1
|
González Brito R, Montenegro P, Méndez A, Shabgahi RE, Pasquarelli A, Borges R. Analytical Determination of Serotonin Exocytosis in Human Platelets with BDD-on-Quartz MEA Devices. BIOSENSORS 2024; 14:75. [PMID: 38391994 PMCID: PMC10886747 DOI: 10.3390/bios14020075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024]
Abstract
Amperometry is arguably the most widely used technique for studying the exocytosis of biological amines. However, the scarcity of human tissues, particularly in the context of neurological diseases, poses a challenge for exocytosis research. Human platelets, which accumulate 90% of blood serotonin, release it through exocytosis. Nevertheless, single-cell amperometry with encapsulated carbon fibers is impractical due to the small size of platelets and the limited number of secretory granules on each platelet. The recent technological improvements in amperometric multi-electrode array (MEA) devices allow simultaneous recordings from several high-performance electrodes. In this paper, we present a comparison of three MEA boron-doped diamond (BDD) devices for studying serotonin exocytosis in human platelets: (i) the BDD-on-glass MEA, (ii) the BDD-on-silicon MEA, and (iii) the BDD on amorphous quartz MEA (BDD-on-quartz MEA). Transparent electrodes offer several advantages for observing living cells, and in the case of platelets, they control activation/aggregation. BDD-on-quartz offers the advantage over previous materials of combining excellent electrochemical properties with transparency for microscopic observation. These devices are opening exciting perspectives for clinical applications.
Collapse
Affiliation(s)
- Rosalía González Brito
- Pharmacology Unit, Medical School, Universidad de La Laguna, 38200 La Laguna, Spain; (R.G.B.); (P.M.); (A.M.)
| | - Pablo Montenegro
- Pharmacology Unit, Medical School, Universidad de La Laguna, 38200 La Laguna, Spain; (R.G.B.); (P.M.); (A.M.)
| | - Alicia Méndez
- Pharmacology Unit, Medical School, Universidad de La Laguna, 38200 La Laguna, Spain; (R.G.B.); (P.M.); (A.M.)
| | - Ramtin E. Shabgahi
- Institute of Electron Devices and Circuits, Ulm University, 89069 Ulm, Germany; (R.E.S.); (A.P.)
| | - Alberto Pasquarelli
- Institute of Electron Devices and Circuits, Ulm University, 89069 Ulm, Germany; (R.E.S.); (A.P.)
| | - Ricardo Borges
- Pharmacology Unit, Medical School, Universidad de La Laguna, 38200 La Laguna, Spain; (R.G.B.); (P.M.); (A.M.)
| |
Collapse
|
2
|
Tomagra G, Re A, Varzi V, Aprà P, Britel A, Franchino C, Sturari S, Amine NH, Westerink RHS, Carabelli V, Picollo F. Enhancing the Study of Quantal Exocytotic Events: Combining Diamond Multi-Electrode Arrays with Amperometric PEak Analysis (APE) an Automated Analysis Code. BIOSENSORS 2023; 13:1033. [PMID: 38131793 PMCID: PMC10741388 DOI: 10.3390/bios13121033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
MicroGraphited-Diamond-Multi Electrode Arrays (μG-D-MEAs) can be successfully used to reveal, in real time, quantal exocytotic events occurring from many individual neurosecretory cells and/or from many neurons within a network. As μG-D-MEAs arrays are patterned with up to 16 sensing microelectrodes, each of them recording large amounts of data revealing the exocytotic activity, the aim of this work was to support an adequate analysis code to speed up the signal detection. The cutting-edge technology of microGraphited-Diamond-Multi Electrode Arrays (μG-D-MEAs) has been implemented with an automated analysis code (APE, Amperometric Peak Analysis) developed using Matlab R2022a software to provide easy and accurate detection of amperometric spike parameters, including the analysis of the pre-spike foot that sometimes precedes the complete fusion pore dilatation. Data have been acquired from cultured PC12 cells, either collecting events during spontaneous exocytosis or after L-DOPA incubation. Validation of the APE code was performed by comparing the acquired spike parameters with those obtained using Quanta Analysis (Igor macro) by Mosharov et al.
Collapse
Affiliation(s)
- Giulia Tomagra
- Department of Drug and Science Technology, NIS Interdepartmental Centre, University of Torino, Corso Raffaello 30, 10125 Torino, Italy; (G.T.); (C.F.); (V.C.)
| | - Alice Re
- Department of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, Via Giuria 1, 10125 Torino, Italy (P.A.); (A.B.); (S.S.); (N.-H.A.); (F.P.)
| | - Veronica Varzi
- Department of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, Via Giuria 1, 10125 Torino, Italy (P.A.); (A.B.); (S.S.); (N.-H.A.); (F.P.)
| | - Pietro Aprà
- Department of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, Via Giuria 1, 10125 Torino, Italy (P.A.); (A.B.); (S.S.); (N.-H.A.); (F.P.)
| | - Adam Britel
- Department of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, Via Giuria 1, 10125 Torino, Italy (P.A.); (A.B.); (S.S.); (N.-H.A.); (F.P.)
| | - Claudio Franchino
- Department of Drug and Science Technology, NIS Interdepartmental Centre, University of Torino, Corso Raffaello 30, 10125 Torino, Italy; (G.T.); (C.F.); (V.C.)
| | - Sofia Sturari
- Department of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, Via Giuria 1, 10125 Torino, Italy (P.A.); (A.B.); (S.S.); (N.-H.A.); (F.P.)
| | - Nour-Hanne Amine
- Department of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, Via Giuria 1, 10125 Torino, Italy (P.A.); (A.B.); (S.S.); (N.-H.A.); (F.P.)
| | - Remco H. S. Westerink
- Neurotoxicology Research Group, Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508 TD Utrecht, The Netherlands;
| | - Valentina Carabelli
- Department of Drug and Science Technology, NIS Interdepartmental Centre, University of Torino, Corso Raffaello 30, 10125 Torino, Italy; (G.T.); (C.F.); (V.C.)
| | - Federico Picollo
- Department of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, Via Giuria 1, 10125 Torino, Italy (P.A.); (A.B.); (S.S.); (N.-H.A.); (F.P.)
| |
Collapse
|
3
|
Biton T, Scher N, Carmon S, Elbaz-Alon Y, Schejter ED, Shilo BZ, Avinoam O. Fusion pore dynamics of large secretory vesicles define a distinct mechanism of exocytosis. J Cell Biol 2023; 222:e202302112. [PMID: 37707500 PMCID: PMC10501449 DOI: 10.1083/jcb.202302112] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/06/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023] Open
Abstract
Exocrine cells utilize large secretory vesicles (LSVs) up to 10 μm in diameter. LSVs fuse with the apical surface, often recruiting actomyosin to extrude their content through dynamic fusion pores. The molecular mechanism regulating pore dynamics remains largely uncharacterized. We observe that the fusion pores of LSVs in the Drosophila larval salivary glands expand, stabilize, and constrict. Arp2/3 is essential for pore expansion and stabilization, while myosin II is essential for pore constriction. We identify several Bin-Amphiphysin-Rvs (BAR) homology domain proteins that regulate fusion pore expansion and stabilization. We show that the I-BAR protein Missing-in-Metastasis (MIM) localizes to the fusion site and is essential for pore expansion and stabilization. The MIM I-BAR domain is essential but not sufficient for localization and function. We conclude that MIM acts in concert with actin, myosin II, and additional BAR-domain proteins to control fusion pore dynamics, mediating a distinct mode of exocytosis, which facilitates actomyosin-dependent content release that maintains apical membrane homeostasis during secretion.
Collapse
Affiliation(s)
- Tom Biton
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Nadav Scher
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shari Carmon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Elbaz-Alon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal D. Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ben-Zion Shilo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ori Avinoam
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
Buzzatto MV, Berberián MV, Di Bartolo AL, Masone D, Tomes CN. α-Synuclein is required for sperm exocytosis at a post-fusion stage. Front Cell Dev Biol 2023; 11:1125988. [PMID: 37287458 PMCID: PMC10242118 DOI: 10.3389/fcell.2023.1125988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
The sperm acrosome is a large dense-core granule whose contents are secreted by regulated exocytosis at fertilization through the opening of numerous fusion pores between the acrosomal and plasma membranes. In other cells, the nascent pore generated when the membrane surrounding a secretory vesicle fuses with the plasma membrane may have different fates. In sperm, pore dilation leads to the vesiculation and release of these membranes, together with the granule contents. α-Synuclein is a small cytosolic protein claimed to exhibit different roles in exocytic pathways in neurons and neuroendocrine cells. Here, we scrutinized its function in human sperm. Western blot revealed the presence of α-synuclein and indirect immunofluorescence its localization to the acrosomal domain of human sperm. Despite its small size, the protein was retained following permeabilization of the plasma membrane with streptolysin O. α-Synuclein was required for acrosomal release, as demonstrated by the inability of an inducer to elicit exocytosis when permeabilized human sperm were loaded with inhibitory antibodies to human α-synuclein. The antibodies halted calcium-induced secretion when introduced after the acrosome docked to the cell membrane. Two functional assays, fluorescence and transmission electron microscopies revealed that the stabilization of open fusion pores was responsible for the secretion blockage. Interestingly, synaptobrevin was insensitive to neurotoxin cleavage at this point, an indication of its engagement in cis SNARE complexes. The very existence of such complexes during AE reflects a new paradigm. Recombinant α-synuclein rescued the inhibitory effects of the anti-α-synuclein antibodies and of a chimeric Rab3A-22A protein that also inhibits AE after fusion pore opening. We applied restrained molecular dynamics simulations to compare the energy cost of expanding a nascent fusion pore between two model membranes and found it higher in the absence than in the presence of α-synuclein. Hence, our results suggest that α-synuclein is essential for expanding fusion pores.
Collapse
Affiliation(s)
- Micaela Vanina Buzzatto
- Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET-Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María Victoria Berberián
- Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET-Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Ciencias Básicas (ICB)-CONICET-Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Ary Lautaro Di Bartolo
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Diego Masone
- Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET-Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ingeniería, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Claudia Nora Tomes
- Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET-Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
5
|
Ramírez-Ponce MP, Flores JA, Barrella L, Alés E. Ketotifen is a microglial stabilizer by inhibiting secretory vesicle acidification. Life Sci 2023; 319:121537. [PMID: 36868401 DOI: 10.1016/j.lfs.2023.121537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023]
Abstract
AIMS Microglia survey the brain environment by sensing alarm signals to provide the first line of defense against injury or infection after which they acquire an activated phenotype, but they also respond to chemical signals sent from brain mast cells, sentinels of the immune system, when these are degranulated in response to noxious agents. Nevertheless, excessive microglia activation damages the surrounding healthy neural tissue causing progressive loss of neurons and inducing chronic inflammation. Thus, it would be of intense interest the development and application of agents which prevent mast cell mediator release and inhibit the actions of such mediators once released on microglia. MAIN METHODS Fluorescence measurements of fura-2 and quinacrine were used to measure intracellular Ca2+ signaling and exocytotic vesicle fusion in resting and activated microglia. KEY FINDINGS We show that treatment of microglia with a cocktail of mast cell mediators induces microglia activation, phagocytosis, and exocytosis, and reveal by the first-time microglia undergo a phase of vesicular acidification just before the exocytotic fusion occurs. This acidification is an important process for vesicular maturation and contributes with ∼25 % to the content that the vesicle can store and later release by exocytosis. Pre-incubation with ketotifen, a mast cell stabilizer and H1R antagonist completely abolished histamine-mediated calcium signaling and acidification of microglial organelles, and concomitantly reduced the discharge of vesicle contents. SIGNIFICANCE These results highlight a key role for vesicle acidification in microglial physiology and provide a potential therapeutic target for diseases related to mast cell and microglia-mediated neuroinflammation.
Collapse
Affiliation(s)
| | - Juan Antonio Flores
- Dpto. de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Spain
| | - Lorenzo Barrella
- Dpto. de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Spain
| | - Eva Alés
- Dpto. de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Spain.
| |
Collapse
|
6
|
González-Jamett A, Maldifassi MC, Cárdenas AM. Isolation and Purification of Chromaffin Granules from Adrenal Glands and Cultured Neuroendocrine Cells. Methods Mol Biol 2023; 2565:283-296. [PMID: 36205901 DOI: 10.1007/978-1-0716-2671-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chromaffin granules isolated from adrenal glands constitute a powerful experimental tool to the study of secretory vesicle components and their participation in fusion and docking processes, vesicle aggregation, and interactions with cytosolic components. Although it is possible to isolate and purify chromaffin granules from adrenal glands of different species, bovine adrenal glands are the most used tissue source due to its easy handling and the large amount of granules that can be obtained from this tissue. In this chapter, we describe an easy-to-use and short-term protocol for efficiently obtaining highly purified chromaffin granules from bovine adrenal medulla. We additionally include protocols to isolate granules from cultured bovine chromaffin cells and PC12 cells, as well as a section to obtain chromaffin granules from mouse adrenal glands.
Collapse
Affiliation(s)
- Arlek González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
| | - María Constanza Maldifassi
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Ana María Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
7
|
Bayonés L, Guerra-Fernández MJ, Hinostroza F, Báez-Matus X, Vásquez-Navarrete J, Gallo LI, Parra S, Martínez AD, González-Jamett A, Marengo FD, Cárdenas AM. Gain-of-Function Dynamin-2 Mutations Linked to Centronuclear Myopathy Impair Ca2+-Induced Exocytosis in Human Myoblasts. Int J Mol Sci 2022; 23:ijms231810363. [PMID: 36142275 PMCID: PMC9499313 DOI: 10.3390/ijms231810363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Gain-of-function mutations of dynamin-2, a mechano-GTPase that remodels membrane and actin filaments, cause centronuclear myopathy (CNM), a congenital disease that mainly affects skeletal muscle tissue. Among these mutations, the variants p.A618T and p.S619L lead to a gain of function and cause a severe neonatal phenotype. By using total internal reflection fluorescence microscopy (TIRFM) in immortalized human myoblasts expressing the pH-sensitive fluorescent protein (pHluorin) fused to the insulin-responsive aminopeptidase IRAP as a reporter of the GLUT4 vesicle trafficking, we measured single pHluorin signals to investigate how p.A618T and p.S619L mutations influence exocytosis. We show here that both dynamin-2 mutations significantly reduced the number and durations of pHluorin signals induced by 10 μM ionomycin, indicating that in addition to impairing exocytosis, they also affect the fusion pore dynamics. These mutations also disrupt the formation of actin filaments, a process that reportedly favors exocytosis. This altered exocytosis might importantly disturb the plasmalemma expression of functional proteins such as the glucose transporter GLUT4 in skeletal muscle cells, impacting the physiology of the skeletal muscle tissue and contributing to the CNM disease.
Collapse
Affiliation(s)
- Lucas Bayonés
- Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - María José Guerra-Fernández
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, Valparaíso 2360102, Chile
| | - Fernando Hinostroza
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas (CINPSI Neurocog), Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca 3460000, Chile
| | - Ximena Báez-Matus
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, Valparaíso 2360102, Chile
| | - Jacqueline Vásquez-Navarrete
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, Valparaíso 2360102, Chile
| | - Luciana I. Gallo
- Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Sergio Parra
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Agustín D. Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, Valparaíso 2360102, Chile
| | - Arlek González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, Valparaíso 2360102, Chile
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Fernando D. Marengo
- Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
- Correspondence: (F.D.M.); (A.M.C.)
| | - Ana M. Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, Valparaíso 2360102, Chile
- Correspondence: (F.D.M.); (A.M.C.)
| |
Collapse
|
8
|
Villanueva J, Gimenez-Molina Y, Davletov B, Gutiérrez LM. Vesicle Fusion as a Target Process for the Action of Sphingosine and Its Derived Drugs. Int J Mol Sci 2022; 23:ijms23031086. [PMID: 35163009 PMCID: PMC8834808 DOI: 10.3390/ijms23031086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
The fusion of membranes is a central part of the physiological processes involving the intracellular transport and maturation of vesicles and the final release of their contents, such as neurotransmitters and hormones, by exocytosis. Traditionally, in this process, proteins, such SNAREs have been considered the essential components of the fusion molecular machinery, while lipids have been seen as merely structural elements. Nevertheless, sphingosine, an intracellular signalling lipid, greatly increases the release of neurotransmitters in neuronal and neuroendocrine cells, affecting the exocytotic fusion mode through the direct interaction with SNAREs. Moreover, recent studies suggest that FTY-720 (Fingolimod), a sphingosine structural analogue used in the treatment of multiple sclerosis, simulates sphingosine in the promotion of exocytosis. Furthermore, this drug also induces the intracellular fusion of organelles such as dense vesicles and mitochondria causing cell death in neuroendocrine cells. Therefore, the effect of sphingosine and synthetic derivatives on the heterologous and homologous fusion of organelles can be considered as a new mechanism of action of sphingolipids influencing important physiological processes, which could underlie therapeutic uses of sphingosine derived lipids in the treatment of neurodegenerative disorders and cancers of neuronal origin such neuroblastoma.
Collapse
Affiliation(s)
- José Villanueva
- Instituto de Neurociencias, CSIC-Universidad Miguel Hernández, Cra de Valencia S/N, Sant Joan d’Alacant, 03550 Alicante, Spain;
- Correspondence: (J.V.); (L.M.G.)
| | - Yolanda Gimenez-Molina
- Instituto de Neurociencias, CSIC-Universidad Miguel Hernández, Cra de Valencia S/N, Sant Joan d’Alacant, 03550 Alicante, Spain;
| | - Bazbek Davletov
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK;
| | - Luis M. Gutiérrez
- Instituto de Neurociencias, CSIC-Universidad Miguel Hernández, Cra de Valencia S/N, Sant Joan d’Alacant, 03550 Alicante, Spain;
- Correspondence: (J.V.); (L.M.G.)
| |
Collapse
|
9
|
He X, Ewing AG. Concentration of stimulant regulates initial exocytotic molecular plasticity at single cells. Chem Sci 2022; 13:1815-1822. [PMID: 35282618 PMCID: PMC8826951 DOI: 10.1039/d1sc05278k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/20/2022] [Indexed: 11/21/2022] Open
Abstract
Activity-induced synaptic plasticity has been intensively studied, but is not yet well understood. We examined the temporal and concentration effects of exocytotic molecular plasticity during and immediately after chemical stimulation (30 s K+ stimulation) via single cell amperometry. Here the first and the second 15 s event periods from individual event traces were compared. Remarkably, we found that the amount of catecholamine release and release dynamics depend on the stimulant concentration. No changes were observed at 10 mM K+ stimulation, but changes observed at 30 and 50 mM (i.e., potentiation, increased number of molecules) were opposite to those at 100 mM (i.e., depression, decreased number of events), revealing changes in exocytotic plasticity based on the concentration of the stimulant solution. These results show that molecular changes initiating exocytotic plasticity can be regulated by the concentration strength of the stimulant solution. These different effects on early plasticity offer a possible link between stimulation intensity and synaptic (or adrenal) plasticity. Amperometric measurement of exocytosis (SCA) and vesicle content (IVIEC) over 15 s intervals reveals plasticity (none, potentiation, or depression), that is regulated by the concentration of stimulant solution (e.g., 30 s 10, 30, 50, and 100 mM K+).![]()
Collapse
Affiliation(s)
- Xiulan He
- Department of Chemistry and Molecular Biology, University of Gothenburg 412 96 Gothenburg Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg 412 96 Gothenburg Sweden
| |
Collapse
|
10
|
Glucagon-like peptide-1 receptor controls exocytosis in chromaffin cells by increasing full-fusion events. Cell Rep 2021; 36:109609. [PMID: 34433018 DOI: 10.1016/j.celrep.2021.109609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/02/2021] [Accepted: 08/04/2021] [Indexed: 11/21/2022] Open
Abstract
Agonists for glucagon-like-peptide-1 receptor (GLP-1R) are currently used for the treatment of type 2 diabetes and obesity. Their benefits have been centered on pancreas and hypothalamus, but their roles in other organ systems are not well understood. We studied the action of GLP-1R on secretions of adrenal medulla. Exendin-4, a synthetic analog of GLP-1, increases the synthesis and the release of catecholamines (CAs) by increasing cyclic AMP (cAMP) production, without apparent participation of cAMP-regulated guanine nucleotide exchange factor (Epac). Exendin-4, when incubated for 24 h, increases CA synthesis by promoting the activation of tyrosine hydroxylase. Short incubation (20 min) increases the quantum size of exocytotic events by switching exocytosis from partial to full fusion. Our results give a strong support to the role of GLP-1 in the fine control of exocytosis.
Collapse
|
11
|
Chatterjee Bhowmick D, Ahn M, Oh E, Veluthakal R, Thurmond DC. Conventional and Unconventional Mechanisms by which Exocytosis Proteins Oversee β-cell Function and Protection. Int J Mol Sci 2021; 22:1833. [PMID: 33673206 PMCID: PMC7918544 DOI: 10.3390/ijms22041833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes (T2D) is one of the prominent causes of morbidity and mortality in the United States and beyond, reaching global pandemic proportions. One hallmark of T2D is dysfunctional glucose-stimulated insulin secretion from the pancreatic β-cell. Insulin is secreted via the recruitment of insulin secretory granules to the plasma membrane, where the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and SNARE regulators work together to dock the secretory granules and release insulin into the circulation. SNARE proteins and their regulators include the Syntaxins, SNAPs, Sec1/Munc18, VAMPs, and double C2-domain proteins. Recent studies using genomics, proteomics, and biochemical approaches have linked deficiencies of exocytosis proteins with the onset and progression of T2D. Promising results are also emerging wherein restoration or enhancement of certain exocytosis proteins to β-cells improves whole-body glucose homeostasis, enhances β-cell function, and surprisingly, protection of β-cell mass. Intriguingly, overexpression and knockout studies have revealed novel functions of certain exocytosis proteins, like Syntaxin 4, suggesting that exocytosis proteins can impact a variety of pathways, including inflammatory signaling and aging. In this review, we present the conventional and unconventional functions of β-cell exocytosis proteins in normal physiology and T2D and describe how these insights might improve clinical care for T2D.
Collapse
Affiliation(s)
| | | | | | | | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (D.C.B.); (M.A.); (E.O.); (R.V.)
| |
Collapse
|
12
|
Guille-Collignon M, Lemaître F. Overview and outlook of the strategies devoted to electrofluorescence surveys: Application to single cell secretion analysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Kuhn B, Picollo F, Carabelli V, Rispoli G. Advanced real-time recordings of neuronal activity with tailored patch pipettes, diamond multi-electrode arrays and electrochromic voltage-sensitive dyes. Pflugers Arch 2020; 473:15-36. [PMID: 33047171 PMCID: PMC7782438 DOI: 10.1007/s00424-020-02472-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/03/2022]
Abstract
To understand the working principles of the nervous system is key to figure out its electrical activity and how this activity spreads along the neuronal network. It is therefore crucial to develop advanced techniques aimed to record in real time the electrical activity, from compartments of single neurons to populations of neurons, to understand how higher functions emerge from coordinated activity. To record from single neurons, a technique will be presented to fabricate patch pipettes able to seal on any membrane with a single glass type and whose shanks can be widened as desired. This dramatically reduces access resistance during whole-cell recording allowing fast intracellular and, if required, extracellular perfusion. To simultaneously record from many neurons, biocompatible probes will be described employing multi-electrodes made with novel technologies, based on diamond substrates. These probes also allow to synchronously record exocytosis and neuronal excitability and to stimulate neurons. Finally, to achieve even higher spatial resolution, it will be shown how voltage imaging, employing fast voltage-sensitive dyes and two-photon microscopy, is able to sample voltage oscillations in the brain spatially resolved and voltage changes in dendrites of single neurons at millisecond and micrometre resolution in awake animals.
Collapse
Affiliation(s)
- Bernd Kuhn
- Optical Neuroimaging Unit, OIST Graduate University, 1919-1 Tancha, Onna-son, Okinawa, Japan
| | - Federico Picollo
- Department of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, via Giuria 1, 10125, Torino, Italy
| | - Valentina Carabelli
- Department of Drug and Science Technology, NIS Interdepartmental Centre, University of Torino, Corso Raffaello 30, 10125, Torino, Italy
| | - Giorgio Rispoli
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| |
Collapse
|
14
|
Carbone E, Borges R, Eiden LE, García AG, Hernández‐Cruz A. Chromaffin Cells of the Adrenal Medulla: Physiology, Pharmacology, and Disease. Compr Physiol 2019; 9:1443-1502. [DOI: 10.1002/cphy.c190003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Vakilian M, Tahamtani Y, Ghaedi K. A review on insulin trafficking and exocytosis. Gene 2019; 706:52-61. [DOI: 10.1016/j.gene.2019.04.063] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/21/2022]
|
16
|
Karatekin E, Rothman JE. FEBS Letters Special Issue on Exocytosis and Endocytosis. FEBS Lett 2019; 592:3477-3479. [PMID: 30417372 DOI: 10.1002/1873-3468.13274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Erdem Karatekin
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.,Nanobiology Institute, Yale University, West Haven, CT, USA.,Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - James E Rothman
- Nanobiology Institute, Yale University, West Haven, CT, USA.,Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, UK
| |
Collapse
|