1
|
Ma S, Sandhoff R, Luo X, Shang F, Shi Q, Li Z, Wu J, Ming Y, Schwarz F, Madi A, Weisshaar N, Mieg A, Hering M, Zettl F, Yan X, Mohr K, Ten Bosch N, Li Z, Poschet G, Rodewald HR, Papavasiliou N, Wang X, Gao P, Cui G. Serine enrichment in tumors promotes regulatory T cell accumulation through sphinganine-mediated regulation of c-Fos. Sci Immunol 2024; 9:eadg8817. [PMID: 38640251 DOI: 10.1126/sciimmunol.adg8817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/15/2024] [Indexed: 04/21/2024]
Abstract
CD4+ regulatory T (Treg) cells accumulate in the tumor microenvironment (TME) and suppress the immune system. Whether and how metabolite availability in the TME influences Treg cell differentiation is not understood. Here, we measured 630 metabolites in the TME and found that serine and palmitic acid, substrates required for the synthesis of sphingolipids, were enriched. A serine-free diet or a deficiency in Sptlc2, the rate-limiting enzyme catalyzing sphingolipid synthesis, suppressed Treg cell accumulation and inhibited tumor growth. Sphinganine, an intermediate metabolite in sphingolipid synthesis, physically interacted with the transcription factor c-Fos. Sphinganine c-Fos interactions enhanced the genome-wide recruitment of c-Fos to regions near the transcription start sites of target genes including Pdcd1 (encoding PD-1), which promoted Pdcd1 transcription and increased inducible Treg cell differentiation in vitro in a PD-1-dependent manner. Thus, Sptlc2-mediated sphingolipid synthesis translates the extracellular information of metabolite availability into nuclear signals for Treg cell differentiation and limits antitumor immunity.
Collapse
Affiliation(s)
- Sicong Ma
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230601, China
| | - Roger Sandhoff
- Lipid Pathobiochemistry Group (A411), 69120 Heidelberg, Germany
| | - Xiu Luo
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuwei Shang
- Cellular Immunology (D110), German Cancer Research Center, 69120 Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Qiaozhen Shi
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Zhaolong Li
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingxia Wu
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230601, China
| | - Yanan Ming
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230601, China
| | - Frank Schwarz
- Core Facility Antibodies (W170), German Cancer Research Center, 69120 Heidelberg, Germany
| | - Alaa Madi
- Immune Diversity (D150), German Cancer Research Center, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Nina Weisshaar
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- T Cell Metabolism (D192), German Cancer Research Center, 69120 Heidelberg, Germany
| | - Alessa Mieg
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- T Cell Metabolism (D192), German Cancer Research Center, 69120 Heidelberg, Germany
| | - Marvin Hering
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- T Cell Metabolism (D192), German Cancer Research Center, 69120 Heidelberg, Germany
| | - Ferdinand Zettl
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- T Cell Metabolism (D192), German Cancer Research Center, 69120 Heidelberg, Germany
| | - Xin Yan
- Immune Diversity (D150), German Cancer Research Center, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Kerstin Mohr
- T Cell Metabolism (D192), German Cancer Research Center, 69120 Heidelberg, Germany
| | - Nora Ten Bosch
- T Cell Metabolism (D192), German Cancer Research Center, 69120 Heidelberg, Germany
| | - Zhe Li
- Division of Pathogenesis of Virus Associated Tumors (F100), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Hans-Reimer Rodewald
- Cellular Immunology (D110), German Cancer Research Center, 69120 Heidelberg, Germany
| | - Nina Papavasiliou
- Immune Diversity (D150), German Cancer Research Center, 69120 Heidelberg, Germany
| | - Xi Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Pu Gao
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guoliang Cui
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230601, China
- T Cell Metabolism (D192), German Cancer Research Center, 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Dorando HK, Mutic EC, Li JY, Perrin EP, Wurtz MK, Quinn CC, Payton JE. LPS and type I and II interferons have opposing effects on epigenetic regulation of LAIR1 expression in mouse and human macrophages. J Leukoc Biol 2024; 115:547-564. [PMID: 38011310 DOI: 10.1093/jleuko/qiad148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
Inhibitory immune receptors are important for maintaining immune homeostasis. We identified epigenetic alterations in 2 members of this group, LAIR1 and LAIR2, in lymphoma patients with inflammatory tissue damage and susceptibility to infection. We predicted that the expression of LAIR genes is controlled by immune mediators acting on transcriptional regulatory elements. Using flow cytometry, quantitative reverse-transcription polymerase chain reaction, and RNA sequencing, we measured LAIR1 and LAIR2 in human and murine immune cell subsets at baseline and posttreatment with immune mediators, including type I and II interferons, tumor necrosis factor α, and lipopolysaccharide (LPS). We identified candidate regulatory elements using epigenome profiling and measured their regulatory activity using luciferase reporters. LAIR1 expression substantially increases during monocyte differentiation to macrophages in both species. In contrast, murine and human macrophages exhibited opposite changes in LAIR1 in response to immune stimuli: human LAIR1 increased with LPS while mouse LAIR1 increased with interferon γ. LAIR genes had distinct patterns of enhancer activity with variable responses to immune stimuli. To identify relevant transcription factors (TFs), we developed integrative bioinformatic techniques applied to TF chromatin immunoprecipitation sequencing, RNA sequencing, and luciferase activity, revealing distinct sets of TFs for each LAIR gene. Most strikingly, LAIR1 TFs include nuclear factor kappa B factors RELA and RELB, while Lair1 and LAIR2 instead include STAT3 and/or STAT5. Regulation by nuclear factor kappa B factors may therefore explain the LPS-induced increase in LAIR1 expression, in contrast to Lair1 decrease. Our findings reveal new insights into transcriptional mechanisms that control distinct expression patterns of LAIR genes in response to inflammatory stimuli in human and murine myeloid and lymphoid cells.
Collapse
Affiliation(s)
- Hannah K Dorando
- Department of Pathology and Immunology, Washington University School of Medicine in St.Louis, 660 S. Euclid Avenue, Box 8118, St. Louis, MO 63110, United States
| | - Evan C Mutic
- Department of Pathology and Immunology, Washington University School of Medicine in St.Louis, 660 S. Euclid Avenue, Box 8118, St. Louis, MO 63110, United States
| | - Joanna Y Li
- Department of Pathology and Immunology, Washington University School of Medicine in St.Louis, 660 S. Euclid Avenue, Box 8118, St. Louis, MO 63110, United States
| | - Ezri P Perrin
- Department of Pathology and Immunology, Washington University School of Medicine in St.Louis, 660 S. Euclid Avenue, Box 8118, St. Louis, MO 63110, United States
| | - Mellisa K Wurtz
- Department of Pathology and Immunology, Washington University School of Medicine in St.Louis, 660 S. Euclid Avenue, Box 8118, St. Louis, MO 63110, United States
| | - Chaz C Quinn
- Department of Pathology and Immunology, Washington University School of Medicine in St.Louis, 660 S. Euclid Avenue, Box 8118, St. Louis, MO 63110, United States
| | - Jacqueline E Payton
- Department of Pathology and Immunology, Washington University School of Medicine in St.Louis, 660 S. Euclid Avenue, Box 8118, St. Louis, MO 63110, United States
| |
Collapse
|
3
|
Xie J, Deng W, Deng X, Liang JY, Tang Y, Huang J, Tang H, Zou Y, Zhou H, Xie X. Single-cell histone chaperones patterns guide intercellular communication of tumor microenvironment that contribute to breast cancer metastases. Cancer Cell Int 2023; 23:311. [PMID: 38057779 DOI: 10.1186/s12935-023-03166-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Histone chaperones (HCs) are crucial for governing genome stability and gene expression in multiple cancers. However, the functioning of HCs in the tumor microenvironment (TME) is still not clearly understood. METHODS Self-tested single-cell RNA-seq data derived from 6 breast cancer (BC) patients with brain and liver metastases were reanalyzed by nonnegative matrix factorization (NMF) algorithm for 36 HCs. TME subclusters were observed with BC and immunotherapy public cohorts to assess their prognosis and immune response. The biological effect of HSPA8, one of the HCs, was verified by transwell assay and wound-healing assays. RESULTS Cells including fibroblasts, macrophages, B cells, and T cells, were classified into various subclusters based on marker genes. Additionally, it showed that HCs might be strongly associated with biological and clinical features of BC metastases, along with the pseudotime trajectory of each TME cell type. Besides, the results of bulk-seq analysis revealed that TME cell subclusters mediated by HCs distinguished significant prognostic value for BC patients and were relevant to patients' immunotherapy responses, especially for B cells and macrophages. In particular, CellChat analysis exhibited that HCs-related TME cell subclusters revealed extensive and diverse interactions with malignant cells. Finally, transwell and wound-healing assays exhibited that HSPA8 deficiency inhibited BC cell migration and invasion. CONCLUSIONS Collectively, our study first dissected HCs-guided intercellular communication of TME that contribute to BC metastases.
Collapse
Affiliation(s)
- Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060, China
| | - Wei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060, China
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060, China
| | - Jie-Ying Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Yuhui Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060, China
| | - Jun Huang
- College of Basic Medicine, Shaoyang University, Shaoyang, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060, China
| | - Yutian Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060, China.
| | - Huamao Zhou
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China.
| | - Xiaoming Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, 510060, China.
| |
Collapse
|
4
|
Ramos RB, Martino N, Chuy D, Lu S, Zuo MXG, Balasubramanian U, Di John Portela I, Vincent PA, Adam AP. Shock drives a STAT3 and JunB-mediated coordinated transcriptional and DNA methylation response in the endothelium. J Cell Sci 2023; 136:jcs261323. [PMID: 37667913 PMCID: PMC10560554 DOI: 10.1242/jcs.261323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023] Open
Abstract
Endothelial dysfunction is a crucial factor in promoting organ failure during septic shock. However, the underlying mechanisms are unknown. Here, we show that kidney injury after lipopolysaccharide (LPS) insult leads to strong endothelial transcriptional and epigenetic responses. Furthermore, SOCS3 loss leads to an aggravation of the responses, demonstrating a causal role for the STAT3-SOCS3 signaling axis in the acute endothelial response to LPS. Experiments in cultured endothelial cells demonstrate that IL-6 mediates this response. Furthermore, bioinformatics analysis of in vivo and in vitro transcriptomics and epigenetics suggests a role for STAT, AP1 and interferon regulatory family (IRF) transcription factors. Knockdown of STAT3 or the AP1 member JunB partially prevents the changes in gene expression, demonstrating a role for these transcription factors. In conclusion, endothelial cells respond with a coordinated response that depends on overactivated IL-6 signaling via STAT3, JunB and possibly other transcription factors. Our findings provide evidence for a critical role of IL-6 signaling in regulating shock-induced epigenetic changes and sustained endothelial activation, offering a new therapeutic target to limit vascular dysfunction.
Collapse
Affiliation(s)
- Ramon Bossardi Ramos
- Department of Molecular and Cellular Physiology, Albany Medical Center, Albany, NY 12208,USA
| | - Nina Martino
- Department of Molecular and Cellular Physiology, Albany Medical Center, Albany, NY 12208,USA
| | - Dareen Chuy
- Department of Molecular and Cellular Physiology, Albany Medical Center, Albany, NY 12208,USA
| | - Shuhan Lu
- Department of Molecular and Cellular Physiology, Albany Medical Center, Albany, NY 12208,USA
| | - Mei Xing G. Zuo
- Department of Molecular and Cellular Physiology, Albany Medical Center, Albany, NY 12208,USA
| | - Uma Balasubramanian
- Department of Molecular and Cellular Physiology, Albany Medical Center, Albany, NY 12208,USA
| | - Iria Di John Portela
- Department of Molecular and Cellular Physiology, Albany Medical Center, Albany, NY 12208,USA
| | - Peter A. Vincent
- Department of Molecular and Cellular Physiology, Albany Medical Center, Albany, NY 12208,USA
| | - Alejandro P. Adam
- Department of Molecular and Cellular Physiology, Albany Medical Center, Albany, NY 12208,USA
- Department of Ophthalmology, Albany Medical Center, Albany, NY 12208, USA
| |
Collapse
|
5
|
Ren FJ, Cai XY, Yao Y, Fang GY. JunB: a paradigm for Jun family in immune response and cancer. Front Cell Infect Microbiol 2023; 13:1222265. [PMID: 37731821 PMCID: PMC10507257 DOI: 10.3389/fcimb.2023.1222265] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Jun B proto-oncogene (JunB) is a crucial member of dimeric activator protein-1 (AP-1) complex, which plays a significant role in various physiological processes, such as placental formation, cardiovascular development, myelopoiesis, angiogenesis, endochondral ossification and epidermis tissue homeostasis. Additionally, it has been reported that JunB has great regulatory functions in innate and adaptive immune responses by regulating the differentiation and cytokine secretion of immune cells including T cells, dendritic cells and macrophages, while also facilitating the effector of neutrophils and natural killer cells. Furthermore, a growing body of studies have shown that JunB is involved in tumorigenesis through regulating cell proliferation, differentiation, senescence and metastasis, particularly affecting the tumor microenvironment through transcriptional promotion or suppression of oncogenes in tumor cells or immune cells. This review summarizes the physiological function of JunB, its immune regulatory function, and its contribution to tumorigenesis, especially focusing on its regulatory mechanisms within tumor-associated immune processes.
Collapse
Affiliation(s)
- Fu-jia Ren
- Department of Pharmacy, Hangzhou Women’s Hospital, Hangzhou, Zhejiang, China
| | - Xiao-yu Cai
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Yao
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guo-ying Fang
- Department of Pharmacy, Hangzhou Women’s Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Co-expression of a PD-L1-specific chimeric switch receptor augments the efficacy and persistence of CAR T cells via the CD70-CD27 axis. Nat Commun 2022; 13:6051. [PMID: 36229619 PMCID: PMC9561169 DOI: 10.1038/s41467-022-33793-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/29/2022] [Indexed: 12/24/2022] Open
Abstract
Co-expression of chimeric switch receptors (CSRs) specific for PD-L1 improves the antitumor effects of chimeric antigen receptor (CAR) T cells. However, the effects of trans-recognition between CSRs and PD-L1 expressed by activated CAR T cells remain unclear. Here, we design a CSR specific for PD-L1 (CARP), containing the transmembrane and cytoplasmic signaling domains of CD28 but not the CD3 ζ chain. We show that CARP T cells enhance the antitumor activity of anti-mesothelin CAR (CARMz) T cells in vitro and in vivo. In addition, confocal microscopy indicates that PD-L1 molecules on CARMz T cells accumulate at cell-cell contacts with CARP T cells. Using single-cell RNA-sequencing analysis, we reveal that CARP T cells promote CARMz T cells differentiation into central memory-like T cells, upregulate genes related to Th1 cells, and downregulate Th2-associated cytokines through the CD70-CD27 axis. Moreover, these effects are not restricted to PD-L1, as CAR19 T cells expressing anti-CD19 CSR exhibit similar effects on anti-PSCA CAR T cells with truncated CD19 expression. These findings suggest that target trans-recognition by CSRs on CAR T cells may improve the efficacy and persistence of CAR T cells via the CD70-CD27 axis.
Collapse
|
7
|
Wutschka J, Kast B, Sator-Schmitt M, Appak-Baskoy S, Hess J, Sinn HP, Angel P, Schorpp-Kistner M. JUNB suppresses distant metastasis by influencing the initial metastatic stage. Clin Exp Metastasis 2021; 38:411-423. [PMID: 34282521 PMCID: PMC8318945 DOI: 10.1007/s10585-021-10108-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/23/2021] [Indexed: 01/01/2023]
Abstract
The complex interactions between cells of the tumor microenvironment and cancer cells are considered a major determinant of cancer progression and metastasis. Yet, our understanding of the mechanisms of metastatic disease is not sufficient to successfully treat patients with advanced-stage cancer. JUNB is a member of the AP-1 transcription factor family shown to be frequently deregulated in human cancer and associated with invasion and metastasis. A strikingly high stromal JUNB expression in human breast cancer samples prompted us to functionally investigate the consequences of JUNB loss in cells of the tumor microenvironment on cancer progression and metastasis in mice. To adequately mimic the clinical situation, we applied a syngeneic spontaneous breast cancer metastasis model followed by primary tumor resection and identified stromal JUNB as a potent suppressor of distant metastasis. Comprehensive characterization of the JUNB-deficient tumor microenvironment revealed a strong influx of myeloid cells into primary breast tumors and lungs at early metastatic stage. In these infiltrating neutrophils, BV8 and MMP9, proteins promoting angiogenesis and tissue remodeling, were specifically upregulated in a JUNB-dependent manner. Taken together, we established stromal JUNB as a strong suppressor of distant metastasis. Consequently, therapeutic strategies targeting AP-1 should be carefully designed not to interfere with stromal JUNB expression as this may be detrimental for cancer patients.
Collapse
Affiliation(s)
- Juliane Wutschka
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Faculty of Biosciences, University Heidelberg, Heidelberg, Germany
| | - Bettina Kast
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Melanie Sator-Schmitt
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Sila Appak-Baskoy
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- iBEST (Institute of Biomedical Engineering, Science and Technology), Toronto, ON, Canada
| | - Jochen Hess
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Research Group Molecular Mechanisms of Head and Neck Tumors, DKFZ, Heidelberg, Germany
| | - Hans-Peter Sinn
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Peter Angel
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Marina Schorpp-Kistner
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
8
|
Phillips BE, Garciafigueroa Y, Engman C, Liu W, Wang Y, Lakomy RJ, Meng WS, Trucco M, Giannoukakis N. Arrest in the Progression of Type 1 Diabetes at the Mid-Stage of Insulitic Autoimmunity Using an Autoantigen-Decorated All- trans Retinoic Acid and Transforming Growth Factor Beta-1 Single Microparticle Formulation. Front Immunol 2021; 12:586220. [PMID: 33763059 PMCID: PMC7982719 DOI: 10.3389/fimmu.2021.586220] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
Type 1 diabetes (T1D) is a disorder of impaired glucoregulation due to lymphocyte-driven pancreatic autoimmunity. Mobilizing dendritic cells (DC) in vivo to acquire tolerogenic activity is an attractive therapeutic approach as it results in multiple and overlapping immunosuppressive mechanisms. Delivery of agents that can achieve this, in the form of micro/nanoparticles, has successfully prevented a number of autoimmune conditions in vivo. Most of these formulations, however, do not establish multiple layers of immunoregulation. all-trans retinoic acid (RA) together with transforming growth factor beta 1 (TGFβ1), in contrast, has been shown to promote such mechanisms. When delivered in separate nanoparticle vehicles, they successfully prevent the progression of early-onset T1D autoimmunity in vivo. Herein, we show that the approach can be simplified into a single microparticle formulation of RA + TGFβ1 with surface decoration with the T1D-relevant insulin autoantigen. We show that the onset of hyperglycemia is prevented when administered into non-obese diabetic mice that are at the mid-stage of active islet-selective autoimmunity. Unexpectedly, the preventive effects do not seem to be mediated by increased numbers of regulatory T-lymphocytes inside the pancreatic lymph nodes, at least following acute administration of microparticles. Instead, we observed a mild increase in the frequency of regulatory B-lymphocytes inside the mesenteric lymph nodes. These data suggest additional and potentially-novel mechanisms that RA and TGFβ1 could be modulating to prevent progression of mid-stage autoimmunity to overt T1D. Our data further strengthen the rationale to develop RA+TGFβ1-based micro/nanoparticle “vaccines” as possible treatments of pre-symptomatic and new-onset T1D autoimmunity.
Collapse
Affiliation(s)
- Brett E Phillips
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| | - Yesica Garciafigueroa
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| | - Carl Engman
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| | - Wen Liu
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States.,Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Yiwei Wang
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Robert J Lakomy
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| | - Wilson S Meng
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Massimo Trucco
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| | - Nick Giannoukakis
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Katagiri T, Kameda H, Nakano H, Yamazaki S. Regulation of T cell differentiation by the AP-1 transcription factor JunB. Immunol Med 2021; 44:197-203. [PMID: 33470914 DOI: 10.1080/25785826.2021.1872838] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
JunB, a component of the activator protein-1 (AP-1) transcription factor, is known to exhibit an important role in bone formation and bone marrow cell proliferation. During T helper type 2 (Th2) cell differentiation, JunB contributes to the regulation of interleukin (IL)-4 expression, and AP-1 and nuclear factor of activated T cell (NFAT) constitute a heteromer and contribute to IL-2 production. However, the role of JunB in other T cells has not been investigated. In 2017, it was revealed that JunB, in collaboration with basic leucine zipper ATF-like transcription factor (BATF), regulates the expression of Th17-related genes. Furthermore, JunB was found to play an important role in regulatory T (Treg) cell differentiation, contributing to CD25 expression and IL-2 production. IL-2 is a T cell activator and has been shown as a necessary factor for Treg proliferation. Here, we review the role of JunB in T cells based on basic research data and discuss the potential for its clinical applications.
Collapse
Affiliation(s)
- Takaharu Katagiri
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan.,Faculty of Medicine, Division of Rheumatology, Department of Internal Medicine, Ohashi Medical Center, Toho University, Tokyo, Japan
| | - Hideto Kameda
- Faculty of Medicine, Division of Rheumatology, Department of Internal Medicine, Ohashi Medical Center, Toho University, Tokyo, Japan
| | - Hiroyasu Nakano
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Soh Yamazaki
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
T Cell Factor 1 Suppresses CD103+ Lung Tissue-Resident Memory T Cell Development. Cell Rep 2020; 31:107484. [DOI: 10.1016/j.celrep.2020.03.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/07/2020] [Accepted: 03/13/2020] [Indexed: 01/31/2023] Open
|
11
|
Yan P, Zhou B, Ma Y, Wang A, Hu X, Luo Y, Yuan Y, Wei Y, Pang P, Mao J. Tracking the important role of JUNB in hepatocellular carcinoma by single-cell sequencing analysis. Oncol Lett 2019; 19:1478-1486. [PMID: 31966074 PMCID: PMC6956120 DOI: 10.3892/ol.2019.11235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most commonly diagnosed liver cancer, accounting for ~90% of all primary malignancy of the liver. Although various medical treatments have been used as systemic therapies, patient survival time may be extended by only a few months. Moreover, the underlying mechanisms of HCC development and progression remain poorly understood. In the present study, the single-cell transcriptome of one in vivo HCC tumor sample, two in vitro HCC cell lines and normal peripheral blood mononuclear cells were analysed in order to identify the potential mechanism underlying the development and progression of HCC. Interestingly, JunB proto-oncogene was identified to serve a role in the immune response and in development and progression of HCC, potentially contributing to the development of novel therapeutics for HCC patients.
Collapse
Affiliation(s)
- Peng Yan
- Center of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Bin Zhou
- Center of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Yingdong Ma
- Center of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Ani Wang
- Department of Cardiovascular Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Xiaojun Hu
- Center of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Youli Luo
- Center of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Yajun Yuan
- Center of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Yajun Wei
- Center of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Pengfei Pang
- Center of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Junjie Mao
- Center of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China
| |
Collapse
|
12
|
Koizumi SI, Ishikawa H. Transcriptional Regulation of Differentiation and Functions of Effector T Regulatory Cells. Cells 2019; 8:E939. [PMID: 31434282 PMCID: PMC6721668 DOI: 10.3390/cells8080939] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/10/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022] Open
Abstract
Foxp3-expressing regulatory T (Treg) cells can suppress the activity of various types of immune cells and play key roles in the maintenance of self-tolerance and in the regulation of immune responses against pathogens and tumor cells. Treg cells consist of heterogeneous subsets that have distinct phenotypes and functions. Upon antigen stimulation, naïve-like thymus-derived Treg cells, which circulate in secondary lymphoid organs, can differentiate into effector Treg (eTreg) cells and migrate to and control immune homeostasis of peripheral tissues. eTreg cells are heterogeneous in terms of their ability to localize to specific tissues and suppress particular types of immune responses. Differentiation and function of diverse eTreg subsets are regulated by a variety of transcription factors that are activated by antigens and cytokines. In this article, we review the current understanding of the transcriptional regulation of differentiation and function of eTreg cells.
Collapse
Affiliation(s)
- Shin-Ichi Koizumi
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Hiroki Ishikawa
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|