1
|
Dou L, Yan Y, Lu E, Li F, Tian D, Deng L, Zhang X, Zhang R, Li Y, Zhang Y, Sun Y. Composition analysis and mechanism of Guizhi Fuling capsule in anti-cisplatin-resistant ovarian cancer. Transl Oncol 2024; 52:102244. [PMID: 39662450 DOI: 10.1016/j.tranon.2024.102244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/18/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024] Open
Abstract
OBJECTIVE Cisplatin is the main chemotherapy drug for advanced ovarian cancer, but drug resistance often occurs. The aim of this study is to explore the molecular mechanism by which Guizhi Fuling capsule inhibits cisplatin resistance in ovarian cancer. METHODS First, differences in cisplatin resistance, PA2G4 gene expression, migration, and invasion in A2780 cells and A2780/DDP cells were analyzed by qRT-PCR, scratch assay, transwell, immunofluorescence, and western blotting. Then, LC-MS/MS analysis of GFC chemical composition. qRT-PCR, scratch tests, transwell, pseudopodium formation, immunofluorescence, and western blotting were used to explore the mechanism by which GFC inhibited A2780/DDP cell migration and invasion. Finally, the anti-tumor efficacy of GFC was verified by in vivo experiments. RESULTS A2780/DDP cells had a greater ability to migrate and invade compared to their parents. Cell viability experiments showed that the migration and invasion ability of A278/DDP cells were significantly inhibited with the increase of GFC concentration. qRT-PCR results showed that compared with the blank control group, cisplatin group and GFC group, the transcription level of PA2G4 gene in the combination treatment group was significantly reduced. We also found that GFC combined with cisplatin inhibited the PI3K/AKT/GSK-3β signaling pathway by targeting PA2G4 gene expression, inhibited the epithelial-mesenchymal transition signaling pathway, decreased cell adhesion and inhibited the formation of cell pseudopodias. CONCLUSION GFC combined with cisplatin can target PA2G4 gene to regulate PI3K/AKT/GSK-3β Signaling pathway, inhibiting the invasion and migration of cisplatin resistant A2780/DDP cells in ovarian cancer.
Collapse
Affiliation(s)
- Lei Dou
- Department of Gynecology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Yan Yan
- Department of Gynecology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Enting Lu
- Department of Gynecology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Fangmei Li
- Department of Gynecology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Dongli Tian
- Department of Gynecology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Lei Deng
- Department of Gynecology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Xue Zhang
- Department of Gynecology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Rongjin Zhang
- Department of Gynecology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Yin Li
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yi Zhang
- Department of Gynecology, the First Hospital of China Medical University, Shenyang 110001, China.
| | - Ye Sun
- Department of Pathogenic Biology, College of Basic Medical Sciences, Shenyang Medical College, Shenyang 110034, China.
| |
Collapse
|
2
|
Morin C, Baudin-Baillieu A, Van Long FN, Isaac C, Bidou L, Arbes H, François P, Pommier RM, Adrait A, Saku A, Gran-Ruaz S, Machkouri C, Vanbelle C, Morichon R, Boissan M, Catez F, Ferrari A, Morel AP, Couté Y, Chat S, Giudice E, Gillet R, Puisieux A, Moyret-Lalle C, Diaz JJ, Namy O, Marcel V. Intricate ribosome composition and translational reprogramming in epithelial-mesenchymal transition. Proc Natl Acad Sci U S A 2024; 121:e2408114121. [PMID: 39636864 DOI: 10.1073/pnas.2408114121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/11/2024] [Indexed: 12/07/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) involves profound changes in cell morphology, driven by transcriptional and epigenetic reprogramming. However, evidence suggests that translation and ribosome composition also play key roles in establishing pathophysiological phenotypes. Using genome-wide analyses, we reported significant rearrangement of the translational landscape and machinery during EMT. Specifically, a cell line overexpressing the EMT transcription factor ZEB1 displayed alterations in translational reprogramming and fidelity. Furthermore, using riboproteomics, we unveiled an increased level of the ribosomal protein RPL36A in mesenchymal ribosomes, indicating precise tuning of ribosome composition. Remarkably, RPL36A overexpression alone was sufficient to trigger the acquisition of mesenchymal features, including a switch in the molecular pattern, cell morphology, and behavior, demonstrating its pivotal role in EMT. These findings underline the importance of translational reprogramming and fine-tuning of ribosome composition in EMT.
Collapse
Affiliation(s)
- Chloé Morin
- "Ribosome, Translation and Cancer" Team, LabEx DEVweCAN, Institut Convergence Plascan, LYriCAN+, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon 69008, France
| | - Agnès Baudin-Baillieu
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette 91198, France
| | - Flora Nguyen Van Long
- "Ribosome, Translation and Cancer" Team, LabEx DEVweCAN, Institut Convergence Plascan, LYriCAN+, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon 69008, France
| | - Caroline Isaac
- "Ribosome, Translation and Cancer" Team, LabEx DEVweCAN, Institut Convergence Plascan, LYriCAN+, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon 69008, France
| | - Laure Bidou
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette 91198, France
- Sorbonne Université, Paris 75005, France
| | - Hugo Arbes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette 91198, France
| | - Pauline François
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette 91198, France
| | - Roxane M Pommier
- Bioinformatics Platform Gilles Thomas, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Synergie Lyon Cancer Fondation, Lyon 69008, France
| | - Annie Adrait
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEA, FR2048, Grenoble 38000, France
| | - Akari Saku
- "Ribosome, Translation and Cancer" Team, LabEx DEVweCAN, Institut Convergence Plascan, LYriCAN+, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon 69008, France
| | - Stephanie Gran-Ruaz
- "Ribosome, Translation and Cancer" Team, LabEx DEVweCAN, Institut Convergence Plascan, LYriCAN+, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon 69008, France
| | - Camélia Machkouri
- "Ribosome, Translation and Cancer" Team, LabEx DEVweCAN, Institut Convergence Plascan, LYriCAN+, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon 69008, France
| | - Christophe Vanbelle
- Cell Imaging Platform, LYriCAN+, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon 69008, France
| | - Romain Morichon
- Cytometry and Imagery platform Saint-Antoine, SU Centre de Recherche Saint-Antoine, Paris F75012, France
| | - Mathieu Boissan
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris 75651, France
- APHP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Laboratoire de Biochimie Endocrinienne et Oncologique, Oncobiologie Cellulaire et Moléculaire, Paris 75651, France
| | - Frédéric Catez
- "Ribosome, Translation and Cancer" Team, LabEx DEVweCAN, Institut Convergence Plascan, LYriCAN+, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon 69008, France
| | - Anthony Ferrari
- Bioinformatics Platform Gilles Thomas, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Synergie Lyon Cancer Fondation, Lyon 69008, France
| | - Anne-Pierre Morel
- "EMT and Cancer Cell Plasticity" Team, Centre Léon Bérard, Lyon 69008, France
| | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEA, FR2048, Grenoble 38000, France
| | - Sophie Chat
- Univ. Rennes, CNRS, Institut de Génétique et Développement de Rennes, UMR6290, Rennes 35000, France
| | - Emmanuel Giudice
- Univ. Rennes, CNRS, Institut de Génétique et Développement de Rennes, UMR6290, Rennes 35000, France
| | - Reynald Gillet
- Univ. Rennes, CNRS, Institut de Génétique et Développement de Rennes, UMR6290, Rennes 35000, France
| | - Alain Puisieux
- Institut Curie, PSL Research University, Paris 75005, France
- Chemical Biology of Cancer Laboratory, CNRS UMR3666, INSERM U1143, Paris 75005, France
| | - Caroline Moyret-Lalle
- "Ribosome, Translation and Cancer" Team, LabEx DEVweCAN, Institut Convergence Plascan, LYriCAN+, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon 69008, France
| | - Jean-Jacques Diaz
- "Ribosome, Translation and Cancer" Team, LabEx DEVweCAN, Institut Convergence Plascan, LYriCAN+, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon 69008, France
| | - Olivier Namy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette 91198, France
| | - Virginie Marcel
- "Ribosome, Translation and Cancer" Team, LabEx DEVweCAN, Institut Convergence Plascan, LYriCAN+, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon 69008, France
| |
Collapse
|
3
|
Kzhyshkowska J, Shen J, Larionova I. Targeting of TAMs: can we be more clever than cancer cells? Cell Mol Immunol 2024; 21:1376-1409. [PMID: 39516356 DOI: 10.1038/s41423-024-01232-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
АBSTRACT: With increasing incidence and geography, cancer is one of the leading causes of death, reduced quality of life and disability worldwide. Principal progress in the development of new anticancer therapies, in improving the efficiency of immunotherapeutic tools, and in the personification of conventional therapies needs to consider cancer-specific and patient-specific programming of innate immunity. Intratumoral TAMs and their precursors, resident macrophages and monocytes, are principal regulators of tumor progression and therapy resistance. Our review summarizes the accumulated evidence for the subpopulations of TAMs and their increasing number of biomarkers, indicating their predictive value for the clinical parameters of carcinogenesis and therapy resistance, with a focus on solid cancers of non-infectious etiology. We present the state-of-the-art knowledge about the tumor-supporting functions of TAMs at all stages of tumor progression and highlight biomarkers, recently identified by single-cell and spatial analytical methods, that discriminate between tumor-promoting and tumor-inhibiting TAMs, where both subtypes express a combination of prototype M1 and M2 genes. Our review focuses on novel mechanisms involved in the crosstalk among epigenetic, signaling, transcriptional and metabolic pathways in TAMs. Particular attention has been given to the recently identified link between cancer cell metabolism and the epigenetic programming of TAMs by histone lactylation, which can be responsible for the unlimited protumoral programming of TAMs. Finally, we explain how TAMs interfere with currently used anticancer therapeutics and summarize the most advanced data from clinical trials, which we divide into four categories: inhibition of TAM survival and differentiation, inhibition of monocyte/TAM recruitment into tumors, functional reprogramming of TAMs, and genetic enhancement of macrophages.
Collapse
Affiliation(s)
- Julia Kzhyshkowska
- Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 1-3, 68167, Mannheim, Germany.
- German Red Cross Blood Service Baden-Württemberg - Hessen, Friedrich-Ebert Str. 107, 68167, Mannheim, Germany.
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050, Lenina av.36, Tomsk, Russia.
- Bashkir State Medical University of the Ministry of Health of Russia, 450000, Teatralnaya Street, 2a, Ufa, Russia.
| | - Jiaxin Shen
- Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 1-3, 68167, Mannheim, Germany
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050, Lenina av.36, Tomsk, Russia
- Bashkir State Medical University of the Ministry of Health of Russia, 450000, Teatralnaya Street, 2a, Ufa, Russia
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009, Kooperativnyi st, Tomsk, Russia
| |
Collapse
|
4
|
Thapa R, Gupta S, Gupta G, Bhat AA, Smriti, Singla M, Ali H, Singh SK, Dua K, Kashyap MK. Epithelial-mesenchymal transition to mitigate age-related progression in lung cancer. Ageing Res Rev 2024; 102:102576. [PMID: 39515620 DOI: 10.1016/j.arr.2024.102576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Epithelial-Mesenchymal Transition (EMT) is a fundamental biological process involved in embryonic development, wound healing, and cancer progression. In lung cancer, EMT is a key regulator of invasion and metastasis, significantly contributing to the fatal progression of the disease. Age-related factors such as cellular senescence, chronic inflammation, and epigenetic alterations exacerbate EMT, accelerating lung cancer development in the elderly. This review describes the complex mechanism among EMT and age-related pathways, highlighting key regulators such as TGF-β, WNT/β-catenin, NOTCH, and Hedgehog signalling. We also discuss the mechanisms by which oxidative stress, mediated through pathways involving NRF2 and ROS, telomere attrition, regulated by telomerase activity and shelterin complex, and immune system dysregulation, driven by alterations in cytokine profiles and immune cell senescence, upregulate or downregulate EMT induction. Additionally, we highlighted pathways of transcription such as SNAIL, TWIST, ZEB, SIRT1, TP53, NF-κB, and miRNAs regulating these processes. Understanding these mechanisms, we highlight potential therapeutic interventions targeting these critical molecules and pathways.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Indore, Madhya Pradesh, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Smriti
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Madhav Singla
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Manoj Kumar Kashyap
- Molecular Oncology Laboratory, Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon (Manesar), Gurugram, Haryana, India.
| |
Collapse
|
5
|
Wang J, Xu B, Liang L, Chen Q. Long Non-coding RNA 02298 Promotes the Malignancy of HCC by Targeting the miR-28-5p/CCDC6 Pathway. Biochem Genet 2024; 62:4967-4986. [PMID: 38381357 DOI: 10.1007/s10528-023-10662-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/30/2023] [Indexed: 02/22/2024]
Abstract
Hepatocellular carcinoma (HCC) is a malignancy characterized by a high fatality rate. Increasing evidence indicating that long non-coding RNAs (lncRNAs) play a regulatory role in hepatocellular carcinoma (HCC). Among them, the correlation between LINC02298 and HCC remains unknown. The expression and subcellular localization of LINC02298 in HCC tissues and cell lines were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Furthermore, the correlation between the expression of LINC02298 and clinicopathological features of HCC patients was analyzed. The regulatory effects of LINC02298 in HCC were investigated using colony formation, cell count Kit-8(CCK8), Transwell, EDU, cell cycle and apoptosis analysis. In addition, the expression of EMT-related proteins were detected by western blotting. Dual-luciferase reporter, RT-qPCR and rescue assays were employed to validate the involvement of the LINC02298/miR-28-5p/CCDC6 axis in the progression of HCC. The up-regulation of LINC02298 was observed in hepatocellular carcinoma (HCC) tissues and cells, and it was found to be correlated with a negative prognosis in patients with HCC. Overexpression of LINC02298 enhanced the proliferation, migration, invasion, and induction of Epithelial-Mesenchymal Transition (EMT) while suppressing apoptosis in HCC cells. LINC02298 bind to miR-28-5p to regulate the expression of CCDC6. Inhibition of miR-28-5p saved the inhibitory effect of shLINC02298, and knockdown of CCDC6 also saved the inhibitory effect of miR-28-5p on HCC in vitro and in vivo. LINC02298 regulates the expression of CCDC6 by sponging of miR-28-5p, thereby facilitating the the malignancy and EMT of HCC.
Collapse
Affiliation(s)
- Jinyi Wang
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210019, Jiangsu, China
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Bin Xu
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210019, Jiangsu, China
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Litao Liang
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210019, Jiangsu, China
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qi Chen
- Department of General Surgery, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, China.
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
6
|
Tobe-Nishimoto A, Morita Y, Nishimura J, Kitahira Y, Takayama S, Kishimoto S, Matsumiya-Matsumoto Y, Matsunaga K, Imai T, Uzawa N. Tumor microenvironment dynamics in oral cancer: unveiling the role of inflammatory cytokines in a syngeneic mouse model. Clin Exp Metastasis 2024; 41:891-908. [PMID: 39126553 PMCID: PMC11607012 DOI: 10.1007/s10585-024-10306-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
The process of cervical lymph node metastasis is dependent on the phenotype of the tumor cells and their interaction with the host microenvironment and immune system; conventional research methods that focus exclusively on tumor cells are limited in their ability to elucidate the metastatic mechanism. In cancer tissues, a specialized environment called the tumor microenvironment (TME) is established around tumor cells, and inflammation in the TME has been reported to be closely associated with the development and progression of many types of cancer and with the response to anticancer therapy. In this study, to elucidate the mechanism of metastasis establishment, including the TME, in the cervical lymph node metastasis of oral cancer, we established a mouse-derived oral squamous cell carcinoma cervical lymph node highly metastatic cell line and generated a syngeneic orthotopic transplantation mouse model. In the established highly metastatic cells, epithelial-mesenchymal transition (EMT) induction was enhanced compared to that in parental cells. In the syngeneic mouse model, lymph node metastasis was observed more frequently in tumors of highly metastatic cells than in parental cells, and Cyclooxygenase-2 (COX-2) expression and lymphatic vessels in primary tumor tissues were increased, suggesting that this model is highly useful. Moreover, in the established highly metastatic cells, EMT induction was enhanced compared to that in the parent cell line, and CCL5 and IL-6 secreted during inflammation further enhanced EMT induction in cancer cells. This suggests the possibility of a synergistic effect between EMT induction and inflammation. This model, which allows for the use of two types of cells with different metastatic and tumor growth potentials, is very useful for oral cancer research involving the interaction between cancer cells and the TME in tumor tissues and for further searching for new therapeutic agents.
Collapse
Affiliation(s)
- Ayano Tobe-Nishimoto
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Yoshihiro Morita
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan.
| | - Junya Nishimura
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Yukiko Kitahira
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Shun Takayama
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Satoko Kishimoto
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Yuka Matsumiya-Matsumoto
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Kazuhide Matsunaga
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Tomoaki Imai
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Narikazu Uzawa
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| |
Collapse
|
7
|
SenGupta S, Cohen E, Serrenho J, Ott K, Coulombe PA, Parent CA. TGFβ1-TNFα regulated secretion of neutrophil chemokines is independent of epithelial-mesenchymal transitions in breast tumor cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617845. [PMID: 39416223 PMCID: PMC11483069 DOI: 10.1101/2024.10.11.617845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Neutrophils have tumor-promoting roles in breast cancer and are detected in higher numbers in aggressive breast tumors. How aggressive breast tumors recruit neutrophils remains undefined. Here, we investigated the roles of TGF-β1 and TNF-α in the regulation of neutrophil recruitment by breast cancer cells. TGF-β1 and TNF-α are pro-inflammatory factors upregulated in breast tumors and induce epithelial to mesenchymal transitions (EMT), a process linked to cancer cell aggressiveness. We report that, as expected, dual treatment with TGF-β1 and TNF-α induces EMT signatures in premalignant M2 cells, which are part of the MCF10A breast cancer progression model. Conditioned media (CM) harvested from M2 cells treated with TGF-β1/TNF-α gives rise to amplified neutrophil chemotaxis compared to CM from control M2 cells. This response correlates with higher levels of the neutrophil chemokines CXCL1, CXCL2, and CXCL8 and is significantly attenuated in the presence of a CXCL8-neutralizing antibody. Furthermore, we found that secretion of CXCL1 and CXCL8 from treated M2 cells depends on p38MAPK activity. By combining gene editing, immunological and biochemical approaches, we show that the regulation of neutrophil recruitment and EMT signatures are not mechanistically linked in treated M2 cells. Finally, analysis of publicly available cancer cell line transcriptomic databases revealed a significant correlation between CXCL8 and TGF-β1/TNF-α-regulated or effector genes in breast cancer. Together, our findings establish a novel role for the TGF-β1/TNF-α/p38 MAPK signaling axis in regulating neutrophil recruitment in breast cancer, independent of TGF-β1/TNF-α regulated EMT.
Collapse
|
8
|
Chen L, Xu N, Gou D, Song J, Zhou M, Zhang Y, Zhang H, Zhu L, Huang W, Zhu Y, Gao C, Gu D, Xu Y, Zhou H. TRPM8 overexpression suppresses hepatocellular carcinoma progression and improves survival by modulating the RTP3/STAT3 pathway. Cancer Med 2024; 13:e70109. [PMID: 39385506 PMCID: PMC11464657 DOI: 10.1002/cam4.70109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/02/2024] [Accepted: 08/04/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is a malignant tumour associated with high morbidity and mortality rates worldwide. Recently, TRPM8 was reported to play an important role in tumour progression. However, the precise role of TRPM8 in HCC remains unclear. In this study, we explored the expression levels, molecular functions and underlying mechanisms of TRPM8 in HCC. METHODS Tissue samples were used to analyse the expression of TRPM8 to assess its diagnostic value for prognosis. Cell Counting Kit-8, EdU and colony formation assays were performed to evaluate the effects of TRPM8 on cell proliferation, whereas the Transwell assay was used to assess cell migration and invasion. The role of TRPM8 in vivo was evaluated using a mouse subcutaneous xenograft tumour model. We performed PPI network analyses to understand the possible mechanisms of TRPM8 action. RESULTS TRPM8 expression was decreased in HCC tissues and was correlated with histological grade and poor patient prognosis. Functionally, TRPM8 repressed the proliferation and metastasis of HCC cells both in vitro and in vivo by modulating the RTP3/STAT3 signalling pathway. CONCLUSION Our findings underscore the critical role of the TRPM8-RTP3-STAT3 axis in maintaining the malignant progression of HCC. Moreover, our study demonstrates that AD80 is involved in anti-tumour processes by upregulating the expression of TRPM8.
Collapse
Affiliation(s)
- Lichan Chen
- Department of Laboratory MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital; Shenzhen Key Laboratory of Medical Laboratory and Molecular Diagnostics; Guangzhou Medical UniversityShenzhenChina
| | - Nansong Xu
- State key laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - DongMei Gou
- Shenzhen Third People's HospitalSouthern University of Science and TechnologyShenzhenChina
| | - Jianning Song
- Department of Laboratory MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital; Shenzhen Key Laboratory of Medical Laboratory and Molecular Diagnostics; Guangzhou Medical UniversityShenzhenChina
| | - Mingqin Zhou
- Department of Critical Care MedicineCancer Hospital of Shantou University Medical CollegeShantouChina
| | - Yajun Zhang
- Guangzhou University of Chinese MedicineGuangzhouChina
| | - Haohua Zhang
- Department of Laboratory MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital; Shenzhen Key Laboratory of Medical Laboratory and Molecular Diagnostics; Guangzhou Medical UniversityShenzhenChina
| | - Liwen Zhu
- Department of Laboratory MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital; Shenzhen Key Laboratory of Medical Laboratory and Molecular Diagnostics; Guangzhou Medical UniversityShenzhenChina
| | - Weihong Huang
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Yue Zhu
- Medicine Department of Biochemistry and Molecular BiologyMedical College of Jinan UniversityGuangzhouChina
| | - Cheng Gao
- Department of Laboratory MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital; Shenzhen Key Laboratory of Medical Laboratory and Molecular Diagnostics; Guangzhou Medical UniversityShenzhenChina
| | - Dayong Gu
- Department of Laboratory MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital; Shenzhen Key Laboratory of Medical Laboratory and Molecular Diagnostics; Guangzhou Medical UniversityShenzhenChina
| | - Yong Xu
- Shenzhen Third People's HospitalSouthern University of Science and TechnologyShenzhenChina
| | - Hongzhong Zhou
- Department of Laboratory MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital; Shenzhen Key Laboratory of Medical Laboratory and Molecular Diagnostics; Guangzhou Medical UniversityShenzhenChina
| |
Collapse
|
9
|
Zhao Q, Zhang D, Wang X. Case report: Gastric metastasis of breast cancer. Front Oncol 2024; 14:1430881. [PMID: 39399168 PMCID: PMC11466931 DOI: 10.3389/fonc.2024.1430881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Breast cancer stands as the foremost malignant tumor among women globally, with postoperative recurrence and metastasis significantly impacting patient prognosis. While metastasis to various sites has been reported, gastric involvement remains uncommon. Presenting a case of gastric metastasis a decade post-breast cancer surgery, we underscore the rarity of this occurrence. Our patient, an elderly woman, underwent left breast modified radical surgery ten years prior, followed by adjuvant chemotherapy, maintaining favorable health until experiencing abdominal discomfort two months ago. Contrast-enhanced computed tomography (CT) of the chest and upper abdomen unveiled diffuse abnormal enhancement in the gastric body and sinus wall. Subsequent gastroscopy revealed an ulcer near the gastric antrum, with immunohistochemical staining confirming invasive lobular carcinoma metastasis from the breast. We further conducted an extensive review of 23 cases with detailed information retrieved from PubMed, elucidating clinicopathological, endoscopic features, diagnostic modalities, and contemporary treatment strategies for breast-stomach metastasis. Our findings underscore the imperative of regular postoperative surveillance for breast cancer patients. Timely detection, accurate diagnosis, and appropriate intervention are paramount in managing gastric metastasis, significantly influencing patient outcomes.
Collapse
Affiliation(s)
- Qiandi Zhao
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Gastrointestinal Surgery, Weihai Central Hospital, Weihai, China
| | - De Zhang
- Department of Gastrointestinal Surgery, Weihai Central Hospital, Weihai, China
| | - Xinjian Wang
- Department of Gastrointestinal Surgery, Weihai Central Hospital, Weihai, China
| |
Collapse
|
10
|
Wang Y, Jia J, Wang F, Fang Y, Yang Y, Zhou Q, Yuan W, Gu X, Hu J, Yang S. Pre-metastatic niche: formation, characteristics and therapeutic implication. Signal Transduct Target Ther 2024; 9:236. [PMID: 39317708 PMCID: PMC11422510 DOI: 10.1038/s41392-024-01937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/29/2024] [Accepted: 07/23/2024] [Indexed: 09/26/2024] Open
Abstract
Distant metastasis is a primary cause of mortality and contributes to poor surgical outcomes in cancer patients. Before the development of organ-specific metastasis, the formation of a pre-metastatic niche is pivotal in promoting the spread of cancer cells. This review delves into the intricate landscape of the pre-metastatic niche, focusing on the roles of tumor-derived secreted factors, extracellular vesicles, and circulating tumor cells in shaping the metastatic niche. The discussion encompasses cellular elements such as macrophages, neutrophils, bone marrow-derived suppressive cells, and T/B cells, in addition to molecular factors like secreted substances from tumors and extracellular vesicles, within the framework of pre-metastatic niche formation. Insights into the temporal mechanisms of pre-metastatic niche formation such as epithelial-mesenchymal transition, immunosuppression, extracellular matrix remodeling, metabolic reprogramming, vascular permeability and angiogenesis are provided. Furthermore, the landscape of pre-metastatic niche in different metastatic organs like lymph nodes, lungs, liver, brain, and bones is elucidated. Therapeutic approaches targeting the cellular and molecular components of pre-metastatic niche, as well as interventions targeting signaling pathways such as the TGF-β, VEGF, and MET pathways, are highlighted. This review aims to enhance our understanding of pre-metastatic niche dynamics and provide insights for developing effective therapeutic strategies to combat tumor metastasis.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Jiachi Jia
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Fuqi Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Yingshuai Fang
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Yabing Yang
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Xiaoming Gu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| | - Junhong Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| | - Shuaixi Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| |
Collapse
|
11
|
Liu X, Gao S, Qin YM, Zhang WL, Li P, Xiang XY. Decreased PANK1 expression in kidney renal clear cell carcinoma: impact on cell apoptosis, invasion, migration, and epithelial-mesenchymal transition. Discov Oncol 2024; 15:380. [PMID: 39196459 PMCID: PMC11358577 DOI: 10.1007/s12672-024-01251-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
OBJECTIVE To investigate pantothenate kinases 1 (PANK1) expression in kidney renal clear cell carcinoma (KIRC) tissues, analyze its correlation with clinicopathological features and prognosis, and explore its impact on invasion, migration, and apoptosis in KIRC cells. METHODS GEPIA (gene expression profiling interactive analysis), UALCAN and LinkedOmics, were employed to analyze PANK1 expression in KIRC tissues and its correlation with clinical characteristics. Comparative analyses were performed between KIRC (Caki-1 and 786-O) and noncancerous renal cells (HK-2 and RPTEC). Transfection with PANK1 activation particles was conducted, followed by Wound healing, Transwell assay, Annexin V-fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) staining, quantitative reverse-transcription polymerase chain reaction (qRT-PCR), and Western blotting. RESULTS PANK1 was down-regulated in KIRC tissues and cells compared to normal tissues and noncancerous cells. Correlation analyses linked PANK1 expression with clinicopathological features in KIRC, with high PANK1 expression associated with a favorable outcome. High PANK1 expression correlated positively with E-cadherin (CDH1), tight junction protein 1 (TJP1), Fas cell surface death receptor (FAS), caspase-8 (CASP8), and CASP9, while showing a negative correlation with vimentin (VIM), snail family transcriptional repressor 1 (SNAIL1), twist family BHLH transcription factor 1 (TWIST1), and TWIST2. PANK1 overexpression increased CDH1, TJP1, FAS, CASP8, and CASP9 while downregulating SNAIL1, VIM, TWIST1, and TWIST2, inhibiting invasion and migration, and promoting apoptosis in KIRC cells. CONCLUSION PANK1 down-regulation in KIRC tissues correlated with clinicopathological features and prognosis. Its overexpression modulated epithelial-mesenchymal transition (EMT)-related gene, inhibited invasion, promoted apoptosis in KIRC cells, highlighting its role in disease progression and therapeutic potential.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Urology, Lishui People's Hospital, Lishui, 323000, Zhejiang, China
| | - Song Gao
- Department of Urology, Lishui People's Hospital, Lishui, 323000, Zhejiang, China
| | - Ye-Min Qin
- Department of Urology, Lishui People's Hospital, Lishui, 323000, Zhejiang, China
| | - Wei-Li Zhang
- Department of Urology, Lishui People's Hospital, Lishui, 323000, Zhejiang, China
| | - Peng Li
- Department of Urology, Lishui People's Hospital, Lishui, 323000, Zhejiang, China
| | - Xiao-Yun Xiang
- Department of Urology, Lishui People's Hospital, Lishui, 323000, Zhejiang, China.
| |
Collapse
|
12
|
Kainulainen K, Niskanen EA, Kinnunen J, Mäki-Mantila K, Hartikainen K, Paakinaho V, Malinen M, Ketola K, Pasonen-Seppänen S. Secreted factors from M1 macrophages drive prostate cancer stem cell plasticity by upregulating NANOG, SOX2, and CD44 through NFκB-signaling. Oncoimmunology 2024; 13:2393442. [PMID: 39175947 PMCID: PMC11340773 DOI: 10.1080/2162402x.2024.2393442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/27/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
The inflammatory tumor microenvironment (TME) is a key driver for tumor-promoting processes. Tumor-associated macrophages are one of the main immune cell types in the TME and their increased density is related to poor prognosis in prostate cancer. Here, we investigated the influence of pro-inflammatory (M1) and immunosuppressive (M2) macrophages on prostate cancer lineage plasticity. Our findings reveal that M1 macrophage secreted factors upregulate genes related to stemness while downregulating genes associated with androgen response in prostate cancer cells. The expression of cancer stem cell (CSC) plasticity markers NANOG, KLF4, SOX2, OCT4, and CD44 was stimulated by the secreted factors from M1 macrophages. Moreover, AR and its target gene PSA were observed to be suppressed in LNCaP cells treated with secreted factors from M1 macrophages. Inhibition of NFκB signaling using the IKK16 inhibitor resulted in downregulation of NANOG, SOX2, and CD44 and CSC plasticity. Our study highlights that the secreted factors from M1 macrophages drive prostate cancer cell plasticity by upregulating the expression of CSC plasticity markers through NFκB signaling pathway.
Collapse
Affiliation(s)
- Kirsi Kainulainen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Einari A. Niskanen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Johanna Kinnunen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Kaisa Mäki-Mantila
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Kiia Hartikainen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ville Paakinaho
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Marjo Malinen
- Department of Forestry and Environmental Engineering, South-Eastern Finland University of Applied Sciences, Kouvola, Finland
| | - Kirsi Ketola
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Sanna Pasonen-Seppänen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
13
|
Cao Y. Lack of basic rationale in epithelial-mesenchymal transition and its related concepts. Cell Biosci 2024; 14:104. [PMID: 39164745 PMCID: PMC11334496 DOI: 10.1186/s13578-024-01282-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/05/2024] [Indexed: 08/22/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is defined as a cellular process during which epithelial cells acquire mesenchymal phenotypes and behavior following the downregulation of epithelial features. EMT and its reversed process, the mesenchymal-epithelial transition (MET), and the special form of EMT, the endothelial-mesenchymal transition (EndMT), have been considered as mainstream concepts and general rules driving developmental and pathological processes, particularly cancer. However, discrepancies and disputes over EMT and EMT research have also grown over time. EMT is defined as transition between two cellular states, but it is unanimously agreed by EMT researchers that (1) neither the epithelial and mesenchymal states nor their regulatory networks have been clearly defined, (2) no EMT markers or factors can represent universally epithelial and mesenchymal states, and thus (3) EMT cannot be assessed on the basis of one or a few EMT markers. In contrast to definition and proposed roles of EMT, loss of epithelial feature does not cause mesenchymal phenotype, and EMT does not contribute to embryonic mesenchyme and neural crest formation, the key developmental events from which the EMT concept was derived. EMT and MET, represented by change in cell shapes or adhesiveness, or symbolized by EMT factors, are biased interpretation of the overall change in cellular property and regulatory networks during development and cancer progression. Moreover, EMT and MET are consequences rather than driving factors of developmental and pathological processes. The true meaning of EMT in some developmental and pathological processes, such as fibrosis, needs re-evaluation. EMT is believed to endow malignant features, such as migration, stemness, etc., to cancer cells. However, the core property of cancer (tumorigenic) cells is neural stemness, and the core EMT factors are components of the regulatory networks of neural stemness. Thus, EMT in cancer progression is misattribution of the roles of neural stemness to the unknown mesenchymal state. Similarly, neural crest EMT is misattribution of intrinsic property of neural crest cells to the unknown mesenchymal state. Lack of basic rationale in EMT and related concepts urges re-evaluation of their significance as general rules for understanding developmental and pathological processes, and re-evaluation of their significance in scientific research.
Collapse
Affiliation(s)
- Ying Cao
- The MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing, 210061, China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen, China.
| |
Collapse
|
14
|
Tomecka P, Kunachowicz D, Górczyńska J, Gebuza M, Kuźnicki J, Skinderowicz K, Choromańska A. Factors Determining Epithelial-Mesenchymal Transition in Cancer Progression. Int J Mol Sci 2024; 25:8972. [PMID: 39201656 PMCID: PMC11354349 DOI: 10.3390/ijms25168972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a process in which an epithelial cell undergoes multiple modifications, acquiring both morphological and functional characteristics of a mesenchymal cell. This dynamic process is initiated by various inducing signals that activate numerous signaling pathways, leading to the stimulation of transcription factors. EMT plays a significant role in cancer progression, such as metastasis and tumor heterogeneity, as well as in drug resistance. In this article, we studied molecular mechanisms, epigenetic regulation, and cellular plasticity of EMT, as well as microenvironmental factors influencing this process. We included both in vivo and in vitro models in EMT investigation and clinical implications of EMT, such as the use of EMT in curing oncological patients and targeting its use in therapies. Additionally, this review concludes with future directions and challenges in the wide field of EMT.
Collapse
Affiliation(s)
- Paulina Tomecka
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland;
| | - Julia Górczyńska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Michał Gebuza
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Jacek Kuźnicki
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Katarzyna Skinderowicz
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
| |
Collapse
|
15
|
Liu Y, Jiang Y, Qiu P, Ma T, Bai Y, Bu J, Hu Y, Jin M, Zhu T, Gu X. RGS10 deficiency facilitates distant metastasis by inducing epithelial-mesenchymal transition in breast cancer. eLife 2024; 13:RP97327. [PMID: 39145770 PMCID: PMC11326775 DOI: 10.7554/elife.97327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Distant metastasis is the major cause of death in patients with breast cancer. Epithelial-mesenchymal transition (EMT) contributes to breast cancer metastasis. Regulator of G protein-signaling (RGS) proteins modulates metastasis in various cancers. This study identified a novel role for RGS10 in EMT and metastasis in breast cancer. RGS10 protein levels were significantly lower in breast cancer tissues compared to normal breast tissues, and deficiency in RGS10 protein predicted a worse prognosis in patients with breast cancer. RGS10 protein levels were lower in the highly aggressive cell line MDA-MB-231 than in the poorly aggressive, less invasive cell lines MCF7 and SKBR3. Silencing RGS10 in SKBR3 cells enhanced EMT and caused SKBR3 cell migration and invasion. The ability of RGS10 to suppress EMT and metastasis in breast cancer was dependent on lipocalin-2 and MIR539-5p. These findings identify RGS10 as a tumor suppressor, prognostic biomarker, and potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi Jiang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie Ma
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Bai
- Department of Nursing, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiawen Bu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yueting Hu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ming Jin
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tong Zhu
- Breast Surgery of Panjin Central Hospital, Panjin, China
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Tabei Y, Nakajima Y. IL-1β-activated PI3K/AKT and MEK/ERK pathways coordinately promote induction of partial epithelial-mesenchymal transition. Cell Commun Signal 2024; 22:392. [PMID: 39118068 PMCID: PMC11308217 DOI: 10.1186/s12964-024-01775-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular process in embryonic development, wound healing, organ fibrosis, and cancer metastasis. Previously, we and others have reported that proinflammatory cytokine interleukin-1β (IL-1β) induces EMT. However, the exact mechanisms, especially the signal transduction pathways, underlying IL-1β-mediated EMT are not yet completely understood. Here, we found that IL-1β stimulation leads to the partial EMT-like phenotype in human lung epithelial A549 cells, including the gain of mesenchymal marker (vimentin) and high migratory potential, without the complete loss of epithelial marker (E-cadherin). IL-1β-mediated partial EMT induction was repressed by PI3K inhibitor LY294002, indicating that the PI3K/AKT pathway plays a significant role in the induction. In addition, ERK1/2 inhibitor FR180204 markedly inhibited the IL-1β-mediated partial EMT induction, demonstrating that the MEK/ERK pathway was also involved in the induction. Furthermore, we found that the activation of the PI3K/AKT and MEK/ERK pathways occurred downstream of the epidermal growth factor receptor (EGFR) pathway and the IL-1 receptor (IL-1R) pathway, respectively. Our findings suggest that the PI3K/AKT and MEK/ERK pathways coordinately promote the IL-1β-mediated partial EMT induction. The inhibition of not one but both pathways is expected yield clinical benefits by preventing partial EMT-related disorders such as organ fibrosis and cancer metastasis.
Collapse
Affiliation(s)
- Yosuke Tabei
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-Cho, Takamatsu, Kagawa, 761-0395, Japan.
| | - Yoshihiro Nakajima
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-Cho, Takamatsu, Kagawa, 761-0395, Japan
| |
Collapse
|
17
|
Sun R, Liang Y, Zhu S, Yin Q, Bian Y, Ma H, Zhao F, Yin G, Tang D. Homotherapy-for-heteropathy of Bupleurum Chinense DC.-Scutellaria baicalensis Georgi in treating depression and colorectal cancer: A network pharmacology and animal model approach. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118038. [PMID: 38479544 DOI: 10.1016/j.jep.2024.118038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/26/2024] [Accepted: 03/09/2024] [Indexed: 03/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bupleurum chinense DC.-Scutellaria baicalensis Georgi (BS) is a classic drug pair that has good clinical effects on depression and many tumors. However, the concurrent targeting mechanism of how the aforementioned drug pair is valid in the two distinct diseases, has not been clarified yet. AIM OF THE STUDY The components of BS were detected by LC-MS, combined with network pharmacology to explore the active ingredients and common targeting mechanism of its multi-pathway regulation of BS in treating depression and CRC, and to validate the dual effects of BS using the CUMS mice model and orthotopic transplantation tumor mice model of CRC. RESULTS Twenty-nine components were screened, 84 common gene targets were obteined, and the top 5 key targets including STAT3, PIK3R1, PIK3CA, AKT1, IL-6 were identified by PPI network. GO and KEGG analyses revealed that PI3K/AKT and JAK/STAT signaling pathways might play a crucial role of BS in regulating depression and CRC. BS significantly modulated CUMS-induced depressive-like behavior, attenuated neuronal damage, and reduced serum EPI and NE levels in CUMS model mice. BS improved the pathological histological changes of solid tumors and liver tissues and inhibited solid tumors and liver metastases in tumor-bearing mice. BS significantly decreased the proteins' expression of IL-6, p-JAK2, p-STAT3, p-PI3K, p-AKT1 in hippocampal tissues and solid tumors, and regulated the levels of IL-2, IL-6 and IL-10 in serum of two models of mice. CONCLUSION BS can exert dual antidepressant and anti-CRC effects by inhibiting the expression of IL-6/JAK2/STAT3 and PI3K/AKT pathway proteins and regulating the release of inflammatory cytokines.
Collapse
Affiliation(s)
- Ruolan Sun
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yan Liang
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shijiao Zhu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qihang Yin
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yong Bian
- Labthatory Animal Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hongyue Ma
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Fan Zhao
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Gang Yin
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Decai Tang
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
18
|
Toledo B, Zhu Chen L, Paniagua-Sancho M, Marchal JA, Perán M, Giovannetti E. Deciphering the performance of macrophages in tumour microenvironment: a call for precision immunotherapy. J Hematol Oncol 2024; 17:44. [PMID: 38863020 PMCID: PMC11167803 DOI: 10.1186/s13045-024-01559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024] Open
Abstract
Macrophages infiltrating tumour tissues or residing in the microenvironment of solid tumours are known as tumour-associated macrophages (TAMs). These specialized immune cells play crucial roles in tumour growth, angiogenesis, immune regulation, metastasis, and chemoresistance. TAMs encompass various subpopulations, primarily classified into M1 and M2 subtypes based on their differentiation and activities. M1 macrophages, characterized by a pro-inflammatory phenotype, exert anti-tumoural effects, while M2 macrophages, with an anti-inflammatory phenotype, function as protumoural regulators. These highly versatile cells respond to stimuli from tumour cells and other constituents within the tumour microenvironment (TME), such as growth factors, cytokines, chemokines, and enzymes. These stimuli induce their polarization towards one phenotype or another, leading to complex interactions with TME components and influencing both pro-tumour and anti-tumour processes.This review comprehensively and deeply covers the literature on macrophages, their origin and function as well as the intricate interplay between macrophages and the TME, influencing the dual nature of TAMs in promoting both pro- and anti-tumour processes. Moreover, the review delves into the primary pathways implicated in macrophage polarization, examining the diverse stimuli that regulate this process. These stimuli play a crucial role in shaping the phenotype and functions of macrophages. In addition, the advantages and limitations of current macrophage based clinical interventions are reviewed, including enhancing TAM phagocytosis, inducing TAM exhaustion, inhibiting TAM recruitment, and polarizing TAMs towards an M1-like phenotype. In conclusion, while the treatment strategies targeting macrophages in precision medicine show promise, overcoming several obstacles is still necessary to achieve an accessible and efficient immunotherapy.
Collapse
Affiliation(s)
- Belén Toledo
- Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén, E-23071, Spain
- Department of Medical Oncology, Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Linrui Zhu Chen
- Department of Medical Oncology, Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - María Paniagua-Sancho
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18100, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, Granada, E-18071, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E-18016, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18100, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, Granada, E-18071, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E-18016, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén, E-23071, Spain.
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18100, Spain.
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain.
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, VU University, Amsterdam, The Netherlands.
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, San Giuliano, Pisa, 56017, Italy.
| |
Collapse
|
19
|
Kim NY, Kim MO, Shin S, Kwon WS, Kim B, Lee JY, In Lee S. Effect of atractylenolide III on zearalenone-induced Snail1-mediated epithelial-mesenchymal transition in porcine intestinal epithelium. J Anim Sci Biotechnol 2024; 15:80. [PMID: 38845033 PMCID: PMC11157892 DOI: 10.1186/s40104-024-01038-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The intestinal epithelium performs essential physiological functions, such as nutrient absorption, and acts as a barrier to prevent the entry of harmful substances. Mycotoxins are prevalent contaminants found in animal feed that exert harmful effects on the health of livestock. Zearalenone (ZEA) is produced by the Fusarium genus and induces gastrointestinal dysfunction and disrupts the health and immune system of animals. Here, we evaluated the molecular mechanisms that regulate the effects of ZEA on the porcine intestinal epithelium. RESULTS Treatment of IPEC-J2 cells with ZEA decreased the expression of E-cadherin and increased the expression of Snai1 and Vimentin, which induced Snail1-mediated epithelial-to-mesenchymal transition (EMT). In addition, ZEA induces Snail-mediated EMT through the activation of TGF-β signaling. The treatment of IPEC-J2 cells with atractylenolide III, which were exposed to ZEA, alleviated EMT. CONCLUSIONS Our findings provide insights into the molecular mechanisms of ZEA toxicity in porcine intestinal epithelial cells and ways to mitigate it.
Collapse
Affiliation(s)
- Na Yeon Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeong-sangbuk-do, 37224, Republic of Korea
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeong-sangbuk-do, 37224, Republic of Korea
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Gyeongsangbuk-do, 37224, Republic of Korea
| | - Sangsu Shin
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeong-sangbuk-do, 37224, Republic of Korea
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Gyeongsangbuk-do, 37224, Republic of Korea
| | - Woo-Sung Kwon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeong-sangbuk-do, 37224, Republic of Korea
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Gyeongsangbuk-do, 37224, Republic of Korea
| | - Bomi Kim
- National Institute for Korean Medicine Development, Gyeongsan, 38540, Republic of Korea
| | - Joon Yeop Lee
- National Institute for Korean Medicine Development, Gyeongsan, 38540, Republic of Korea
| | - Sang In Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeong-sangbuk-do, 37224, Republic of Korea.
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Gyeongsangbuk-do, 37224, Republic of Korea.
| |
Collapse
|
20
|
Wang X, Zhou J, Li X, Liu C, Liu L, Cui H. The Role of Macrophages in Lung Fibrosis and the Signaling Pathway. Cell Biochem Biophys 2024; 82:479-488. [PMID: 38536578 DOI: 10.1007/s12013-024-01253-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/13/2024] [Indexed: 08/25/2024]
Abstract
Lung fibrosis is a dysregulated repair process caused by excessive deposition of extracellular matrix that can severely affect respiratory function. Macrophages are a group of immune cells that have multiple functions and can perform a variety of roles. Lung fibrosis develops with the involvement of pro-inflammatory and pro-fibrotic factors secreted by macrophages. The balance between M1 and M2 macrophages has been proposed to play a role in determining the trend and severity of lung fibrosis. New avenues and concepts for preventing and treating lung fibrosis have emerged in recent years through research on mitochondria, Gab proteins, and exosomes. The main topic of this essay is the impact that mitochondria, Gab proteins, and exosomes have on macrophage polarization. In addition, the potential of these factors as targets to enhance lung fibrosis is also explored. We have also collated the functions and mechanisms of signaling pathways associated with the regulation of macrophage polarization such as Notch, TGF-β/Smad, JAK-STAT and cGAS-STING. The goal of this article is to explain the potential benefits of focusing on macrophage polarization as a way to relieve lung fibrosis. We aspire to provide valuable insights that could lead to enhancements in the treatment of this condition.
Collapse
Affiliation(s)
- Xingmei Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China
| | - Jiaxu Zhou
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China
| | - Xinrui Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China
| | - Chang Liu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China
| | - Lan Liu
- Department of Pathology, Affiliated Hospital of Yanbian University, Yanji, 133002, Jilin, China.
| | - Hong Cui
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China.
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China.
| |
Collapse
|
21
|
Li J, Cheng C, Zhang J. An analysis of AURKB's prognostic and immunological roles across various cancers. J Cell Mol Med 2024; 28:e18475. [PMID: 38898693 PMCID: PMC11187167 DOI: 10.1111/jcmm.18475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Aurora kinase B (AURKB), an essential regulator in the process of mitosis, has been revealed through various studies to have a significant role in cancer development and progression. However, the specific mechanisms remain poorly understood. This study, therefore, seeks to elucidate the multifaceted role of AURKB in diverse cancer types. This study utilized bioinformatics techniques to examine the transcript, protein, promoter methylation and mutation levels of AURKB. The study further analysed associations between AURKB and factors such as prognosis, pathological stage, biological function, immune infiltration, tumour mutational burden (TMB) and microsatellite instability (MSI). In addition, immunohistochemical staining data of 50 cases of renal clear cell carcinoma and its adjacent normal tissues were collected to verify the difference in protein expression of AURKB in the two tissues. The results show that AURKB is highly expressed in most cancers, and the protein level of AURKB and the methylation level of its promoter vary among cancer types. Survival analysis showed that AURKB was associated with overall survival in 12 cancer types and progression-free survival in 11 cancer types. Elevated levels of AURKB were detected in the advanced stages of 10 different cancers. AURKB has a potential impact on cancer progression through its effects on cell cycle regulation as well as inflammatory and immune-related pathways. We observed a strong association between AURKB and immune cell infiltration, immunomodulatory factors, TMB and MSI. Importantly, we confirmed that the AURKB protein is highly expressed in kidney renal clear cell carcinoma (KIRC). Our study reveals that AURKB may be a potential biomarker for pan-cancer and KIRC.
Collapse
Affiliation(s)
- Jun Li
- Department of UrologyThe First Affiliated Hospital of Bengbu Medical UniversityBengbuChina
| | - Cui Cheng
- Department of Gynaecological OncologyThe First Affiliated Hospital of Bengbu Medical UniversityBengbuChina
| | - Jiajun Zhang
- Department of UrologyThe First Affiliated Hospital of Bengbu Medical UniversityBengbuChina
| |
Collapse
|
22
|
Rybinska I, Mangano N, Romero-Cordoba SL, Regondi V, Ciravolo V, De Cecco L, Maffioli E, Paolini B, Bianchi F, Sfondrini L, Tedeschi G, Agresti R, Tagliabue E, Triulzi T. SAA1-dependent reprogramming of adipocytes by tumor cells is associated with triple negative breast cancer aggressiveness. Int J Cancer 2024; 154:1842-1856. [PMID: 38289016 DOI: 10.1002/ijc.34859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 03/14/2024]
Abstract
Triple negative breast cancers (TNBC) are characterized by a poor prognosis and a lack of targeted treatments. Their progression depends on tumor cell intrinsic factors, the tumor microenvironment and host characteristics. Although adipocytes, the primary stromal cells of the breast, have been determined to be plastic in physiology and cancer, the tumor-derived molecular mediators of tumor-adipocyte crosstalk have not been identified yet. In this study, we report that the crosstalk between TNBC cells and adipocytes in vitro beyond adipocyte dedifferentiation, induces a unique transcriptional profile that is characterized by inflammation and pathways that are related to interaction with the tumor microenvironment. Accordingly, increased cancer stem-like features and recruitment of pro-tumorigenic immune cells are induced by this crosstalk through CXCL5 and IL-8 production. We identified serum amyloid A1 (SAA1) as a regulator of the adipocyte reprogramming through CD36 and P2XR7 signaling. In human TNBC, SAA1 expression was associated with cancer-associated adipocyte infiltration, inflammation, stimulated lipolysis, stem-like properties, and a distinct tumor immune microenvironment. Our findings constitute evidence that the interaction between tumor cells and adipocytes through the release of SAA1 is relevant to the aggressiveness of TNBC.
Collapse
Affiliation(s)
- Ilona Rybinska
- Microenvironment and Biomarkers of Solid Tumors Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Nunzia Mangano
- Microenvironment and Biomarkers of Solid Tumors Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Sandra L Romero-Cordoba
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - Viola Regondi
- Microenvironment and Biomarkers of Solid Tumors Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Valentina Ciravolo
- Microenvironment and Biomarkers of Solid Tumors Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Loris De Cecco
- Molecular Mechanisms Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Elisa Maffioli
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Milano, Italy
- CIMAINA, Università degli Studi di Milano, Milano, Italy
| | - Biagio Paolini
- Anatomic Pathology A Unit, Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Francesca Bianchi
- Department of Biomedical Science for Health, Università degli Studi di Milano, Milan, Italy
| | - Lucia Sfondrini
- Microenvironment and Biomarkers of Solid Tumors Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
- Department of Biomedical Science for Health, Università degli Studi di Milano, Milan, Italy
| | - Gabriella Tedeschi
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Milano, Italy
- CIMAINA, Università degli Studi di Milano, Milano, Italy
| | - Roberto Agresti
- Division of Surgical Oncology, Breast Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Elda Tagliabue
- Microenvironment and Biomarkers of Solid Tumors Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Tiziana Triulzi
- Microenvironment and Biomarkers of Solid Tumors Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| |
Collapse
|
23
|
Bamodu OA, Chung CC, Pisanic TR, Wu ATH. The intricate interplay between cancer stem cells and cell-of-origin of cancer: implications for therapeutic strategies. Front Oncol 2024; 14:1404628. [PMID: 38800385 PMCID: PMC11116576 DOI: 10.3389/fonc.2024.1404628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Background Cancer stem cells (CSCs) have emerged as pivotal players in tumorigenesis, disease progression, and resistance to therapies. Objective This comprehensive review delves into the intricate relationship between CSCs and the cell-of-origin in diverse cancer types. Design Comprehensive review of thematically-relevant literature. Methods We explore the underlying molecular mechanisms that drive the conversion of normal cells into CSCs and the impact of the cell-of-origin on CSC properties, tumor initiation, and therapeutic responses. Moreover, we discuss potential therapeutic interventions targeting CSCs based on their distinct cell-of-origin characteristics. Results Accruing evidence suggest that the cell-of-origin, the cell type from which the tumor originates, plays a crucial role in determining the properties of CSCs and their contribution to tumor heterogeneity. Conclusion By providing critical insights into the complex interplay between CSCs and their cellular origins, this article aims to enhance our understanding of cancer biology and pave the way for more effective and personalized cancer treatments.
Collapse
Affiliation(s)
- Oluwaseun Adebayo Bamodu
- Directorate of Postgraduate Studies, School of Clinical Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
| | - Chen-Chih Chung
- Department of Neurology, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
| | - Thomas R. Pisanic
- Johns Hopkins Institute for NanoBioTechnology, Baltimore, MD, United States
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Oncology - Cancer Genetics and Epigenetics, Johns Hopkins University, Baltimore, MD, United States
| | - Alexander T. H. Wu
- The Program for Translational Medicine, Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
24
|
Mao KY, Cao YC, Si MY, Rao DY, Gu L, Tang ZX, Zhu SY. Advances in systemic immune inflammatory indices in non-small cell lung cancer: A review. Medicine (Baltimore) 2024; 103:e37967. [PMID: 38701309 PMCID: PMC11062741 DOI: 10.1097/md.0000000000037967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/29/2024] [Indexed: 05/05/2024] Open
Abstract
Lung cancer is one of the most prevalent cancers globally, with non-small cell lung cancers constituting the majority. These cancers have a high incidence and mortality rate. In recent years, a growing body of research has demonstrated the intricate link between inflammation and cancer, highlighting that inflammation and cancer are inextricably linked and that inflammation plays a pivotal role in cancer development, progression, and prognosis of cancer. The Systemic Immunoinflammatory Index (SII), comprising neutrophil, lymphocyte, and platelet counts, is a more comprehensive indicator of the host's systemic inflammation and immune status than a single inflammatory index. It is widely used in clinical practice due to its cost-effectiveness, simplicity, noninvasiveness, and ease of acquisition. This paper reviews the impact of SII on the development, progression, and prognosis of non-small cell lung cancer.
Collapse
Affiliation(s)
- Kai-Yun Mao
- First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Yuan-Chao Cao
- First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Mao-Yan Si
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Ding-yu Rao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Liang Gu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhi-Xian Tang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Shen-yu Zhu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
25
|
Herst P, Carson G, Lewthwaite D, Eccles D, Schmidt A, Wilson A, Grasso C, O’Sullivan D, Neuzil J, McConnell M, Berridge M. Residual OXPHOS is required to drive primary and metastatic lung tumours in an orthotopic breast cancer model. Front Oncol 2024; 14:1362786. [PMID: 38751813 PMCID: PMC11094293 DOI: 10.3389/fonc.2024.1362786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/09/2024] [Indexed: 05/18/2024] Open
Abstract
Background Fast adaptation of glycolytic and mitochondrial energy pathways to changes in the tumour microenvironment is a hallmark of cancer. Purely glycolytic ρ0 tumour cells do not form primary tumours unless they acquire healthy mitochondria from their micro-environment. Here we explored the effects of severely compromised respiration on the metastatic capability of 4T1 mouse breast cancer cells. Methods 4T1 cell lines with different levels of respiratory capacity were generated; the Seahorse extracellular flux analyser was used to evaluate oxygen consumption rates, fluorescent confocal microscopy to assess the number of SYBR gold-stained mitochondrial DNA nucleoids, and the presence of the ATP5B protein in the cytoplasm and fluorescent in situ nuclear hybridization was used to establish ploidy. MinION nanopore RNA sequence analysis was used to compare mitochondrial DNA transcription between cell lines. Orthotopic injection was used to determine the ability of cells to metastasize to the lungs of female Balb/c mice. Results OXPHOS-deficient ATP5B-KO3.1 cells did not generate primary tumours. Severely OXPHOS compromised ρ0D5 cells generated both primary tumours and lung metastases. Cells generated from lung metastasis of both OXPHOS-competent and OXPHOS-compromised cells formed primary tumours but no metastases when re-injected into mice. OXPHOS-compromised cells significantly increased their mtDNA content, but this did not result in increased OXPHOS capacity, which was not due to decreased mtDNA transcription. Gene set enrichment analysis suggests that certain cells derived from lung metastases downregulate their epithelial-to-mesenchymal related pathways. Conclusion In summary, OXPHOS is required for tumorigenesis in this orthotopic mouse breast cancer model but even very low levels of OXPHOS are sufficient to generate both primary tumours and lung metastases.
Collapse
Affiliation(s)
- Patries Herst
- Department of Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
- Department of Radiation Therapy, University of Otago, Wellington, New Zealand
| | - Georgia Carson
- Department of Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Danielle Lewthwaite
- Department of Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
- School of Biological Sciences , Victoria University of Wellington, Wellington, New Zealand
| | - David Eccles
- Department of Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Alfonso Schmidt
- Department of Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Andrew Wilson
- Department of Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Carole Grasso
- Department of Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - David O’Sullivan
- Department of Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Jiri Neuzil
- Institute of Biotechnology of the Czech Academy of Sciences, Prague-West, Czechia
- School of Pharmacy and Medical Science, Griffith University, Southport, QLD, Australia
| | - Melanie McConnell
- School of Biological Sciences , Victoria University of Wellington, Wellington, New Zealand
| | - Michael Berridge
- Department of Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
26
|
Martín-Leyva A, Peinado FM, Ocón-Hernández O, Olivas-Martínez A, Luque A, León J, Lendínez I, Cardona J, Lara-Ramos A, Olea N, Fernández MF, Artacho-Cordón F. Environmental Exposure to Persistent Organic Pollutants and Its Association with Endometriosis Risk: Implications in the Epithelial-Mesenchymal Transition Process. Int J Mol Sci 2024; 25:4420. [PMID: 38674005 PMCID: PMC11050161 DOI: 10.3390/ijms25084420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
We aimed to explore the relationship of adipose tissue concentrations of some persistent organic pollutants (POPs) with the risk of endometriosis and the endometriotic tissue expression profile of genes related to the endometriosis-related epithelial-mesenchymal transition (EMT) process. This case-control study enrolled 109 women (34 cases and 75 controls) between January 2018 and March 2020. Adipose tissue samples and endometriotic tissues were intraoperatively collected to determine concentrations of nine POPs and the gene expression profiles of 36 EMT-related genes, respectively. Associations of POPs with endometriosis risk were explored with multivariate logistic regression, while the relationship between exposure and gene expression profiles was assessed through Spearman correlation or Mann-Whitney U tests. After adjustment, increased endometriosis risk was associated with p,p'-DDT, PCB-180, and ΣPCBs. POP exposure was also associated with reduced gene expression levels of the CLDN7 epithelial marker and increased levels of the ITGB2 mesenchymal marker and a variety of EMT promoters (HMGA1, HOXA10, FOXM1, DKK1, CCR1, TNFRSF1B, RRM2, ANG, ANGPT1, and ESR1). Our findings indicate that exposure to POPs may increase the risk of endometriosis and might have a role in the endometriosis-related EMT development, contributing to the disease onset and progression. Further studies are warranted to corroborate these findings.
Collapse
Affiliation(s)
- Ana Martín-Leyva
- Radiology and Physical Medicine Department, University of Granada, E-18016 Granada, Spain; (A.M.-L.); (N.O.); (M.F.F.)
| | - Francisco M. Peinado
- Biohealth Research Institute in Granada (ibs.GRANADA), E-18012 Granada, Spain; (F.M.P.); (O.O.-H.); (A.O.-M.); (A.L.); (J.L.)
- Centre for Biomedical Research, University of Granada, E-18016 Granada, Spain
| | - Olga Ocón-Hernández
- Biohealth Research Institute in Granada (ibs.GRANADA), E-18012 Granada, Spain; (F.M.P.); (O.O.-H.); (A.O.-M.); (A.L.); (J.L.)
- Gynaecology and Obstetrics Unit, ‘San Cecilio’ University Hospital, E-18016 Granada, Spain;
| | - Alicia Olivas-Martínez
- Biohealth Research Institute in Granada (ibs.GRANADA), E-18012 Granada, Spain; (F.M.P.); (O.O.-H.); (A.O.-M.); (A.L.); (J.L.)
- Centre for Biomedical Research, University of Granada, E-18016 Granada, Spain
| | - Antonio Luque
- Biohealth Research Institute in Granada (ibs.GRANADA), E-18012 Granada, Spain; (F.M.P.); (O.O.-H.); (A.O.-M.); (A.L.); (J.L.)
- Centre for Biomedical Research, University of Granada, E-18016 Granada, Spain
| | - Josefa León
- Biohealth Research Institute in Granada (ibs.GRANADA), E-18012 Granada, Spain; (F.M.P.); (O.O.-H.); (A.O.-M.); (A.L.); (J.L.)
- Digestive Medicine Unit, ‘San Cecilio’ University Hospital, E-18012 Granada, Spain
- CIBER Hepatic and Digestive Diseases (CIBEREHD), E-28029 Madrid, Spain
| | | | - Jesús Cardona
- Gynaecology and Obstetrics Unit, ‘San Cecilio’ University Hospital, E-18016 Granada, Spain;
| | - Ana Lara-Ramos
- Gynaecology and Obstetrics Unit, ‘Virgen de las Nieves’ University Hospital, E-18014 Granada, Spain;
| | - Nicolás Olea
- Radiology and Physical Medicine Department, University of Granada, E-18016 Granada, Spain; (A.M.-L.); (N.O.); (M.F.F.)
- Biohealth Research Institute in Granada (ibs.GRANADA), E-18012 Granada, Spain; (F.M.P.); (O.O.-H.); (A.O.-M.); (A.L.); (J.L.)
- Centre for Biomedical Research, University of Granada, E-18016 Granada, Spain
- CIBER Epidemiology and Public Health (CIBERESP), E-28029 Madrid, Spain
- Nuclear Medicine Unit, ‘San Cecilio’ University Hospital, E-18016 Granada, Spain
| | - Mariana F. Fernández
- Radiology and Physical Medicine Department, University of Granada, E-18016 Granada, Spain; (A.M.-L.); (N.O.); (M.F.F.)
- Biohealth Research Institute in Granada (ibs.GRANADA), E-18012 Granada, Spain; (F.M.P.); (O.O.-H.); (A.O.-M.); (A.L.); (J.L.)
- Centre for Biomedical Research, University of Granada, E-18016 Granada, Spain
- CIBER Epidemiology and Public Health (CIBERESP), E-28029 Madrid, Spain
| | - Francisco Artacho-Cordón
- Radiology and Physical Medicine Department, University of Granada, E-18016 Granada, Spain; (A.M.-L.); (N.O.); (M.F.F.)
- Biohealth Research Institute in Granada (ibs.GRANADA), E-18012 Granada, Spain; (F.M.P.); (O.O.-H.); (A.O.-M.); (A.L.); (J.L.)
- Centre for Biomedical Research, University of Granada, E-18016 Granada, Spain
- CIBER Epidemiology and Public Health (CIBERESP), E-28029 Madrid, Spain
| |
Collapse
|
27
|
Wang PX, Mu XN, Huang SH, Hu K, Sun ZG. Cellular and molecular mechanisms of oroxylin A in cancer therapy: Recent advances. Eur J Pharmacol 2024; 969:176452. [PMID: 38417609 DOI: 10.1016/j.ejphar.2024.176452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/04/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
Seeking an effective and safe scheme is the common goal of clinical treatment of tumor patients. In recent years, traditional Chinese medicine has attracted more and more attention in order to discover new drugs with good anti-tumor effects. Oroxylin A (OA) is a compound found in natural Oroxylum indicum and Scutellaria baicalensis Georgi plants and has been used in the treatment of various cancers. Studies have shown that OA has a wide range of powerful biological activities and plays an important role in neuroprotection, anti-inflammation, anti-virus, anti-allergy, anti-tumor and so on. OA shows high efficacy in tumor treatment. Therefore, it has attracted great attention of researchers all over the world. This review aims to discuss the anti-tumor effects of OA from the aspects of cell cycle arrest, induction of cell proliferation and apoptosis, induction of autophagy, anti-inflammation, inhibition of glycolysis, angiogenesis, invasion, metastasis and reversal of drug resistance. In addition, the safety and toxicity of the compound were also discussed. As a next step, to clarify the benefits and adverse effects of Oroxylin A in cancer patients further experiments, especially clinical trials, are needed.
Collapse
Affiliation(s)
- Peng-Xin Wang
- Departments of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China; Medical College, Jining Medical University, Jining 272067, Shandong, China
| | - Xiao-Nan Mu
- Health Care (& Geriatrics) Ward 1, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, China
| | - Shu-Hong Huang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China
| | - Kang Hu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, 215000, Jiangsu, China.
| | - Zhi-Gang Sun
- Departments of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China.
| |
Collapse
|
28
|
Ameri P, Bertero E, Lombardi M, Porto I, Canepa M, Nohria A, Vergallo R, Lyon AR, López-Fernández T. Ischaemic heart disease in patients with cancer. Eur Heart J 2024; 45:1209-1223. [PMID: 38323638 DOI: 10.1093/eurheartj/ehae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/22/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
Cardiologists are encountering a growing number of cancer patients with ischaemic heart disease (IHD). Several factors account for the interrelationship between these two conditions, in addition to improving survival rates in the cancer population. Established cardiovascular (CV) risk factors, such as hypercholesterolaemia and obesity, predispose to both IHD and cancer, through specific mechanisms and via low-grade, systemic inflammation. This latter is also fuelled by clonal haematopoiesis of indeterminate potential. Furthermore, experimental work indicates that IHD and cancer can promote one another, and the CV or metabolic toxicity of anticancer therapies can lead to IHD. The connections between IHD and cancer are reinforced by social determinants of health, non-medical factors that modify health outcomes and comprise individual and societal domains, including economic stability, educational and healthcare access and quality, neighbourhood and built environment, and social and community context. Management of IHD in cancer patients is often challenging, due to atypical presentation, increased bleeding and ischaemic risk, and worse outcomes as compared to patients without cancer. The decision to proceed with coronary revascularization and the choice of antithrombotic therapy can be difficult, particularly in patients with chronic coronary syndromes, necessitating multidisciplinary discussion that considers both general guidelines and specific features on a case by case basis. Randomized controlled trial evidence in cancer patients is very limited and there is urgent need for more data to inform clinical practice. Therefore, coexistence of IHD and cancer raises important scientific and practical questions that call for collaborative efforts from the cardio-oncology, cardiology, and oncology communities.
Collapse
Affiliation(s)
- Pietro Ameri
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy
| | - Edoardo Bertero
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Marco Lombardi
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, Roma, Italy
| | - Italo Porto
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy
| | - Marco Canepa
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy
| | - Anju Nohria
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Rocco Vergallo
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy
| | | | - Teresa López-Fernández
- Cardiology Department, La Paz University Hospital, IdiPAZ Research Institute, Madrid, Spain
- Cardiology Department, Quirón Pozuelo University Hospital, Madrid, Spain
| |
Collapse
|
29
|
Chen M, Wu GB, Hua S, Zheng L, Fan Q, Luo M. Dibutyl phthalate (DBP) promotes Epithelial-Mesenchymal Transition (EMT) to aggravate liver fibrosis into cirrhosis and portal hypertension (PHT) via ROS/TGF-β1/Snail-1 signalling pathway in adult rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116124. [PMID: 38503108 DOI: 10.1016/j.ecoenv.2024.116124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 03/21/2024]
Abstract
OBJECTIVE The primary objective of this study was to investigate the toxicological impact of Dibutyl phthalate (DBP) on the process of liver fibrosis transitioning into cirrhosis and the subsequent development of portal hypertension (PHT) through the mechanism of epithelial-mesenchymal transition (EMT) mediated by the ROS/TGF-β/Snail-1 signaling pathway. METHOD Carbon tetrachloride (CCl4) (1 mg/kg) was introduced in adult rats by oral feeding in CCl4 and CCl4+DBP groups twice a week for 8 weeks, and twice for another 8 week in CCl4 group. DBP was introduced by oral feeding in the CCl4+DBP group twice over the following 8 weeks. We subsequently analyzed hemodynamics measurements and liver cirrhosis degree, hepatic inflammation and liver function in the different groups. EMT related genes expression in rats in the groups of Control, DBP, CCl4 and CCl4+DBP were measured by immunohistochemistry (IHC). Enzyme-linked immunosorbent Assay (ELISA), qRT-PCR, western blot were used to detect the EMT related proteins and mRNA gene expression levels in rats and primary hepatocytes (PHCs). Reactive oxygen species (ROS) were examined with a ROS detection kit. RESULTS The results showed that the CCl4+DBP group had higher portal pressure (PP) and lower mean arterial pressure (MAP) than the other groups. Elevated collagen deposition, profibrotic factor, inflammation, EMT levels were detected in DBP and CCl4+DBP groups. ROS, TGF-β1 and Snail-1 were highly expressed after DBP exposure in vitro. TGF-β1 had the potential to regulate Snail-1, and both of them were subject to regulation by ROS. CONCLUSION DBP could influence the progression of EMT through its toxicological effect by ROS/TGF-β1/Snail-1 signalling pathway, causing cirrhosis and PHT in final. The findings of this research might contribute to a novel comprehension of the underlying toxicological mechanisms and animal model involved in the progression of cirrhosis and PHT, and potentially offered a promising therapeutic target for the treatment of the disease.
Collapse
Affiliation(s)
- Min Chen
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang-Bo Wu
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Hua
- Department of Plastic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Lei Zheng
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Fan
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Meng Luo
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
30
|
Awuah WA, Roy S, Tan JK, Adebusoye FT, Qiang Z, Ferreira T, Ahluwalia A, Shet V, Yee ALW, Abdul‐Rahman T, Papadakis M. Exploring the current landscape of single-cell RNA sequencing applications in gastric cancer research. J Cell Mol Med 2024; 28:e18159. [PMID: 38494861 PMCID: PMC10945075 DOI: 10.1111/jcmm.18159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/22/2023] [Accepted: 01/12/2024] [Indexed: 03/19/2024] Open
Abstract
Gastric cancer (GC) represents a major global health burden and is responsible for a significant number of cancer-related fatalities. Its complex nature, characterized by heterogeneity and aggressive behaviour, poses considerable challenges for effective diagnosis and treatment. Single-cell RNA sequencing (scRNA-seq) has emerged as an important technique, offering unprecedented precision and depth in gene expression profiling at the cellular level. By facilitating the identification of distinct cell populations, rare cells and dynamic transcriptional changes within GC, scRNA-seq has yielded valuable insights into tumour progression and potential therapeutic targets. Moreover, this technology has significantly improved our comprehension of the tumour microenvironment (TME) and its intricate interplay with immune cells, thereby opening avenues for targeted therapeutic strategies. Nonetheless, certain obstacles, including tumour heterogeneity and technical limitations, persist in the field. Current endeavours are dedicated to refining protocols and computational tools to surmount these challenges. In this narrative review, we explore the significance of scRNA-seq in GC, emphasizing its advantages, challenges and potential applications in unravelling tumour heterogeneity and identifying promising therapeutic targets. Additionally, we discuss recent developments, ongoing efforts to overcome these challenges, and future prospects. Although further enhancements are required, scRNA-seq has already provided valuable insights into GC and holds promise for advancing biomedical research and clinical practice.
Collapse
Affiliation(s)
| | - Sakshi Roy
- School of MedicineQueen's University BelfastBelfastUK
| | | | | | - Zekai Qiang
- Department of Oncology & MetabolismThe University of SheffieldSheffieldUK
| | - Tomas Ferreira
- Department of Clinical Neurosciences, School of Clinical MedicineUniversity of CambridgeCambridgeUK
| | | | - Vallabh Shet
- Faculty of MedicineBangalore Medical College and Research InstituteBangaloreKarnatakaIndia
| | | | | | - Marios Papadakis
- Department of Surgery II, University Hospital Witten‐HerdeckeUniversity of Witten‐HerdeckeWuppertalGermany
| |
Collapse
|
31
|
Aso K, Ito K, Takemura N, Inagaki F, Mihara F, Kokudo N. Solitary Peritoneal Metastasis of Pancreatic Tail Cancer to a Surgical Mesh for Inguinal Hernia Repair: A Case Report and Literature Review. Pancreas 2024; 53:e380-e383. [PMID: 38345915 DOI: 10.1097/mpa.0000000000002302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Affiliation(s)
- Kenta Aso
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, National Center for Global Health and Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Hu Y, Yuan M, Cheng L, Xu L, Wang G. Extracellular vesicle-encapsulated miR-25-3p promotes epithelial-mesenchymal transition and migration of endometrial epithelial cells by inducing macrophage polarization. Mol Hum Reprod 2024; 30:gaae010. [PMID: 38407339 DOI: 10.1093/molehr/gaae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 01/28/2024] [Indexed: 02/27/2024] Open
Abstract
The pathogenesis of adenomyosis is closely related to the epithelial-mesenchymal transition and macrophages. MicroRNAs have been extensively investigated in relation to the epithelial-mesenchymal transition in a range of malignancies. However, there is a paucity of research on extracellular vesicles derived from the eutopic endometrium of adenomyosis and their encapsulated microRNAs. In this study, we investigated the role of microRNA-25-3p derived from extracellular vesicles in inducing macrophage polarization and promoting the epithelial-mesenchymal transition in endometrial epithelial cells of patients with adenomyosis and controls. We obtained eutopic endometrial samples and isolated extracellular vesicles from the culture supernatant of primary endometrial cells. Real-time quantitative PCR analysis demonstrated that microRNA-25-3p was highly expressed in extracellular vesicles, as well as in macrophages stimulated by extracellular vesicles from eutopic endometrium of adenomyosis; and macrophages transfected with microRNA-25-3p exhibited elevated levels of M2 markers, while displaying reduced levels of M1 markers. After co-culture with the above polarized macrophages, endometrial epithelial cells expressed higher levels of N-cadherin and Vimentin, and lower protein levels of E-cadherin and Cytokeratin 7. It was revealed that microRNA-25-3p encapsulated in extracellular vesicles from eutopic endometrial cells could induce macrophage polarization toward M2, and the polarized macrophages promote epithelial-mesenchymal transition in epithelial cells. However, in vitro experiments revealed no significant disparity in the migratory capacity of endometrial epithelial cells between the adenomyosis group and the control group. Furthermore, it was observed that microRNA-25-3p-stimulated polarized macrophages also facilitated the epithelial-mesenchymal transition and migration of endometrial epithelial cells within the control group. Thus, the significance of microRNA-25-3p-induced polarized macrophages in promoting the development of adenomyosis is unclear, and macrophage infiltration alone may be adequate for this process. We emphasize the specificity of the local eutopic endometrial microenvironment and postulate its potential significance in the pathogenesis of adenomyosis.
Collapse
Affiliation(s)
- Yue Hu
- Department of Gynecology and Obstetrics, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Ming Yuan
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Lei Cheng
- Department of Gynecology and Obstetrics, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Le Xu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Gynecology Laboratory, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Guoyun Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Gynecology Laboratory, Shandong Provincial Hospital, Jinan, Shandong, China
| |
Collapse
|
33
|
Rajendran P, Renu K, Abdallah BM, Ali EM, Veeraraghavan VP, Sivalingam K, Rustagi Y, Abdelsalam SA, Ibrahim RIH, Al-Ramadan SY. Nimbolide: promising agent for prevention and treatment of chronic diseases (recent update). Food Nutr Res 2024; 68:9650. [PMID: 38571915 PMCID: PMC10989234 DOI: 10.29219/fnr.v68.9650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 04/05/2024] Open
Abstract
Background Nimbolide, a bioactive compound derived from the neem tree, has garnered attention as a potential breakthrough in the prevention and treatment of chronic diseases. Recent updates in research highlight its multifaceted pharmacological properties, demonstrating anti-inflammatory, antioxidant, and anticancer effects. With a rich history in traditional medicine, nimbolide efficacy in addressing the molecular complexities of conditions such as cardiovascular diseases, diabetes, and cancer positions it as a promising candidate for further exploration. As studies progress, the recent update underscores the growing optimism surrounding nimbolide as a valuable tool in the ongoing pursuit of innovative therapeutic strategies for chronic diseases. Methods The comprehensive search of the literature was done until September 2020 on the MEDLINE, Embase, Scopus and Web of Knowledge databases. Results Most studies have shown the Nimbolide is one of the most potent limonoids derived from the flowers and leaves of neem (Azadirachta indica), which is widely used to treat a variety of human diseases. In chronic diseases, nimbolide reported to modulate the key signaling pathways, such as Mitogen-activated protein kinases (MAPKs), Wingless-related integration site-β (Wnt-β)/catenin, NF-κB, PI3K/AKT, and signaling molecules, such as transforming growth factor (TGF-β), Matrix metalloproteinases (MMPs), Vascular Endothelial Growth Factor (VEGF), inflammatory cytokines, and epithelial-mesenchymal transition (EMT) proteins. Nimbolide has anti-inflammatory, anti-microbial, and anti-cancer properties, which make it an intriguing compound for research. Nimbolide demonstrated therapeutic potential for osteoarthritis, rheumatoid arthritis, cardiovascular, inflammation and cancer. Conclusion The current review mainly focused on understanding the molecular mechanisms underlying the therapecutic effects of nimbolide in chronic diseases.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Basem M. Abdallah
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Enas M. Ali
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Kalaiselvi Sivalingam
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Yashika Rustagi
- Centre for Cancer Genomics, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Salaheldin Abdelraouf Abdelsalam
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Rashid Ismael Hag Ibrahim
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Department of Botany, Faculty of Science, University of Khartoum, Sudan
| | - Saeed Yaseen Al-Ramadan
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
34
|
Miyake Y, Ameis D, Tse WH, Patel D, Ozturk Aptekmann A, Yamataka A, Keijzer R. The RNA-binding protein quaking is upregulated in nitrofen-induced congenital diaphragmatic hernia lungs at the end of gestation. Pediatr Surg Int 2024; 40:78. [PMID: 38472353 DOI: 10.1007/s00383-023-05608-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 03/14/2024]
Abstract
BACKGROUND The RNA-binding protein Quaking (QKI) increases during epithelial-to-mesenchymal transition and its expression is controlled by microRNA-200 family members. Here, we aimed to describe the expression of QKI in the developing lungs of control and nitrofen-induced congenital diaphragmatic hernia lungs (CDH). METHODS To investigate the expression of QKI, we dissected lungs from control and nitrofen-induced CDH rats on embryonic day 15, 18, 21 (E15, E18, E21). We performed immunofluorescence (IF) and quantitative reverse transcription PCR (RT-qPCR) for QKI expression. Additionally, we assessed Interleukin-6 (IL-6) abundance using IF. RESULTS On E21, IF showed that the abundance of all three QKI isoforms and IL-6 protein was higher in CDH lungs compared to control lungs (QKI5: p = 0.023, QKI6: p = 0.006, QKI7: p = 0.014, IL-6: p = 0.045, respectively). Furthermore, RT-qPCR data showed increased expression of QKI5, QKI6, and QKI7 mRNA in E21 nitrofen lungs by 1.63 fold (p = 0.001), 1.63 fold (p = 0.010), and 1.48 fold (p = 0.018), respectively. CONCLUSIONS Our data show an increase in the abundance and expression of QKI at the end of gestation in nitrofen-induced CDH lungs. Therefore, a disruption in the regulation of QKI during the late stage of pregnancy could be associated with the pathogenesis of abnormal lung development in CDH.
Collapse
Affiliation(s)
- Yuichiro Miyake
- Department of Surgery, Division of Pediatric Surgery, University of Manitoba, Children's Hospital Research Institute of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Dustin Ameis
- Department of Surgery, Division of Pediatric Surgery, University of Manitoba, Children's Hospital Research Institute of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada
| | - Wai Hei Tse
- Department of Surgery, Division of Pediatric Surgery, University of Manitoba, Children's Hospital Research Institute of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada
| | - Daywin Patel
- Department of Surgery, Division of Pediatric Surgery, University of Manitoba, Children's Hospital Research Institute of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada
| | - Arzu Ozturk Aptekmann
- Department of Surgery, Division of Pediatric Surgery, University of Manitoba, Children's Hospital Research Institute of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada
| | - Atsuyuki Yamataka
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Richard Keijzer
- Department of Surgery, Division of Pediatric Surgery, University of Manitoba, Children's Hospital Research Institute of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada.
| |
Collapse
|
35
|
Amormino C, Russo E, Tedeschi V, Fiorillo MT, Paiardini A, Spallotta F, Rosanò L, Tuosto L, Kunkl M. Targeting staphylococcal enterotoxin B binding to CD28 as a new strategy for dampening superantigen-mediated intestinal epithelial barrier dysfunctions. Front Immunol 2024; 15:1365074. [PMID: 38510259 PMCID: PMC10951378 DOI: 10.3389/fimmu.2024.1365074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Staphylococcus aureus is a gram-positive bacterium that may cause intestinal inflammation by secreting enterotoxins, which commonly cause food-poisoning and gastrointestinal injuries. Staphylococcal enterotoxin B (SEB) acts as a superantigen (SAg) by binding in a bivalent manner the T-cell receptor (TCR) and the costimulatory receptor CD28, thus stimulating T cells to produce large amounts of inflammatory cytokines, which may affect intestinal epithelial barrier integrity and functions. However, the role of T cell-mediated SEB inflammatory activity remains unknown. Here we show that inflammatory cytokines produced by T cells following SEB stimulation induce dysfunctions in Caco-2 intestinal epithelial cells by promoting actin cytoskeleton remodelling and epithelial cell-cell junction down-regulation. We also found that SEB-activated inflammatory T cells promote the up-regulation of epithelial-mesenchymal transition transcription factors (EMT-TFs) in a nuclear factor-κB (NF-κB)- and STAT3-dependent manner. Finally, by using a structure-based design approach, we identified a SEB mimetic peptide (pSEB116-132) that, by blocking the binding of SEB to CD28, dampens inflammatory-mediated dysregulation of intestinal epithelial barrier.
Collapse
Affiliation(s)
- Carola Amormino
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Emanuela Russo
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Valentina Tedeschi
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome, Italy
| | - Francesco Spallotta
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
- Laboratory affiliated to Instituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Laura Rosanò
- Institute of Molecular Biology and Pathology, CNR, Rome, Italy
| | - Loretta Tuosto
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Martina Kunkl
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
36
|
Tripathi AK, Desai PP, Tyagi A, Lampe JB, Srivastava Y, Donkor M, Jones HP, Dzyuba SV, Crossley E, Williams NS, Vishwanatha JK. Short peptides based on the conserved regions of MIEN1 protein exhibit anticancer activity by targeting the MIEN1 signaling pathway. J Biol Chem 2024; 300:105680. [PMID: 38272230 PMCID: PMC10878790 DOI: 10.1016/j.jbc.2024.105680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/27/2024] Open
Abstract
Migration and invasion enhancer 1 (MIEN1) overexpression characterizes several cancers and facilitates cancer cell migration and invasion. Leveraging conserved immunoreceptor tyrosine-based activation motif and prenylation motifs within MIEN1, we identified potent anticancer peptides. Among them, bioactive peptides LA3IK and RP-7 induced pronounced transcriptomic and protein expression changes at sub-IC50 concentrations. The peptides effectively inhibited genes and proteins driving cancer cell migration, invasion, and epithelial-mesenchymal transition pathways, concurrently suppressing epidermal growth factor-induced nuclear factor kappa B nuclear translocation in metastatic breast cancer cells. Specifically, peptides targeted the same signal transduction pathway initiated by MIEN1. Molecular docking and CD spectra indicated the formation of MIEN1-peptide complexes. The third-positioned isoleucine in LA3IK and CVIL motif in RP-7 were crucial for inhibiting breast cancer cell migration. This is evident from the limited migration inhibition observed when MDA-MB-231 cells were treated with scrambled peptides LA3IK SCR and RP-7 SCR. Additionally, LA3IK and RP-7 effectively suppressed tumor growth in an orthotopic breast cancer model. Notably, mice tolerated high intraperitoneal (ip) peptide doses of 90 mg/Kg well, surpassing significantly lower doses of 5 mg/Kg intravenously (iv) and 30 mg/Kg intraperitoneally (ip) used in both in vivo pharmacokinetic studies and orthotopic mouse model assays. D-isomers of LA3IK and RP-7 showed enhanced anticancer activity compared to their L-isomers. D-LA3IK remained stable in mouse plasma for 24 h with 75% remaining, exhibiting superior pharmacokinetic properties over D/L-RP-7. In summary, our findings mark the first report of short peptides based on MIEN1 protein sequence capable of inhibiting cancer signaling pathways, effectively impeding cancer progression both in vitro and in vivo.
Collapse
Affiliation(s)
- Amit K Tripathi
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA.
| | - Priyanka P Desai
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Antariksh Tyagi
- Yale Center for Genome Analysis (YCGA), Yale School of Medicine, New Haven, Connecticut, USA
| | - Jana B Lampe
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Yogesh Srivastava
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael Donkor
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Harlan P Jones
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Sergei V Dzyuba
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas, USA
| | - Eric Crossley
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jamboor K Vishwanatha
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA.
| |
Collapse
|
37
|
Park HM, Park JY, Kim NY, Kim J, Pham TH, Hong JT, Yoon DY. Modulatory effects of point-mutated IL-32θ (A94V) on tumor progression in triple-negative breast cancer cells. Biofactors 2024; 50:294-310. [PMID: 37658685 DOI: 10.1002/biof.2005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/01/2023] [Indexed: 09/03/2023]
Abstract
Breast cancer is a frequently diagnosed cancer and the leading cause of death among women worldwide. Tumor-associated macrophages stimulate cytokines and chemokines, which induce angiogenesis, metastasis, proliferation, and tumor-infiltrating immune cells. Although interleukin-32 (IL-32) has been implicated in the development and modulation of several cancers, its function in breast cancer remains elusive. Mutation of interleukin-32θ (IL-32θ) in the tissues of patients with breast cancer was detected by Sanger sequencing. RT-qPCR was used to detect the mRNA levels of inflammatory cytokines, chemokines, and mediators. The secreted proteins were detected using respective enzyme-linked immunosorbent assays. Evaluation of the inhibitory effect of mutant IL-32θ on proliferation, migration, epithelial-mesenchymal transition (EMT), and cell cycle arrest in breast cancer cells was conducted using MTS assays, migration assays, and Western blotting. A point mutation (281C>T, Ala94Val) was detected in IL-32θ in both breast tumors and adjacent normal tissues, which suppressed the expression of pro-inflammatory factors, EMT factors, and cell cycle related factors. Mutated IL-32θ inhibited the expression of inflammatory factors by regulating the NF-κB pathway. Furthermore, mutated IL-32θ suppressed EMT markers and cell cycle related factors through the FAK/PI3K/AKT pathway. It was inferred that mutated IL-32θ modulates breast cancer progression. Mutated IL-32θ (A94V) inhibited inflammation, EMT, and proliferation in breast cancer by regulating the NF-κB (p65/p50) and FAK-PI3K-GSK3 pathways.
Collapse
Affiliation(s)
- Hyo-Min Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Jae-Young Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Na-Yeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Jinju Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Thu-Huyen Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, Republic of Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
38
|
Xie Y, Chen Z, Li S, Yan M, He W, Li L, Si J, Wang Y, Li X, Ma K. A network pharmacology- and transcriptomics-based investigation reveals an inhibitory role of β-sitosterol in glioma via the EGFR/MAPK signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2024; 56:223-238. [PMID: 38143380 PMCID: PMC10984875 DOI: 10.3724/abbs.2023251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/21/2023] [Indexed: 12/26/2023] Open
Abstract
Glioma is characterized by rapid cell proliferation, aggressive invasion, altered apoptosis and a poor prognosis. β-Sitosterol, a kind of phytosterol, has been shown to possess anticancer activities. Our current study aims to investigate the effects of β-sitosterol on gliomas and reveal the underlying mechanisms. Our results show that β-sitosterol effectively inhibits the growth of U87 cells by inhibiting proliferation and inducing G2/M phase arrest and apoptosis. In addition, β-sitosterol inhibits migration by downregulating markers of epithelial-mesenchymal transition (EMT). Mechanistically, network pharmacology and transcriptomics approaches illustrate that the EGFR/MAPK signaling pathway may be responsible for the inhibitory effect of β-sitosterol on glioma. Afterward, the results show that β-sitosterol effectively suppresses the EGFR/MAPK signaling pathway. Moreover, β-sitosterol significantly inhibits tumor growth in a U87 xenograft nude mouse model. β-Sitosterol inhibits U87 cell proliferation and migration and induces apoptosis and cell cycle arrest in U87 cells by blocking the EGFR/MAPK signaling pathway. These results suggest that β-sitosterol may be a promising therapeutic agent for the treatment of glioma.
Collapse
Affiliation(s)
- Yufang Xie
- Key Laboratory of Xinjiang Endemic and Ethnic DiseasesMinistry of EducationShihezi University School of MedicineShihezi832000China
- Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated HospitalShihezi University School of MedicineShihezi832000China
- Department of PhysiologyShihezi University School of MedicineShihezi832000China
| | - Zhijian Chen
- Key Laboratory of Xinjiang Endemic and Ethnic DiseasesMinistry of EducationShihezi University School of MedicineShihezi832000China
- Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated HospitalShihezi University School of MedicineShihezi832000China
- Department of PathophysiologyShihezi University School of MedicineShihezi832000China
| | - Shuang Li
- Key Laboratory of Xinjiang Endemic and Ethnic DiseasesMinistry of EducationShihezi University School of MedicineShihezi832000China
- Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated HospitalShihezi University School of MedicineShihezi832000China
- Department of PathophysiologyShihezi University School of MedicineShihezi832000China
| | - Meijuan Yan
- Key Laboratory of Xinjiang Endemic and Ethnic DiseasesMinistry of EducationShihezi University School of MedicineShihezi832000China
- Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated HospitalShihezi University School of MedicineShihezi832000China
- Department of PhysiologyShihezi University School of MedicineShihezi832000China
| | - Wenjun He
- Key Laboratory of Xinjiang Endemic and Ethnic DiseasesMinistry of EducationShihezi University School of MedicineShihezi832000China
- Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated HospitalShihezi University School of MedicineShihezi832000China
- Department of PhysiologyShihezi University School of MedicineShihezi832000China
| | - Li Li
- Department of PhysiologyShihezi University School of MedicineShihezi832000China
| | - Junqiang Si
- Key Laboratory of Xinjiang Endemic and Ethnic DiseasesMinistry of EducationShihezi University School of MedicineShihezi832000China
- Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated HospitalShihezi University School of MedicineShihezi832000China
- Department of PhysiologyShihezi University School of MedicineShihezi832000China
| | - Yan Wang
- Key Laboratory of Xinjiang Endemic and Ethnic DiseasesMinistry of EducationShihezi University School of MedicineShihezi832000China
- Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated HospitalShihezi University School of MedicineShihezi832000China
| | - Xinzhi Li
- Key Laboratory of Xinjiang Endemic and Ethnic DiseasesMinistry of EducationShihezi University School of MedicineShihezi832000China
- Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated HospitalShihezi University School of MedicineShihezi832000China
- Department of PathophysiologyShihezi University School of MedicineShihezi832000China
| | - Ketao Ma
- Key Laboratory of Xinjiang Endemic and Ethnic DiseasesMinistry of EducationShihezi University School of MedicineShihezi832000China
- Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated HospitalShihezi University School of MedicineShihezi832000China
- Department of PhysiologyShihezi University School of MedicineShihezi832000China
| |
Collapse
|
39
|
Azizan S, Cheng KJ, Mejia Mohamed EH, Ibrahim K, Faruqu FN, Vellasamy KM, Khong TL, Syafruddin SE, Ibrahim ZA. Insights into the molecular mechanisms and signalling pathways of epithelial to mesenchymal transition (EMT) in colorectal cancer: A systematic review and bioinformatic analysis of gene expression. Gene 2024; 896:148057. [PMID: 38043836 DOI: 10.1016/j.gene.2023.148057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Colorectal cancer (CRC) is ranked as the second leading cause of mortality worldwide, mainly due to metastasis. Epithelial to mesenchymal transition (EMT) is a complex cellular process that drives CRC metastasis, regulated by changes in EMT-associated gene expression. However, while numerous genes have been identified as EMT regulators through various in vivo and in vitro studies, little is known about the genes that are differentially expressed in CRC tumour tissue and their signalling pathway in regulating EMT. Using an integration of systematic search and bioinformatic analysis, gene expression profiles of CRC tumour tissues were compared to non-tumour adjacent tissues to identify differentially expressed genes (DEGs), followed by performing systematic review on common identified DEGs. Fifty-eight common DEGs were identified from the analysis of 82 tumour tissue samples obtained from four gene expression datasets (NCBI GEO). These DEGS were then systematically searched for their roles in modulating EMT in CRC based on previously published studies. Following this, 10 common DEGs (CXCL1, CXCL8, MMP1, MMP3, MMP7, TACSTD2, VIP, HPGD, ABCG2, CLCA4) were included in this study and subsequently subjected to further bioinformatic analysis. Their roles and functions in modulating EMT in CRC were discussed in this review. This study enhances our understanding of the molecular mechanisms underlying EMT and uncovers potential candidate genes and pathways that could be targeted in CRC.
Collapse
Affiliation(s)
- Suha Azizan
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kim Jun Cheng
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Kamariah Ibrahim
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Farid Nazer Faruqu
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kumutha Malar Vellasamy
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Tak Loon Khong
- Department of Surgery, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Zaridatul Aini Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
40
|
Gali A, Bijnsdorp IV, Piersma SR, Pham TV, Gutiérrez-Galindo E, Kühnel F, Tsolakos N, Jimenez CR, Hausser A, Alexopoulos LG. Protein kinase D drives the secretion of invasion mediators in triple-negative breast cancer cell lines. iScience 2024; 27:108958. [PMID: 38323010 PMCID: PMC10844833 DOI: 10.1016/j.isci.2024.108958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/28/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
The protein kinase D (PKD) family members regulate the fission of cargo vesicles at the Golgi complex and play a pro-oncogenic role in triple-negative breast cancer (TNBC). Whether PKD facilitates the secretion of tumor-promoting factors in TNBC, however, is still unknown. Using the pharmacological inhibition of PKD activity and siRNA-mediated depletion of PKD2 and PKD3, we identified the PKD-dependent secretome of the TNBC cell lines MDA-MB-231 and MDA-MB-468. Mass spectrometry-based proteomics and antibody-based assays revealed a significant downregulation of extracellular matrix related proteins and pro-invasive factors such as LIF, MMP-1, MMP-13, IL-11, M-CSF and GM-CSF in PKD-perturbed cells. Notably, secretion of these proteins in MDA-MB-231 cells was predominantly controlled by PKD2 and enhanced spheroid invasion. Consistently, PKD-dependent secretion of pro-invasive factors was more pronounced in metastatic TNBC cell lines. Our study thus uncovers a novel role of PKD2 in releasing a pro-invasive secretome.
Collapse
Affiliation(s)
- Alexia Gali
- Biomedical Systems Laboratory, National Technical University of Athens, 15780 Athens, Greece
- Protavio Ltd, Demokritos Science Park, 15341 Athens, Greece
| | - Irene V. Bijnsdorp
- Department of Urology, Cancer Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, de Boelelaan 1117, Amsterdam 1081 HV, the Netherlands
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, OncoProteomics Laboratory, de Boelelaan 1117, , Amsterdam 1081 HV, the Netherlands
| | - Sander R. Piersma
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, OncoProteomics Laboratory, de Boelelaan 1117, , Amsterdam 1081 HV, the Netherlands
| | - Thang V. Pham
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, OncoProteomics Laboratory, de Boelelaan 1117, , Amsterdam 1081 HV, the Netherlands
| | | | - Fiona Kühnel
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany
| | - Nikos Tsolakos
- Protavio Ltd, Demokritos Science Park, 15341 Athens, Greece
| | - Connie R. Jimenez
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, OncoProteomics Laboratory, de Boelelaan 1117, , Amsterdam 1081 HV, the Netherlands
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany
- Stuttgart Research Center for Systems Biology, University of Stuttgart, 70569 Stuttgart, Germany
| | - Leonidas G. Alexopoulos
- Biomedical Systems Laboratory, National Technical University of Athens, 15780 Athens, Greece
- Protavio Ltd, Demokritos Science Park, 15341 Athens, Greece
| |
Collapse
|
41
|
Chi Z, Wang Q, Tong L, Qiu J, Yang F, Guo Q, Li W, Zheng J, Chen Z. Silencing geranylgeranyltransferase I inhibits the migration and invasion of salivary adenoid cystic carcinoma through RhoA/ROCK1/MLC signaling and suppresses proliferation through cell cycle regulation. Cell Biol Int 2024; 48:174-189. [PMID: 37853939 DOI: 10.1002/cbin.12096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/05/2023] [Accepted: 09/30/2023] [Indexed: 10/20/2023]
Abstract
Geranylgeranyltransferase type I (GGTase-I) significantly affects Rho proteins, such that the malignant progression of several cancers may be induced. Nevertheless, the effect and underlying mechanism of GGTase-I in the malignant progression of salivary adenoid cystic carcinoma (SACC) remain unclear. This study primarily aimed to investigate the role and mechanism of GGTase-I in mediating the malignant progression of SACC. The level of GGTase-I gene in cells was stably knocked down by short hairpin RNA-EGFP-lentivirus. The effects of GGTase-I silencing on the migration, invasion, and spread of cells were examined, the messenger RNA levels of GGTase-I and RhoA genes of SACC cells after GGTase-I knockdown were determined, and the protein levels of RhoA and RhoA membrane of SACC cells were analyzed. Moreover, the potential underlying mechanism of silencing GGTase-I on the above-mentioned aspects in SACC cells was assessed by examining the protein expression of ROCK1, MLC, p-MLC, E-cadherin, Vimentin, MMP2, and MMP9. Furthermore, the underlying mechanism of SACC cells proliferation was investigated through the analysis of the expression of cyclinD1, MYC, E2F1, and p21CIP1/WAF1 . Besides, the change of RhoA level in SACC tissues compared with normal paracancer tissues was demonstrated through quantitative reverse-transcription polymerase chain reaction and western blot experiments. Next, the effect after GGTase-I silencing was assessed through the subcutaneous tumorigenicity assay. As indicated by the result of this study, the silencing of GGTase-I significantly reduced the malignant progression of tumors in vivo while decreasing the migration, invasion, and proliferation of SACC cells and RhoA membrane, Vimentin, ROCK1, p-MLC, MMP2, MMP9, MYC, E2F1, and CyclinD1 expression. However, the protein expression of E-cadherin and p21CIP1/WAF1 was notably upregulated. Subsequently, no significant transform of RhoA and MLC proteins was identified. Furthermore, RhoA expression in SACC tissues was significantly higher than that in paracancerous tissues. As revealed by the results of this study, GGTase-I shows a correlation with the proliferation of SACC through the regulation of cell cycle and may take on vital significance in the migration and invasion of SACC by regulating RhoA/ROCK1/MLC signaling pathway. GGTase-I is expected to serve as a novel exploration site of SACC.
Collapse
Affiliation(s)
- Zengpeng Chi
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
- Department of Stomatology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Qimin Wang
- Department of Stomatology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Lei Tong
- Department of Stomatology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Jing Qiu
- Department of Stomatology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Fang Yang
- Department of Stomatology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Qingyuan Guo
- Department of Stomatology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Wenjian Li
- Department of Stomatology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Jiawei Zheng
- Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenggang Chen
- Department of Stomatology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| |
Collapse
|
42
|
Nandi S, Nag A, Khatua S, Sen S, Chakraborty N, Naskar A, Acharya K, Calina D, Sharifi-Rad J. Anticancer activity and other biomedical properties of β-sitosterol: Bridging phytochemistry and current pharmacological evidence for future translational approaches. Phytother Res 2024; 38:592-619. [PMID: 37929761 DOI: 10.1002/ptr.8061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 11/07/2023]
Abstract
Sterols, including β-sitosterol, are essential components of cellular membranes in both plant and animal cells. Despite being a major phytosterol in various plant materials, comprehensive scientific knowledge regarding the properties of β-sitosterol and its potential applications is essential for scholarly pursuits and utilization purposes. β-sitosterol shares similar chemical characteristics with cholesterol and exhibits several pharmacological activities without major toxicity. This study aims to bridge the gap between phytochemistry and current pharmacological evidence of β-sitosterol, focusing on its anticancer activity and other biomedical properties. The goal is to provide a comprehensive understanding of β-sitosterol's potential for future translational approaches. A thorough examination of the literature was conducted to gather relevant information on the biological properties of β-sitosterol, particularly its anticancer therapeutic potential. Various databases were searched, including PubMed/MedLine, Scopus, Google Scholar, and Web of Science using appropriate keywords. Studies investigating the effects of β-sitosterol on different types of cancer were analyzed, focusing on mechanisms of action, pharmacological screening, and chemosensitizing properties. Modern pharmacological screening studies have revealed the potential anticancer therapeutic properties of β-sitosterol against various types of cancer, including leukemia, lung, stomach, breast, colon, ovarian, and prostate cancer. β-sitosterol has demonstrated chemosensitizing effects on cancer cells, interfering with multiple cell signaling pathways involved in proliferation, cell cycle arrest, apoptosis, survival, metastasis invasion, angiogenesis, and inflammation. Structural derivatives of β-sitosterol have also shown anti-cancer effects. However, research in the field of drug delivery and the detailed mode of action of β-sitosterol-mediated anticancer activities remains limited. β-sitosterol, as a non-toxic compound with significant pharmacological potential, exhibits promising anticancer effects against various cancer types. Despite being relatively less potent than conventional cancer chemotherapeutics, β-sitosterol holds potential as a safe and effective nutraceutical against cancer. Further comprehensive studies are recommended to explore the biological properties of β-sitosterol, including its mode of action, and develop novel formulations for its potential use in cancer treatment. This review provides a foundation for future investigations and highlights the need for further research on β-sitosterol as a potent superfood in combating cancer.
Collapse
Affiliation(s)
- Sudeshna Nandi
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Anish Nag
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, India
| | - Somanjana Khatua
- Department of Botany, Faculty of Science, University of Allahabad, Prayagraj, India
| | - Surjit Sen
- Department of Botany, Fakir Chand College, Kolkata, India
| | | | - Arghya Naskar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | |
Collapse
|
43
|
Qin S, Sun S, Wang Y, Li C, Fu L, Wu M, Yan J, Li W, Lv J, Chen L. Immune, metabolic landscapes of prognostic signatures for lung adenocarcinoma based on a novel deep learning framework. Sci Rep 2024; 14:527. [PMID: 38177198 PMCID: PMC10767103 DOI: 10.1038/s41598-023-51108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is a malignant tumor with high lethality, and the aim of this study was to identify promising biomarkers for LUAD. Using the TCGA-LUAD dataset as a discovery cohort, a novel joint framework VAEjMLP based on variational autoencoder (VAE) and multilayer perceptron (MLP) was proposed. And the Shapley Additive Explanations (SHAP) method was introduced to evaluate the contribution of feature genes to the classification decision, which helped us to develop a biologically meaningful biomarker potential scoring algorithm. Nineteen potential biomarkers for LUAD were identified, which were involved in the regulation of immune and metabolic functions in LUAD. A prognostic risk model for LUAD was constructed by the biomarkers HLA-DRB1, SCGB1A1, and HLA-DRB5 screened by Cox regression analysis, dividing the patients into high-risk and low-risk groups. The prognostic risk model was validated with external datasets. The low-risk group was characterized by enrichment of immune pathways and higher immune infiltration compared to the high-risk group. While, the high-risk group was accompanied by an increase in metabolic pathway activity. There were significant differences between the high- and low-risk groups in metabolic reprogramming of aerobic glycolysis, amino acids, and lipids, as well as in angiogenic activity, epithelial-mesenchymal transition, tumorigenic cytokines, and inflammatory response. Furthermore, high-risk patients were more sensitive to Afatinib, Gefitinib, and Gemcitabine as predicted by the pRRophetic algorithm. This study provides prognostic signatures capable of revealing the immune and metabolic landscapes for LUAD, and may shed light on the identification of other cancer biomarkers.
Collapse
Affiliation(s)
- Shimei Qin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China
| | - Shibin Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China
| | - Yahui Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China
| | - Chao Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China
| | - Lei Fu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China
| | - Ming Wu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China
| | - Jinxing Yan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China
| | - Wan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China
| | - Junjie Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China.
| | - Lina Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China.
| |
Collapse
|
44
|
Zhou X, Chai K, Zhu H, Luo C, Zou X, Zou J, Zhang G. The role of the methyltransferase METTL3 in prostate cancer: a potential therapeutic target. BMC Cancer 2024; 24:8. [PMID: 38166703 PMCID: PMC10762986 DOI: 10.1186/s12885-023-11741-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
The incidence of prostate cancer (PCa), the most prevalent malignancy, is currently at the forefront. RNA modification is a subfield of the booming field of epigenetics. To date, more than 170 types of RNA modifications have been described, and N6-methyladenosine (m6A) is the most abundant and well-characterized internal modification of mRNAs involved in various aspects of cancer progression. METTL3, the first identified key methyltransferase, regulates human mRNA and non-coding RNA expression in an m6A-dependent manner. This review elucidates the biological function and role of METTL3 in PCa and discusses the implications of METTL3 as a potential therapeutic target for future research directions and clinical applications.
Collapse
Affiliation(s)
- Xuming Zhou
- First Clinical College, Gannan Medical University, Ganzhou, 341000, China
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Keqiang Chai
- Department of Urology, Third Affiliated Hospital of Gansu University of Chinese Medicine, Baiyin, 730900, China
| | - Hezhen Zhu
- First Clinical College, Gannan Medical University, Ganzhou, 341000, China
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Cong Luo
- First Clinical College, Gannan Medical University, Ganzhou, 341000, China
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Xiaofeng Zou
- Department of Urology, Third Affiliated Hospital of Gansu University of Chinese Medicine, Baiyin, 730900, China
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, 341000, China
| | - Junrong Zou
- Department of Urology, Third Affiliated Hospital of Gansu University of Chinese Medicine, Baiyin, 730900, China
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, 341000, China
| | - Guoxi Zhang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, 341000, China.
| |
Collapse
|
45
|
Zhang S, Xia Y, Chen W, Dong H, Cui B, Liu C, Liu Z, Wang F, Du J. Regulation and Therapeutic Application of Long non-Coding RNA in Tumor Angiogenesis. Technol Cancer Res Treat 2024; 23:15330338241273239. [PMID: 39110070 PMCID: PMC11307360 DOI: 10.1177/15330338241273239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Tumor growth and metastasis rely on angiogenesis. In recent years, long non-coding RNAs have been shown to play an important role in regulating tumor angiogenesis. Here, we review the multidimensional modes and relevant molecular mechanisms of long non-coding RNAs in regulating tumor angiogenesis. In addition, we summarize new strategies for tumor anti-angiogenesis therapies by targeting long non-coding RNAs. The aim of this study is to provide new diagnostic targets and treatment strategies for anti-angiogenic tumor therapy.
Collapse
Affiliation(s)
- Shuo Zhang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
- Department of Gynecology, Binzhou Medical University Hospital, Binzhou, P.R. China
- The First School of Clinical Medicine of Binzhou Medical University, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Yunxiu Xia
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
- Department of Gynecology, Binzhou Medical University Hospital, Binzhou, P.R. China
- The First School of Clinical Medicine of Binzhou Medical University, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Weiwei Chen
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Hongliang Dong
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Bingjie Cui
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Cuilan Liu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Zhiqiang Liu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
- Department of Gynecology, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Fei Wang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
- Medical Integration and Practice Center, Shandong University, Jinan, P.R. China
- Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Jing Du
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
- Department of Gynecology, Binzhou Medical University Hospital, Binzhou, P.R. China
| |
Collapse
|
46
|
Mizushima T, Kubota S, Iijima Y, Takasugi N, Uehara T. Transcriptome analysis in various cell lines exposed to nitric oxide. J Toxicol Sci 2024; 49:281-288. [PMID: 38825487 DOI: 10.2131/jts.49.281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Nitric oxide (NO) plays a physiological role in signal transduction and excess or chronic NO has toxic effects as an inflammatory mediator. NO reversibly forms protein S-nitrosylation and exerts toxicological functions related to disease progression. DNA methyltransferases, epigenome-related enzymes, are inhibited in enzymatic activity by S-nitrosylation. Therefore, excess or chronic NO exposure may cause disease by altering gene expression. However, the effects of chronic NO exposure on transcriptome are poorly understood. Here, we performed transcriptome analysis of A549, AGS, HEK293T, and SW48 cells exposed to NO (100 μM) for 48 hr. We showed that the differentially expressed genes were cell-specific. Gene ontology analysis showed that the functional signature of differentially expressed genes related to cell adhesion or migration was upregulated in several cell lines. Gene set enrichment analysis indicated that NO stimulated inflammation-related gene expression in various cell lines. This finding supports previous studies showing that NO is closely involved in inflammatory diseases. Overall, this study elucidates the pathogenesis of NO-associated inflammatory diseases by focusing on changes in gene expression.
Collapse
Affiliation(s)
- Tohta Mizushima
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Sho Kubota
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Yuta Iijima
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Nobumasa Takasugi
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Takashi Uehara
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| |
Collapse
|
47
|
El-Ashmawy NE, Khedr EG, Abo-Saif MA, Hamouda SM. Long noncoding RNAs as regulators of epithelial mesenchymal transition in breast cancer: A recent review. Life Sci 2024; 336:122339. [PMID: 38097110 DOI: 10.1016/j.lfs.2023.122339] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
AIMS Breast cancer (BC) is the most frequently occurring cancer in women worldwide. BC patients are often diagnosed at advanced stages which are characterized by low survival rates. Distant metastasis is considered a leading cause of mortalities among BC patients. Epithelial-to-mesenchymal transition (EMT) is a transdifferentiation program that is necessary for cancer cells to acquire metastatic potential. In the last decade, long noncoding RNAs (lncRNAs) proved their significant contribution to different hallmarks of cancer, including EMT and metastasis. The primary aim of our review is to analyze recent studies concerning the molecular mechanisms of lncRNAs implicated in EMT regulation in BC. MATERIALS AND METHODS We adopted a comprehensive search on databases of PubMed, Web of Science, and Google Scholar using the following keywords: lncRNAs, EMT, breast cancer, and therapeutic targeting. KEY FINDINGS The different roles of lncRNAs in the mechanisms and signaling pathways governing EMT in BC were summarized. LncRNAs could induce or inhibit EMT through WNT/β-catenin, transforming growth factor-β (TGF-β), Notch, phosphoinositide 3-kinase/protein kinase B (PI3K/AKT), signal transducer and activator of transcription 3 (STAT3), and nuclear factor kappa B (NF-κB) pathways as well as via their interaction with histone modifying complexes and miRNAs. SIGNIFICANCE LncRNAs are key regulators of EMT and BC metastasis, presenting potential targets for therapeutic interventions. Further research is necessary to investigate the practical application of lncRNAs in clinical therapeutics.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, Egypt.
| | - Eman G Khedr
- Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, Egypt.
| | - Mariam A Abo-Saif
- Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, Egypt.
| | - Sara M Hamouda
- Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, Egypt.
| |
Collapse
|
48
|
Ma Y, Yu Y, Yin Y, Wang L, Yang H, Luo S, Zheng Q, Pan Y, Zhang D. Potential role of epithelial-mesenchymal transition induced by periodontal pathogens in oral cancer. J Cell Mol Med 2024; 28:e18064. [PMID: 38031653 PMCID: PMC10805513 DOI: 10.1111/jcmm.18064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
With the increasing incidence of oral cancer in the world, it has become a hotspot to explore the pathogenesis and prevention of oral cancer. It has been proved there is a strong link between periodontal pathogens and oral cancer. However, the specific molecular and cellular pathogenic mechanisms remain to be further elucidated. Emerging evidence suggests that periodontal pathogens-induced epithelial-mesenchymal transition (EMT) is closely related to the progression of oral cancer. Cells undergoing EMT showed increased motility, aggressiveness and stemness, which provide a pro-tumour environment and promote malignant metastasis of oral cancer. Plenty of studies proposed periodontal pathogens promote carcinogenesis via EMT. In the current review, we discussed the association between the development of oral cancer and periodontal pathogens, and summarized various mechanisms of EMT caused by periodontal pathogens, which are supposed to play an important role in oral cancer, to provide targets for future research in the fight against oral cancer.
Collapse
Affiliation(s)
- Yiwei Ma
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Yingyi Yu
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Yuqing Yin
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Liu Wang
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Huishun Yang
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Shiyin Luo
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Qifan Zheng
- Department of Periodontics, School of StomatologyChina Medical UniversityShenyangChina
| | - Yaping Pan
- Department of Periodontics and Oral Biology, School of StomatologyChina Medical UniversityShenyangChina
| | - Dongmei Zhang
- Department of Periodontics and Oral Biology, School of StomatologyChina Medical UniversityShenyangChina
| |
Collapse
|
49
|
Zhu F, Zhang X, Li P, Zhu Y. Effect of Helicobacter pylori eradication on gastric precancerous lesions: A systematic review and meta-analysis. Helicobacter 2023; 28:e13013. [PMID: 37602719 DOI: 10.1111/hel.13013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND The question of whether eradication of Helicobacter pylori (Hp) can reverse gastric precancerous lesions, including intestinal metaplasia, remains uncertain, leading to ongoing debate. Therefore, a meta-analysis was performed to evaluate the effect of Hp eradication on gastric precancerous lesions. MATERIALS AND METHODS PubMed, Embase, Cochrane Library, Web of Science, Scopus database, and ClinicalTrials.gov were systematically searched from inception to April 2023 for studies that explored the impact of Hp eradication on gastric precancerous lesions. Risk ratios (RRs) and their 95% confidence intervals (95% CIs) were selected as the effect size. We used the random-effects model to assess pooled data. We also performed quality assessments, subgroup analyses, and sensitivity analyses. RESULTS Fifteen studies were included. Compared with placebo, Hp eradication could significantly prevent the progression of gastric precancerous lesions (RR = 0.87, 95% CI: 0.81-0.94, p < 0.01) and reverse them (RR = 1.32, 95% CI: 1.17-1.50, p < 0.01). Then, specific precancerous lesions were further explored. The progression of intestinal metaplasia was significantly prevented by Hp eradication compared to placebo or no treatment (RR = 0.80, 95% CI: 0.69-0.94, p < 0.01). Moreover, compared with placebo or no treatment, Hp eradication also improved chronic atrophic gastritis (RR = 1.84, 95% CI: 1.30-2.61, p < 0.01) and intestinal metaplasia (RR = 1.41, 95% CI: 1.15-1.73, p < 0.01). However, in terms of preventing dysplasia progression (RR = 0.86, 95% CI: 0.37-2.00) and improving dysplasia (RR = 0.89, 95% CI: 0.47-1.70), Hp eradication had no advantage compared to placebo or no treatment. CONCLUSIONS Hp eradication therapy could prevent the progression of gastric precancerous lesions and reverse them. Notably, intestinal metaplasia can be reversed, but this may only be appropriate for patients with epigenetic alterations and milder lesions.
Collapse
Affiliation(s)
- Fangyuan Zhu
- Department of Integrated Traditional and Western Medicine in Oncology, The First Affiliated Hospital of Medical University of Anhui, Hefei, China
| | - Xiaoze Zhang
- Department of Integrated Traditional and Western Medicine in Oncology, The First Affiliated Hospital of Medical University of Anhui, Hefei, China
| | - Ping Li
- Department of Integrated Traditional and Western Medicine in Oncology, The First Affiliated Hospital of Medical University of Anhui, Hefei, China
| | - Yaodong Zhu
- Department of Integrated Traditional and Western Medicine in Oncology, The First Affiliated Hospital of Medical University of Anhui, Hefei, China
| |
Collapse
|
50
|
Yang J, Liao Y, Wang B, Cui L, Yu X, Wu F, Zhang Y, Liu R, Yao Y. EDARADD promotes colon cancer progression by suppressing E3 ligase Trim21-mediated ubiquitination and degradation of Snail. Cancer Lett 2023; 577:216427. [PMID: 37838280 DOI: 10.1016/j.canlet.2023.216427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/16/2023]
Abstract
Tumor cell migration, specifically epithelial-mesenchymal transition (EMT), serves as a key contributor to treatment failure in colon cancer patients. However, the limited comprehension of its genetic and biological aspects presents challenges for its investigation. EDAR-associated death domain (EDARADD), an important TNFR superfamily member, is elevated in colon cancer. However, it remains unclear about the exact role of EDARADD in the progression of colon cancer metastasis. In this study, we initially demonstrated that both protein and mRNA levels of EDDARADD are elevated in colon cancer tissues and cells, associated with reduced overall survival. Furthermore, functional experiments demonstrated that EDARADD promotes colon cancer cell proliferation and participates in EMT both in vitro and vivo. Mechanistically, Co-IP verified EDARADD could stabilize Snail1 by interacting with E3 ubiquitin ligase Trim21 to inhibit ubiquitination of Snail1. Interestingly, RNA-seq and ubiquitination assay revealed EDARADD's dual downregulation of Trim21 expression at the translational level via Cul1-mediated ubiquitin degradation, and at the transcriptional level through PPARa regulation. Moreover, EDARADD activates NF-κB signaling and experiences feedback transcriptional regulation by p65. In conclusion, this study highlights the signal pathway of EDARADD-PPARa-Trim21-Snail1-EMT and a feedback regulation of NF-κB signaling on EDARADD, which indicated EDARADD as an emerging therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Jiani Yang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Yuanyu Liao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Bojun Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China; Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, 150080, China
| | - Luying Cui
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Xuefan Yu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Feng Wu
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150080, China; Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China; Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, 150080, China; Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, 150080, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150080, China.
| | - Ruiqi Liu
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| | - Yuanfei Yao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China; Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, 150080, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150080, China.
| |
Collapse
|