onset of proteomics methods has allowed the oxidative stress response to be studied on a much wider scale. The input of proteomics in the study of oxidative stress response and in the evidence of an oxidative stress component in biologic phenomena is reviewed in this paper.
Collapse
Affiliation(s)
- Thierry Rabilloud
- DRDC/ICH, INSERM U 548, CEA-Laboratoire d'Immunochimie, CEA-Grenoble, 17 rue des martyrs, F-38054 Grenoble Cedex 9, France.
| | | | | | | |
Collapse
|
9
|
Proteome studies of bacterial antibiotic resistance mechanisms. J Proteomics 2014; 97:88-99. [DOI: 10.1016/j.jprot.2013.10.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 10/12/2013] [Accepted: 10/19/2013] [Indexed: 01/10/2023]
|
10
|
Vranakis I, Papadioti A, Tselentis Y, Psaroulaki A, Tsiotis G. The contribution of proteomics towards deciphering the enigma ofCoxiella burnetii. Proteomics Clin Appl 2013; 7:193-204. [DOI: 10.1002/prca.201200096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/15/2012] [Accepted: 11/20/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Iosif Vranakis
- Regional Laboratory of Public Health of Crete; Heraklion; Greece
| | - Anastasia Papadioti
- Division of Biochemistry; Department of Chemistry; University of Crete; Voutes; Greece
| | - Yannis Tselentis
- Regional Laboratory of Public Health of Crete; Heraklion; Greece
| | | | - Georgios Tsiotis
- Division of Biochemistry; Department of Chemistry; University of Crete; Voutes; Greece
| |
Collapse
|
11
|
Raatschen N, Elisabeth Bandow J. 2‐D Gel‐Based Proteomic Approaches to Antibiotic Drug Discovery. ACTA ACUST UNITED AC 2012; Chapter 1:Unit1F.2. [DOI: 10.1002/9780471729259.mc01f02s26] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
After genomics, what proteomics tools could help us understand the antimicrobial resistance of Escherichia coli? J Proteomics 2012; 75:2773-89. [PMID: 22245553 DOI: 10.1016/j.jprot.2011.12.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/21/2011] [Accepted: 12/23/2011] [Indexed: 12/30/2022]
Abstract
Proteomic approaches have been considerably improved during the past decade and have been used to investigate the differences in protein expression profiles of cells grown under a broad spectrum of growth conditions and with different stress factors including antibiotics. In Europe, the most significant disease threat remains the presence of microorganisms that have become resistant to antimicrobials and so it is important that different scientific tools are combined to achieve the largest amount of knowledge in this area of expertise. The emergence and spread of the antibiotic-resistant Gram-negative pathogens, such as Escherichia coli, can lead to serious problem public health in humans. E. coli, a very well described prokaryote, has served as a model organism for several biological and biotechnological studies increasingly so since the completion of the E. coli genome-sequencing project. The purpose of this review is to present an overview of the different proteomic approaches to antimicrobial-resistant E. coli that will be helpful to obtain a better knowledge of the antibiotic-resistant mechanism(s). This can also aid to understand the molecular determinants involved with pathogenesis, which is essential for the development of effective strategies to combat infection and to reveal new therapeutic targets. This article is part of a Special Issue entitled: Proteomics: The clinical link.
Collapse
|
13
|
Stefanopoulou M, Kokoschka M, Sheldrick WS, Wolters DA. Cell response of Escherichia coli
to cisplatin-induced stress. Proteomics 2011; 11:4174-88. [DOI: 10.1002/pmic.201100203] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/19/2011] [Accepted: 08/04/2011] [Indexed: 11/08/2022]
|
14
|
Wegener KM, Singh AK, Jacobs JM, Elvitigala T, Welsh EA, Keren N, Gritsenko MA, Ghosh BK, Camp DG, Smith RD, Pakrasi HB. Global proteomics reveal an atypical strategy for carbon/nitrogen assimilation by a cyanobacterium under diverse environmental perturbations. Mol Cell Proteomics 2010; 9:2678-89. [PMID: 20858728 DOI: 10.1074/mcp.m110.000109] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cyanobacteria, the only prokaryotes capable of oxygenic photosynthesis, are present in diverse ecological niches and play crucial roles in global carbon and nitrogen cycles. To proliferate in nature, cyanobacteria utilize a host of stress responses to accommodate periodic changes in environmental conditions. A detailed knowledge of the composition of, as well as the dynamic changes in, the proteome is necessary to gain fundamental insights into such stress responses. Toward this goal, we have performed a large-scale proteomic analysis of the widely studied model cyanobacterium Synechocystis sp. PCC 6803 under 33 different environmental conditions. The resulting high-quality dataset consists of 22,318 unique peptides corresponding to 1955 proteins, a coverage of 53% of the predicted proteome. Quantitative determination of protein abundances has led to the identification of 1198 differentially regulated proteins. Notably, our analysis revealed that a common stress response under various environmental perturbations, irrespective of amplitude and duration, is the activation of atypical pathways for the acquisition of carbon and nitrogen from urea and arginine. In particular, arginine is catabolized via putrescine to produce succinate and glutamate, sources of carbon and nitrogen, respectively. This study provides the most comprehensive functional and quantitative analysis of the Synechocystis proteome to date, and shows that a significant stress response of cyanobacteria involves an uncommon mode of acquisition of carbon and nitrogen.
Collapse
|
15
|
Two-dimensional gel electrophoresis in proteomics: Past, present and future. J Proteomics 2010; 73:2064-77. [PMID: 20685252 DOI: 10.1016/j.jprot.2010.05.016] [Citation(s) in RCA: 288] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 05/20/2010] [Accepted: 05/25/2010] [Indexed: 12/14/2022]
Abstract
Two-dimensional gel electrophoresis has been instrumental in the birth and developments of proteomics, although it is no longer the exclusive separation tool used in the field of proteomics. In this review, a historical perspective is made, starting from the days where two-dimensional gels were used and the word proteomics did not even exist. The events that have led to the birth of proteomics are also recalled, ending with a description of the now well-known limitations of two-dimensional gels in proteomics. However, the often-underestimated advantages of two-dimensional gels are also underlined, leading to a description of how and when to use two-dimensional gels for the best in a proteomics approach. Taking support of these advantages (robustness, resolution, and ability to separate entire, intact proteins), possible future applications of this technique in proteomics are also mentioned.
Collapse
|
16
|
François P, Scherl A, Hochstrasser D, Schrenzel J. Proteomic approaches to study Staphylococcus aureus pathogenesis. J Proteomics 2010; 73:701-8. [DOI: 10.1016/j.jprot.2009.10.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 10/07/2009] [Accepted: 10/22/2009] [Indexed: 12/25/2022]
|
17
|
Abstract
Bacillus anthracis is a Gram-positive, spore-forming bacterium representing the etiological cause of anthrax, a rare lethal disease of animals and humans. Development of anthrax countermeasures has gained increasing attention owing to the potential use of B. anthracis spores as a bioterror weapon. The various forms of infection by B. anthracis are characterized both by toxemia and septicemia, both of which are the result of spore entry into the host followed by their germination into rapidly multiplying, toxin-producing bacilli. Following the publication of the bacterial genome, proteomic studies were carried out to determine the protein composition of the spore and identify exposed vegetative (membrane-located or secreted) proteins. These studies included comparison of strains differing in their virulence, cultured under different conditions and, in some cases, were complemented by serological inspection, which addressed expression during infection of proteomically identified proteins and their immunogenicity. The proteomic approach emerged as a valuable strategy for the generation of a pool of potential B. anthracis protein targets for further evaluation in detection, diagnostics, therapy and prophylaxis, and contributed to the elucidation of some aspects of the pathogenesis of the disease.
Collapse
Affiliation(s)
- Theodor Chitlaru
- Department of Biochemistry & Molecular Genetics, Israel Institute for Biological Research, PO Box 19, Ness-Ziona 74100, Israel
| | - Avigdor Shafferman
- Department of Biochemistry & Molecular Genetics, Israel Institute for Biological Research, PO Box 19, Ness-Ziona 74100, Israel
| |
Collapse
|
18
|
Richardson MR, Liu S, Ringham HN, Chan V, Witzmann FA. Sample complexity reduction for two-dimensional electrophoresis using solution isoelectric focusing prefractionation. Electrophoresis 2008; 29:2637-44. [PMID: 18494027 DOI: 10.1002/elps.200700707] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Despite its excellent resolving power, 2-DE is of limited use when analyzing cellular proteomes, especially in differential expression studies. Frequently, fewer than 2000 protein spots are detected on a single 2-D gel (a fraction of the total proteome) regardless of the gel platform, sample, or detection method used. This is due to the vast number of proteins expressed and their equally vast dynamic range. To exploit 2-DE unique ability as both an analytical and a preparative tool, the significant sample prefractionation is necessary. We have used solution isoelectric focusing (sIEF) via the ZOOM IEF Fractionator (Invitrogen) to generate sample fractions from complex bacterial lysates, followed by parallel 2-DE, using narrow-range IPG strips that bracket the sIEF fractions. The net result of this process is a significant enrichment of the bacterial proteome resolved on multiple 2-D gels. After prefractionation, we detected 5525 spots, an approximate 3.5-fold increase over the 1577 spots detected in an unfractionated gel. We concluded that sIEF is an effective means of prefractionation to increase depth of field and improve the analysis of low-abundance proteins.
Collapse
Affiliation(s)
- Matthew R Richardson
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | |
Collapse
|
19
|
Loh KC, Cao B. Paradigm in biodegradation using Pseudomonas putida—A review of proteomics studies. Enzyme Microb Technol 2008. [DOI: 10.1016/j.enzmictec.2008.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
|
21
|
Warda M, Han J. Retracted: Mitochondria, the missing link between body and soul: Proteomic prospective evidence. Proteomics 2008. [DOI: 10.1002/pmic.200700695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
22
|
Maillet I, Berndt P, Malo C, Rodriguez S, Brunisholz RA, Pragai Z, Arnold S, Langen H, Wyss M. From the genome sequence to the proteome and back: evaluation of E. coli genome annotation with a 2-D gel-based proteomics approach. Proteomics 2007; 7:1097-106. [PMID: 17366475 DOI: 10.1002/pmic.200600599] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The ambition of systems biology to understand complex biological systems at the molecular level implies that we need to have a concrete and correct understanding of each molecular entity and its function. However, even for the best-studied organism, Escherichia coli, a large number of proteins have never been identified and characterised from wild-type cells, and/or await unravelling of their biological role. Instead, the ORF models for these proteins have been predicted by suitable algorithms and/or through comparison with known, homologous proteins from other organisms, approaches which may be prone to error. In the present study, we used a combination of 2-DE, MALDI-TOF-MS and PMF to identify 1151 different proteins in E. coli K12 JM109. Comparison of the experimental with the theoretical Mr and pI values (4000 experimental values each) allowed the identification of numerous proteins with incorrect or incomplete ORF annotations in the current E. coli genome databases. Several inconsistencies in genome annotation were verified experimentally, and up to 55 candidates await further investigation. Our findings demonstrate how an up-to-date 2-D gel-based proteomics approach can be used for improving the annotation of prokaryotic genomes. They also highlight the need for harmonization among the different E. coli genome databases.
Collapse
|
23
|
Yun H, Lee JW, Jeong J, Chung J, Park JM, Myoung HN, Lee SY. EcoProDB: the Escherichia coli protein database. Bioinformatics 2007; 23:2501-3. [PMID: 17623702 DOI: 10.1093/bioinformatics/btm351] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
UNLABELLED EcoProDB is a web-based database for comparative proteomics of Escherichia coli. The database contains information on E. coli proteins identified on 2D gels along with other resources collected from various databases and published literature, with a special feature of showing the expression levels of E. coli proteins under different genetic and environmental conditions. It also provides comparative information of subcellular localization, theoretical 2D map, experimental 2D map and integrated protein information via an interactive web interface and application such as the Map Browser. Users can also upload their own 2D gels, extract core information associated with the proteins and 2D gel results from different experiments and consequently generate new knowledge and hypotheses for further studies. AVAILABILITY EcoProDB database system is accessible at http://eecoli.kaist.ac.kr.
Collapse
Affiliation(s)
- Hongseok Yun
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering, Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Daejeon 305-701, Korea
| | | | | | | | | | | | | |
Collapse
|
24
|
Karp NA, Lilley KS. Identification of clock genes using difference gel electrophoresis. Methods Mol Biol 2007; 362:265-87. [PMID: 17417015 DOI: 10.1007/978-1-59745-257-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Proteomics is the study of the complete set of proteins encoded by the genome. The study of the proteome involves the investigation of changes in protein abundance, localization, involvement in multiprotein complexes, and detection of different protein isoforms and posttranslational modifications under defined conditions, such as the circadian cycle. This type of approach complements comparative gene expression studies providing additional information with respect to posttranscriptional processing. One of the key techniques used to study the proteome is two-dimensional gel electrophoresis. This technique has the ability to separate complex protein mixtures with high resolution. A significant improvement in this technology has been development of difference gel electrophoresis. Here, proteins are first labeled with one of three spectrally resolvable fluorescent cyanine dyes before being separated in two dimensions according to their charge and size, respectively. Multiplexing can accurately and reproducibly quantify protein expression across multiple gels. A multiple-gel approach allows the detection of differentially expressed protein spots using statistical methods to compare expression across different experimental groups. The proteins can be subsequently identified by mass spectrometric methods. This approach now allows more complex experimental designs, such as the time course experiments essential to the study of circadian rhythms.
Collapse
Affiliation(s)
- Natasha A Karp
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, UK
| | | |
Collapse
|
25
|
Dworzanski JP, Snyder AP. Classification and identification of bacteria using mass spectrometry-based proteomics. Expert Rev Proteomics 2007; 2:863-78. [PMID: 16307516 DOI: 10.1586/14789450.2.6.863] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Timely classification and identification of bacteria is of vital importance in many areas of public health. Mass spectrometry-based methods provide an attractive alternative to well-established microbiologic procedures. Mass spectrometry methods can be characterized by the relatively high speed of acquiring taxonomically relevant information. Gel-free mass spectrometry proteomics techniques allow for rapid fingerprinting of bacterial proteins using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry or, for high-throughput sequencing of peptides from protease-digested cellular proteins, using mass analysis of fragments from collision-induced dissociation of peptide ions. The latter technique uses database searching of product ion mass spectra. A database contains a comprehensive list of protein sequences translated from protein-encoding open reading frames found in bacterial genomes. The results of such searches allow the assignment of experimental peptide sequences to matching theoretical bacterial proteomes. Phylogenetic profiles of sequenced peptides are then used to create a matrix of sequence-to-bacterium assignments, which are analyzed using numerical taxonomy tools. The results thereof reveal the relatedness between bacteria, and allow the taxonomic position of an investigated strain to be inferred.
Collapse
Affiliation(s)
- Jacek P Dworzanski
- Science Applications International Corporation (SAIC), PO Box 68, Aberdeen Proving Ground, MD 21010-0068, USA.
| | | |
Collapse
|
26
|
Wang S, Zhu R, Peng B, Liu M, Lou Y, Ye X, Xu Z, Liu D, Peng X. Identification of alkaline proteins that are differentially expressed in an overgrowth-mediated growth arrest and cell death ofEscherichia coliby proteomic methodologies. Proteomics 2006; 6:5212-20. [PMID: 16955513 DOI: 10.1002/pmic.200500065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The available Escherichia coli genome sequences offer an opportunity to further expand our understanding of this bacterium. In the current study, we present a rapid method for the isolation of bacterial alkaline proteins using acid incubation, purification and protein array by 2-DE, followed by protein identification using MS. Fifty-seven proteins were randomly chosen, in which 55 were identified by a database searching of MS data. The searching results showed that most of these alkaline proteins were involved in special functions within the cell, suggesting that alkaline proteome is an ideal fraction for an understanding of their special functions. Furthermore, alkaline proteomes were compared between the period of majority live bacteria (18-h culture), the period of similar amount of live and dead bacteria (30-h culture) and the period of majority dead bacteria (48-h culture). Six proteins were identified as differentially expressed targets, in which putative transcriptional regulator and superoxide dismutase genes were cloned and expressed for antiserum preparations. The antisera were applied for the confirmation of results obtained from 2-DE. The presented data clearly reveal that alkaline proteome analysis by 2-DE with MS plays an important role in the understanding of protein functions within the cell, and six alkaline proteins are determined as key ones in an overgrowth-mediated growth cycle of E. coli.
Collapse
Affiliation(s)
- Sanying Wang
- Center for Proteomics, Department of Biology, School of Life Sciences, Xiamen University, Xiamen, P R China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
McNicoll F, Drummelsmith J, Müller M, Madore E, Boilard N, Ouellette M, Papadopoulou B. A combined proteomic and transcriptomic approach to the study of stage differentiation in Leishmania infantum. Proteomics 2006; 6:3567-81. [PMID: 16705753 DOI: 10.1002/pmic.200500853] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protozoan parasites of the genus Leishmania are found as promastigotes in the sandfly vector and as amastigotes in mammalian macrophages. Mechanisms controlling stage-regulated gene expression in these organisms are poorly understood. Here, we applied a comprehensive approach consisting of protein prefractionation, global proteomics and targeted DNA microarray analysis to the study of stage differentiation in Leishmania. By excluding some abundant structural proteins and reducing complexity, we detected and identified numerous novel differentially expressed protein isoforms in L. infantum. Using 2-D gels, over 2200 protein isoforms were visualized in each developmental stage. Of these, 6.1% were strongly increased or appeared unique in the promastigote stage, while the relative amounts of 12.4% were increased in amastigotes. Amastigote-specific protein isoform and mRNA expression trends correlated modestly (53%), while no correlation was found for promastigote-specific spots. Even where direction of regulation was similar, fold-changes were more modest at the RNA than protein level. Many proteins were present in multiple spots, suggesting that PTM is extensive in this organism. In several cases, different isoforms appeared to be specific to different life stages. Our results suggest that post-transcriptional controls at translational and post-translational levels could play major roles in differentiation in Leishmania parasites.
Collapse
Affiliation(s)
- François McNicoll
- Infectious Diseases Research Centre, CHUL Research Centre and Division of Microbiology, Faculty of Medicine, Laval University, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
28
|
Han MJ, Lee SY. The Escherichia coli proteome: past, present, and future prospects. Microbiol Mol Biol Rev 2006; 70:362-439. [PMID: 16760308 PMCID: PMC1489533 DOI: 10.1128/mmbr.00036-05] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteomics has emerged as an indispensable methodology for large-scale protein analysis in functional genomics. The Escherichia coli proteome has been extensively studied and is well defined in terms of biochemical, biological, and biotechnological data. Even before the entire E. coli proteome was fully elucidated, the largest available data set had been integrated to decipher regulatory circuits and metabolic pathways, providing valuable insights into global cellular physiology and the development of metabolic and cellular engineering strategies. With the recent advent of advanced proteomic technologies, the E. coli proteome has been used for the validation of new technologies and methodologies such as sample prefractionation, protein enrichment, two-dimensional gel electrophoresis, protein detection, mass spectrometry (MS), combinatorial assays with n-dimensional chromatographies and MS, and image analysis software. These important technologies will not only provide a great amount of additional information on the E. coli proteome but also synergistically contribute to other proteomic studies. Here, we review the past development and current status of E. coli proteome research in terms of its biological, biotechnological, and methodological significance and suggest future prospects.
Collapse
Affiliation(s)
- Mee-Jung Han
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | | |
Collapse
|
29
|
Gade D, Theiss D, Lange D, Mirgorodskaya E, Lombardot T, Glöckner FO, Kube M, Reinhardt R, Amann R, Lehrach H, Rabus R, Gobom J. Towards the proteome of the marine bacteriumRhodopirellula baltica: Mapping the soluble proteins. Proteomics 2005; 5:3654-71. [PMID: 16127728 DOI: 10.1002/pmic.200401201] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The marine bacterium Rhodopirellula baltica, a member of the phylum Planctomycetes, has distinct morphological properties and contributes to remineralization of biomass in the natural environment. On the basis of its recently determined complete genome we investigated its proteome by 2-DE and established a reference 2-DE gel for the soluble protein fraction. Approximately 1000 protein spots were excised from a colloidal Coomassie-stained gel (pH 4-7), analyzed by MALDI-MS and identified by PMF. The non-redundant data set contained 626 distinct protein spots, corresponding to 558 different genes. The identified proteins were classified into role categories according to their predicted functions. The experimentally determined and the theoretically predicted proteomes were compared. Proteins, which were most abundant in 2-DE gels and the coding genes of which were also predicted to be highly expressed, could be linked mainly to housekeeping functions in glycolysis, tricarboxic acid cycle, amino acid biosynthesis, protein quality control and translation. Absence of predictable signal peptides indicated a localization of these proteins in the intracellular compartment, the pirellulosome. Among the identified proteins, 146 contained a predicted signal peptide suggesting their translocation. Some proteins were detected in more than one spot on the gel, indicating post-translational modification. In addition to identifying proteins present in the published sequence database for R. baltica, an alternative approach was used, in which the mass spectrometric data was searched against a maximal ORF set, allowing the identification of four previously unpredicted ORFs. The 2-DE reference map presented here will serve as framework for further experiments to study differential gene expression of R. baltica in response to external stimuli or cellular development and compartmentalization.
Collapse
Affiliation(s)
- Dörte Gade
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lopez-Campistrous A, Semchuk P, Burke L, Palmer-Stone T, Brokx SJ, Broderick G, Bottorff D, Bolch S, Weiner JH, Ellison MJ. Localization, Annotation, and Comparison of the Escherichia coli K-12 Proteome under Two States of Growth. Mol Cell Proteomics 2005; 4:1205-9. [PMID: 15911532 DOI: 10.1074/mcp.d500006-mcp200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we describe a proteomic analysis of Escherichia coli in which 3,199 protein forms were detected, and of those 2,160 were annotated and assigned to the cytosol, periplasm, inner membrane, and outer membrane by biochemical fractionation followed by two-dimensional gel electrophoresis and tandem mass spectrometry. Represented within this inventory were unique and modified forms corresponding to 575 different ORFs that included 151 proteins whose existence had been predicted from hypothetical ORFs, 76 proteins of completely unknown function, and 222 proteins currently without location assignments in the Swiss-Prot Database. Of the 575 unique proteins identified, 42% were found to exist in multiple forms. Using DIGE, we also examined the relative changes in protein expression when cells were grown in the presence and absence of amino acids. A total of 23 different proteins were identified whose abundance changed significantly between the two conditions. Most of these changes were found to be associated with proteins involved in carbon and amino acid metabolism, transport, and chemotaxis. Detailed information related to all 2,160 protein forms (protein and gene names, accession numbers, subcellular locations, relative abundances, sequence coverage, molecular masses, and isoelectric points) can be obtained upon request in either tabular form or as interactive gel images.
Collapse
Affiliation(s)
- Ana Lopez-Campistrous
- Institute for Biomolecular Design, 3-55 Medical Sciences Building, Alberta T6G 2H7, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Encheva V, Wait R, Gharbia SE, Begum S, Shah HN. Proteome analysis of serovars Typhimurium and Pullorum of Salmonella enterica subspecies I. BMC Microbiol 2005; 5:42. [PMID: 16026608 PMCID: PMC1181816 DOI: 10.1186/1471-2180-5-42] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 07/18/2005] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Salmonella enterica subspecies I includes several closely related serovars which differ in host ranges and ability to cause disease. The basis for the diversity in host range and pathogenic potential of the serovars is not well understood, and it is not known how host-restricted variants appeared and what factors were lost or acquired during adaptations to a specific environment. Differences apparent from the genomic data do not necessarily correspond to functional proteins and more importantly differential regulation of otherwise identical gene content may play a role in the diverse phenotypes of the serovars of Salmonella. RESULTS In this study a comparative analysis of the cytosolic proteins of serovars Typhimurium and Pullorum was performed using two-dimensional gel electrophoresis and the proteins of interest were identified using mass spectrometry. An annotated reference map was created for serovar Typhimurium containing 233 entries, which included many metabolic enzymes, ribosomal proteins, chaperones and many other proteins characteristic for the growing cell. The comparative analysis of the two serovars revealed a high degree of variation amongst isolates obtained from different sources and, in some cases, the variation was greater between isolates of the same serovar than between isolates with different sero-specificity. However, several serovar-specific proteins, including intermediates in sulphate utilisation and cysteine synthesis, were also found despite the fact that the genes encoding those proteins are present in the genomes of both serovars. CONCLUSION Current microbial proteomics are generally based on the use of a single reference or type strain of a species. This study has shown the importance of incorporating a large number of strains of a species, as the diversity of the proteome in the microbial population appears to be significantly greater than expected. The characterisation of a diverse selection of strains revealed parts of the proteome of S. enterica that alter their expression while others remain stable and allowed for the identification of serovar-specific factors that have so far remained undetected by other methods.
Collapse
Affiliation(s)
- Vesela Encheva
- Molecular Identification Services Unit, NCTC, Centre for Infections, Health Protection Agency, London, UK
| | - Robin Wait
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College London, UK
| | - Saheer E Gharbia
- Genomics Proteomics and Bioinformatics Unit, Centre for Infection, Health Protection Agency, London, UK
| | - Shajna Begum
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College London, UK
| | - Haroun N Shah
- Molecular Identification Services Unit, NCTC, Centre for Infections, Health Protection Agency, London, UK
| |
Collapse
|
32
|
Bandow JE. Proteomic approaches to antibiotic drug discovery. CURRENT PROTOCOLS IN MICROBIOLOGY 2005; Chapter 1:Unit 1F.2. [PMID: 18770548 DOI: 10.1002/9780471729259.mc01f02s00] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The global analysis of changes in the protein composition of bacterial cells in response to treatment with antibiotic agents grants insight into the physiological response of cells to inhibition of vital cellular functions. This unit gives an overview of how these global proteomic studies can impact antibacterial drug discovery by identifying or validating compound mechanism of action and by increasing the confidence in the value of genes with unknown function as potential new targets. It describes the design and function of a reference compendium of proteomic responses to inhibition of vital cellular functions through antibacterial agents or genetic down-regulation of potential target genes. An overview of the workflow for two-dimensional gel electrophoresis-based experiments is also presented.
Collapse
|
33
|
Brötz-Oesterhelt H, Bandow JE, Labischinski H. Bacterial proteomics and its role in antibacterial drug discovery. MASS SPECTROMETRY REVIEWS 2005; 24:549-565. [PMID: 15389844 DOI: 10.1002/mas.20030] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Gene-expression profiling technologies in general, and proteomic technologies in particular have proven extremely useful to study the physiological response of bacterial cells to various environmental stress conditions. Complex protein toolkits coordinated by sophisticated regulatory networks have evolved to accommodate bacterial survival under ever-present stress conditions such as varying temperatures, nutrient availability, or antibiotics produced by other microorganisms that compete for habitat. In the last decades, application of man-made antibacterial agents resulted in additional bacterial exposure to antibiotic stress. Whereas the targeted use of antibiotics has remarkably reduced human suffering from infectious diseases, the ever-increasing emergence of bacteria that are resistant to antibiotics has led to an urgent need for novel antibiotic strategies. The intent of this review is to present an overview of the major achievements of proteomic approaches to study adaptation networks that are crucial for bacterial survival with a special emphasis on the stress induced by antibiotic treatment. A further focus will be the review of the, so far few, published efforts to exploit the knowledge derived from bacterial proteomic studies directly for the antibacterial drug-discovery process.
Collapse
|
34
|
Karlsson J, Nilsson T. The C subunit of Ideonella dechloratans chlorate reductase: Expression, purification, refolding, and heme reconstitution. Protein Expr Purif 2005; 41:306-12. [PMID: 15866716 DOI: 10.1016/j.pep.2005.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 01/28/2005] [Indexed: 11/24/2022]
Abstract
The C subunit of Ideonella dechloratans chlorate reductase has been expressed in Escherichia coli as a GST fusion protein. Purification from inclusion bodies, followed by refolding and reconstitution with heme, produced a protein with a heme/protein ratio of 0.4, and with UV-vis spectral characteristics similar to those of native chlorate reductase. Wavelength maxima for the alpha and beta bands in the reduced state were 559 and 529 nm for both native chlorate reductase and the reconstituted recombinant subunit, whereas the reduced Soret bands were found at 426 and 424 nm, respectively. These results support the notion of the C subunit as the cytochrome b moiety of I. dechloratans chlorate reductase. Moreover, the availability of a recombinant version of the C subunit is expected to facilitate further studies of electron transfer and protein interaction included in the reaction catalyzed by chlorate reductase.
Collapse
Affiliation(s)
- Jan Karlsson
- Karlstad University, Department of Chemistry, SE 65188 Karlstad, Sweden
| | | |
Collapse
|
35
|
Dworzanski JP, Snyder AP, Chen R, Zhang H, Wishart D, Li L. Identification of bacteria using tandem mass spectrometry combined with a proteome database and statistical scoring. Anal Chem 2005; 76:2355-66. [PMID: 15080748 DOI: 10.1021/ac0349781] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Detection and identification of pathogenic bacteria and their protein toxins play a crucial role in a proper response to natural or terrorist-caused outbreaks of infectious diseases. The recent availability of whole genome sequences of priority bacterial pathogens opens new diagnostic possibilities for identification of bacteria by retrieving their genomic or proteomic information. We describe a method for identification of bacteria based on tandem mass spectrometric (MS/MS) analysis of peptides derived from bacterial proteins. This method involves bacterial cell protein extraction, trypsin digestion, liquid chromatography MS/MS analysis of the resulting peptides, and a statistical scoring algorithm to rank MS/MS spectral matching results for bacterial identification. To facilitate spectral data searching, a proteome database was constructed by translating genomes of bacteria of interest with fully or partially determined sequences. In this work, a prototype database was constructed by the automated analysis of 87 publicly available, fully sequenced bacterial genomes with the GLIMMER gene finding software. MS/MS peptide spectral matching for peptide sequence assignment against this proteome database was done by SEQUEST. To gauge the relative significance of the SEQUEST-generated matching parameters for correct peptide assignment, discriminant function (DF) analysis of these parameters was applied and DF scores were used to calculate probabilities of correct MS/MS spectra assignment to peptide sequences in the database. The peptides with DF scores exceeding a threshold value determined by the probability of correct peptide assignment were accepted and matched to the bacterial proteomes represented in the database. Sequence filtering or removal of degenerate peptides matched with multiple bacteria was then performed to further improve identification. It is demonstrated that using a preset criterion with known distributions of discriminant function scores and probabilities of correct peptide sequence assignments, a test bacterium within the 87 database microorganisms can be unambiguously identified.
Collapse
|
36
|
Barrier M, Mirkes PE. Proteomics in developmental toxicology. Reprod Toxicol 2005; 19:291-304. [PMID: 15686865 DOI: 10.1016/j.reprotox.2004.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Revised: 07/26/2004] [Accepted: 09/03/2004] [Indexed: 10/26/2022]
Abstract
The objective of this presentation is to review the major proteomic technologies available to developmental toxicologists and, when possible, to provide examples of how various proteomic technologies have been used in developmental toxicology or toxicology in general. The field of proteomics is too broad for us to go into great depth about each technology, so we have attempted to provide brief overviews supplemented with many references that cover the subjects in more detail. Proteomics tools produce a global view of complex biological systems by examining complex protein mixtures using large-scale, high-throughput technologies. These technologies speed up the process of protein separation, quantification, and identification. As an important complement to genomics, proteomics allows for the examination of the entire complement of proteins in an organism, tissue, or cell-type. Current proteomics technologies not only identify protein expression, but also post-translational modifications and protein interactions. The field of proteomics is expanding rapidly to provide greater volume and quality of protein information to help understand the multifaceted nature of biological systems.
Collapse
Affiliation(s)
- Marianne Barrier
- Birth Defects Research Laboratory, Division of Genetics and Developmental Medicine, Department of Pediatrics, University of Washington, Box 356320, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | | |
Collapse
|
37
|
Kim YH, Park JS, Cho JY, Cho K, Park YH, Lee J. Proteomic response analysis of a threonine-overproducing mutant of Escherichia coli. Biochem J 2004; 381:823-9. [PMID: 15104539 PMCID: PMC1133892 DOI: 10.1042/bj20031763] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Revised: 04/21/2004] [Accepted: 04/23/2004] [Indexed: 11/17/2022]
Abstract
The proteomic response of a threonine-overproducing mutant of Escherichia coli was quantitatively analysed by two-dimensional electrophoresis. Evidently, 12 metabolic enzymes that are involved in threonine biosynthesis showed a significant difference in intracellular protein level between the mutant and native strain. The level of malate dehydrogenase was more than 30-fold higher in the mutant strain, whereas the synthesis of citrate synthase seemed to be severely inhibited in the mutant. Therefore, in the mutant, it is probable that the conversion of oxaloacetate into citrate was severely inhibited, but the oxidation of malate to oxaloacetate was significantly up-regulated. Accumulation of oxaloacetate may direct the metabolic flow towards the biosynthetic route of aspartate, a key metabolic precursor of threonine. Synthesis of aspartase (aspartate ammonia-lyase) was significantly inhibited in the mutant strain, which might lead to the enhanced synthesis of threonine by avoiding unfavourable degradation of aspartate to fumarate and ammonia. Synthesis of threonine dehydrogenase (catalysing the degradation of threonine finally back to pyruvate) was also significantly down-regulated in the mutant. The far lower level of cystathionine beta-lyase synthesis in the mutant seems to result in the accumulation of homoserine, another key precursor of threonine. In the present study, we report that the accumulation of important threonine precursors, such as oxaloacetate, aspartate and homoserine, and the inhibition of the threonine degradation pathway played a critical role in increasing the threonine biosynthesis in the E. coli mutant.
Collapse
Affiliation(s)
- Yang-Hoon Kim
- *Department of Chemical and Biological Engineering, Korea University, Anam-Dong 5-1, Sungbuk-Ku, Seoul 136-701, South Korea
| | - Jin-Seung Park
- *Department of Chemical and Biological Engineering, Korea University, Anam-Dong 5-1, Sungbuk-Ku, Seoul 136-701, South Korea
| | - Jae-Yong Cho
- †Department of Bioindustry and Technology, Sangji University, 660 Wonju-Si, Kangwon-Do 220-702, South Korea
| | - Kwang Myung Cho
- ‡R&D Center for Bioproducts, Institute of Science and Technology, CJ Corporation, Ichon-Si, Kyongggi-Do 467-810, South Korea
| | - Young-Hoon Park
- ‡R&D Center for Bioproducts, Institute of Science and Technology, CJ Corporation, Ichon-Si, Kyongggi-Do 467-810, South Korea
- Correspondence may be addressed to either author (e-mail )
| | - Jeewon Lee
- *Department of Chemical and Biological Engineering, Korea University, Anam-Dong 5-1, Sungbuk-Ku, Seoul 136-701, South Korea
- Correspondence may be addressed to either author (e-mail )
| |
Collapse
|
38
|
Abstract
The information from genome sequencing provides a new framework for a systems-wide understanding of protein networks and cellular function. Whereas microarray technologies provide information about global gene expression within cells, complementary proteomic strategies monitor expression of proteins and their posttranslational modifications. Improved technologies that have emerged for comprehensive and high-throughput protein analysis yield novel insights into cell regulation.
Collapse
Affiliation(s)
- Yukihito Kabuyama
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| | | | | |
Collapse
|
39
|
Lescuyer P, Chevallet M, Rabilloud T. L’analyse protéomique : concepts, réalités et perspectives en thérapeutique. Med Sci (Paris) 2004; 20:587-92. [PMID: 15190480 DOI: 10.1051/medsci/2004205587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The present paper aims at clarifying some important aspects of proteomics, i.e. the large scale analysis of proteins. To this purpose, the main types of proteomic analyses are presented, i.e. those aiming at determining expression levels and those aiming at unravelling protein-protein interactions networks. Their performances and limitations are outlined, as well as their potential applications in biomedicine, to give an reasoned view of the current state of the art.
Collapse
Affiliation(s)
- Pierre Lescuyer
- Laboratoire de bioénergétique cellulaire et pathologique, DRDC/BECP, CEA-Grenoble, 17, rue des Martyrs, 38054 Grenoble 9, France
| | | | | |
Collapse
|
40
|
Corbin RW, Paliy O, Yang F, Shabanowitz J, Platt M, Lyons CE, Root K, McAuliffe J, Jordan MI, Kustu S, Soupene E, Hunt DF. Toward a protein profile of Escherichia coli: comparison to its transcription profile. Proc Natl Acad Sci U S A 2003; 100:9232-7. [PMID: 12878731 PMCID: PMC170901 DOI: 10.1073/pnas.1533294100] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
High-pressure liquid chromatography-tandem mass spectrometry was used to obtain a protein profile of Escherichia coli strain MG1655 grown in minimal medium with glycerol as the carbon source. By using cell lysate from only 3 x 108 cells, at least four different tryptic peptides were detected for each of 404 proteins in a short 4-h experiment. At least one peptide with a high reliability score was detected for 986 proteins. Because membrane proteins were underrepresented, a second experiment was performed with a preparation enriched in membranes. An additional 161 proteins were detected, of which from half to two-thirds were membrane proteins. Overall, 1,147 different E. coli proteins were identified, almost 4 times as many as had been identified previously by using other tools. The protein list was compared with the transcription profile obtained on Affymetrix GeneChips. Expression of 1,113 (97%) of the genes whose protein products were found was detected at the mRNA level. The arithmetic mean mRNA signal intensity for these genes was 3-fold higher than that for all 4,300 protein-coding genes of E. coli. Thus, GeneChip data confirmed the high reliability of the protein list, which contains about one-fourth of the proteins of E. coli. Detection of even those membrane proteins and proteins of undefined function that are encoded by the same operons (transcriptional units) encoding proteins on the list remained low.
Collapse
Affiliation(s)
- Rebecca W Corbin
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Matte A, Sivaraman J, Ekiel I, Gehring K, Jia Z, Cygler M. Contribution of structural genomics to understanding the biology of Escherichia coli. J Bacteriol 2003; 185:3994-4002. [PMID: 12837772 PMCID: PMC164895 DOI: 10.1128/jb.185.14.3994-4002.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Allan Matte
- Biotechnology Research Institute, Concordia University Montréal, Québec, Canada.
| | | | | | | | | | | |
Collapse
|
42
|
Lecchi P, Gupte AR, Perez RE, Stockert LV, Abramson FP. Size-exclusion chromatography in multidimensional separation schemes for proteome analysis. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 2003; 56:141-52. [PMID: 12834973 DOI: 10.1016/s0165-022x(03)00055-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Size-exclusion chromatography (SEC) is a separation technique with a relatively low resolving power, compared to those usually utilized in proteomics. Therefore, it is often overlooked in experimental protocols, when the main goal is resolving complex biological mixtures. In this report, we introduce innovative multidimensional schemes for proteomics analysis, in which SEC plays a practical role. Liquid isoelectric focusing (IEF) was combined with SEC, and experimental results were compared to those obtained by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), well-established techniques relying upon similar criteria for separation. Additional experiments were performed to evaluate the practical contribution of SEC in multidimensional chromatographic separations. Specifically, we evaluated the combination of SEC and ion exchange chromatography in an analytical scheme for the mass spectrometric analysis of protein-extracts obtained from bacterial cultures grown in stable isotope enriched media. Experimental conditions and practical considerations are discussed.
Collapse
Affiliation(s)
- Paolo Lecchi
- Department of Pharmacology, The George Washington University School of Medicine and Health Sciences, 2300 I St. N.W., Washington, DC, 20037, USA.
| | | | | | | | | |
Collapse
|
43
|
Hubálek M, Hernychová L, Havlasová J, Kasalová I, Neubauerová V, Stulík J, Macela A, Lundqvist M, Larsson P. Towards proteome database of Francisella tularensis. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 787:149-77. [PMID: 12659739 DOI: 10.1016/s1570-0232(02)00730-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The accessibility of the partial genome sequence of Francisella tularensis strain Schu 4 was the starting point for a comprehensive proteome analysis of the intracellular pathogen F. tularensis. The main goal of this study is identification of protein candidates of value for the development of diagnostics, therapeutics and vaccines. In this review, the current status of 2-DE F. tularensis database building, approaches used for identification of biologically important subsets of F. tularensis proteins, and functional and topological assignments of identified proteins using various prediction programs and database homology searches are presented.
Collapse
Affiliation(s)
- Martin Hubálek
- Proteome Center for the Study of Intracellular Parasitism of Bacteria, Purkyne Military Medical Academy, Trebesská 1575, 500 01 Hradec Králové, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Petritis K, Kangas LJ, Ferguson PL, Anderson GA, Pasa-Tolić L, Lipton MS, Auberry KJ, Strittmatter EF, Shen Y, Zhao R, Smith RD. Use of artificial neural networks for the accurate prediction of peptide liquid chromatography elution times in proteome analyses. Anal Chem 2003; 75:1039-48. [PMID: 12641221 DOI: 10.1021/ac0205154] [Citation(s) in RCA: 251] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The use of artificial neural networks (ANNs) is described for predicting the reversed-phase liquid chromatography retention times of peptides enzymatically digested from proteome-wide proteins. To enable the accurate comparison of the numerous LC/MS data sets, a genetic algorithm was developed to normalize the peptide retention data into a range (from 0 to 1), improving the peptide elution time reproducibility to approximately 1%. The network developed in this study was based on amino acid residue composition and consists of 20 input nodes, 2 hidden nodes, and 1 output node. A data set of approximately 7000 confidently identified peptides from the microorganism Deinococcus radiodurans was used for the training of the ANN. The ANN was then used to predict the elution times for another set of 5200 peptides tentatively identified by MS/MS from a different microorganism (Shewanella oneidensis). The model was found to predict the elution times of peptides with up to 54 amino acid residues (the longest peptide identified after tryptic digestion of S. oneidensis) with an average accuracy of approximately 3%. This predictive capability was then used to distinguish with high confidence isobar peptides otherwise indistinguishable by accurate mass measurements as well as to uncover peptide misidentifications. Thus, integration of ANN peptide elution time prediction in the proteomic research will increase both the number of protein identifications and their confidence.
Collapse
Affiliation(s)
- Konstantinos Petritis
- Biological Sciences Division and Environmental and Molecular Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Champion MM, Campbell CS, Siegele DA, Russell DH, Hu JC. Proteome analysis of Escherichia coli K-12 by two-dimensional native-state chromatography and MALDI-MS. Mol Microbiol 2003; 47:383-96. [PMID: 12519190 DOI: 10.1046/j.1365-2958.2003.03294.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To identify proteins expressed in Escherichia coli K-12 MG1655 during exponential growth in defined medium, we separated soluble proteins of E. coli over two dimensions of native-state high-performance liquid chromatography, and examined the components of the protein mixtures in each of 380 fractions by peptide mass fingerprinting. To date, we have identified the products of 310 genes covering a wide range of cellular functions. Validation of protein assignments was made by comparing the assignments of proteins to specific first-dimension fractions to proteins visualized by two-dimensional gel electrophoresis. Co-fractionation of proteins suggests the possible identities of components of multiprotein complexes. This approach yields high-throughput gel-independent identification of proteins. It can also be used to assign identities to spots visualized by two-dimensional gels, and should be useful to evaluate differences in expressed proteome content and protein complexes among strains or between different physiological states.
Collapse
Affiliation(s)
- Matthew M Champion
- Department of Biochemistry, Texas A & M University, College Station TX 77843-2128, USA
| | | | | | | | | |
Collapse
|
46
|
Abstract
Recent plans announced for the systematic cataloging of the minimal Escherichia coli gene set, the phenotypes of all mutations, the expression levels of every transcript and gene product, and the interactions of all genetic loci or their gene products point the way towards a new frontier in the biology of model organisms. Powerful tools for this endeavor are emerging, and efforts to organize the E. coli community are under way. The anticipated benefit is a functional model of the bacterial cell.
Collapse
Affiliation(s)
- Darren J Smalley
- Advanced Center for Genome Technology, The University of Oklahoma, Norman 73019-0245, USA
| | | | | |
Collapse
|
47
|
Hesketh AR, Chandra G, Shaw AD, Rowland JJ, Kell DB, Bibb MJ, Chater KF. Primary and secondary metabolism, and post-translational protein modifications, as portrayed by proteomic analysis of Streptomyces coelicolor. Mol Microbiol 2002; 46:917-32. [PMID: 12421300 DOI: 10.1046/j.1365-2958.2002.03219.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The newly sequenced genome of Streptomyces coelicolor is estimated to encode 7825 theoretical proteins. We have mapped approximately 10% of the theoretical proteome experimentally using two-dimensional gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry. Products from 770 different genes were identified, and the types of proteins represented are discussed in terms of their annotated functional classes. An average of 1.2 proteins per gene was observed, indicating extensive post-translational regulation. Examples of modification by N-acetylation, adenylylation and proteolytic processing were characterized using mass spectrometry. Proteins from both primary and certain secondary metabolic pathways are strongly represented on the map, and a number of these enzymes were identified at more than one two-dimensional gel location. Post-translational modification mechanisms may therefore play a significant role in the regulation of these pathways. Unexpectedly, one of the enzymes for synthesis of the actinorhodin polyketide antibiotic appears to be located outside the cytoplasmic compartment, within the cell wall matrix. Of 20 gene clusters encoding enzymes characteristic of secondary metabolism, eight are represented on the proteome map, including three that specify the production of novel metabolites. This information will be valuable in the characterization of the new metabolites.
Collapse
Affiliation(s)
- A R Hesketh
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, UK
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Advances in analytical methods for protein analysis by mass spectrometry provide new tools for global analysis of the expressed protein profile of cells (referred to as proteomics). Currently, available methodology samples only part of the proteome. This is sufficient for analysis of signal transduction, because signaling pathways contain enzymes, which modify high-abundance proteins other than those of the pathway. Thus, modulation of the signaling through a pathway will produce a "footprint" in the proteome that is characteristic of a specific cell phenotype. Comparison of different samples to identify these differences in posttranslational modification or protein expression is referred to as functional proteomics. This review surveys the methods in widest use in functional proteomics, as well as a few promising new ones. Although proteomic analyses were first conducted 26 years ago, a renewed interest is fueled by several recent advances. Most important are the availability of public genome and protein databases and the development of high-sensitivity, easy-to-use mass spectrometers and database search engines capable of exploiting these databases. Other important advances include improved two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), computer programs for analysis of the 2D-PAGE gel images, protocols for proteolytic digestion of proteins in excised gel pieces, and low-flow chromatography methods. Despite the limitations of these methods, they can distinguish subtle changes in the phenotype of cells, providing the basis for future studies in regulation of the phenotype.
Collapse
Affiliation(s)
- Katherin A Resing
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA.
| |
Collapse
|
49
|
Reid GE, Shang H, Hogan JM, Lee GU, McLuckey SA. Gas-phase concentration, purification, and identification of whole proteins from complex mixtures. J Am Chem Soc 2002; 124:7353-62. [PMID: 12071744 DOI: 10.1021/ja025966k] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Five proteins present in a relatively complex mixture derived from a whole cell lysate fraction of E. coli have been concentrated, purified, and dissociated in the gas phase, using a quadrupole ion trap mass spectrometer. Concentration of intact protein ions was effected using gas-phase ion/ion proton-transfer reactions in conjunction with mass-to-charge dependent ion "parking" to accumulate protein ions initially dispersed over a range of charge states into a single lower charge state. Sequential ion isolation events interspersed with additional ion parking ion/ion reaction periods were used to "charge-state purify" the protein ion of interest. Five of the most abundant protein components present in the mixture were subjected to this concentration/purification procedure and then dissociated by collisional activation of their intact multiply charged precursor ions. Four of the five proteins were subsequently identified by matching the uninterpreted product ion spectra against a partially annotated protein sequence database, coupled with a novel scoring scheme weighted for the relative abundances of the experimentally observed product ions and the frequency of fragmentations occurring at preferential cleavage sites. The identification of these proteins illustrates the potential of this "top-down" protein identification approach to reduce the reliance on condensed-phase chemistries and extensive separations for complex protein mixture analysis.
Collapse
Affiliation(s)
- Gavin E Reid
- Department of Chemistry, 1393 Brown Building, Purdue University, West Lafayette, Indiana 47907-1393, USA
| | | | | | | | | |
Collapse
|
50
|
Oguri T, Takahata I, Katsuta K, Nomura E, Hidaka M, Inagaki N. Proteome analysis of rat hippocampal neurons by multiple large gel two-dimensional electrophoresis. Proteomics 2002; 2:666-72. [PMID: 12112846 DOI: 10.1002/1615-9861(200206)2:6<666::aid-prot666>3.0.co;2-v] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The goal of the present study was to detect as many protein spots as possible in mammalian cells using two-dimensional gel electrophoresis (2-DE). For proteome analysis, it is of importance to reveal as many proteins as possible. A single standard 2-DE gel (pH 3-10, 18 cm x 20 cm, 13.5% gel) could detect 853 spots from proteins of cultured rat hippocampal neurons when visualized by silver staining. To increase the resolution of the separation and the number of detectable proteins by 2-DE, we utilized seven different narrow pH range immobilized pH gradients in the first dimension. In the second dimension, fourteen long SDS polyacrylamide gels were used: seven 7.5% gels for the separation of high molecular mass proteins (> or = 40 kDa) and seven 13.5% gels for the separation of low molecular mass proteins (< or = 40 kDa). Three hundred and sixty microg of proteins from cultured hippocampal neurons were loaded on to individual gels and visualized by silver staining. All 14 gel images were assembled into a 70 cm x 67 cm cybergel that contained 6677 protein spots, thereby indicating that the utilization of the present strategy led to a 783% increase in the number of detected spots in comparison to the standard procedure. Loading double the amount (720 microg) of proteins on to a 13.5% gel led to a 184% increase in the number of detected spots, thereby indicating that the present strategy has a potential to display more protein spots in the cybergels.
Collapse
Affiliation(s)
- Takashi Oguri
- Division of Signal Transduction, Nara Institute of Science and Technology, Ikoma, Japan
| | | | | | | | | | | |
Collapse
|