1
|
Husain M. Influenza Virus Host Restriction Factors: The ISGs and Non-ISGs. Pathogens 2024; 13:127. [PMID: 38392865 PMCID: PMC10893265 DOI: 10.3390/pathogens13020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Influenza virus has been one of the most prevalent and researched viruses globally. Consequently, there is ample information available about influenza virus lifecycle and pathogenesis. However, there is plenty yet to be known about the determinants of influenza virus pathogenesis and disease severity. Influenza virus exploits host factors to promote each step of its lifecycle. In turn, the host deploys antiviral or restriction factors that inhibit or restrict the influenza virus lifecycle at each of those steps. Two broad categories of host restriction factors can exist in virus-infected cells: (1) encoded by the interferon-stimulated genes (ISGs) and (2) encoded by the constitutively expressed genes that are not stimulated by interferons (non-ISGs). There are hundreds of ISGs known, and many, e.g., Mx, IFITMs, and TRIMs, have been characterized to restrict influenza virus infection at different stages of its lifecycle by (1) blocking viral entry or progeny release, (2) sequestering or degrading viral components and interfering with viral synthesis and assembly, or (3) bolstering host innate defenses. Also, many non-ISGs, e.g., cyclophilins, ncRNAs, and HDACs, have been identified and characterized to restrict influenza virus infection at different lifecycle stages by similar mechanisms. This review provides an overview of those ISGs and non-ISGs and how the influenza virus escapes the restriction imposed by them and aims to improve our understanding of the host restriction mechanisms of the influenza virus.
Collapse
Affiliation(s)
- Matloob Husain
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
2
|
The Amino Acid at Position 95 in the Matrix Protein of Rabies Virus Is Involved in Antiviral Stress Granule Formation in Infected Cells. J Virol 2022; 96:e0081022. [PMID: 36069552 PMCID: PMC9517722 DOI: 10.1128/jvi.00810-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stress granules (SGs) are dynamic structures that store cytosolic messenger ribonucleoproteins. SGs have recently been shown to serve as a platform for activating antiviral innate immunity; however, several pathogenic viruses suppress SG formation to evade innate immunity. In this study, we investigated the relationship between rabies virus (RABV) virulence and SG formation, using viral strains with different levels of virulence. We found that the virulent Nishigahara strain did not induce SG formation, but its avirulent offshoot, the Ni-CE strain, strongly induced SG formation. Furthermore, we demonstrated that the amino acid at position 95 in the RABV matrix protein (M95), a pathogenic determinant for the Nishigahara strain, plays a key role in inhibiting SG formation, followed by protein kinase R (PKR)-dependent phosphorylation of the α subunit of eukaryotic initiation factor 2α (eIF2α). M95 was also implicated in the accumulation of RIG-I, a viral RNA sensor protein, in SGs and in the subsequent acceleration of interferon induction. Taken together, our findings strongly suggest that M95-related inhibition of SG formation contributes to the pathogenesis of RABV by allowing the virus to evade the innate immune responses of the host. IMPORTANCE Rabies virus (RABV) is a neglected zoonotic pathogen that causes lethal infections in almost all mammalian hosts, including humans. Recently, RABV has been reported to induce intracellular formation of stress granules (SGs), also known as platforms that activate innate immune responses. However, the relationship between SG formation capacity and pathogenicity of RABV has remained unclear. In this study, by comparing two RABV strains with completely different levels of virulence, we found that the amino acid mutation from valine to alanine at position 95 of matrix protein (M95), which is known to be one of the amino acid mutations that determine the difference in virulence between the strains, plays a major role in SG formation. Importantly, M95 was involved in the accumulation of RIG-I in SGs and in promoting interferon induction. These findings are the first report of the effect of a single amino acid substitution associated with SGs on viral virulence.
Collapse
|
3
|
Lodde V, Floris M, Munk R, Martindale JL, Piredda D, Napodano CMP, Cucca F, Uzzau S, Abdelmohsen K, Gorospe M, Noh JH, Idda ML. Systematic identification of NF90 target RNAs by iCLIP analysis. Sci Rep 2022; 12:364. [PMID: 35013429 PMCID: PMC8748789 DOI: 10.1038/s41598-021-04101-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/01/2021] [Indexed: 12/26/2022] Open
Abstract
RNA-binding proteins (RBPs) interact with and determine the fate of many cellular RNAs directing numerous essential roles in cellular physiology. Nuclear Factor 90 (NF90) is an RBP encoded by the interleukin enhancer-binding factor 3 (ILF3) gene that has been found to influence RNA metabolism at several levels, including pre-RNA splicing, mRNA turnover, and translation. To systematically identify the RNAs that interact with NF90, we carried out iCLIP (individual-nucleotide resolution UV crosslinking and immunoprecipitation) analysis in the human embryonic fibroblast cell line HEK-293. Interestingly, many of the identified RNAs encoded proteins involved in the response to viral infection and RNA metabolism. We validated a subset of targets and investigated the impact of NF90 on their expression levels. Two of the top targets, IRF3 and IRF9 mRNAs, encode the proteins IRF3 and IRF9, crucial regulators of the interferon pathway involved in the SARS-CoV-2 immune response. Our results support a role for NF90 in modulating key genes implicated in the immune response and offer insight into the immunological response to the SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Valeria Lodde
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Matteo Floris
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Institute for Genetic and Biomedical Research (IRGB-CNR), Sassari, Italy
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Davide Piredda
- Intensive Care Unit, Emergency Department, AOU Sassari, Sassari, Italy
| | | | - Francesco Cucca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Institute for Genetic and Biomedical Research (IRGB-CNR), Sassari, Italy
| | - Sergio Uzzau
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Microbiology and Virology Unit, Diagnostic Department, AOU Sassari, Sassari, Italy
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Ji Heon Noh
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
- Department of Biochemistry, Chungnam National University, Daejeon, Korea
| | - M Laura Idda
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA.
- Institute for Genetic and Biomedical Research (IRGB-CNR), Sassari, Italy.
| |
Collapse
|
4
|
Guo Y, Hinchman MM, Lewandrowski M, Cross ST, Sutherland DM, Welsh OL, Dermody TS, Parker JSL. The multi-functional reovirus σ3 protein is a virulence factor that suppresses stress granule formation and is associated with myocardial injury. PLoS Pathog 2021; 17:e1009494. [PMID: 34237110 PMCID: PMC8291629 DOI: 10.1371/journal.ppat.1009494] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/20/2021] [Accepted: 06/21/2021] [Indexed: 11/19/2022] Open
Abstract
The mammalian orthoreovirus double-stranded (ds) RNA-binding protein σ3 is a multifunctional protein that promotes viral protein synthesis and facilitates viral entry and assembly. The dsRNA-binding capacity of σ3 correlates with its capacity to prevent dsRNA-mediated activation of protein kinase R (PKR). However, the effect of σ3 binding to dsRNA during viral infection is largely unknown. To identify functions of σ3 dsRNA-binding activity during reovirus infection, we engineered a panel of thirteen σ3 mutants and screened them for the capacity to bind dsRNA. Six mutants were defective in dsRNA binding, and mutations in these constructs cluster in a putative dsRNA-binding region on the surface of σ3. Two recombinant viruses expressing these σ3 dsRNA-binding mutants, K287T and R296T, display strikingly different phenotypes. In a cell-type dependent manner, K287T, but not R296T, replicates less efficiently than wild-type (WT) virus. In cells in which K287T virus demonstrates a replication deficit, PKR activation occurs and abundant stress granules (SGs) are formed at late times post-infection. In contrast, the R296T virus retains the capacity to suppress activation of PKR and does not mediate formation of SGs at late times post-infection. These findings indicate that σ3 inhibits PKR independently of its capacity to bind dsRNA. In infected mice, K287T produces lower viral titers in the spleen, liver, lungs, and heart relative to WT or R296T. Moreover, mice inoculated with WT or R296T viruses develop myocarditis, whereas those inoculated with K287T do not. Overall, our results indicate that σ3 functions to suppress PKR activation and subsequent SG formation during viral infection and that these functions correlate with virulence in mice. The σ3 protein of mammalian orthoreoviruses is a double-stranded RNA binding protein that has classically been thought to function by scavenging dsRNA within infected cells and thus prevents activation of cellular sensors of dsRNA such as the kinase PKR. Here we used mutagenesis to identify the region of σ3 responsible for binding dsRNA. Characterization of mutant viruses expressing σ3 proteins incapable of binding dsRNA show that contrary to expectation, dsRNA binding is not required for σ3-mediated inhibition of PKR. We show that one mutant virus (R296T) despite being deficient in dsRNA-binding can inhibit PKR and replicates similar to WT virus. In contrast, another mutant virus (K287T) that bears a σ3 protein that cannot prevent dsRNA-mediated activation of PKR induces stress granules in infected cells and replicates less efficiently than WT virus. In vivo, the K287T mutant is attenuated in its replication and unlike WT virus and the R296T mutant virus does not cause heart disease (myocarditis).
Collapse
Affiliation(s)
- Yingying Guo
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Meleana M. Hinchman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Mercedes Lewandrowski
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Shaun T. Cross
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
| | - Danica M. Sutherland
- Departments of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Olivia L. Welsh
- Departments of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Terence S. Dermody
- Departments of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Departments of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pennsylvania, United States of America
| | - John S. L. Parker
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
5
|
Dou S, Li G, Li G, Hou C, Zheng Y, Tang L, Gao Y, Mo R, Li Y, Wang R, Shen B, Zhang J, Han G. Ubiquitination and degradation of NF90 by Tim-3 inhibits antiviral innate immunity. eLife 2021; 10:66501. [PMID: 34110282 PMCID: PMC8225388 DOI: 10.7554/elife.66501] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Nuclear factor 90 (NF90) is a novel virus sensor that serves to initiate antiviral innate immunity by triggering stress granule (SG) formation. However, the regulation of the NF90-SG pathway remains largely unclear. We found that Tim-3, an immune checkpoint inhibitor, promotes the ubiquitination and degradation of NF90 and inhibits NF90-SG-mediated antiviral immunity. Vesicular stomatitis virus (VSV) infection induces the up-regulation and activation of Tim-3 in macrophages, which in turn recruit the E3 ubiquitin ligase TRIM47 to the zinc finger domain of NF90 and initiate a proteasome-dependent degradation via K48-linked ubiquitination at Lys297. Targeted inactivation of Tim-3 enhances the NF90 downstream SG formation by selectively increasing the phosphorylation of protein kinase R and eukaryotic translation initiation factor 2α, the expression of SG markers G3BP1 and TIA-1, and protecting mice from VSV challenge. These findings provide insights into the crosstalk between Tim-3 and other receptors in antiviral innate immunity and its related clinical significance.
Collapse
Affiliation(s)
- Shuaijie Dou
- Beijing Institute of Basic Medical Sciences, Beijing, China.,Anhui Medical University, Hefei, China
| | - Guoxian Li
- Beijing Institute of Basic Medical Sciences, Beijing, China.,Institute of Immunology, Medical School of Henan University, Kaifeng, China
| | - Ge Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chunmei Hou
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yang Zheng
- Department of Oncology, First Hospital of Jilin University, Changchun, China
| | - Lili Tang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yang Gao
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Rongliang Mo
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yuxiang Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Renxi Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China.,Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Beifen Shen
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jun Zhang
- Institute of Immunology, Medical School of Henan University, Kaifeng, China
| | - Gencheng Han
- Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
6
|
McKellar J, Rebendenne A, Wencker M, Moncorgé O, Goujon C. Mammalian and Avian Host Cell Influenza A Restriction Factors. Viruses 2021; 13:522. [PMID: 33810083 PMCID: PMC8005160 DOI: 10.3390/v13030522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/27/2022] Open
Abstract
The threat of a new influenza pandemic is real. With past pandemics claiming millions of lives, finding new ways to combat this virus is essential. Host cells have developed a multi-modular system to detect incoming pathogens, a phenomenon called sensing. The signaling cascade triggered by sensing subsequently induces protection for themselves and their surrounding neighbors, termed interferon (IFN) response. This response induces the upregulation of hundreds of interferon-stimulated genes (ISGs), including antiviral effectors, establishing an antiviral state. As well as the antiviral proteins induced through the IFN system, cells also possess a so-called intrinsic immunity, constituted of antiviral proteins that are constitutively expressed, creating a first barrier preceding the induction of the interferon system. All these combined antiviral effectors inhibit the virus at various stages of the viral lifecycle, using a wide array of mechanisms. Here, we provide a review of mammalian and avian influenza A restriction factors, detailing their mechanism of action and in vivo relevance, when known. Understanding their mode of action might help pave the way for the development of new influenza treatments, which are absolutely required if we want to be prepared to face a new pandemic.
Collapse
Affiliation(s)
- Joe McKellar
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Antoine Rebendenne
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Mélanie Wencker
- Centre International de Recherche en Infectiologie, INSERM/CNRS/UCBL1/ENS de Lyon, 69007 Lyon, France;
| | - Olivier Moncorgé
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Caroline Goujon
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| |
Collapse
|
7
|
Coronavirus Endoribonuclease Ensures Efficient Viral Replication and Prevents Protein Kinase R Activation. J Virol 2021; 95:JVI.02103-20. [PMID: 33361429 PMCID: PMC8092692 DOI: 10.1128/jvi.02103-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Coronavirus (CoV) nsp15 is an endoribonuclease conserved throughout the CoV family. The enzymatic activity and crystal structure of infectious bronchitis virus (IBV) nsp15 are undefined, and the protein's role in replication remains unclear. We verified the uridylate-specific endoribonuclease (EndoU) activity of IBV and found that the EndoU active sites were located in the C-terminus of nsp15 and included His223, His238, Lys278 and Tyr334. We further constructed an infectious clone of the IBV-rSD strain (rSD-wild-type [WT]) and EndoU-deficient IBVs by changing the codon for the EndoU catalytic residues to alanine. Both the rSD-WT and EndoU-deficient viruses propagated efficiently in embryonated chicken eggs. Conversely, EndoU-deficient viral propagation was severely impaired in chicken embryonic kidney cells, which was reflected in the lower viral mRNA accumulation and protein synthesis. After infecting chickens with the parental rSD-WT strain and EndoU-deficient viruses, the EndoU-deficient-virus-infected chickens presented reduced mortality, tissue injury and viral shedding.IMPORTANCE Coronaviruses can emerge from animal reservoirs into naive host species to cause pandemic respiratory and gastrointestinal diseases with significant mortality in humans and domestic animals. Infectious bronchitis virus (IBV), a γ-coronavirus, infects respiratory, renal and reproductive systems, causing millions of dollars in lost revenue worldwide annually. Mutating the viral endoribonuclease resulted in an attenuated virus and prevented protein kinase R activation. Therefore, EndoU activity is a virulence factor in IBV infections, thus providing an approach for generating live-attenuated vaccine candidates for emerging coronaviruses.
Collapse
|
8
|
Roles of the Non-Structural Proteins of Influenza A Virus. Pathogens 2020; 9:pathogens9100812. [PMID: 33023047 PMCID: PMC7600879 DOI: 10.3390/pathogens9100812] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022] Open
Abstract
Influenza A virus (IAV) is a segmented, negative single-stranded RNA virus that causes seasonal epidemics and has a potential for pandemics. Several viral proteins are not packed in the IAV viral particle and only expressed in the infected host cells. These proteins are named non-structural proteins (NSPs), including NS1, PB1-F2 and PA-X. They play a versatile role in the viral life cycle by modulating viral replication and transcription. More importantly, they also play a critical role in the evasion of the surveillance of host defense and viral pathogenicity by inducing apoptosis, perturbing innate immunity, and exacerbating inflammation. Here, we review the recent advances of these NSPs and how the new findings deepen our understanding of IAV–host interactions and viral pathogenesis.
Collapse
|
9
|
Rosário-Ferreira N, Preto AJ, Melo R, Moreira IS, Brito RMM. The Central Role of Non-Structural Protein 1 (NS1) in Influenza Biology and Infection. Int J Mol Sci 2020; 21:E1511. [PMID: 32098424 PMCID: PMC7073157 DOI: 10.3390/ijms21041511] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 01/07/2023] Open
Abstract
Influenza (flu) is a contagious viral disease, which targets the human respiratory tract and spreads throughout the world each year. Every year, influenza infects around 10% of the world population and between 290,000 and 650,000 people die from it according to the World Health Organization (WHO). Influenza viruses belong to the Orthomyxoviridae family and have a negative sense eight-segment single-stranded RNA genome that encodes 11 different proteins. The only control over influenza seasonal epidemic outbreaks around the world are vaccines, annually updated according to viral strains in circulation, but, because of high rates of mutation and recurrent genetic assortment, new viral strains of influenza are constantly emerging, increasing the likelihood of pandemics. Vaccination effectiveness is limited, calling for new preventive and therapeutic approaches and a better understanding of the virus-host interactions. In particular, grasping the role of influenza non-structural protein 1 (NS1) and related known interactions in the host cell is pivotal to better understand the mechanisms of virus infection and replication, and thus propose more effective antiviral approaches. In this review, we assess the structure of NS1, its dynamics, and multiple functions and interactions, to highlight the central role of this protein in viral biology and its potential use as an effective therapeutic target to tackle seasonal and pandemic influenza.
Collapse
Affiliation(s)
- Nícia Rosário-Ferreira
- Coimbra Chemistry Center, Chemistry Department, Faculty of Science and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology. University of Coimbra, UC Biotech Building, 3060-197 Cantanhede, Portugal
| | - António J. Preto
- CNC—Center for Neuroscience and Cell Biology. University of Coimbra, UC Biotech Building, 3060-197 Cantanhede, Portugal
| | - Rita Melo
- CNC—Center for Neuroscience and Cell Biology. University of Coimbra, UC Biotech Building, 3060-197 Cantanhede, Portugal
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Irina S. Moreira
- CNC—Center for Neuroscience and Cell Biology. University of Coimbra, UC Biotech Building, 3060-197 Cantanhede, Portugal
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Rui M. M. Brito
- Coimbra Chemistry Center, Chemistry Department, Faculty of Science and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
10
|
Kikkert M. Innate Immune Evasion by Human Respiratory RNA Viruses. J Innate Immun 2019; 12:4-20. [PMID: 31610541 PMCID: PMC6959104 DOI: 10.1159/000503030] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
The impact of respiratory virus infections on the health of children and adults can be very significant. Yet, in contrast to most other childhood infections as well as other viral and bacterial diseases, prophylactic vaccines or effective antiviral treatments against viral respiratory infections are either still not available, or provide only limited protection. Given the widespread prevalence, a general lack of natural sterilizing immunity, and/or high morbidity and lethality rates of diseases caused by influenza, respiratory syncytial virus, coronaviruses, and rhinoviruses, this difficult situation is a genuine societal challenge. A thorough understanding of the virus-host interactions during these respiratory infections will most probably be pivotal to ultimately meet these challenges. This review attempts to provide a comparative overview of the knowledge about an important part of the interaction between respiratory viruses and their host: the arms race between host innate immunity and viral innate immune evasion. Many, if not all, viruses, including the respiratory viruses listed above, suppress innate immune responses to gain a window of opportunity for efficient virus replication and setting-up of the infection. The consequences for the host's immune response are that it is often incomplete, delayed or diminished, or displays overly strong induction (after the delay) that may cause tissue damage. The affected innate immune response also impacts subsequent adaptive responses, and therefore viral innate immune evasion often undermines fully protective immunity. In this review, innate immune responses relevant for respiratory viruses with an RNA genome will briefly be summarized, and viral innate immune evasion based on shielding viral RNA species away from cellular innate immune sensors will be discussed from different angles. Subsequently, viral enzymatic activities that suppress innate immune responses will be discussed, including activities causing host shut-off and manipulation of stress granule formation. Furthermore, viral protease-mediated immune evasion and viral manipulation of the ubiquitin system will be addressed. Finally, perspectives for use of the reviewed knowledge for the development of novel antiviral strategies will be sketched.
Collapse
Affiliation(s)
- Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Medical Center, Molecular Virology Laboratory, Leiden, The Netherlands,
| |
Collapse
|
11
|
Gaete-Argel A, Márquez CL, Barriga GP, Soto-Rifo R, Valiente-Echeverría F. Strategies for Success. Viral Infections and Membraneless Organelles. Front Cell Infect Microbiol 2019; 9:336. [PMID: 31681621 PMCID: PMC6797609 DOI: 10.3389/fcimb.2019.00336] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Regulation of RNA homeostasis or “RNAstasis” is a central step in eukaryotic gene expression. From transcription to decay, cellular messenger RNAs (mRNAs) associate with specific proteins in order to regulate their entire cycle, including mRNA localization, translation and degradation, among others. The best characterized of such RNA-protein complexes, today named membraneless organelles, are Stress Granules (SGs) and Processing Bodies (PBs) which are involved in RNA storage and RNA decay/storage, respectively. Given that SGs and PBs are generally associated with repression of gene expression, viruses have evolved different mechanisms to counteract their assembly or to use them in their favor to successfully replicate within the host environment. In this review we summarize the current knowledge about the viral regulation of SGs and PBs, which could be a potential novel target for the development of broad-spectrum antiviral therapies.
Collapse
Affiliation(s)
- Aracelly Gaete-Argel
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Chantal L Márquez
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Gonzalo P Barriga
- Emerging Viruses Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Fernando Valiente-Echeverría
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
12
|
Liu Y, Li Y, Zhao Y, Liu Y, Fan L, Jia N, Zhao Q. ILF3 promotes gastric cancer proliferation and may be used as a prognostic marker. Mol Med Rep 2019; 20:125-134. [PMID: 31115508 PMCID: PMC6579973 DOI: 10.3892/mmr.2019.10229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 04/25/2019] [Indexed: 12/22/2022] Open
Abstract
Interleukin enhancer-binding factor 3 (ILF3) may function as a transcriptional coactivator and has been reported to be involved in tumor proliferation and metastasis; however, its role and clinical value in gastric cancer (GC) remains unclear. To understand the value of ILF3 in GC, a total of 80 matched samples selected from GC tissues and the adjacent mucosa were used to evaluate the expression of ILF3 and its association with clinical characteristics. Furthermore, its biological functions and mechanisms were investigated using SGC-7901 and BGC823 cell lines. Immunohistochemistry demonstrated that the positive expression rates of ILF3 in GC tissue were higher compared with those in adjacent mucosa (P<0.05). Significantly overexpressed ILF3 was detected in BGC823 and SGC7901 cells, and the MTT results demonstrated decreased cell activity after ILF3 expression was inhibited. The proportions of cells in the G0/G1 phase increased, while the number of cells in the G2/M phase decreased, and the expression of the genes associated with proliferation varied following inhibition of ILF3 (P<0.05). Positive expression of ILF3 was associated with a poor prognosis for patients with GC, and was an independent risk factor for GC (P<0.05). In conclusion, ILF3 is involved in the deterioration of GC by promoting proliferation of GC cells, and ILF3 protein detection may assist in the prediction of the prognosis of patients with GC.
Collapse
Affiliation(s)
- Yü Liu
- Department of General Surgery, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Yong Li
- Department of General Surgery, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Yijie Zhao
- Department of General Surgery, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Yang Liu
- Department of General Surgery, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Liqiao Fan
- Department of General Surgery, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Nan Jia
- Department of General Surgery, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Qun Zhao
- Department of General Surgery, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
13
|
Bou-Nader C, Gordon JM, Henderson FE, Zhang J. The search for a PKR code-differential regulation of protein kinase R activity by diverse RNA and protein regulators. RNA (NEW YORK, N.Y.) 2019; 25:539-556. [PMID: 30770398 PMCID: PMC6467004 DOI: 10.1261/rna.070169.118] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The interferon-inducible protein kinase R (PKR) is a key component of host innate immunity that restricts viral replication and propagation. As one of the four eIF2α kinases that sense diverse stresses and direct the integrated stress response (ISR) crucial for cell survival and proliferation, PKR's versatile roles extend well beyond antiviral defense. Targeted by numerous host and viral regulators made of RNA and proteins, PKR is subject to multiple layers of endogenous control and external manipulation, driving its rapid evolution. These versatile regulators include not only the canonical double-stranded RNA (dsRNA) that activates the kinase activity of PKR, but also highly structured viral, host, and artificial RNAs that exert a full spectrum of effects. In this review, we discuss our deepening understanding of the allosteric mechanism that connects the regulatory and effector domains of PKR, with an emphasis on diverse structured RNA regulators in comparison to their protein counterparts. Through this analysis, we conclude that much of the mechanistic details that underlie this RNA-regulated kinase await structural and functional elucidation, upon which we can then describe a "PKR code," a set of structural and chemical features of RNA that are both descriptive and predictive for their effects on PKR.
Collapse
Affiliation(s)
- Charles Bou-Nader
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | - Jackson M Gordon
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | - Frances E Henderson
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| |
Collapse
|
14
|
Garcia-Moreno M, Järvelin AI, Castello A. Unconventional RNA-binding proteins step into the virus-host battlefront. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1498. [PMID: 30091184 PMCID: PMC7169762 DOI: 10.1002/wrna.1498] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022]
Abstract
The crucial participation of cellular RNA‐binding proteins (RBPs) in virtually all steps of virus infection has been known for decades. However, most of the studies characterizing this phenomenon have focused on well‐established RBPs harboring classical RNA‐binding domains (RBDs). Recent proteome‐wide approaches have greatly expanded the census of RBPs, discovering hundreds of proteins that interact with RNA through unconventional RBDs. These domains include protein–protein interaction platforms, enzymatic cores, and intrinsically disordered regions. Here, we compared the experimentally determined census of RBPs to gene ontology terms and literature, finding that 472 proteins have previous links with viruses. We discuss what these proteins are and what their roles in infection might be. We also review some of the pioneering examples of unorthodox RBPs whose RNA‐binding activity has been shown to be critical for virus infection. Finally, we highlight the potential of these proteins for host‐based therapies against viruses. This article is categorized under:
RNA Interactions with Proteins and Other Molecules > Protein–RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > RNA–Protein Complexes
Collapse
Affiliation(s)
| | - Aino I Järvelin
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | |
Collapse
|
15
|
Vasin AV, Petrova-Brodskaya AV, Plotnikova MA, Tsvetkov VB, Klotchenko SA. EVOLUTIONARY DYNAMICS OF STRUCTURAL AND FUNCTIONAL DOMAINS OF INFLUENZA A VIRUS NS1 PROTEIN. Vopr Virusol 2017; 62:246-258. [PMID: 36494956 DOI: 10.18821/0507-4088-2017-62-6-246-258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Indexed: 12/13/2022]
Abstract
Influenza A virus (IAV) NS1 protein is one of the key viral factors responsible for virus-host interactions. NS1 counteracts host antiviral defense, participates in the processing and export of cellular mRNAs, regulates the activity of viral RNA polymerase and the expression of viral genes, and influences the cellular signaling systems. Multiple NS1 functions are carried out due to the interactions with cellular factors, the number of which exceeds one hundred. It is noteworthy that only two segments of IAV genome - NS and NP - did not undergo reassortment and evolved in the course of genetic drift, beginning with the pandemic of 1918 to the present. This fact may indicate the importance of NS1 and its numerous interactions with cellular factors in the interspecific adaptation of the virus. The review presents data on the evolution of the human IAV NS1 protein and analysis of the amino acid substitutions in the main structural and functional domains of NS1 protein during evolution.
Collapse
Affiliation(s)
- A V Vasin
- Research Institute of Influenza.,Peter the Great St. Petersburg Polytechnic University
| | - A V Petrova-Brodskaya
- Research Institute of Influenza.,Peter the Great St. Petersburg Polytechnic University
| | | | - V B Tsvetkov
- Research Institute of Influenza.,A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.,Federal Research and Clinical Center of Physical-Chemical Medicine
| | | |
Collapse
|
16
|
Zhao M, Wang L, Li S. Influenza A Virus-Host Protein Interactions Control Viral Pathogenesis. Int J Mol Sci 2017; 18:ijms18081673. [PMID: 28763020 PMCID: PMC5578063 DOI: 10.3390/ijms18081673] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 12/20/2022] Open
Abstract
The influenza A virus (IAV), a member of the Orthomyxoviridae family, is a highly transmissible respiratory pathogen and represents a continued threat to global health with considerable economic and social impact. IAV is a zoonotic virus that comprises a plethora of strains with different pathogenic profiles. The different outcomes of viral pathogenesis are dependent on the engagement between the virus and the host cellular protein interaction network. The interactions may facilitate virus hijacking of host molecular machinery to fulfill the viral life cycle or trigger host immune defense to eliminate the virus. In recent years, much effort has been made to discover the virus–host protein interactions and understand the underlying mechanisms. In this paper, we review the recent advances in our understanding of IAV–host interactions and how these interactions contribute to host defense and viral pathogenesis.
Collapse
Affiliation(s)
- Mengmeng Zhao
- 156 McElroy Hall, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Lingyan Wang
- 156 McElroy Hall, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Shitao Li
- 156 McElroy Hall, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
17
|
Interleukin-2 enhancer binding factor 2 interacts with the nsp9 or nsp2 of porcine reproductive and respiratory syndrome virus and exerts negatively regulatory effect on the viral replication. Virol J 2017; 14:125. [PMID: 28693575 PMCID: PMC5504599 DOI: 10.1186/s12985-017-0794-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/03/2017] [Indexed: 11/30/2022] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive failures in sows and respiratory diseases in growing pigs, resulting in huge economic loss for the pig production worldwide. The nonstructural protein 9 (nsp9) and nonstructural protein 2 (nsp2) of PRRSV are known to play important roles in viral replication. Cellular interleukin-2 enhancer binding factor 2 (ILF2) participates in many cellular pathways and involves in life cycle of some viruses. In the present study, we analyzed the interaction of cellular ILF2 with the nsp9 and nsp2 of PRRSV in vitro and explored the effect of ILF2 on viral replication. Methods The interaction of ILF2 with the nsp9 or nsp2 of PRRSV was analyzed in 293FT cells and MARC-145 cells by co-immunoprecipitation (Co-IP) and the co-localization of ILF2 with the nsp9 or nsp2 of PRRSV in MARC-145 cell and pulmonary alveolar macrophages (PAMs) was examined by confocal immunofluorescence assay. The effect of ILF2 knockdown and over-expression on PRRSV replication was explored in MARC-145 cells by small interfering RNA (siRNA) and lentivirus transduction, respectively. Results The interaction of ILF2 with nsp9 or nsp2 was first demonstrated in 293FT cells co-transfected with ILF2-expressing plasmid and nsp9-expressing plasmid or nsp2-expressing plasmid. The interaction of endogenous ILF2 with the nsp9 or nsp2 of PRRSV was further confirmed in MARC-145 cells transduced with GFP-nsp9-expressing lentiviruses or infected with PRRSV JXwn06. The RdRp domain of nsp9 was shown to be responsible for its interaction with ILF2, while three truncated nsp2 were shown to interact with ILF2. Moreover, we observed that ILF2 partly translocated from the nucleus to the cytoplasm and co-localized with nsp9 and nsp2 in PRRSV-infected MARC-145 cells and PAMs. Finally, our analysis indicated that knockdown of ILF2 favored the replication of PRRSV, while over-expression of ILF2 impaired the viral replication in MARC-145 cells. Conclusion Our findings are the first to confirm that the porcine ILF2 interacts with the nsp9 and nsp2 of PRRSV in vitro, and exerts negatively regulatory effect on the replication of PRRSV. Our present study provides more evidence for understanding the roles of the interactions between cellular proteins and viral proteins in the replication of PRRSV. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0794-5) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Abstract
Efficient viral gene expression is threatened by cellular stress response programmes that rapidly reprioritize the translation machinery in response to varied environmental assaults, including virus infection. This results in inhibition of bulk synthesis of housekeeping proteins and causes the aggregation of messenger ribonucleoprotein complexes into cytoplasmic foci that are known as stress granules, which can entrap viral mRNAs. There is accumulating evidence for the antiviral nature of stress granules, which is supported by the discovery of many viral factors that interfere with stress granule formation and/or function. This Review focuses on recent advances in our understanding of the role of translation inhibition and stress granules in antiviral immune responses.
Collapse
|