1
|
Petrich A, Hwang GM, La Rocca L, Hassan M, Anders-Össwein M, Sonntag-Buck V, Heuser AM, Laketa V, Müller B, Kräusslich HG, Klaus S. Expanding Insights: Harnessing Expansion Microscopy for Super-Resolution Analysis of HIV-1-Cell Interactions. Viruses 2024; 16:1610. [PMID: 39459943 PMCID: PMC11512423 DOI: 10.3390/v16101610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Expansion microscopy has recently emerged as an alternative technique for achieving high-resolution imaging of biological structures. Improvements in resolution are achieved by physically expanding samples through embedding in a swellable hydrogel before microscopy. However, expansion microscopy has been rarely used in the field of virology. Here, we evaluate and characterize the ultrastructure expansion microscopy (U-ExM) protocol, which facilitates approximately four-fold sample expansion, enabling the visualization of different post-entry stages of the HIV-1 life cycle, focusing on nuclear events. Our findings demonstrate that U-ExM provides robust sample expansion and preservation across different cell types, including cell-culture-adapted and primary CD4+ T-cells as well as monocyte-derived macrophages, which are known HIV-1 reservoirs. Notably, cellular targets such as nuclear bodies and the chromatin landscape remain well preserved after expansion, allowing for detailed investigation of HIV-1-cell interactions at high resolution. Our data indicate that morphologically distinct HIV-1 capsid assemblies can be differentiated within the nuclei of infected cells and that U-ExM enables detection of targets that are masked in commonly used immunofluorescence protocols. In conclusion, we advocate for U-ExM as a valuable new tool for studying virus-host interactions with enhanced spatial resolution.
Collapse
Affiliation(s)
- Annett Petrich
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Gyu Min Hwang
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Laetitia La Rocca
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Mariam Hassan
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Maria Anders-Össwein
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Vera Sonntag-Buck
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Anke-Mareil Heuser
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Vibor Laketa
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Barbara Müller
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Severina Klaus
- Department of Infectious Diseases, Virology, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Ying Y, Yang Y, Chen AK. Roles of RNA scaffolding in nanoscale Gag multimerization and selective protein sorting at HIV membranes. SCIENCE ADVANCES 2024; 10:eadk8297. [PMID: 38394201 PMCID: PMC10889351 DOI: 10.1126/sciadv.adk8297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/19/2024] [Indexed: 02/25/2024]
Abstract
HIV-1 Gag proteins can multimerize upon the viral genomic RNA or multiple random cellular messenger RNAs to form a virus particle or a virus-like particle, respectively. To date, whether the two types of particles form via the same Gag multimerization process has remained unclarified. Using photoactivated localization microscopy to illuminate Gag organizations and dynamics at the nanoscale, here, we showed that genomic RNA mediates Gag multimerization in a more cluster-centric, cooperative, and spatiotemporally coordinated fashion, with the ability to drive dense Gag clustering dependent on its ability to act as a long-stranded scaffold not easily attainable by cellular messenger RNAs. These differences in Gag multimerization were further shown to affect downstream selective protein sorting into HIV membranes, indicating that the choice of RNA for packaging can modulate viral membrane compositions. These findings should advance the understanding of HIV assembly and further benefit the development of virus-like particle-based therapeutics.
Collapse
Affiliation(s)
- Yachen Ying
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Yantao Yang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Antony K Chen
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Chen R, Wang L, Ding G, Han G, Qiu K, Sun Y, Diao J. Constant Conversion Rate of Endolysosomes Revealed by a pH-Sensitive Fluorescent Probe. ACS Sens 2023; 8:2068-2078. [PMID: 37141429 DOI: 10.1021/acssensors.3c00340] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Endolysosome dynamics plays an important role in autophagosome biogenesis. Hence, imaging the subcellular dynamics of endolysosomes using high-resolution fluorescent imaging techniques would deepen our understanding of autophagy and benefit the development of pharmaceuticals against endosome-related diseases. Taking advantage of the intramolecular charge-transfer mechanism, herein we report a cationic quinolinium-based fluorescent probe (PyQPMe) that exhibits excellent pH-sensitive fluorescence in endolysosomes at different stages of interest. A systematic photophysical and computational study on PyQPMe was carried out to rationalize its highly pH-dependent absorption and emission spectra. The large Stokes shift and strong fluorescence intensity of PyQPMe can effectively reduce the background noise caused by excitation light and microenvironments and provide a high signal-to-noise ratio for high-resolution imaging of endolysosomes. By applying PyQPMe as a small molecular probe in live cells, we were able to reveal a constant conversion rate from early endosomes to late endosomes/lysosomes during autophagy at the submicron level.
Collapse
Affiliation(s)
- Rui Chen
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Lei Wang
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - Guodong Ding
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Guanqun Han
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Kangqiang Qiu
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Jiajie Diao
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, United States
| |
Collapse
|
4
|
Robb NC. Virus morphology: Insights from super-resolution fluorescence microscopy. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166347. [PMID: 35032594 PMCID: PMC8755447 DOI: 10.1016/j.bbadis.2022.166347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 01/06/2023]
Abstract
As epitomised by the COVID-19 pandemic, diseases caused by viruses are one of the greatest health and economic burdens to human society. Viruses are 'nanostructures', and their small size (typically less than 200 nm in diameter) can make it challenging to obtain images of their morphology and structure. Recent advances in fluorescence microscopy have given rise to super-resolution techniques, which have enabled the structure of viruses to be visualised directly at a resolution in the order of 20 nm. This mini-review discusses how recent state-of-the-art super-resolution imaging technologies are providing new nanoscale insights into virus structure.
Collapse
Affiliation(s)
- Nicole C Robb
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
5
|
Experimental Evaluation of an Interferometric Light Microscopy Particle Counter for Titering and Characterization of Virus Preparations. Viruses 2021; 13:v13050939. [PMID: 34069520 PMCID: PMC8160961 DOI: 10.3390/v13050939] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
Virus particle concentration is a critical piece of information for virology, viral vaccines and gene therapy research. We tested a novel nanoparticle counting device, “Videodrop”, for its efficacy in titering and characterization of virus particles. The Videodrop nanoparticle counter is based on interferometric light microscopy (ILM). The method allows the detection of particles under the diffraction limit capabilities of conventional light microscopy. We analyzed lenti-, adeno-, and baculovirus samples in different concentrations and compared the readings against traditional titering and characterization methods. The tested Videodrop particle counter is especially useful when measuring high-concentration purified virus preparations. Certain non-purified sample types or small viruses may be impossible to characterize or may require the use of standard curve or background subtraction methods, which increases the duration of the analysis. Together, our testing shows that Videodrop is a reasonable option for virus particle counting in situations where a moderate number of samples need to be analyzed quickly.
Collapse
|
6
|
Lukose J, Chidangil S, George SD. Optical technologies for the detection of viruses like COVID-19: Progress and prospects. Biosens Bioelectron 2021; 178:113004. [PMID: 33497877 PMCID: PMC7832448 DOI: 10.1016/j.bios.2021.113004] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023]
Abstract
The outbreak of life-threatening pandemic like COVID-19 necessitated the development of novel, rapid and cost-effective techniques that facilitate detection of viruses like SARS-CoV-2. The presently popular approach of a collection of samples using the nasopharyngeal swab method and subsequent detection of RNA using the real-time polymerase chain reaction suffers from false-positive results and a longer diagnostic time scale. Alternatively, various optical techniques namely optical sensing, spectroscopy, and imaging shows a great promise in virus detection. Herein, a comprehensive review of the various photonics technologies employed for virus detection, particularly the SARS-CoV family, is discussed. The state-of-art research activities in utilizing the photonics tools such as near-infrared spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, fluorescence-based techniques, super-resolution microscopy, surface plasmon resonance-based detection, for virus detection accounted extensively with an emphasis on coronavirus detection. Further, an account of emerging photonics technologies of SARS-CoV-2 detection and future possibilities is also explained. The progress in the field of optical techniques for virus detection unambiguously show a great promise in the development of rapid photonics-based devices for COVID-19 detection.
Collapse
Affiliation(s)
- Jijo Lukose
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576 104, India; Centre of Excellence for Biophotonics, Manipal Academy of Higher Education, Manipal, 576 104, India
| | - Santhosh Chidangil
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576 104, India; Centre of Excellence for Biophotonics, Manipal Academy of Higher Education, Manipal, 576 104, India
| | - Sajan D George
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576 104, India; Centre for Applied Nanosciences, Manipal Academy of Higher Education, Manipal, 576 104, India.
| |
Collapse
|
7
|
Arista-Romero M, Pujals S, Albertazzi L. Towards a Quantitative Single Particle Characterization by Super Resolution Microscopy: From Virus Structures to Antivirals Design. Front Bioeng Biotechnol 2021; 9:647874. [PMID: 33842446 PMCID: PMC8033170 DOI: 10.3389/fbioe.2021.647874] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
In the last year the COVID19 pandemic clearly illustrated the potential threat that viruses pose to our society. The characterization of viral structures and the identification of key proteins involved in each step of the cycle of infection are crucial to develop treatments. However, the small size of viruses, invisible under conventional fluorescence microscopy, make it difficult to study the organization of protein clusters within the viral particle. The applications of super-resolution microscopy have skyrocketed in the last years, converting this group into one of the leading techniques to characterize viruses and study the viral infection in cells, breaking the diffraction limit by achieving resolutions up to 10 nm using conventional probes such as fluorescent dyes and proteins. There are several super-resolution methods available and the selection of the right one it is crucial to study in detail all the steps involved in the viral infection, quantifying and creating models of infection for relevant viruses such as HIV-1, Influenza, herpesvirus or SARS-CoV-1. Here we review the use of super-resolution microscopy (SRM) to study all steps involved in the viral infection and antiviral design. In light of the threat of new viruses, these studies could inspire future assays to unveil the viral mechanism of emerging viruses and further develop successful antivirals against them.
Collapse
Affiliation(s)
- Maria Arista-Romero
- Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Silvia Pujals
- Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Electronics and Biomedical Engineering, Faculty of Physics, Universitat de Barcelona, Barcelona, Spain
| | - Lorenzo Albertazzi
- Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
8
|
Koehler M, Delguste M, Sieben C, Gillet L, Alsteens D. Initial Step of Virus Entry: Virion Binding to Cell-Surface Glycans. Annu Rev Virol 2020; 7:143-165. [PMID: 32396772 DOI: 10.1146/annurev-virology-122019-070025] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Virus infection is an intricate process that requires the concerted action of both viral and host cell components. Entry of viruses into cells is initiated by interactions between viral proteins and cell-surface receptors. Various cell-surface glycans function as initial, usually low-affinity attachment factors, providing a first anchor of the virus to the cell surface, and further facilitate high-affinity binding to virus-specific cell-surface receptors, while other glycans function as specific entry receptors themselves. It is now possible to rapidly identify specific glycan receptors using different techniques, define atomic-level structures of virus-glycan complexes, and study these interactions at the single-virion level. This review provides a detailed overview of the role of glycans in viral infection and highlights experimental approaches to study virus-glycan binding along with specific examples. In particular, we highlight the development of the atomic force microscope to investigate interactions with glycans at the single-virion level directly on living mammalian cells, which offers new perspectives to better understand virus-glycan interactions in physiologically relevant conditions.
Collapse
Affiliation(s)
- Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium;
| | - Martin Delguste
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium;
| | - Christian Sieben
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Laurent Gillet
- Immunology-Vaccinology Laboratory, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health center (FARAH), University of Liège, 4000 Liège, Belgium
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; .,Walloon Excellence in Life sciences and Biotechnology (WELBIO), 1300 Wavre, Belgium
| |
Collapse
|
9
|
González-Domínguez I, Puente-Massaguer E, Cervera L, Gòdia F. Quantification of the HIV-1 virus-like particle production process by super-resolution imaging: From VLP budding to nanoparticle analysis. Biotechnol Bioeng 2020; 117:1929-1945. [PMID: 32242921 DOI: 10.1002/bit.27345] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/17/2020] [Accepted: 03/27/2020] [Indexed: 12/31/2022]
Abstract
Virus-like particles (VLPs) offer great promise in the field of nanomedicine. Enveloped VLPs are a class of these nanoparticles and their production process occurs by a budding process, which is known to be the most critical step at intracellular level. In this study, we developed a novel imaging method based on super-resolution fluorescence microscopy (SRFM) to assess the generation of VLPs in living cells. This methodology was applied to study the production of Gag VLPs in three animal cell platforms of reference: HEK 293-transient gene expression (TGE), High Five-baculovirus expression vector system (BEVS) and Sf9-BEVS. Quantification of the number of VLP assembly sites per cell ranged from 500 to 3,000 in the different systems evaluated. Although the BEVS was superior in terms of Gag polyprotein expression, the HEK 293-TGE platform was more efficient regarding the assembly of Gag as VLPs. This was translated into higher levels of non-assembled Gag monomer in BEVS harvested supernatants. Furthermore, the presence of contaminating nanoparticles was evidenced in all three systems, specifically in High Five cells. The SRFM-based method here developed was also successfully applied to measure the concentration of VLPs in crude supernatants. The lipid membrane of VLPs and the presence of nucleic acids alongside these nanoparticles could also be detected using common staining procedures. Overall, a complete picture of the VLP production process was achieved in these three production platforms. The robustness and sensitivity of this new approach broaden the applicability of SRFM toward the development of new detection, diagnosis and quantification methods based on confocal microscopy in living systems.
Collapse
Affiliation(s)
- Irene González-Domínguez
- Departament d'Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, Barcelona, Bellaterra, Spain
| | - Eduard Puente-Massaguer
- Departament d'Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, Barcelona, Bellaterra, Spain
| | - Laura Cervera
- Departament d'Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, Barcelona, Bellaterra, Spain
| | - Francesc Gòdia
- Departament d'Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, Barcelona, Bellaterra, Spain
| |
Collapse
|
10
|
González-Domínguez I, Puente-Massaguer E, Cervera L, Gòdia F. Quality Assessment of Virus-Like Particles at Single Particle Level: A Comparative Study. Viruses 2020; 12:E223. [PMID: 32079288 PMCID: PMC7077327 DOI: 10.3390/v12020223] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 12/16/2022] Open
Abstract
Virus-like particles (VLPs) have emerged as a powerful scaffold for antigen presentation and delivery strategies. Compared to single protein-based therapeutics, quality assessment requires a higher degree of refinement due to the structure of VLPs and their similar properties to extracellular vesicles (EVs). Advances in the field of nanotechnology with single particle and high-resolution analysis techniques provide appealing approaches to VLP characterization. In this study, six different biophysical methods have been assessed for the characterization of HIV-1-based VLPs produced in mammalian and insect cell platforms. Sample preparation and equipment set-up were optimized for the six strategies evaluated. Electron Microscopy (EM) disclosed the presence of several types of EVs within VLP preparations and cryogenic transmission electron microscopy (cryo-TEM) resulted in the best technique to resolve the VLP ultrastructure. The use of super-resolution fluorescence microscopy (SRFM), nanoparticle tracking analysis (NTA) and flow virometry enabled the high throughput quantification of VLPs. Interestingly, differences in the determination of nanoparticle concentration were observed between techniques. Moreover, NTA and flow virometry allowed the quantification of both EVs and VLPs within the same experiment while analyzing particle size distribution (PSD), simultaneously. These results provide new insights into the use of different analytical tools to monitor the production of nanoparticle-based biologicals and their associated contaminants.
Collapse
|
11
|
Developments in single-molecule and single-particle fluorescence-based approaches for studying viral envelope glycoprotein dynamics and membrane fusion. Adv Virus Res 2019; 104:123-146. [PMID: 31439147 DOI: 10.1016/bs.aivir.2019.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Fusion of viral and cellular membranes is an essential step in the entry pathway of all enveloped viruses. This is a dynamic and multistep process, which has been extensively studied, resulting in the endpoints of the reaction being firmly established, and many essential cellular factors identified. What remains is to elucidate the dynamic events that underlie this process, including the order and timing of glycoprotein conformational changes, receptor-binding events, and movement of the glycoprotein on the surface of the virion. Due to the inherently asynchronous nature of these dynamics, there has been an increased focus on the study of single virions and single molecules. These techniques provide researchers the high precision and resolution necessary to bridge the gaps in our understanding of viral membrane fusion. This review highlights the advancement of single-molecule and single-particle fluorescence-based techniques, with a specific focus on how these techniques have been used to study the dynamic nature of the viral fusion pathway.
Collapse
|
12
|
Sachse M, Fernández de Castro I, Tenorio R, Risco C. The viral replication organelles within cells studied by electron microscopy. Adv Virus Res 2019; 105:1-33. [PMID: 31522702 PMCID: PMC7112055 DOI: 10.1016/bs.aivir.2019.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transmission electron microscopy (TEM) has been crucial to study viral infections. As a result of recent advances in light and electron microscopy, we are starting to be aware of the variety of structures that viruses assemble inside cells. Viruses often remodel cellular compartments to build their replication factories. Remarkably, viruses are also able to induce new membranes and new organelles. Here we revise the most relevant imaging technologies to study the biogenesis of viral replication organelles. Live cell microscopy, correlative light and electron microscopy, cryo-TEM, and three-dimensional imaging methods are unveiling how viruses manipulate cell organization. In particular, methods for molecular mapping in situ in two and three dimensions are revealing how macromolecular complexes build functional replication complexes inside infected cells. The combination of all these imaging approaches is uncovering the viral life cycle events with a detail never seen before.
Collapse
Affiliation(s)
- Martin Sachse
- Unité Technologie et service BioImagerie Ultrastructurale, Institut Pasteur, Paris, France.
| | | | - Raquel Tenorio
- Cell Structure Laboratory, National Center for Biotechnology, CSIC, Madrid, Spain
| | - Cristina Risco
- Cell Structure Laboratory, National Center for Biotechnology, CSIC, Madrid, Spain.
| |
Collapse
|
13
|
Hanspach G, Trucks S, Hengesbach M. Strategic labelling approaches for RNA single-molecule spectroscopy. RNA Biol 2019; 16:1119-1132. [PMID: 30874475 DOI: 10.1080/15476286.2019.1593093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Most single-molecule techniques observing RNA in vitro or in vivo require fluorescent labels that have to be connected to the RNA of interest. In recent years, a plethora of methods has been developed to achieve site-specific labelling, in many cases under near-native conditions. Here, we review chemical as well as enzymatic labelling methods that are compatible with single-molecule fluorescence spectroscopy or microscopy and show how these can be combined to offer a large variety of options to site-specifically place one or more labels in an RNA of interest. By either chemically forming a covalent bond or non-covalent hybridization, these techniques are prerequisites to perform state-of-the-art single-molecule experiments.
Collapse
Affiliation(s)
- Gerd Hanspach
- a Goethe-University Frankfurt, Institute for Organic Chemistry and Chemical Biology , Frankfurt , Germany
| | - Sven Trucks
- a Goethe-University Frankfurt, Institute for Organic Chemistry and Chemical Biology , Frankfurt , Germany
| | - Martin Hengesbach
- a Goethe-University Frankfurt, Institute for Organic Chemistry and Chemical Biology , Frankfurt , Germany
| |
Collapse
|
14
|
Müller TG, Sakin V, Müller B. A Spotlight on Viruses-Application of Click Chemistry to Visualize Virus-Cell Interactions. Molecules 2019; 24:molecules24030481. [PMID: 30700005 PMCID: PMC6385038 DOI: 10.3390/molecules24030481] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/18/2019] [Accepted: 01/19/2019] [Indexed: 01/03/2023] Open
Abstract
The replication of a virus within its host cell involves numerous interactions between viral and cellular factors, which have to be tightly controlled in space and time. The intricate interplay between viral exploitation of cellular pathways and the intrinsic host defense mechanisms is difficult to unravel by traditional bulk approaches. In recent years, novel fluorescence microscopy techniques and single virus tracking have transformed the investigation of dynamic virus-host interactions. A prerequisite for the application of these imaging-based methods is the attachment of a fluorescent label to the structure of interest. However, their small size, limited coding capacity and multifunctional proteins render viruses particularly challenging targets for fluorescent labeling approaches. Click chemistry in conjunction with genetic code expansion provides virologists with a novel toolbox for site-specific, minimally invasive labeling of virion components, whose potential has just recently begun to be exploited. Here, we summarize recent achievements, current developments and future challenges for the labeling of viral nucleic acids, proteins, glycoproteins or lipids using click chemistry in order to study dynamic processes in virus-cell interactions.
Collapse
Affiliation(s)
- Thorsten G Müller
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Volkan Sakin
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Barbara Müller
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
15
|
Visualizing Viral Infection In Vivo by Multi-Photon Intravital Microscopy. Viruses 2018; 10:v10060337. [PMID: 29925766 PMCID: PMC6024644 DOI: 10.3390/v10060337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/12/2018] [Accepted: 06/19/2018] [Indexed: 12/11/2022] Open
Abstract
Viral pathogens have adapted to the host organism to exploit the cellular machinery for virus replication and to modulate the host cells for efficient systemic dissemination and immune evasion. Much of our knowledge of the effects that virus infections have on cells originates from in vitro imaging studies using experimental culture systems consisting of cell lines and primary cells. Recently, intravital microscopy using multi-photon excitation of fluorophores has been applied to observe virus dissemination and pathogenesis in real-time under physiological conditions in living organisms. Critical steps during viral infection and pathogenesis could be studied by direct visualization of fluorescent virus particles, virus-infected cells, and the immune response to viral infection. In this review, I summarize the latest research on in vivo studies of viral infections using multi-photon intravital microscopy (MP-IVM). Initially, the underlying principle of multi-photon microscopy is introduced and experimental challenges during microsurgical animal preparation and fluorescent labeling strategies for intravital imaging are discussed. I will further highlight recent studies that combine MP-IVM with optogenetic tools and transcriptional analysis as a powerful approach to extend the significance of in vivo imaging studies of viral pathogens.
Collapse
|
16
|
Parveen N, Borrenberghs D, Rocha S, Hendrix J. Single Viruses on the Fluorescence Microscope: Imaging Molecular Mobility, Interactions and Structure Sheds New Light on Viral Replication. Viruses 2018; 10:E250. [PMID: 29748498 PMCID: PMC5977243 DOI: 10.3390/v10050250] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/24/2018] [Accepted: 05/04/2018] [Indexed: 12/13/2022] Open
Abstract
Viruses are simple agents exhibiting complex reproductive mechanisms. Decades of research have provided crucial basic insights, antiviral medication and moderately successful gene therapy trials. The most infectious viral particle is, however, not always the most abundant one in a population, questioning the utility of classic ensemble-averaging virology. Indeed, viral replication is often not particularly efficient, prone to errors or containing parallel routes. Here, we review different single-molecule sensitive fluorescence methods that we employ routinely to investigate viruses. We provide a brief overview of the microscopy hardware needed and discuss the different methods and their application. In particular, we review how we applied (i) single-molecule Förster resonance energy transfer (smFRET) to probe the subviral human immunodeficiency virus (HIV-1) integrase (IN) quaternary structure; (ii) single particle tracking to study interactions of the simian virus 40 with membranes; (iii) 3D confocal microscopy and smFRET to quantify the HIV-1 pre-integration complex content and quaternary structure; (iv) image correlation spectroscopy to quantify the cytosolic HIV-1 Gag assembly, and finally; (v) super-resolution microscopy to characterize the interaction of HIV-1 with tetherin during assembly. We hope this review is an incentive for setting up and applying similar single-virus imaging studies in daily virology practice.
Collapse
Affiliation(s)
- Nagma Parveen
- Laboratory for Photochemistry and Spectroscopy, Molecular Imaging and Photonics Division, Chemistry Department, KU Leuven, B-3001 Leuven, Belgium.
| | - Doortje Borrenberghs
- Laboratory for Photochemistry and Spectroscopy, Molecular Imaging and Photonics Division, Chemistry Department, KU Leuven, B-3001 Leuven, Belgium.
| | - Susana Rocha
- Laboratory for Photochemistry and Spectroscopy, Molecular Imaging and Photonics Division, Chemistry Department, KU Leuven, B-3001 Leuven, Belgium.
| | - Jelle Hendrix
- Laboratory for Photochemistry and Spectroscopy, Molecular Imaging and Photonics Division, Chemistry Department, KU Leuven, B-3001 Leuven, Belgium.
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute (BIOMED), Hasselt University, B-3590 Diepenbeek, Belgium.
| |
Collapse
|
17
|
Buttler CA, Pezeshkian N, Fernandez MV, Aaron J, Norman S, Freed EO, van Engelenburg SB. Single molecule fate of HIV-1 envelope reveals late-stage viral lattice incorporation. Nat Commun 2018; 9:1861. [PMID: 29748537 PMCID: PMC5945595 DOI: 10.1038/s41467-018-04220-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/09/2018] [Indexed: 11/09/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) assembly occurs on the inner leaflet of the host cell plasma membrane, incorporating the essential viral envelope glycoprotein (Env) within a budding lattice of HIV-1 Gag structural proteins. The mechanism by which Env incorporates into viral particles remains poorly understood. To determine the mechanism of recruitment of Env to assembly sites, we interrogate the subviral angular distribution of Env on cell-associated virus using multicolor, three-dimensional (3D) superresolution microscopy. We demonstrate that, in a manner dependent on cell type and on the long cytoplasmic tail of Env, the distribution of Env is biased toward the necks of cell-associated particles. We postulate that this neck-biased distribution is regulated by vesicular retention and steric complementarity of Env during independent Gag lattice formation.
Collapse
Affiliation(s)
- Carmen A Buttler
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Nairi Pezeshkian
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Melissa V Fernandez
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Jesse Aaron
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Sofya Norman
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Eric O Freed
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Schuyler B van Engelenburg
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA.
| |
Collapse
|
18
|
Chojnacki J, Eggeling C. Zooming in on virus surface protein mobility. Future Virol 2018. [DOI: 10.2217/fvl-2018-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Jakub Chojnacki
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
- Institute of Applied Optics, Faculty of Physics & Astronomy, Friedrich-Schiller-University Jena, Max-Wien Platz 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology eV, Department of Biophysical Imaging, Albert-Einstein-Straße 9, 07745 Jena, Germany
| |
Collapse
|
19
|
Fackler OT, Kräusslich HG. Integrative analysis of pathogen replication and spread: zooming into increasing complexity. FEBS Lett 2017; 590:1855-7. [PMID: 27405923 DOI: 10.1002/1873-3468.12253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Oliver T Fackler
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Germany
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Germany
| |
Collapse
|
20
|
Sakin V, Hanne J, Dunder J, Anders-Össwein M, Laketa V, Nikić I, Kräusslich HG, Lemke EA, Müller B. A Versatile Tool for Live-Cell Imaging and Super-Resolution Nanoscopy Studies of HIV-1 Env Distribution and Mobility. Cell Chem Biol 2017; 24:635-645.e5. [PMID: 28457706 DOI: 10.1016/j.chembiol.2017.04.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/12/2017] [Accepted: 04/06/2017] [Indexed: 12/27/2022]
Abstract
The envelope glycoproteins (Env) of HIV-1 mediate cell entry through fusion of the viral envelope with a target cell membrane. Intramembrane mobility and clustering of Env trimers at the viral budding site are essential for its function. Previous live-cell and super-resolution microscopy studies were limited by lack of a functional fluorescent Env derivative, requiring antibody labeling for detection. Introduction of a bio-orthogonal amino acid by genetic code expansion, combined with click chemistry, offers novel possibilities for site-specific, minimally invasive labeling. Using this approach, we established efficient incorporation of non-canonical amino acids within HIV-1 Env in mammalian cells. The engineered protein retained plasma membrane localization, glycosylation, virion incorporation, and fusogenic activity, and could be rapidly and specifically labeled with synthetic dyes. This strategy allowed us to revisit Env dynamics and nanoscale distribution at the plasma membrane close to its native state, applying fluorescence recovery after photo bleaching and STED nanoscopy, respectively.
Collapse
Affiliation(s)
- Volkan Sakin
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Janina Hanne
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; Optical Nanoscopy Division, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Jessica Dunder
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Maria Anders-Össwein
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Vibor Laketa
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; German Center for Infection Research, Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Ivana Nikić
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, EMBL, 69117 Heidelberg, Germany
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; German Center for Infection Research, Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Edward A Lemke
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, EMBL, 69117 Heidelberg, Germany
| | - Barbara Müller
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| |
Collapse
|
21
|
Abstract
Super-resolution fluorescence imaging by photoactivation or photoswitching of single fluorophores and position determination (single-molecule localization microscopy, SMLM) provides microscopic images with subdiffraction spatial resolution. This technology has enabled new insights into how proteins are organized in a cellular context, with a spatial resolution approaching virtually the molecular level. A unique strength of SMLM is that it delivers molecule-resolved information, along with super-resolved images of cellular structures. This allows quantitative access to cellular structures, for example, how proteins are distributed and organized and how they interact with other biomolecules. Ultimately, it is even possible to determine protein numbers in cells and the number of subunits in a protein complex. SMLM thus has the potential to pave the way toward a better understanding of how cells function at the molecular level. In this review, we describe how SMLM has contributed new knowledge in eukaryotic biology, and we specifically focus on quantitative biological data extracted from SMLM images.
Collapse
Affiliation(s)
- Markus Sauer
- Department of Biotechnology & Biophysics, Julius-Maximilian-University of Würzburg , 97074 Würzburg, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt , 60438 Frankfurt, Germany
| |
Collapse
|