1
|
Knetsch TGJ, Ubbink M. Production and compositional analysis of full-length influenza virus hemagglutinin in Nanodiscs: Insights from multi-angle light scattering. Protein Expr Purif 2025; 227:106641. [PMID: 39653304 DOI: 10.1016/j.pep.2024.106641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024]
Abstract
The global threat of pandemics highlights the urgency of developing innovative vaccine strategies. Viral spike proteins are the primary antigens recognized by the immune system and serve as key targets for vaccine development. This study reports the production of full-length Influenza A virus surface glycoprotein, hemagglutinin (HA), and its incorporation into Nanodiscs (NDs). HA was expressed in insect cells and purified using detergents, maintaining its functional integrity. Characterisation by size-exclusion chromatography coupled with multi-angle light scattering (SEC-MALS) confirmed that HA could be incorporated into 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) NDs as a single trimer. SEC-MALS was instrumental in analysing the composition of NDs, which included HA, membrane scaffold proteins, lipids, and glycans. These findings provide a robust framework for the production and reconstitution of glycoproteins in NDs, and offers valuable insights into the study of multi-component nanoparticles using MALS. Our work highlights the potential of NDs for studying viral glycoproteins and advances the development of well-defined recombinant ND-based vaccines.
Collapse
Affiliation(s)
- Tim G J Knetsch
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands.
| |
Collapse
|
2
|
Cheng D, Guo Y, Lyu J, Liu Y, Xu W, Zheng W, Wang Y, Qiao P. Advances and challenges in preparing membrane proteins for native mass spectrometry. Biotechnol Adv 2025; 78:108483. [PMID: 39571766 DOI: 10.1016/j.biotechadv.2024.108483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/07/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Native mass spectrometry (nMS) is becoming a crucial tool for analyzing membrane proteins (MPs), yet challenges remain in solubilizing and stabilizing their native conformations while resolving and characterizing the heterogeneity introduced by post-translational modifications and ligand binding. This review highlights recent advancements and persistent challenges in preparing MPs for nMS. Optimizing detergents and additives can significantly reduce sample heterogeneity and surface charge, enhancing MP signal quality and structural preservation in nMS. A strategic workflow incorporating affinity capture, stabilization agents, and size-exclusion chromatography to remove unfolded species demonstrates success in improving nMS characterization. Continued development of customized detergents and reagents tailored for specific MPs may further minimize heterogeneity and boost signals. Instrumental advances are also needed to elucidate more dynamically complex and labile MPs. Effective sample preparation workflows may provide insights into MP structures, dynamics, and interactions underpinning membrane biology. With ongoing methodological innovation, nMS shows promise to complement biophysical studies and facilitate drug discovery targeting this clinically important yet technically demanding protein class.
Collapse
Affiliation(s)
- Di Cheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yi Guo
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jixing Lyu
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Yang Liu
- Regenxbox In., Rockville, MD 20850, USA
| | - Wenhao Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Weiyi Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yuchen Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Pei Qiao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
3
|
Vilela F, Sauvanet C, Bezault A, Volkmann N, Hanein D. Optimizing Transmembrane Protein Assemblies in Nanodiscs for Structural Studies: A Comprehensive Manual. Bio Protoc 2024; 14:e5099. [PMID: 39525973 PMCID: PMC11543783 DOI: 10.21769/bioprotoc.5099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/01/2024] [Accepted: 09/29/2024] [Indexed: 11/16/2024] Open
Abstract
Membrane protein structures offer a more accurate basis for understanding their functional correlates when derived from full-length proteins in their native lipid environment. Producing such samples has been a primary challenge in the field. Here, we present robust, step-by-step biochemical and biophysical protocols for generating monodisperse assemblies of full-length transmembrane proteins within lipidic environments. These protocols are particularly tailored for cases where the size and molecular weight of the proteins align closely with those of the lipid islands (nanodiscs). While designed for single-span bitopic membrane proteins, these protocols can be easily extended to proteins with multiple transmembrane domains. The insights presented have broad implications across diverse fields, including biophysics, structural biology, and cryogenic electron microscopy (cryo-EM) studies. Key features • Overview of the sample preparation steps from protein expression and purification and reconstitution of membrane proteins in nanodiscs, as well as biobeads and lipids preparation. • Focus on single-span bitopic transmembrane proteins. • Includes protocols for validation procedures via characterization using biochemical, biophysical, and computational techniques. • Guide for cryogenic electron microscopy data acquisition from vitrification to image processing.
Collapse
Affiliation(s)
- Fernando Vilela
- Structural Studies of Macromolecular Machines in Cellulo Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3528, Paris, France
- Structural Image Analysis Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3528, Paris, France
| | - Cécile Sauvanet
- Structural Studies of Macromolecular Machines in Cellulo Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3528, Paris, France
- Structural Image Analysis Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3528, Paris, France
| | - Armel Bezault
- Structural Studies of Macromolecular Machines in Cellulo Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3528, Paris, France
- Structural Image Analysis Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3528, Paris, France
| | - Niels Volkmann
- Structural Image Analysis Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3528, Paris, France
- Department of Biological Engineering; Department of Electrical and Computer Engineering University of California, Santa Barbara, CA, USA
| | - Dorit Hanein
- Department of Chemistry and Biochemistry, Department of Biological Engineering, University of California, Santa Barbara, CA, USA
| |
Collapse
|
4
|
Knetsch TGJ, Ubbink M. Lipid composition affects the thermal stability of cytochrome P450 3A4 in nanodiscs. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184372. [PMID: 39047858 DOI: 10.1016/j.bbamem.2024.184372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/20/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Nanodiscs (NDs), self-assembled lipid bilayers encircled by membrane scaffold proteins (MSPs), offer a versatile platform for the reconstitution of membrane proteins for structural and biochemical investigations. Saturated, isoprenoid lipids are commonly found in thermophiles and have been associated with thermotolerance. To test whether these lipids confer additional stability on ND-incorporated membrane proteins, this study focuses on the thermal stability of human cytochrome P450 3A4 (CYP3A4) inside NDs composed of different phosphocholine lipids: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC). NDs were characterized using size-exclusion chromatography coupled with multi-angle light scattering (SEC-MALS) and densitometric SDS-PAGE. CYP3A4-DPhPC-NDs were found to comprise three MSP copies instead of the canonical dimer, as reported before for the empty NDs. Rapid, thermally induced unfolding of CYP3A4 inside NDs measured using circular dichroism and differential scanning fluorimetry (nanoDSF) revealed that the CYP3A4 melting temperature was dependent on ND composition. In POPC and DMPC-CYP3A4-NDs the melting temperature was comparable to CYP3A4 without NDs (59 °C). CYP3A4 in DPhPC-NDs showed an increase in melting temperature of 4 °C. Decline in CYP3A4 integrity as well as ND aggregation and disintegration occur at similar rates for all membrane types when subjected to exposure at 37 °C for several hours. The POPC and DMPC- CYP3A4-NDs show significant lipid loss over time, which is not observed for DPhPC-NDs. The results demonstrate that thermally induced denaturation of protein-NDs is a complex, multifaceted process, which is not represented well by rapid thermal unfolding experiments.
Collapse
Affiliation(s)
- Tim G J Knetsch
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands.
| |
Collapse
|
5
|
Wang B, Tieleman DP. The structure, self-assembly and dynamics of lipid nanodiscs revealed by computational approaches. Biophys Chem 2024; 309:107231. [PMID: 38569455 DOI: 10.1016/j.bpc.2024.107231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
Nanodisc technology is increasingly being used in structural, biochemical and biophysical studies of membrane proteins. The computational approaches have revealed many important features of nanodisc assembly, structures and dynamics. Therefore, we reviewed the application of computational approaches, especially molecular modeling and molecular dyncamics (MD) simulations, to characterize nanodiscs, including the structural models, assembly and disassembly, protocols for modeling, structural properties and dynamics, and protein-lipid interactions in nanodiscs. More amazing computational studies about nanodiscs are looked forward to in the future.
Collapse
Affiliation(s)
- Beibei Wang
- Centre for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China.
| | - D Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary T2N 1N4, Canada.
| |
Collapse
|
6
|
Miller RM, Sescil J, Sarcinella MC, Bailey RC, Wang W. Accessible and Generalizable in Vitro Luminescence Assay for Detecting GPCR Activation. ACS MEASUREMENT SCIENCE AU 2023; 3:337-343. [PMID: 37868356 PMCID: PMC10588934 DOI: 10.1021/acsmeasuresciau.3c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/11/2023] [Accepted: 06/20/2023] [Indexed: 10/24/2023]
Abstract
G protein-coupled receptors (GPCRs) serve critical physiological roles as the most abundant family of receptors. Here, we describe the design of a generalizable and cell lysate-based method that leverages the interaction between an agonist-activated GPCR and a conformation-specific binder to reconstitute split nanoluciferase (NanoLuc) in vitro. This tool, In vitro GPCR split NanoLuc ligand Triggered Reporter (IGNiTR), has broad applications. We have demonstrated IGNiTR's use with three Gs-coupled GPCRs, two Gi-coupled GPCRs and three classes of conformation-specific binders: nanobodies, miniG proteins, and G protein peptidomimetics. As an in vitro method, IGNiTR enables the use of synthetic G protein peptidomimetics and provides easily scalable and portable reagents for characterizing GPCRs and ligands. We tested three diverse applications of IGNiTR: (1) proof-of-concept GPCR ligand screening using dopamine receptor D1 IGNiTR; (2) detection of opioids for point-of-care testing; and (3) characterizing GPCR functionality during Nanodisc-based reconstitution processes. Due to IGNiTR's unique advantages and the convenience of its cell lysate-based format, this tool will find extensive applications in GPCR ligand detection, screening, and GPCR characterization.
Collapse
Affiliation(s)
- Ruby M. Miller
- Life Sciences
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jennifer Sescil
- Life Sciences
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Marina C. Sarcinella
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ryan C. Bailey
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Wenjing Wang
- Life Sciences
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
7
|
Nakagawa F, Kikkawa M, Chen S, Miyashita Y, Hamaguchi-Suzuki N, Shibuya M, Yamashita S, Nagase L, Yasuda S, Shiroishi M, Senda T, Ito K, Murata T, Ogasawara S. Anti-nanodisc antibodies specifically capture nanodiscs and facilitate molecular interaction kinetics studies for membrane protein. Sci Rep 2023; 13:11627. [PMID: 37468499 DOI: 10.1038/s41598-023-38547-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
Nanodisc technology has dramatically advanced the analysis of molecular interactions for membrane proteins. A nanodisc is designed as a vehicle for membrane proteins that provide a native-like phospholipid environment and better thermostability in a detergent-free buffer. This enables the determination of the thermodynamic and kinetic parameters of small molecule binding by surface plasmon resonance. In this study, we generated a nanodisc specific anti-MSP (membrane scaffold protein) monoclonal antibody biND5 for molecular interaction analysis of nanodiscs. The antibody, biND5 bound to various types of nanodiscs with sub-nanomolar to nanomolar affinity. Epitope mapping analysis revealed specific recognition of 8 amino acid residues in the exposed helix-4 structure of MSP. Further, we performed kinetics binding analysis between adenosine A2a receptor reconstituted nanodiscs and small molecule antagonist ZM241385 using biND5 immobilized sensor chips. These results show that biND5 facilitates the molecular interaction kinetics analysis of membrane proteins substituted in nanodiscs.
Collapse
Affiliation(s)
- Fuhito Nakagawa
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage, Chiba, 263-8522, Japan
| | - Marin Kikkawa
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
| | - Sisi Chen
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage, Chiba, 263-8522, Japan
- Membrane Protein Research Center, Chiba University, 1-33 Yayoi-Cho, Inage, Chiba, 263-8522, Japan
| | - Yasuomi Miyashita
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage, Chiba, 263-8522, Japan
| | - Norie Hamaguchi-Suzuki
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage, Chiba, 263-8522, Japan
| | - Minami Shibuya
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage, Chiba, 263-8522, Japan
| | - Soichi Yamashita
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage, Chiba, 263-8522, Japan
| | - Lisa Nagase
- Structure Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Satoshi Yasuda
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage, Chiba, 263-8522, Japan
- Membrane Protein Research Center, Chiba University, 1-33 Yayoi-Cho, Inage, Chiba, 263-8522, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage, Chiba, 263-8522, Japan
| | - Mitsunori Shiroishi
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-Ku, Tokyo, 125-8585, Japan
| | - Toshiya Senda
- Structure Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
- Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University of Advanced Studies (Soken-Dai), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Keisuke Ito
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage, Chiba, 263-8522, Japan.
- Membrane Protein Research Center, Chiba University, 1-33 Yayoi-Cho, Inage, Chiba, 263-8522, Japan.
- Structure Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan.
- Department of Quantum Life Science, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage, Chiba, 263-8522, Japan.
| | - Satoshi Ogasawara
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage, Chiba, 263-8522, Japan.
- Membrane Protein Research Center, Chiba University, 1-33 Yayoi-Cho, Inage, Chiba, 263-8522, Japan.
- Department of Quantum Life Science, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage, Chiba, 263-8522, Japan.
- Institute for Advanced Academic Research, Chiba University, 1-33 Yayoi-Cho, Inage, Chiba, 263-8522, Japan.
| |
Collapse
|
8
|
Surya W, Yong CPY, Tyagi A, Bhushan S, Torres J. Anomalous Oligomerization Behavior of E. coli Aquaporin Z in Detergent and in Nanodiscs. Int J Mol Sci 2023; 24:ijms24098098. [PMID: 37175807 PMCID: PMC10178869 DOI: 10.3390/ijms24098098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Aquaporins are tetrameric integral membrane proteins that act as water channels, and can also permeabilize membranes to other solutes. The monomer appears to be the functional form despite all aquaporins being organized as tetramers, which therefore must provide a clear functional advantage. In addition to this quaternary organization, some aquaporins can act as adhesion molecules in membrane junctions, when tetramers located in opposing membranes interact via their extracellular domains. These stacked forms have been observed in a range of aquaporins, whether using lipidic membrane environments, in electron crystallography, or using detergent micelles, in single-particle cryo-electron microscopy (cryo-EM). In the latter technique, structural studies can be performed when the aquaporin is reconstituted into nanodiscs of lipids that are surrounded by a protein scaffold. During attempts to study E. coli Aquaporin Z (AqpZ), we have found that in some conditions these nanodiscs tend to form filaments that appear to be either thicker head-to-tail or thinner side-to-side stacks of nanodiscs. Nanodisc oligomerization was observed using orthogonal analytical techniques analytical ultra-centrifugation and mass photometry, although the nature of the oligomers (head-to-tail or side-to-side) could not be determined. Using the latter technique, the AqpZ tetramer itself formed oligomers of increasing size when solubilized only in detergent, which is consistent with multiple stacking of AqpZ tetramers. We observed images consistent with both of these filaments in negative staining EM conditions, but only thicker filaments in cryo-EM conditions. We hypothesize that the apparent nanodisc side-to-side arrangement that can only be visualized in negative staining conditions is related to artifacts due to the sample preparation. Filaments of any kind were not observed in EM when nanodiscs did not contain AqpZ, or after addition of detergent into the nanodisc cryo-EM preparation, at concentrations that did not disrupt nanodisc formation. To our knowledge, these filaments have not been observed in nanodiscs preparations of other membrane proteins. AqpZ, like other aquaporins has a charge asymmetry between the cytoplasmic (more positive) and the extracellular sides, which may explain the likely head-to-tail stacking observed, both in nanodisc preparations and also in detergent micelles.
Collapse
Affiliation(s)
- Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Clare Pei Yii Yong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Anu Tyagi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Shashi Bhushan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
9
|
Krohl PJ, Fine J, Yang H, VanDyke D, Ang Z, Kim KB, Thomas-Tikhonenko A, Spangler JB. Discovery of antibodies targeting multipass transmembrane proteins using a suspension cell-based evolutionary approach. CELL REPORTS METHODS 2023; 3:100429. [PMID: 37056366 PMCID: PMC10088246 DOI: 10.1016/j.crmeth.2023.100429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/06/2023] [Accepted: 02/21/2023] [Indexed: 04/15/2023]
Abstract
Due to their critical functions in cell sensing and signal processing, membrane proteins are highly preferred as pharmacological targets, and antibody drugs constitute the fastest growing category of therapeutic agents on the pharmaceutical market. However, major limitations exist in developing antibodies that recognize complex, multipass transmembrane proteins, such as G-protein-coupled receptors (GPCRs). These challenges, largely due to difficulties with recombinant expression of multipass transmembrane proteins, can be overcome using whole-cell screening techniques, which enable presentation of the functional antigen in its native conformation. Here, we developed suspension cell-based whole-cell panning methodologies to screen for specific binders against GPCRs within a naive yeast-displayed antibody library. We implemented our strategy to discover high-affinity antibodies against four distinct GPCR target proteins, demonstrating the potential for our cell-based screening workflow to advance the discovery of antibody therapeutics targeting membrane proteins.
Collapse
Affiliation(s)
- Patrick J. Krohl
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21208, USA
| | - Justyn Fine
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21208, USA
| | - Huilin Yang
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21208, USA
| | - Derek VanDyke
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21208, USA
| | - Zhiwei Ang
- Division of Cancer Pathobiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kook Bum Kim
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21208, USA
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jamie B. Spangler
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21208, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21208, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21208, USA
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231, USA
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21287, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University Baltimore, MD 21231, USA
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
10
|
Johansen NT, Tidemand FG, Pedersen MC, Arleth L. Travel light: Essential packing for membrane proteins with an active lifestyle. Biochimie 2023; 205:3-26. [PMID: 35963461 DOI: 10.1016/j.biochi.2022.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/29/2022] [Accepted: 07/23/2022] [Indexed: 11/02/2022]
Abstract
We review the considerable progress during the recent decade in the endeavours of designing, optimising, and utilising carrier particle systems for structural and functional studies of membrane proteins in near-native environments. New and improved systems are constantly emerging, novel studies push the perceived limits of a given carrier system, and specific carrier systems consolidate and entrench themselves as the system of choice for particular classes of target membrane protein systems. This review covers the most frequently used carrier systems for such studies and emphasises similarities and differences between these systems as well as current trends and future directions for the field. Particular interest is devoted to the biophysical properties and membrane mimicking ability of each system and the manner in which this may impact an embedded membrane protein and an eventual structural or functional study.
Collapse
Affiliation(s)
- Nicolai Tidemand Johansen
- Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark.
| | - Frederik Grønbæk Tidemand
- Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Martin Cramer Pedersen
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen E, 2100, Denmark
| | - Lise Arleth
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen E, 2100, Denmark
| |
Collapse
|
11
|
Carter EP, Ang CG, Chaiken IM. Peptide Triazole Inhibitors of HIV-1: Hijackers of Env Metastability. Curr Protein Pept Sci 2023; 24:59-77. [PMID: 35692162 PMCID: PMC11660822 DOI: 10.2174/1389203723666220610120927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022]
Abstract
With 1.5 million new infections and 690,000 AIDS-related deaths globally each year, HIV- 1 remains a pathogen of significant public health concern. Although a wide array of effective antiretroviral drugs have been discovered, these largely target intracellular stages of the viral infectious cycle, and inhibitors that act at or before the point of viral entry still require further advancement. A unique class of HIV-1 entry inhibitors, called peptide triazoles (PTs), has been developed, which irreversibly inactivates Env trimers by exploiting the protein structure's innate metastable nature. PTs, and a related group of inhibitors called peptide triazole thiols (PTTs), are peptide compounds that dually engage the CD4 receptor and coreceptor binding sites of Env's gp120 subunit. This triggers dramatic conformational rearrangements of Env, including the shedding of gp120 (PTs and PTTs) and lytic transformation of the gp41 subunit to a post-fusion-like arrangement (PTTs). Due to the nature of their dual receptor site engagement, PT/PTT-induced conformational changes may elucidate mechanisms behind the native fusion program of Env trimers following receptor and coreceptor engagement, including the role of thiols in fusion. In addition to inactivating Env, PTT-induced structural transformation enhances the exposure of important and conserved neutralizable regions of gp41, such as the membrane proximal external region (MPER). PTT-transformed Env could present an intriguing potential vaccine immunogen prototype. In this review, we discuss the origins of the PT class of peptide inhibitors, our current understanding of PT/PTT-induced structural perturbations and viral inhibition, and prospects for using these antagonists for investigating Env structural mechanisms and for vaccine development.
Collapse
Affiliation(s)
- Erik P. Carter
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Charles G. Ang
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Irwin M. Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
12
|
Wireless portable bioelectronic nose device for multiplex monitoring toward food freshness/spoilage. Biosens Bioelectron 2022; 215:114551. [PMID: 35839622 DOI: 10.1016/j.bios.2022.114551] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 01/07/2023]
Abstract
Monitoring food freshness/spoilage is important to ensure food quality and safety. Current methods of food quality monitoring are mostly time-consuming and labor intensive processes that require massive analytical equipment. In this study, we developed a portable bioelectronic nose (BE-nose) integrated with trace amine-associated receptor (TAAR) nanodiscs (NDs), allowing food quality monitoring via the detection of food spoilage indicators, including the biogenic amines cadaverine (CV) and putrescine (PT). The olfactory receptors TAAR13c and TAAR13d, which have specific affinities for CV and PT, were produced and successfully reconstituted in ND structures. TAAR13 NDs BE-nose-based side-gated field-effect transistor (SG-FET) system was constructed by utilizing a graphene micropattern (GM) into which two types of olfactory NDs (TAAR13c ND and TAAR13d ND) were introduced, and this system showed ultrahigh sensitivity for a limit of detection (LOD) of 1 fM for CV and PT. Moreover, the binding affinities between the TAAR13 NDs and the indicators were confirmed by a tryptophan fluorescence quenching assay and biosimulations, in which the specific binding site was confirmed. Gas-phase indicators were detected by the TAAR13 NDs BE-nose platform, and the LODs for CV and PT were confirmed to be 26.48 and 7.29 ppb, respectively. In addition, TAAR13 NDs BE-nose was fabricated with commercial gas sensors as a portable platform for the measurement of NH3 and H2S, multiplexed monitoring was achieved with similar performance, and the change ratio of the indicators was observed in a real sample. The integration of commercial gas sensors on a BE-nose enhanced the accuracy and reliability for the quality monitoring of real food samples. These results indicate that the portable TAAR13 NDs BE-nose can be used to monitor CV and PT over a wide range of concentrations, therefore, the electronic nose platform can be utilized for monitoring the freshness/spoilage step in various foods.
Collapse
|
13
|
Roterman I, Stapor K, Fabian P, Konieczny L. Connexins and Pannexins—Similarities and Differences According to the FOD-M Model. Biomedicines 2022; 10:biomedicines10071504. [PMID: 35884807 PMCID: PMC9313468 DOI: 10.3390/biomedicines10071504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022] Open
Abstract
Connexins and pannexins are the transmembrane proteins of highly distinguished biological activity in the form of transport of molecules and electrical signals. Their common role is to connect the external environment with the cytoplasm of the cell, while connexin is also able to link two cells together allowing the transport from one to another. The analysis presented here aims to identify the similarities and differences between connexin and pannexin. As a comparative criterion, the hydrophobicity distribution in the structure of the discussed proteins was used. The comparative analysis is carried out with the use of a mathematical model, the FOD-M model (fuzzy oil drop model in its Modified version) expressing the specificity of the membrane’s external field, which in the case of the discussed proteins is significantly different from the external field for globular proteins in the polar environment of water. The characteristics of the external force field influence the structure of protein allowing the activity in a different environment.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University—Medical College, Medyczna 7, 30-688 Kraków, Poland
- Correspondence:
| | - Katarzyna Stapor
- Department of Applied Informatics, Faculty of Automatic, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland;
| | - Piotr Fabian
- Department of Algorithmics and Software, Faculty of Automatic, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland;
| | - Leszek Konieczny
- Chair of Medical Biochemistry—Jagiellonian University—Medical College, Kopernika 7, 31-034 Kraków, Poland;
| |
Collapse
|
14
|
Nishimura T, Hatatani Y, Ando M, Sasaki Y, Akiyoshi K. Single-component nanodiscs via the thermal folding of amphiphilic graft copolymers with the adjusted flexibility of the main chain. Chem Sci 2022; 13:5243-5251. [PMID: 35655565 PMCID: PMC9093194 DOI: 10.1039/d2sc01674e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/12/2022] [Indexed: 12/26/2022] Open
Abstract
Nanodiscs have attracted considerable attention as structural scaffolds for membrane-protein research and as biomaterials in e.g. drug-delivery systems. However, conventional disc-fabrication methods are usually laborious, and disc fabrication via the self-assembly of amphiphiles is difficult. Herein, we report the formation of polymer nanodiscs based on the self-assembly of amphiphilic graft copolymers by adjusting the persistence length of the main chain. Amphiphilic graft copolymers with a series of different main-chain persistence lengths were prepared and these formed, depending on the persistence length, either rods, discs, or vesicles. Notably, polymer nanodiscs were formed upon heating a chilled polymer solution without the need for any additives, and the thus obtained nanodiscs were used to solubilize a membrane protein during cell-free protein synthesis. Given the simplicity of this disc-fabrication method and the ability of these discs to solubilize membrane proteins, this study considerably expands the fundamental and practical scope of graft-copolymer nanodiscs and demonstrates their utility as tools for studying the structure and function of membrane proteins.
Collapse
Affiliation(s)
- Tomoki Nishimura
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University 3-15-1, Tokida Ueda Nagano 386-8567 Japan
| | - Yusuke Hatatani
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Mitsuru Ando
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University Shogoin Kawahara-cho, Sakyo-ku Kyoto 606-8507 Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
15
|
Sweeney DT, Krueger S, Sen K, Hackett JC. Structures and Dynamics of Anionic Lipoprotein Nanodiscs. J Phys Chem B 2022; 126:2850-2862. [PMID: 35393859 PMCID: PMC10061508 DOI: 10.1021/acs.jpcb.2c00758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanolipoprotein particles known as nanodiscs (NDs) have emerged as versatile and powerful tools for the stabilization of membrane proteins permitting a plethora of structural and biophysical studies. Part of their allure is their flexibility to accommodate many types of lipids and precise control of the composition. However, little is known about how variations in lipid composition impact their structures and dynamics. Herein, we investigate how the introduction of the anionic lipid POPG into POPC NDs impacts these features. Small-angle X-ray and neutron scattering (SAXS and SANS) of variable-composition NDs are complemented with molecular dynamics simulations to interrogate how increasing the concern of POPG impacts the ND shape, structure of the lipid core, and the dynamics of the popular membrane scaffold protein, MSP1D1(-). A convenient benefit of including POPG is that it eliminates D2O-induced aggregation observed in pure POPC NDs, permitting studies by SANS at multiple contrasts. SAXS and SANS data could be globally fit to a stacked elliptical cylinder model as well as an extension of the model that accounts for membrane curvature. Fitting to both models supports that the introduction of POPG results in strongly elliptical NDs; however, MD simulations predict the curvature of the membrane, thereby supporting the use of the latter model. Trends in the model-independent parameters suggest that increases in POPG reduce the conformational heterogeneity of the MSP1D1(-), which is in agreement with MD simulations that show that the incorporation of sufficient POPG suppresses disengagement of the N-terminal helix from the lipid core. These studies highlight novel structural changes in NDs in response to an anionic lipid and will inform the interpretation of future structural studies of membrane proteins embedded in NDs of mixed lipid composition.
Collapse
Affiliation(s)
- D Tyler Sweeney
- Department of Physiology and Biophysics and the Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Susan Krueger
- National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, Maryland 20899, United States
| | - Kakali Sen
- Scientific Computing Department, Science and Technology Facilities Council Daresbury Laboratory, Warrington, Cheshire WA4 4AD, United Kingdom
| | - John C Hackett
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
16
|
Eberle SA, Gustavsson M. A Scintillation Proximity Assay for Real-Time Kinetic Analysis of Chemokine-Chemokine Receptor Interactions. Cells 2022; 11:1317. [PMID: 35455996 PMCID: PMC9024993 DOI: 10.3390/cells11081317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
Chemokine receptors are extensively involved in a broad range of physiological and pathological processes, making them attractive drug targets. However, despite considerable efforts, there are very few approved drugs targeting this class of seven transmembrane domain receptors to date. In recent years, the importance of including binding kinetics in drug discovery campaigns was emphasized. Therefore, kinetic insight into chemokine-chemokine receptor interactions could help to address this issue. Moreover, it could additionally deepen our understanding of the selectivity and promiscuity of the chemokine-chemokine receptor network. Here, we describe the application, optimization and validation of a homogenous Scintillation Proximity Assay (SPA) for real-time kinetic profiling of chemokine-chemokine receptor interactions on the example of ACKR3 and CXCL12. The principle of the SPA is the detection of radioligand binding to receptors reconstituted into nanodiscs by scintillation light. No receptor modifications are required. The nanodiscs provide a native-like environment for receptors and allow for full control over bilayer composition and size. The continuous assay format enables the monitoring of binding reactions in real-time, and directly accounts for non-specific binding and potential artefacts. Minor adaptations additionally facilitate the determination of equilibrium binding metrics, making the assay a versatile tool for the study of receptor-ligand interactions.
Collapse
Affiliation(s)
| | - Martin Gustavsson
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark;
| |
Collapse
|
17
|
Laurence MJ, Carpenter TS, Laurence TA, Coleman MA, Shelby M, Liu C. Biophysical Characterization of Membrane Proteins Embedded in Nanodiscs Using Fluorescence Correlation Spectroscopy. MEMBRANES 2022; 12:membranes12040392. [PMID: 35448362 PMCID: PMC9028781 DOI: 10.3390/membranes12040392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023]
Abstract
Proteins embedded in biological membranes perform essential functions in all organisms, serving as receptors, transporters, channels, cell adhesion molecules, and other supporting cellular roles. These membrane proteins comprise ~30% of all human proteins and are the targets of ~60% of FDA-approved drugs, yet their extensive characterization using established biochemical and biophysical methods has continued to be elusive due to challenges associated with the purification of these insoluble proteins. In response, the development of nanodisc techniques, such as nanolipoprotein particles (NLPs) and styrene maleic acid polymers (SMALPs), allowed membrane proteins to be expressed and isolated in solution as part of lipid bilayer rafts with defined, consistent nanometer sizes and compositions, thus enabling solution-based measurements. Fluorescence correlation spectroscopy (FCS) is a relatively simple yet powerful optical microscopy-based technique that yields quantitative biophysical information, such as diffusion kinetics and concentrations, about individual or interacting species in solution. Here, we first summarize current nanodisc techniques and FCS fundamentals. We then provide a focused review of studies that employed FCS in combination with nanodisc technology to investigate a handful of membrane proteins, including bacteriorhodopsin, bacterial division protein ZipA, bacterial membrane insertases SecYEG and YidC, Yersinia pestis type III secretion protein YopB, yeast cell wall stress sensor Wsc1, epidermal growth factor receptor (EGFR), ABC transporters, and several G protein-coupled receptors (GPCRs).
Collapse
Affiliation(s)
- Matthew J. Laurence
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (M.J.L.); (T.S.C.); (M.A.C.)
| | - Timothy S. Carpenter
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (M.J.L.); (T.S.C.); (M.A.C.)
| | - Ted A. Laurence
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA;
| | - Matthew A. Coleman
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (M.J.L.); (T.S.C.); (M.A.C.)
- Department of Radiation Oncology, University of California Davis, Sacramento, CA 95616, USA
| | - Megan Shelby
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (M.J.L.); (T.S.C.); (M.A.C.)
- Correspondence: (M.S.); (C.L.)
| | - Chao Liu
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (M.J.L.); (T.S.C.); (M.A.C.)
- Correspondence: (M.S.); (C.L.)
| |
Collapse
|
18
|
Wei S, Thakur N, Ray AP, Jin B, Obeng S, McCurdy CR, McMahon LR, Gutiérrez-de-Terán H, Eddy MT, Lamichhane R. Slow conformational dynamics of the human A 2A adenosine receptor are temporally ordered. Structure 2022; 30:329-337.e5. [PMID: 34895472 PMCID: PMC8897252 DOI: 10.1016/j.str.2021.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/26/2021] [Accepted: 11/17/2021] [Indexed: 01/12/2023]
Abstract
A more complete depiction of protein energy landscapes includes the identification of different function-related conformational states and the determination of the pathways connecting them. We used total internal reflection fluorescence (TIRF) imaging to investigate the conformational dynamics of the human A2A adenosine receptor (A2AAR), a class A G protein-coupled receptor (GPCR), at the single-molecule level. Slow, reversible conformational exchange was observed among three different fluorescence emission states populated for agonist-bound A2AAR. Transitions among these states predominantly occurred in a specific order, and exchange between inactive and active-like conformations proceeded through an intermediate state. Models derived from molecular dynamics simulations with available A2AAR structures rationalized the relative fluorescence emission intensities for the highest and lowest emission states but not the transition state. This suggests that the functionally critical intermediate state required to achieve activation is not currently visualized among available A2AAR structures.
Collapse
Affiliation(s)
- Shushu Wei
- Department of Biochemistry & Cellular and Molecular Biology, College of Arts and Sciences, University of Tennessee, 1311 Cumberland Avenue, Knoxville, TN 37932, USA
| | - Naveen Thakur
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Arka P Ray
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Beining Jin
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Samuel Obeng
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, FL 32610, USA
| | - Lance R McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, Uppsala University, B.M.C., Box 596, Uppsala 751 24, Sweden
| | - Matthew T Eddy
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA.
| | - Rajan Lamichhane
- Department of Biochemistry & Cellular and Molecular Biology, College of Arts and Sciences, University of Tennessee, 1311 Cumberland Avenue, Knoxville, TN 37932, USA.
| |
Collapse
|
19
|
Krohl PJ, Spangler JB. A Hybrid Adherent/Suspension Cell-Based Selection Strategy for Discovery of Antibodies Targeting Membrane Proteins. Methods Mol Biol 2022; 2491:195-216. [PMID: 35482192 PMCID: PMC9667817 DOI: 10.1007/978-1-0716-2285-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Membrane proteins are favored drug targets and antibody therapeutics represent the fastest-growing category of pharmaceuticals. However, there remains a need for rapid and effective approaches for the discovery of antibodies that recognize membrane proteins to develop a robust clinical pipeline for targeted therapeutics. The challenges associated with recombinant expression of membrane proteins make whole cell screening techniques desirable, as these strategies allow presentation of the target membrane proteins in their native conformations. Here, we describe a workflow that employs both adherent cell-based and suspension cell-based whole cell panning methodologies to enrich for specific binders within a yeast-displayed antibody library. The first round of selection consists of an adherent cell-based approach, wherein a diverse library is panned over target-expressing mammalian cell monolayers in order to debulk the naïve library. Subsequent rounds involve the use of suspension cell-based approaches, facilitated with magnetic-activated cell sorting (MACS) or fluorescence-activated cell sorting (FACS), to achieve further library enrichment. Finally, we describe a high-throughput approach to screen target binding and specificity of individual clones isolated from selection campaigns.
Collapse
Affiliation(s)
- Patrick J Krohl
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jamie B Spangler
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
20
|
Lian T, Zhang B, Giacani L, Kou C, Yang X, Zhang R, Wang Q. Full-length TprK of Treponema pallidum subsp. pallidum in lipid nanodiscs is a monomeric porin. Enzyme Microb Technol 2022; 153:109897. [PMID: 34670182 PMCID: PMC10929906 DOI: 10.1016/j.enzmictec.2021.109897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 11/22/2022]
Abstract
TprK is a key virulence factor of Treponema pallidum subsp. pallidum (T. pallidum) due to its ability to undergo intra-strain antigenic variation through gene conversion. This mechanism can generate millions of tprK gene and protein variants to allow immune evasion and pathogen persistence during infection. In silico structural modeling supports that TprK is an outer membrane β-barrel with porin function and with several surface-exposed loops, seven of which corresponding to the variable regions. No definitive structural of functional data, however, exist for this protein aside from its role in immune evasion. Studies to elucidate TprK biological function as a porin, are hindered by the evidence that TprK is not abundant on T. pallidum outer membrane, and by the fragility of T. pallidum envelope. To gain insight onto TprK structure and possible function as a porin, we used an Escherichia coli - based expression system that yielded highly pure full-length TprK without any intermediate denaturation step, and proceeded to reconstitute it in detergents and lipid nanodiscs. Visualization of TprK in nanodiscs using negative staining electron microscopy supported that TprK is a monomeric porin in an artificial lipid environment mimicking T. pallidum membrane. Our work provided evidence that TprK is a possible porin transporter of T. pallidum, a biological function compatible with its structural models. These results bring us closer to a comprehensive understanding of the function of this important virulence factor in syphilis pathogenesis and T. pallidum biology.
Collapse
Affiliation(s)
- Tingting Lian
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China.
| | - Bing Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 200120, China.
| | - Lorenzo Giacani
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA.
| | - Caixia Kou
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China.
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 200120, China.
| | - Ruili Zhang
- Department of Dermatology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210042, China.
| | - Qianqiu Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China.
| |
Collapse
|
21
|
Abstract
Membrane proteins (MPs) play essential roles in numerous cellular processes. Because around 70% of the currently marketed drugs target MPs, a detailed understanding of their structure, binding properties, and functional dynamics in a physiologically relevant environment is crucial for a more detailed understanding of this important protein class. We here summarize the benefits of using lipid nanodiscs for NMR structural investigations and provide a detailed overview of the currently used lipid nanodisc systems as well as their applications in solution-state NMR. Despite the increasing use of other structural methods for the structure determination of MPs in lipid nanodiscs, solution NMR turns out to be a versatile tool to probe a wide range of MP features, ranging from the structure determination of small to medium-sized MPs to probing ligand and partner protein binding as well as functionally relevant dynamical signatures in a lipid nanodisc setting. We will expand on these topics by discussing recent NMR studies with lipid nanodiscs and work out a key workflow for optimizing the nanodisc incorporation of an MP for subsequent NMR investigations. With this, we hope to provide a comprehensive background to enable an informed assessment of the applicability of lipid nanodiscs for NMR studies of a particular MP of interest.
Collapse
Affiliation(s)
- Umut Günsel
- Bavarian NMR Center (BNMRZ) at the Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Strasse 2, 85748 Garching, Germany
| | - Franz Hagn
- Bavarian NMR Center (BNMRZ) at the Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Strasse 2, 85748 Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
22
|
A human antibody against human endothelin receptor type A that exhibits antitumor potency. Exp Mol Med 2021; 53:1437-1448. [PMID: 34588605 PMCID: PMC8492878 DOI: 10.1038/s12276-021-00678-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/11/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
Endothelin receptor A (ETA), a class A G-protein-coupled receptor (GPCR), is involved in the progression and metastasis of colorectal, breast, lung, ovarian, and prostate cancer. We overexpressed and purified human endothelin receptor type A in Escherichia coli and reconstituted it with lipid and membrane scaffold proteins to prepare an ETA nanodisc as a functional antigen with a structure similar to that of native GPCR. By screening a human naive immune single-chain variable fragment phage library constructed in-house, we successfully isolated a human anti-ETA antibody (AG8) exhibiting high specificity for ETA in the β-arrestin Tango assay and effective inhibitory activity against the ET-1-induced signaling cascade via ETA using either a CHO-K1 cell line stably expressing human ETA or HT-29 colorectal cancer cells, in which AG8 exhibited IC50 values of 56 and 51 nM, respectively. In addition, AG8 treatment repressed the transcription of inhibin βA and reduced the ETA-induced phosphorylation of protein kinase B and extracellular regulated kinase. Furthermore, tumor growth was effectively inhibited by AG8 in a colorectal cancer mouse xenograft model. The human anti-ETA antibody isolated in this study could be used as a potential therapeutic for cancers, including colorectal cancer. A therapeutic antibody that targets a receptor involved in cancer progression shows significant anti-cancer effects in trials in mice. Endothelin receptor A (ETA) promotes the progression and metastasis of several cancers, and patients with high ETA expression often have poor survival rates. Several small molecule drugs that target ETA are currently undergoing trials. Now, Sang Taek Jung at the Korea University in Seoul, together with scientists across South Korea, have identified and isolated a human antibody that specifically binds to ETA. The team developed an antigen that mimics ETA, and identified and isolated the antibody it bound to. The antibody exhibited potent anti-tumor effects in cell cultures and trials in mice. Such therapeutic antibodies show higher affinity for their targets than other drugs, resulting in fewer side effects and higher efficacy.
Collapse
|
23
|
Cao S, Peterson SM, Müller S, Reichelt M, McRoberts Amador C, Martinez-Martin N. A membrane protein display platform for receptor interactome discovery. Proc Natl Acad Sci U S A 2021; 118:e2025451118. [PMID: 34531301 PMCID: PMC8488672 DOI: 10.1073/pnas.2025451118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 12/19/2022] Open
Abstract
Cell surface receptors are critical for cell signaling and constitute a quarter of all human genes. Despite their importance and abundance, receptor interaction networks remain understudied because of difficulties associated with maintaining membrane proteins in their native conformation and their typically weak interactions. To overcome these challenges, we developed an extracellular vesicle-based method for membrane protein display that enables purification-free and high-throughput detection of receptor-ligand interactions in membranes. We demonstrate that this platform is broadly applicable to a variety of membrane proteins, enabling enhanced detection of extracellular interactions over a wide range of binding affinities. We were able to recapitulate and expand the interactome for prominent members of the B7 family of immunoregulatory proteins such as PD-L1/CD274 and B7-H3/CD276. Moreover, when applied to the orphan cancer-associated fibroblast protein, LRRC15, we identified a membrane-dependent interaction with the tumor stroma marker TEM1/CD248. Furthermore, this platform enabled profiling of cellular receptors for target-expressing as well as endogenous extracellular vesicles. Overall, this study presents a sensitive and easy to use screening platform that bypasses membrane protein purification and enables characterization of interactomes for any cell surface-expressed target of interest in its native state.
Collapse
Affiliation(s)
- Shengya Cao
- Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA 94080;
| | - Sean M Peterson
- Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA 94080
| | - Sören Müller
- Oncology Bioinformatics, Genentech, South San Francisco, CA 94080
| | - Mike Reichelt
- Pathology Labs, Genentech, South San Francisco, CA 94080
| | | | - Nadia Martinez-Martin
- Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA 94080;
- Biologics, Almirall, 08022 Barcelona, Spain
| |
Collapse
|
24
|
Reconstitution of Detergent-Solubilized Membrane Proteins into Proteoliposomes and Nanodiscs for Functional and Structural Studies. Methods Mol Biol 2021; 2302:21-35. [PMID: 33877620 DOI: 10.1007/978-1-0716-1394-8_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Reconstitution of detergent-solubilized membrane proteins into phospholipid bilayers allows for functional and structural studies under close-to-native conditions that greatly support protein stability and function. Here we outline the detailed steps for membrane protein reconstitution to result in proteoliposomes and nanodiscs. Reconstitution can be achieved via a number of different strategies. The protocols for preparation of proteoliposomes use detergent removal via dialysis or via nonpolar polystyrene beads, or a mixture of the two methods. In this chapter, the protocols for nanodiscs apply polystyrene beads only. Proteoliposome preparation methods allow for substantial control of the lipid-to-protein ratio, from minimal amounts of phospholipid to high concentrations, type of phospholipid, and mixtures of phospholipids. In addition, dialysis affords a fairly large degree of control and variation of parameters such as rate of reconstitution, temperature, buffer conditions, and proteoliposome size. For the nanodisc approach, which is highly advantageous for ensuring equal access to both membrane sides of the protein as well as fast reconstitution of only a single membrane protein into a well-defined bilayer environment in each nanodisc, the protocols outline how a number of these parameters are more restricted in comparison to the proteoliposome protocols.
Collapse
|
25
|
Oganesyan I, Lento C, Tandon A, Wilson DJ. Conformational Dynamics of α-Synuclein during the Interaction with Phospholipid Nanodiscs by Millisecond Hydrogen-Deuterium Exchange Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1169-1179. [PMID: 33784451 DOI: 10.1021/jasms.0c00463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Both normal and pathological functions of α-synuclein (αSN), an abundant protein in the central and peripheral nervous system, have been linked to its interaction with membrane lipid bilayers. The ability to characterize structural transitions of αSN upon membrane complexation will clarify molecular mechanisms associated with αSN-linked pathologies, including Parkinson's disease (PD), multiple systems atrophy, and other synucleinopathies. In this work, time-resolved electrospray ionization hydrogen/deuterium exchange mass spectrometry (TRESI-HDX-MS) was employed to acquire a detailed picture of αSN's conformational transitions as it undergoes complexation with nanodisc membrane mimics with different headgroup charges (zwitterionic DMPC and negative POPG). Using this approach, αSN interactions with DMPC nanodiscs were shown to be rapid exchanging and to have little impact on the αSN conformational ensemble. Interactions with nanodiscs containing lipids known to promote amyloidogenesis (e.g., POPG), on the other hand, were observed to induce substantial and specific changes in the αSN conformational ensemble. Ultimately, we identify a region corresponding residues 19-28 and 45-57 of the αSN sequence that is uniquely impacted by interactions with "amyloidogenic" lipid membranes, supporting the existing "broken-helix" model for α-synuclein/membrane interactions, but do not detect a "helical extension" that is also thought to play a role in αSN aggregation.
Collapse
Affiliation(s)
- Irina Oganesyan
- Department of Chemistry, York University, Toronto M3J 1P3, Canada
| | - Cristina Lento
- Department of Chemistry, York University, Toronto M3J 1P3, Canada
| | - Anurag Tandon
- Department of Medicine, University of Toronto, Toronto M5S 1A1, Canada
| | - Derek J Wilson
- Department of Chemistry, York University, Toronto M3J 1P3, Canada
- Centre for Research in Mass Spectrometry, York University, Toronto M3J 1P3, Canada
| |
Collapse
|
26
|
Zhu S, Wu M, Huang Z, An J. Trends in application of advancing computational approaches in GPCR ligand discovery. Exp Biol Med (Maywood) 2021; 246:1011-1024. [PMID: 33641446 PMCID: PMC8113737 DOI: 10.1177/1535370221993422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) comprise the most important superfamily of protein targets in current ligand discovery and drug development. GPCRs are integral membrane proteins that play key roles in various cellular signaling processes. Therefore, GPCR signaling pathways are closely associated with numerous diseases, including cancer and several neurological, immunological, and hematological disorders. Computer-aided drug design (CADD) can expedite the process of GPCR drug discovery and potentially reduce the actual cost of research and development. Increasing knowledge of biological structures, as well as improvements on computer power and algorithms, have led to unprecedented use of CADD for the discovery of novel GPCR modulators. Similarly, machine learning approaches are now widely applied in various fields of drug target research. This review briefly summarizes the application of rising CADD methodologies, as well as novel machine learning techniques, in GPCR structural studies and bioligand discovery in the past few years. Recent novel computational strategies and feasible workflows are updated, and representative cases addressing challenging issues on olfactory receptors, biased agonism, and drug-induced cardiotoxic effects are highlighted to provide insights into future GPCR drug discovery.
Collapse
Affiliation(s)
- Siyu Zhu
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
- Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen 518172, China
| | - Meixian Wu
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Ziwei Huang
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
- Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen 518172, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jing An
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
27
|
Prediction effect of ethanol molecules on doxorubicin drug delivery using single-walled carbon nanotube carrier through POPC cell membrane. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115698] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
28
|
Yamada T, Tsuge H. Preparation of Clostridium perfringens binary iota-toxin pore complex for structural analysis using cryo-EM. Methods Enzymol 2021; 649:125-148. [PMID: 33712185 DOI: 10.1016/bs.mie.2021.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Iota toxin, a type of A-B toxin produced by Clostridium perfringens, comprises an enzymatic component (Ia) and a membrane-binding component (Ib). The translocation of Ia to the target cell via the pore formed by Ib allows it to function as an ADP-ribosyltransferase that inhibits actin polymerization in the host cell. The structure of Ia-bound Ib-pore has been determined using cryo-electron microscopy (cryo-EM), thereby elucidating the mechanism of the initial Ia translocation; however, open questions regarding Ia translocation still exist. In this chapter, we describe a new method of preparing Ia-bound Ib-pore complex samples for structural analysis at high resolution using cryo-EM. This method is different from previously reported methods for other A-B toxins. Consequently, it produces Ib-pore with two different states with short and long membrane-spanning β-barrel stem. We expect that this method will be useful in functional and structural studies of iota toxin and other binary toxins.
Collapse
Affiliation(s)
- Tomohito Yamada
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan.
| | - Hideaki Tsuge
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan; Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan; Center for Molecular Research in Infectious Diseases, Kyoto Sangyo University, Kyoto, Japan.
| |
Collapse
|
29
|
Huang Y, Deng Y, Zhang J, Meng L, Li X. Direct ligand screening against membrane proteins on live cells enabled by DNA-programmed affinity labelling. Chem Commun (Camb) 2021; 57:3769-3772. [DOI: 10.1039/d1cc00961c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DNA-programmed affinity labelling (DPAL) enables the screening of chemical compounds against membrane proteins directly on live cells.
Collapse
Affiliation(s)
- Yiran Huang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Pokfulam Road
- Hong Kong SAR
- China
| | - Yuqing Deng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Pokfulam Road
- Hong Kong SAR
- China
| | - Jianfu Zhang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Pokfulam Road
- Hong Kong SAR
- China
| | - Ling Meng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Pokfulam Road
- Hong Kong SAR
- China
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Pokfulam Road
- Hong Kong SAR
- China
| |
Collapse
|
30
|
Sharma P, Plant M, Lam SK, Chen Q. Kinetic analysis of antibody binding to integral membrane proteins stabilized in SMALPs. BBA ADVANCES 2021; 1:100022. [PMID: 37082021 PMCID: PMC10074945 DOI: 10.1016/j.bbadva.2021.100022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The fundamental importance of membrane protein (MP) targets in central biological and cellular events has driven a marked increase in the use of membrane mimetics for exploring these proteins as therapeutic targets. The main challenge associated with biophysical analysis of membrane protein is the need for detergent extraction from the bilayer environment, which in many cases causes the proteins to become insoluble, unstable or display altered structure or activity. Recent technological advances have tried to limit the exposure of purified membrane protein to detergents. One such method involves the amphipathic co-polymer of styrene and maleic acid (SMA), which can release lipids and integral membrane proteins into water soluble native particles (or vesicles) termed SMALPs (Styrene Maleic Acid Lipid Particles). In this study, assay conditions that leverage SMA for membrane protein stabilization were developed to perform kinetic analysis of antibody binding to integral membrane protein and complexes in SMALPs in both purified and complex mixture settings using multiple biosensor platforms. To develop a robust and flexible platform using SMALPs technology, we optimized various SPR assay formats to analyze SMALPs produced with cell membrane pellets as well as whole cell lysates from the cell lines overexpressing membrane protein of interest. Here we emphasize the extraction of model membrane proteins of diverse architecture and function from native environments to encapsulate with SMALPs. Given the importance of selected membrane targets in central biological events and therapeutic relevance, MP-specific or tag-specific antibodies were used as a proof-of-principal to validate the SMALPs platform for ligand binding studies to support drug discovery or tool generation processes. MP-SMALPs that retain specific binding capability in multiple assay formats and biosensors, such as waveguide interferometry and surface plasmon resonance, would be a versatile platform for a wide range of downstream applications.
Collapse
Affiliation(s)
- Pooja Sharma
- Discovery Attribute Sciences, Amgen Research, Amgen Inc., Thousand Oaks, CA, 91320
- Corresponding author.
| | - Matthew Plant
- Discovery Attribute Sciences, Amgen Research, Amgen Inc., Cambridge, MA, 02141
| | - Sheung Kwan Lam
- Biologics, Amgen Research, Amgen Inc., South San Francisco, CA 94080
| | - Qing Chen
- Discovery Attribute Sciences, Amgen Research, Amgen Inc., Thousand Oaks, CA, 91320
| |
Collapse
|
31
|
Kermani AA. A guide to membrane protein X‐ray crystallography. FEBS J 2020; 288:5788-5804. [DOI: 10.1111/febs.15676] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/17/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Ali A. Kermani
- Department of Molecular, Cellular, and Developmental Biology University of Michigan Ann Arbor MI USA
| |
Collapse
|
32
|
Antigen Design for Successful Isolation of Highly Challenging Therapeutic Anti-GPCR Antibodies. Int J Mol Sci 2020; 21:ijms21218240. [PMID: 33153215 PMCID: PMC7663707 DOI: 10.3390/ijms21218240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 02/03/2023] Open
Abstract
G-protein-coupled receptors (GPCR) transmit extracellular signals into cells to regulate a variety of cellular functions and are closely related to the homeostasis of the human body and the progression of various types of diseases. Great attention has been paid to GPCRs as excellent drug targets, and there are many commercially available small-molecule chemical drugs against GPCRs. Despite this, the development of therapeutic anti-GPCR antibodies has been delayed and is challenging due to the difficulty in preparing active forms of GPCR antigens, resulting from their low cellular expression and complex structures. Here, we focus on anti-GPCR antibodies that have been approved or are subject to clinical trials and present various technologies to prepare active GPCR antigens that enable the isolation of therapeutic antibodies to proceed toward clinical validation.
Collapse
|
33
|
Abstract
Nanodiscs (ND) are soluble phospholipid bilayers bounded by membrane scaffold proteins; they have become invaluable in the study of membrane proteins. However, this multifunctional tool has been used individually, and applications involving multiple NDs and their interactions have fallen far behind their counterpart membrane model system: liposomes. One major obstacle is the lack of reliable methods to manage the spatial arrangement of NDs. Here we sought to extend the utility of NDs by organizing them on DNA origami. NDs constructed with DNA-anchor amphiphiles were placed precisely and specifically into these DNA nanostructures via hybridization. Four different tethering strategies were explored and validated. A variety of geometric patterns of NDs were successfully programmed on origami, as evidenced by electron microscopy. The ND ensembles generated in this study provide new and powerful platforms to study protein-lipid or protein-protein interactions with spatial control of membranes.
Collapse
Affiliation(s)
- Zhao Zhang
- Howard Hughes Medical Institute, Department of Neuroscience, University of Wisconsin–Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Edwin R. Chapman
- Howard Hughes Medical Institute, Department of Neuroscience, University of Wisconsin–Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, USA
| |
Collapse
|
34
|
Krohl PJ, Kim KB, Lew L, VanDyke D, Ludwig SD, Spangler JB. A suspension cell‐based interaction platform for interrogation of membrane proteins. AIChE J 2020. [DOI: 10.1002/aic.16995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Patrick J. Krohl
- Department of Chemical & Biomolecular Engineering Johns Hopkins University Baltimore Maryland USA
| | - Kook Bum Kim
- Department of Chemical & Biomolecular Engineering Johns Hopkins University Baltimore Maryland USA
| | - Lance Lew
- Department of Biophysics Johns Hopkins University Baltimore Maryland USA
| | - Derek VanDyke
- Department of Chemical & Biomolecular Engineering Johns Hopkins University Baltimore Maryland USA
| | - Seth D. Ludwig
- Department of Chemical & Biomolecular Engineering Johns Hopkins University Baltimore Maryland USA
| | - Jamie B. Spangler
- Department of Chemical & Biomolecular Engineering Johns Hopkins University Baltimore Maryland USA
- Department of Biomedical Engineering Johns Hopkins University School of Medicine Baltimore Maryland USA
- Translational Tissue Engineering Center Johns Hopkins University School of Medicine Baltimore Maryland USA
| |
Collapse
|
35
|
Hutchison JM, Shih KC, Scheidt HA, Fantin SM, Parson KF, Pantelopulos GA, Harrington HR, Mittendorf KF, Qian S, Stein RA, Collier SE, Chambers MG, Katsaras J, Voehler MW, Ruotolo BT, Huster D, McFeeters RL, Straub JE, Nieh MP, Sanders CR. Bicelles Rich in both Sphingolipids and Cholesterol and Their Use in Studies of Membrane Proteins. J Am Chem Soc 2020; 142:12715-12729. [PMID: 32575981 DOI: 10.1021/jacs.0c04669] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
How the distinctive lipid composition of mammalian plasma membranes impacts membrane protein structure is largely unexplored, partly because of the dearth of isotropic model membrane systems that contain abundant sphingolipids and cholesterol. This gap is addressed by showing that sphingomyelin and cholesterol-rich (SCOR) lipid mixtures with phosphatidylcholine can be cosolubilized by n-dodecyl-β-melibioside to form bicelles. Small-angle X-ray and neutron scattering, as well as cryo-electron microscopy, demonstrate that these assemblies are stable over a wide range of conditions and exhibit the bilayered-disc morphology of ideal bicelles even at low lipid-to-detergent mole ratios. SCOR bicelles are shown to be compatible with a wide array of experimental techniques, as applied to the transmembrane human amyloid precursor C99 protein in this medium. These studies reveal an equilibrium between low-order oligomer structures that differ significantly from previous experimental structures of C99, providing an example of how ordered membranes alter membrane protein structure.
Collapse
Affiliation(s)
- James M Hutchison
- Chemical and Physical Biology Graduate Program and Center for Structural Biology, Vanderbilt University, Nashville 37240, Tennessee, United States
| | - Kuo-Chih Shih
- Polymer Program, Department of Chemical & Biomolecular Engineering, and Department of Biomedical Engineering, University of Connecticut, Storrs 06269, Connecticut, United States
| | - Holger A Scheidt
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig 16-18, 04107, Germany
| | - Sarah M Fantin
- Department of Chemistry, University of Michigan, Ann Arbor 48109, Michigan, United States
| | - Kristine F Parson
- Department of Chemistry, University of Michigan, Ann Arbor 48109, Michigan, United States
| | - George A Pantelopulos
- Department of Chemistry, Boston University, Boston 02215, Massachusetts, United States
| | - Haley R Harrington
- Center for Structural Biology and Department of Biochemistry, Vanderbilt University School of Medicine Basic Sciences, Nashville 37240, Tennessee, United States
| | - Kathleen F Mittendorf
- Center for Health Research, Kaiser Permanente, Portland 97227, Oregon, United States
| | - Shuo Qian
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge 37831, Tennessee, United States
| | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville37240, Tennessee, United States
| | - Scott E Collier
- Department of Translational and Applied Genomics, Center for Health Research, Kaiser Permanente Northwest, Portland 97227, Oregon, United States
| | - Melissa G Chambers
- Center for Structural Biology, Vanderbilt University, Nashville 37240, Tennessee, United States
| | - John Katsaras
- Neutron Scattering Division and Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge 37831, Tennessee, United States
| | - Markus W Voehler
- Center for Structural Biology and Department of Chemistry, Vanderbilt University, Nashville 37240, Tennessee, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor 48109, Michigan, United States
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig 16-18, 04107, Germany
| | - Robert L McFeeters
- Department of Chemistry, University of Alabama, Huntsville 35899, Alabama, United States
| | - John E Straub
- Department of Chemistry, Boston University, Boston 02215, Massachusetts, United States
| | - Mu-Ping Nieh
- Polymer Program, Department of Chemical & Biomolecular Engineering, and Department of Biomedical Engineering, University of Connecticut, Storrs 06269, Connecticut, United States
| | - Charles R Sanders
- Center for Structural Biology, Department of Biochemistry, and Department of Medicine, Vanderbilt University School of Medicine, Nashville 37240, Tennessee, United States
| |
Collapse
|
36
|
Mamer SB, Page P, Murphy M, Wang J, Gallerne P, Ansari A, Imoukhuede PI. The Convergence of Cell-Based Surface Plasmon Resonance and Biomaterials: The Future of Quantifying Bio-molecular Interactions-A Review. Ann Biomed Eng 2020; 48:2078-2089. [PMID: 31811474 PMCID: PMC8637426 DOI: 10.1007/s10439-019-02429-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/29/2019] [Indexed: 12/20/2022]
Abstract
Cell biology is driven by complex networks of biomolecular interactions. Characterizing the kinetic and thermodynamic properties of these interactions is crucial to understanding their role in different physiological processes. Surface plasmon resonance (SPR)-based approaches have become a key tool in quantifying biomolecular interactions, however conventional approaches require isolating the interacting components from the cellular system. Cell-based SPR approaches have recently emerged, promising to enable precise measurements of biomolecular interactions within their normal biological context. Two major approaches have been developed, offering their own advantages and limitations. These approaches currently lack a systematic exploration of 'best practices' like those existing for traditional SPR experiments. Toward this end, we describe the two major approaches, and identify the experimental parameters that require exploration, and discuss the experimental considerations constraining the optimization of each. In particular, we discuss the requirements of future biomaterial development needed to advance the cell-based SPR technique.
Collapse
Affiliation(s)
- Spencer B Mamer
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | - Jiaojiao Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Pierrick Gallerne
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Ecole Centrale de Lille, Villeneuve d'Ascq, Hauts-De-France, France
| | - Ali Ansari
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - P I Imoukhuede
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
37
|
Danmaliki GI, Hwang PM. Solution NMR spectroscopy of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183356. [PMID: 32416193 DOI: 10.1016/j.bbamem.2020.183356] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 02/06/2023]
Abstract
Integral membrane proteins (IMPs) perform unique and indispensable functions in the cell, making them attractive targets for fundamental research and drug discovery. Developments in protein production, isotope labeling, sample preparation, and pulse sequences have extended the utility of solution NMR spectroscopy for studying IMPs with multiple transmembrane segments. Here we review some recent applications of solution NMR for studying structure, dynamics, and interactions of polytopic IMPs, emphasizing strategies used to overcome common technical challenges.
Collapse
Affiliation(s)
- Gaddafi I Danmaliki
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Peter M Hwang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada; Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
38
|
Sarkis J, Vié V. Biomimetic Models to Investigate Membrane Biophysics Affecting Lipid-Protein Interaction. Front Bioeng Biotechnol 2020; 8:270. [PMID: 32373596 PMCID: PMC7179690 DOI: 10.3389/fbioe.2020.00270] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/16/2020] [Indexed: 12/16/2022] Open
Abstract
Biological membranes are highly dynamic in their ability to orchestrate vital mechanisms including cellular protection, organelle compartmentalization, cellular biomechanics, nutrient transport, molecular/enzymatic recognition, and membrane fusion. Controlling lipid composition of different membranes allows cells to regulate their membrane characteristics, thus modifying their physical properties to permit specific protein interactions and drive structural function (membrane deformation facilitates vesicle budding and fusion) and signal transduction. Yet, how lipids control protein structure and function is still poorly understood and needs systematic investigation. In this review, we explore different in vitro membrane models and summarize our current understanding of the interplay between membrane biophysical properties and lipid-protein interaction, taken as example few proteins involved in muscular activity (dystrophin), digestion and Legionella pneumophila effector protein DrrA. The monolayer model with its movable barriers aims to mimic any membrane deformation while surface pressure modulation imitates lipid packing and membrane curvature changes. It is frequently used to investigate peripheral protein binding to the lipid headgroups. Examples of how lipid lateral pressure modifies protein interaction and organization within the membrane are presented using various biophysical techniques. Interestingly, the shear elasticity and surface viscosity of the monolayer will increase upon specific protein(s) binding, supporting the importance of such mechanical link for membrane stability. The lipid bilayer models such as vesicles are not only used to investigate direct protein binding based on the lipid nature, but more importantly to assess how local membrane curvature (vesicles with different size) influence the binding properties of a protein. Also, supported lipid bilayer model has been used widely to characterize diffusion law of lipids within the bilayer and/or protein/biomolecule binding and diffusion on the membrane. These membrane models continue to elucidate important advances regarding the dynamic properties harmonizing lipid-protein interaction.
Collapse
Affiliation(s)
- Joe Sarkis
- Department of Cell Biology, Harvard Medical School and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United States
- Univ Rennes, CNRS, IPR-UMR 6251, Rennes, France
| | | |
Collapse
|
39
|
Nasr ML. Large nanodiscs going viral. Curr Opin Struct Biol 2020; 60:150-156. [PMID: 32066086 PMCID: PMC10712563 DOI: 10.1016/j.sbi.2020.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/29/2022]
Abstract
Covalently circularized and DNA-corralled nanodisc technologies have enabled engineering of large-sized bilayer nanodiscs up to 90nm. These large nanodiscs have the potential to extend the applicability of nanodisc technology from studying small and medium-sized membrane proteins to acting as surrogate membranes to investigate functional and structural aspects of viral entry. Here, we discuss the recent technical developments leading to construction of large circularized and DNA-corralled nanodiscs and examine their application in viral entry.
Collapse
Affiliation(s)
- Mahmoud L Nasr
- Division of Renal Medicine, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
40
|
Asamoto DK, Kang G, Kim JE. Folding of the β-Barrel Membrane Protein OmpA into Nanodiscs. Biophys J 2019; 118:403-414. [PMID: 31843264 DOI: 10.1016/j.bpj.2019.11.3381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/08/2019] [Accepted: 11/20/2019] [Indexed: 01/19/2023] Open
Abstract
Nanodiscs (NDs) are an excellent alternative to small unilamellar vesicles (SUVs) for studies of membrane protein structure, but it has not yet been shown that membrane proteins are able to spontaneously fold and insert into a solution of freely diffusing NDs. In this article, we present SDS-PAGE differential mobility studies combined with fluorescence, circular dichroism, and ultraviolet resonance Raman spectroscopy to confirm the spontaneous folding of outer membrane protein A (OmpA) into preformed NDs. Folded OmpA in NDs was incubated with Arg-C protease, resulting in the digestion of OmpA to membrane-protected fragments with an apparent molecular mass of ∼26 kDa (major component) and ∼24 kDa (minor component). The OmpA folding yields were greater than 88% in both NDs and SUVs. An OmpA adsorbed intermediate on NDs could be isolated at low temperature and induced to fold via an increase in temperature, analogous to the temperature-jump experiments on SUVs. The circular dichroism spectra of OmpA in NDs and SUVs were similar and indicated β-barrel secondary structure. Further evidence of OmpA folding into NDs was provided by ultraviolet resonance Raman spectroscopy, which revealed the intense 785 cm-1 structural marker for folded OmpA in NDs. The primary difference between folding in NDs and SUVs was the kinetics; the rate of folding was two- to threefold slower in NDs compared to in SUVs, and this decreased rate can tentatively be attributed to the properties of NDs. These data indicate that NDs may be an excellent alternative to SUVs for folding experiments and offer benefits of optical clarity, sample homogeneity, control of ND:protein ratios, and greater stability.
Collapse
Affiliation(s)
- DeeAnn K Asamoto
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Guipeun Kang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Judy E Kim
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California.
| |
Collapse
|
41
|
Hughes HJ, Demers SME, Zhang A, Hafner JH. The orientation of a membrane probe from structural analysis by enhanced Raman scattering. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183109. [PMID: 31785235 DOI: 10.1016/j.bbamem.2019.183109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 02/04/2023]
Abstract
Small fluorescent molecules are widely used as probes of biomembranes. Different probes optically indicate membrane properties such as the lipid phase, thickness, viscosity, and electrical potential. The detailed molecular mechanisms behind probe signals are not well understood, in part due to the lack of tools to determine probe position and orientation in the membrane. Optical measurements on aligned biomembranes and lipid bilayers provide some degree of orientational information based on anisotropy in absorption, fluorescence, or nonlinear optical properties. These methods typically find the polar tilt angle between the membrane normal and the long axis of the molecule. Here we show that solution-phase surface enhanced Raman scattering (SERS) spectra of lipid membranes on gold nanorods can be used to determine molecular orientation of molecules within the membrane. The voltage sensitive dye 4-(2-(6-(dibutylamino)-2-naphthalenyl)ethenyl)-1-(3-sulfopropyl)-hydroxide, known as di-4-ANEPPS, is studied. Through the analysis of several peaks in the SERS spectrum, the polar angle from the membrane normal is found to be 66°, and the roll angle around the long axis of the molecule to be 305° from the original orientation. This structural analysis method could help elucidate the meaning of fluorescent membrane probe signals, and how they are affected by different lipid compositions.
Collapse
Affiliation(s)
- Hannah J Hughes
- Department of Physics & Astronomy, Rice University, Houston, TX, United States of America
| | - Steven M E Demers
- Department of Physics & Astronomy, Rice University, Houston, TX, United States of America
| | - Aobo Zhang
- Department of Physics & Astronomy, Rice University, Houston, TX, United States of America
| | - Jason H Hafner
- Department of Physics & Astronomy, Rice University, Houston, TX, United States of America; Department of Chemistry, Rice University, Houston, TX, United States of America.
| |
Collapse
|
42
|
Fan X, Jin S, Li Y, Khadaroo PA, Dai Y, He L, Zhou D, Lin H. Genetic And Epigenetic Regulation Of E-Cadherin Signaling In Human Hepatocellular Carcinoma. Cancer Manag Res 2019; 11:8947-8963. [PMID: 31802937 PMCID: PMC6801489 DOI: 10.2147/cmar.s225606] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/27/2019] [Indexed: 12/24/2022] Open
Abstract
E-cadherin is well known as a growth and invasion suppressor and belongs to the large cadherin family. Loss of E-cadherin is widely known as the hallmark of epithelial-to-mesenchymal transition (EMT) with the involvement of transcription factors such as Snail, Slug, Twist and Zeb1/2. Tumor cells undergoing EMT could migrate to distant sites and become metastases. Recently, numerous studies have revealed how the expression of E-cadherin is regulated by different kinds of genetic and epigenetic alteration, which are implicated in several crucial transcription factors and pathways. E-cadherin signaling plays an important role in hepatocellular carcinoma (HCC) initiation and progression considering the highly mutated frequency of CTNNB1 (27%). Combining the data from The Cancer Genome Atlas (TCGA) database and previous studies, we have summarized the roles of gene mutations, chromosome instability, DNA methylation, histone modifications and non-coding RNA in E-cadherin in HCC. In this review, we discuss the current understanding of the relationship between these modifications and HCC. Perspectives on E-cadherin-related research in HCC are provided.
Collapse
Affiliation(s)
- Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Shengxi Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Parikshit Asutosh Khadaroo
- School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Yili Dai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Lifeng He
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Daizhan Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
43
|
Dukay B, Csoboz B, Tóth ME. Heat-Shock Proteins in Neuroinflammation. Front Pharmacol 2019; 10:920. [PMID: 31507418 PMCID: PMC6718606 DOI: 10.3389/fphar.2019.00920] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/22/2019] [Indexed: 01/01/2023] Open
Abstract
The heat-shock response, one of the main pro-survival mechanisms of a living organism, has evolved as the biochemical response of cells to cope with heat stress. The most well-characterized aspect of the heat-shock response is the accumulation of a conserved set of proteins termed heat-shock proteins (HSPs). HSPs are key players in protein homeostasis acting as chaperones by aiding the folding and assembly of nascent proteins and protecting against protein aggregation. HSPs have been associated with neurological diseases in the context of their chaperone activity, as they were found to suppress the aggregation of misfolded toxic proteins. In recent times, HSPs have proven to have functions apart from the classical molecular chaperoning in that they play a role in a wider scale of neurological disorders by modulating neuronal survival, inflammation, and disease-specific signaling processes. HSPs are gaining importance based on their ability to fine-tune inflammation and act as immune modulators in various bodily fluids. However, their effect on neuroinflammation processes is not yet fully understood. In this review, we summarize the role of neuroinflammation in acute and chronic pathological conditions affecting the brain. Moreover, we seek to explore the existing literature on HSP-mediated inflammatory function within the central nervous system and compare the function of these proteins when they are localized intracellularly compared to being present in the extracellular milieu.
Collapse
Affiliation(s)
- Brigitta Dukay
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Bálint Csoboz
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Melinda E Tóth
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
44
|
Liu J, Zhu L, Zhang X, Wu B, Zhu P, Zhao H, Wang J. Peptide-based NTA(Ni)-nanodiscs for studying membrane enhanced FGFR1 kinase activities. PeerJ 2019; 7:e7234. [PMID: 31372315 PMCID: PMC6659669 DOI: 10.7717/peerj.7234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/02/2019] [Indexed: 11/20/2022] Open
Abstract
Tyrosine autophosphorylation plays a crucial regulatory role in the kinase activities of fibroblast growth factor receptors (FGFRs), and in the recruitment and activation of downstream intracellular signaling pathways. Biophysical and biochemical investigations of FGFR kinase domains in membrane environments offer key insights into phosphorylation mechanisms. Hence, we constructed nickel chelating nanodiscs based on a 22-residue peptide. The spontaneous anchoring of N-terminal His6-tagged FGFR1c kinase domain (FGFR1K) onto peptide nanodiscs grants FGFR1K orientations occurring on native plasma membranes. Following membrane incorporation, the autophosphorylation of FGFR1K, as exemplified by Y653 and Y654 in the A-loop and the total tyrosine phosphorylation, increase significantly. This in vitro reconstitution system may be applicable to studies of other membrane associated phenomena.
Collapse
Affiliation(s)
- Juanjuan Liu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Zhu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Xueli Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bo Wu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Ping Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hongxin Zhao
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Junfeng Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,University of Science and Technology of China, Hefei, Anhui, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| |
Collapse
|
45
|
Zhang Q, Cherezov V. Chemical tools for membrane protein structural biology. Curr Opin Struct Biol 2019; 58:278-285. [PMID: 31285102 DOI: 10.1016/j.sbi.2019.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 01/24/2023]
Abstract
Solving high-resolution structures of membrane proteins has been an important challenge for decades, still lagging far behind that of soluble proteins even with the recent remarkable technological advances in X-ray crystallography and electron microscopy. Central to this challenge is the necessity to isolate and solubilize membrane proteins in a stable, natively folded and functional state, a process influenced by not only the proteins but also their surrounding chemical environment. This review highlights recent community efforts in the development and characterization of novel membrane agents and ligand tools to stabilize individual proteins and protein complexes, which together have accelerated progress in membrane protein structural biology.
Collapse
Affiliation(s)
- Qinghai Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Vadim Cherezov
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
46
|
Türková A, Zdrazil B. Current Advances in Studying Clinically Relevant Transporters of the Solute Carrier (SLC) Family by Connecting Computational Modeling and Data Science. Comput Struct Biotechnol J 2019; 17:390-405. [PMID: 30976382 PMCID: PMC6438991 DOI: 10.1016/j.csbj.2019.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 01/18/2023] Open
Abstract
Organic anion and cation transporting proteins (OATs, OATPs, and OCTs), as well as the Multidrug and Toxin Extrusion (MATE) transporters of the Solute Carrier (SLC) family are playing a pivotal role in the discovery and development of new drugs due to their involvement in drug disposition, drug-drug interactions, adverse drug effects and related toxicity. Computational methods to understand and predict clinically relevant transporter interactions can provide useful guidance at early stages in drug discovery and design, especially if they include contemporary data science approaches. In this review, we summarize the current state-of-the-art of computational approaches for exploring ligand interactions and selectivity for these drug (uptake) transporters. The computational methods discussed here by highlighting interesting examples from the current literature are ranging from semiautomatic data mining and integration, to ligand-based methods (such as quantitative structure-activity relationships, and combinatorial pharmacophore modeling), and finally structure-based methods (such as comparative modeling, molecular docking, and molecular dynamics simulations). We are focusing on promising computational techniques such as fold-recognition methods, proteochemometric modeling or techniques for enhanced sampling of protein conformations used in the context of these ADMET-relevant SLC transporters with a special focus on methods useful for studying ligand selectivity.
Collapse
Affiliation(s)
- Alžběta Türková
- Department of Pharmaceutical Chemistry, Divison of Drug Design and Medicinal Chemistry, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Barbara Zdrazil
- Department of Pharmaceutical Chemistry, Divison of Drug Design and Medicinal Chemistry, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| |
Collapse
|
47
|
Hydrogen-deuterium exchange mass spectrometry of membrane proteins in lipid nanodiscs. Chem Phys Lipids 2019; 220:14-22. [PMID: 30802434 DOI: 10.1016/j.chemphyslip.2019.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/31/2022]
Abstract
Hydrogen deuterium exchange mass spectrometry (H/DX MS) provides a quantitative comparison of the relative rates of exchange of amide protons for solvent deuterons. In turn, the rate of amide exchange depends on a complex combination of the stability of local secondary structure, solvent accessibility, and dynamics. H/DX MS has, therefore, been widely used to probe structure and function of soluble proteins, but its application to membrane proteins was limited previously to detergent solubilized samples. The large excess of lipids from model membranes, or from membrane fractions derived from in vivo samples, presents challenges with mass spectrometry. The lipid nanodisc platform, consisting of apolipoprotein A-derived membrane scaffold proteins, provides a native like membrane environment in which to capture analyte membrane proteins with a well defined, and low, ratio of lipid to protein. Membrane proteins in lipid nanodiscs are amenable to H/DX MS, and this is expected to lead to a rapid increase in the number of membrane proteins subjected to this analysis. Here we review the few literature examples of the application of H/DX MS to membrane proteins in nanodiscs. The incremental improvements in the experimental workflow of the H/DX MS are described and potential applications of this approach to study membrane proteins are described.
Collapse
|
48
|
Camp T, McLean M, Kato M, Cheruzel L, Sligar S. The hydrodynamic motion of Nanodiscs. Chem Phys Lipids 2019; 220:28-35. [PMID: 30802435 DOI: 10.1016/j.chemphyslip.2019.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 02/02/2023]
Abstract
We present a fluorescence-based methodology for monitoring the rotational dynamics of Nanodiscs. Nanodiscs are nano-scale lipid bilayers surrounded by a helical membrane scaffold protein (MSP) that have found considerable use in studying the interactions between membrane proteins and their lipid bilayer environment. Using a long-lifetime Ruthenium label covalently attached to the Nanodiscs, we find that Nanodiscs of increasing diameter, made by varying the number of helical repeats in the MSP, display increasing rotational correlation times. We also model our system using both analytical equations that describe rotating spheroids and numerical calculations performed on atomic models of Nanodiscs. Using these methods, we observe a linear relationship between the experimentally determined rotational correlation times and those calculated from both analytical equations and numerical solutions. This work sets the stage for accurate, label-free quantification of protein-lipid interactions at the membrane surface.
Collapse
Affiliation(s)
- Tyler Camp
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 314F Roger Adams Laboratory (MC-712), 600 S Mathews Ave, Urbana, IL, 61801, United States; Department of Biochemistry, University of Illinois at Urbana-Champaign, 417 RAL (MC-712), 600 South Mathews Avenue, Urbana, IL, 61801, United States
| | - Mark McLean
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 417 RAL (MC-712), 600 South Mathews Avenue, Urbana, IL, 61801, United States
| | - Mallory Kato
- Department of Chemistry, San Jose State University, San Jose, CA, 95192-0101, United States
| | - Lionel Cheruzel
- Department of Chemistry, San Jose State University, San Jose, CA, 95192-0101, United States
| | - Stephen Sligar
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 314F Roger Adams Laboratory (MC-712), 600 S Mathews Ave, Urbana, IL, 61801, United States; Department of Biochemistry, University of Illinois at Urbana-Champaign, 417 RAL (MC-712), 600 South Mathews Avenue, Urbana, IL, 61801, United States.
| |
Collapse
|
49
|
Li Y, Soubias O, Li J, Sun S, Randazzo PA, Byrd RA. Functional Expression and Characterization of Human Myristoylated-Arf1 in Nanodisc Membrane Mimetics. Biochemistry 2019; 58:1423-1431. [PMID: 30735034 DOI: 10.1021/acs.biochem.8b01323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lipidated small GTP-binding proteins of the Arf family interact with multiple cellular partners and with membranes to regulate intracellular traffic and organelle structure. Here, we focus on the ADP-ribosylation factor 1 (Arf1), which interacts with numerous proteins in the Arf pathway, such as the ArfGAP ASAP1 that is highly expressed and activated in several cancer cell lines and associated with enhanced migration, invasiveness, and poor prognosis. Understanding the molecular and mechanistic details of Arf1 regulation at the membrane via structural and biophysical studies requires large quantities of fully functional protein bound to lipid bilayers. Here, we report on the production of a functional human Arf1 membrane platform on nanodiscs for biophysical studies. Large scale bacterial production of highly pure, N-myristoylated human Arf1 has been achieved, including complex isotopic labeling for nuclear magnetic resonance (NMR) studies, and the myr-Arf1 can be readily assembled in small nanoscale lipid bilayers (nanodiscs, NDs). It is determined that myr-Arf1 requires a minimum binding surface in the NDs of ∼20 lipids. Fluorescence and NMR were used to establish nucleotide exchange and ArfGAP-stimulated GTP hydrolysis at the membrane, indicating that phophoinositide stimulation of the activity of the ArfGAP ASAP1 is ≥2000-fold. Differences in nonhydrolyzable GTP analogues are observed, and GMPPCP is found to be the most stable. Combined, these observations establish a functional environment for biophysical studies of Arf1 effectors and interactions at the membrane.
Collapse
Affiliation(s)
- Yifei Li
- Structural Biophysics Laboratory, Center for Cancer Research , National Cancer Institute , Frederick , Maryland 21702-1201 , United States
| | - Olivier Soubias
- Structural Biophysics Laboratory, Center for Cancer Research , National Cancer Institute , Frederick , Maryland 21702-1201 , United States
| | - Jess Li
- Structural Biophysics Laboratory, Center for Cancer Research , National Cancer Institute , Frederick , Maryland 21702-1201 , United States
| | - Shangjin Sun
- Structural Biophysics Laboratory, Center for Cancer Research , National Cancer Institute , Frederick , Maryland 21702-1201 , United States
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research , National Cancer Institute , Bethesda , Maryland 20892 , United States
| | - R Andrew Byrd
- Structural Biophysics Laboratory, Center for Cancer Research , National Cancer Institute , Frederick , Maryland 21702-1201 , United States
| |
Collapse
|
50
|
Yoshida K, Nagatoishi S, Kuroda D, Suzuki N, Murata T, Tsumoto K. Phospholipid Membrane Fluidity Alters Ligand Binding Activity of a G Protein-Coupled Receptor by Shifting the Conformational Equilibrium. Biochemistry 2019; 58:504-508. [DOI: 10.1021/acs.biochem.8b01194] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Kouhei Yoshida
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Satoru Nagatoishi
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Daisuke Kuroda
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Nanao Suzuki
- Graduate School of Science, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Takeshi Murata
- Graduate School of Science, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|