1
|
de Amorim ÍSS, Pinheiro D, da Silva Oliveira M, de Sousa Rodrigues MM, José JS, Siqueira PB, Pires BRB, de Souza da Fonseca A, Mencalha AL. APX2009 sensitizes hypoxic breast cancer cells to doxorubicin by increasing its accumulation and caspase-3/7-mediated apoptosis. Breast Cancer Res Treat 2024:10.1007/s10549-024-07512-6. [PMID: 39397207 DOI: 10.1007/s10549-024-07512-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/03/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE The association of targeted therapy with chemotherapy is encouraged to increase the treatment efficiency, especially in hypoxic triple-negative breast cancer. The APE1 redox activity has stood out as a potential tumor target. However, the effect of the association of the APE1 redox inhibitors with doxorubicin in hypoxia still needs to be evidenced. Therefore, our objective was to investigate the effect of the APX2009 (APE1 inhibitor) on the sensitization of breast cancer cells to doxorubicin in normoxia and hypoxia. METHODS The WST-1 assay was used to evaluate cell viability after APX2009 and doxorubicin application under normoxia and hypoxia conditions in the MCF-7 and MDA-MB-231 cells. Apoptosis was analyzed by annexin assay and detection of caspases-3/7 activity by luminescence-based assay. The clinical association between APE1 inhibition signature and doxorubicin sensitivity was evaluated by bioinformatics analyses. RESULTS MDA-MB-231 and MCF-7 cell lines were more sensitive to APX2009 in normoxia than in hypoxia. Co-treatment with APX2009 and doxorubicin in hypoxia further decreased the viability of triple-negative MDA-MB-231 cells than treatment alone, which was accompanied by doxorubicin intracellular accumulation, and increase of apoptotic cells percentage, and caspases-3/7 activity. Moderate association was found between APE1 inhibition signature and doxorubicin sensitivity in the hypoxic basal subtype. CONCLUSION The findings suggest that APX2009 sensitizes the MDA-MB-231 cells to doxorubicin in hypoxia by doxorubicin intracellular accumulation and caspases-3/7-mediated apoptosis.
Collapse
Affiliation(s)
- Ísis Salviano Soares de Amorim
- Laboratório de Biologia Do Câncer, Instituto de Biologia Roberto Alcântara Gomes, Universidade Do Estado Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Daphne Pinheiro
- Laboratório de Biologia Do Câncer, Instituto de Biologia Roberto Alcântara Gomes, Universidade Do Estado Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Matheus da Silva Oliveira
- Laboratório de Biologia Do Câncer, Instituto de Biologia Roberto Alcântara Gomes, Universidade Do Estado Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mariana Moreno de Sousa Rodrigues
- Laboratório de Biologia Do Câncer, Instituto de Biologia Roberto Alcântara Gomes, Universidade Do Estado Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Julia Silva José
- Laboratório de Biologia Do Câncer, Instituto de Biologia Roberto Alcântara Gomes, Universidade Do Estado Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Priscyanne Barreto Siqueira
- Laboratório de Biologia Do Câncer, Instituto de Biologia Roberto Alcântara Gomes, Universidade Do Estado Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bruno Ricardo Barreto Pires
- Laboratório de Regulação E Expressão Gênica, Instituto de Biologia Roberto Alcântara Gomes, Universidade Do Estado Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Adenilson de Souza da Fonseca
- Laboratório de Biofotônica, Instituto de Biologia Roberto Alcântara Gomes, Universidade Do Estado Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Andre Luiz Mencalha
- Laboratório de Biologia Do Câncer, Instituto de Biologia Roberto Alcântara Gomes, Universidade Do Estado Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
2
|
Mijit M, Kpenu E, Chowdhury NN, Gampala S, Wireman R, Liu S, Babb O, Georgiadis MM, Wan J, Fishel ML, Kelley MR. In vitro and In vivo evidence demonstrating chronic absence of Ref-1 Cysteine 65 impacts Ref-1 folding configuration, redox signaling, proliferation and metastasis in pancreatic cancer. Redox Biol 2024; 69:102977. [PMID: 38056311 PMCID: PMC10749280 DOI: 10.1016/j.redox.2023.102977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023] Open
Abstract
Ref-1/APE1 (Redox Effector/Apurinic Endonuclease 1) is a multifunctional enzyme that serves as a redox factor for several transcription factors (TFs), e.g., NF-kB, HIF-1α, which in an oxidized state fail to bind DNA. Conversion of these TFs to a reduced state serves to regulate various biological responses such as cell growth, inflammation, and cellular metabolism. The redox activity involves a thiol exchange reaction for which Cys65 (C65) serves as the nucleophile. Using CRISPR editing in human pancreatic ductal adenocarcinoma (PDAC) cells, we changed C65 to Ala (C65A) in Ref-1 to evaluate alteration of Ref-1 redox dynamics as well as chronic loss of Ref-1 redox activity on cell signaling pathways, specifically those regulated by NF-kB and HIF-1α. The redox activity of Ref-1 requires partial unfolding to expose C65, which is buried in the folded structure. Labeling of Ref-1 with polyethylene glycol-maleimide (PEGm) provides a readout of reduced Cys residues in Ref-1 and thereby an assessment of partial unfolding in Ref-1. In comparing Ref-1WT vs Ref-1C65A cell lines, we found an altered distribution of oxidized versus reduced states of Ref-1. Accordingly, activation of NF-kB and HIF-1α in Ref-1C65A lines was significantly lower compared to Ref-1WT lines. The bioinformatic data revealed significant downregulation of metabolic pathways including OXPHOS in Ref-1C65A expressing clones compared to Ref-1WT line. Ref-1C65A also demonstrated reduced cell proliferation and use of tricarboxylic acid (TCA) substrates compared to Ref-1WT lines. A subcutaneous as well as PDAC orthotopic in vivo model demonstrated a significant reduction in tumor size, weight, and growth in the Ref-1C65A lines compared to the Ref-1WT lines. Moreover, mice implanted with Ref-1C65A redox deficient cells demonstrate significantly reduced metastatic burden to liver and lung compared to mice implanted with Ref-1 redox proficient cells. These results from the current study provide direct evidence that the chronic absence of Cys65 in Ref-1 results in redox inactivity of the protein in human PDAC cells, and subsequent biological results confirm a critical involvement of Ref-1 redox signaling and tumorigenic phenotype.
Collapse
Affiliation(s)
- M Mijit
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - E Kpenu
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - N N Chowdhury
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - S Gampala
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R Wireman
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S Liu
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - O Babb
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - M M Georgiadis
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, Indianapolis, IN, USA
| | - J Wan
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - M L Fishel
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - M R Kelley
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
3
|
Kpenu EK, Kelley MR. Combating PDAC Drug Resistance: The Role of Ref-1 Inhibitors in Accelerating Progress in Pancreatic Cancer Research. JOURNAL OF CELLULAR SIGNALING 2024; 5:208-216. [PMID: 39635662 PMCID: PMC11616473 DOI: 10.33696/signaling.5.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) remains one of the most lethal solid tumor diagnoses given its limited treatment options and dismal prognosis. Its complex tumor microenvironment (TME), heterogeneity, and high propensity for drug resistance are major obstacles in developing effective therapies. Here, we highlight the critical role of Redox effector 1 (Ref-1) in PDAC progression and drug resistance, focusing on its redox regulation of key transcription factors (TFs) such as STAT3, HIF1α, and NF-κB, which are pivotal for tumor survival, proliferation, and immune evasion. We discuss the development of novel Ref-1 inhibitors, including second-generation compounds with enhanced potency and improved pharmacokinetic profiles, which have shown significant promise in preclinical models. These inhibitors disrupt Ref-1's redox function, leading to decreased TF activity and increased chemosensitivity in PDAC cells. We further detail our utilization of advanced preclinical models, such as 3D spheroids, organoids, and Tumor-Microenvironment-on-Chip (T-MOC) systems, which better simulate the complex conditions of the PDAC TME and improve the predictive power of therapeutic responses. By targeting Ref-1 and its associated pathways, in conjunction with improved models, more replicative of PDAC's TME, we are focused on approaches which hold the potential to overcome current therapeutic limitations and advance the development of more effective treatments for PDAC. Our findings suggest that integrating Ref-1 inhibitors into combination therapies could disrupt multiple survival mechanisms within the tumor, offering new hope for improving outcomes in this challenging cancer.
Collapse
Affiliation(s)
- Eyram K. Kpenu
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, Indianapolis, IN, USA
| | - Mark R. Kelley
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, Indianapolis, IN, USA
| |
Collapse
|
4
|
Mijit M, Boner M, Cordova RA, Gampala S, Kpenu E, Klunk AJ, Zhang C, Kelley MR, Staschke KA, Fishel ML. Activation of the integrated stress response (ISR) pathways in response to Ref-1 inhibition in human pancreatic cancer and its tumor microenvironment. Front Med (Lausanne) 2023; 10:1146115. [PMID: 37181357 PMCID: PMC10174294 DOI: 10.3389/fmed.2023.1146115] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Pancreatic cancer or pancreatic ductal adenocarcinoma (PDAC) is characterized by a profound inflammatory tumor microenvironment (TME) with high heterogeneity, metastatic propensity, and extreme hypoxia. The integrated stress response (ISR) pathway features a family of protein kinases that phosphorylate eukaryotic initiation factor 2 (eIF2) and regulate translation in response to diverse stress conditions, including hypoxia. We previously demonstrated that eIF2 signaling pathways were profoundly affected in response to Redox factor-1 (Ref-1) knockdown in human PDAC cells. Ref-1 is a dual function enzyme with activities of DNA repair and redox signaling, responds to cellular stress, and regulates survival pathways. The redox function of Ref-1 directly regulates multiple transcription factors including HIF-1α, STAT3, and NF-κB, which are highly active in the PDAC TME. However, the mechanistic details of the crosstalk between Ref-1 redox signaling and activation of ISR pathways are unclear. Following Ref-1 knockdown, induction of ISR was observed under normoxic conditions, while hypoxic conditions were sufficient to activate ISR irrespective of Ref-1 levels. Inhibition of Ref-1 redox activity increased expression of p-eIF2 and ATF4 transcriptional activity in a concentration-dependent manner in multiple human PDAC cell lines, and the effect on eIF2 phosphorylation was PERK-dependent. Treatment with PERK inhibitor, AMG-44 at high concentrations resulted in activation of the alternative ISR kinase, GCN2 and induced levels of p-eIF2 and ATF4 in both tumor cells and cancer-associated fibroblasts (CAFs). Combination treatment with inhibitors of Ref-1 and PERK enhanced cell killing effects in both human pancreatic cancer lines and CAFs in 3D co-culture, but only at high doses of PERK inhibitors. This effect was completely abrogated when Ref-1 inhibitors were used in combination with GCN2 inhibitor, GCN2iB. We demonstrate that targeting of Ref-1 redox signaling activates the ISR in multiple PDAC lines and that this activation of ISR is critical for inhibition of the growth of co-culture spheroids. Combination effects were only observed in physiologically relevant 3D co-cultures, suggesting that the model system utilized can greatly affect the outcome of these targeted agents. Inhibition of Ref-1 signaling induces cell death through ISR signaling pathways, and combination of Ref-1 redox signaling blockade with ISR activation could be a novel therapeutic strategy for PDAC treatment.
Collapse
Affiliation(s)
- Mahmut Mijit
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Megan Boner
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
| | - Ricardo A Cordova
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Silpa Gampala
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Eyram Kpenu
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
| | - Angela J Klunk
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Chi Zhang
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of BioHealth Informatics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - MarK R Kelley
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kirk A Staschke
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Melissa L Fishel
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
5
|
Tamaddon M, Azimzadeh M, Gifani P, Tavangar SM. Single-cell transcriptome analysis for cancer and biology of the pancreas: A review on recent progress. Front Genet 2023; 14:1029758. [PMID: 37091793 PMCID: PMC10115972 DOI: 10.3389/fgene.2023.1029758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 03/10/2023] [Indexed: 04/08/2023] Open
Abstract
Single-cell sequencing has become one of the most used techniques across the wide field of biology. It has enabled researchers to investigate the whole transcriptome at the cellular level across tissues, which unlocks numerous potentials for basic and applied studies in future diagnosis and therapy. Here, we review the impact of single-cell RNA sequencing, as the prominent single-cell technique, in pancreatic biology and cancer. We discuss the most recent findings about pancreatic physiology and pathophysiology owing to this technological advancement in the past few years. Using single-cell RNA sequencing, researchers have been able to discover cellular heterogeneity across healthy cell types, as well as cancer tissues of the pancreas. We will discuss the new immunological targets and new molecular mechanisms of progression in the microenvironment of pancreatic cancer studied using single-cell RNA sequencing. The scope is not limited to cancer tissues, and we cover novel developmental, evolutionary, physiological, and heterogenic insights that have also been achieved recently for pancreatic tissues. We cover all biological insights derived from the single-cell RNA sequencing data, discuss the corresponding pros and cons, and finally, conclude how future research can move better by utilizing single-cell analysis for pancreatic biology.
Collapse
Affiliation(s)
- Mona Tamaddon
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Azimzadeh
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Peyman Gifani
- AI VIVO Ltd., Bioinnovation Centre, Cambridge, United Kingdom
- Genetic Department, Institute of Systems Biology, University of Cambridge, Cambridge, United Kingdom
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Seyed Mohammad Tavangar,
| |
Collapse
|
6
|
Mijit M, Liu S, Sishtla K, Hartman GD, Wan J, Corson TW, Kelley MR. Identification of Novel Pathways Regulated by APE1/Ref-1 in Human Retinal Endothelial Cells. Int J Mol Sci 2023; 24:1101. [PMID: 36674619 PMCID: PMC9865623 DOI: 10.3390/ijms24021101] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
APE1/Ref-1 (apurinic/apyrimidinic endonuclease 1, APE1 or APEX1; redox factor-1, Ref-1) is a dual-functional enzyme with crucial roles in DNA repair, reduction/oxidation (redox) signaling, and RNA processing and metabolism. The redox function of Ref-1 regulates several transcription factors, such as NF-κB, STAT3, HIF-1α, and others, which have been implicated in multiple human diseases, including ocular angiogenesis, inflammation, and multiple cancers. To better understand how APE1 influences these disease processes, we investigated the effects of APEX1 knockdown (KD) on gene expression in human retinal endothelial cells. This abolishes both DNA repair and redox signaling functions, as well as RNA interactions. Using RNA-seq analysis, we identified the crucial signaling pathways affected following APEX1 KD, with subsequent validation by qRT-PCR. Gene expression data revealed that multiple genes involved in DNA base excision repair, other DNA repair pathways, purine or pyrimidine metabolism signaling, and histidine/one carbon metabolism pathways were downregulated by APEX1 KD. This is in contrast with the alteration of pathways by APEX1 KD in human cancer lines, such as pancreatic ductal adenocarcinoma, lung, HeLa, and malignant peripheral nerve sheath tumors. These results highlight the unique role of APE1/Ref-1 and the clinical therapeutic potential of targeting APE1 and pathways regulated by APE1 in the eye. These findings provide novel avenues for ocular neovascularization treatment.
Collapse
Affiliation(s)
- Mahmut Mijit
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kamakshi Sishtla
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gabriella D. Hartman
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Timothy W. Corson
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark R. Kelley
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
7
|
Ivan M, Fishel ML, Tudoran OM, Pollok KE, Wu X, Smith PJ. Hypoxia signaling: Challenges and opportunities for cancer therapy. Semin Cancer Biol 2022; 85:185-195. [PMID: 34628029 PMCID: PMC8986888 DOI: 10.1016/j.semcancer.2021.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022]
Abstract
Hypoxia is arguably the first recognized cancer microenvironment hallmark and affects virtually all cellular populations present in tumors. During the past decades the complex adaptive cellular responses to oxygen deprivation have been largely elucidated, raising hope for new anti cancer agents. Despite undeniable preclinical progress, therapeutic targeting of tumor hypoxia is yet to transition from bench to bedside. This review focuses on new pharmacological agents that exploit tumor hypoxia or interfere with hypoxia signaling and discusses strategies to maximize their therapeutic impact.
Collapse
Affiliation(s)
- Mircea Ivan
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Melissa L Fishel
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, IU Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Oana M Tudoran
- The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Cluj, Romania
| | - Karen E Pollok
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xue Wu
- Ohio State University, Columbus, OH, USA
| | - Paul J Smith
- School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
8
|
Mijit M, Wireman R, Armstrong L, Gampala S, Hassan Z, Schneeweis C, Schneider G, Zhang C, Fishel ML, Kelley MR. RelA Is an Essential Target for Enhancing Cellular Responses to the DNA Repair/Ref-1 Redox Signaling Protein and Restoring Perturbated Cellular Redox Homeostasis in Mouse PDAC Cells. Front Oncol 2022; 12:826617. [PMID: 35402225 PMCID: PMC8988139 DOI: 10.3389/fonc.2022.826617] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/22/2022] [Indexed: 11/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers with a poor response to current treatment regimens. The multifunctional DNA repair-redox signaling protein Ref-1 has a redox signaling function that activates several transcriptional factors (TFs) including NF-κB (RelA), STAT3, AP-1. These have been implicated in signaling in PDAC and associated with cancer progression and therapy resistance. Numerous studies have shown a role for RelA in PDAC inflammatory responses and therapy resistance, little is known as to how these inflammatory responses are modulated through Ref-1 redox signaling pathways during pancreatic pathogenesis. RelA and STAT3 are two major targets of Ref-1 and are important in PDAC pathogenesis. To decipher the mechanistic role of RelA in response to Ref-1 inhibition, we used PDAC cells (KC3590) from a genetically engineered Kras G12D-driven mouse model that also is functionally deficient for RelA (Parent/Vector) or KC3590 cells with fully functional RelA added back (clone 13; C13). We demonstrated that RelA deficient cells are more resistant to Ref-1 redox inhibitors APX3330, APX2009, and APX2014, and their sensitivity is restored in the RelA proficient cells. Knockdown of STAT3 did not change cellular sensitivity to Ref-1 redox inhibitors in either cell type. Gene expression analysis demonstrated that Ref-1 inhibitors significantly decreased IL-8, FOSB, and c-Jun when functional RelA is present. We also demonstrated that PRDX1, a known Ref-1 redox modulator, contributes to Ref-1 inhibitor cellular response. Knockdown of PRDX1 when functional RelA is present resulted in dramatically increased PDAC killing in response to Ref-1 inhibitors. The enhanced cell killing was not due to increased intracellular ROS production. Although Ref-1 inhibition decreased the NADP/NADPH ratio in the cells, the addition of PRDX1 knockdown did not further this redox imbalance. This data suggests that the mechanism of cell killing following Ref-1 inhibition is at least partially mediated through RelA and not STAT3. Further imbalancing of the redox signaling through disruption of the PRDX1-Ref-1 interaction may have therapeutic implications. Our data further support a pivotal role of RelA in mediating Ref-1 redox signaling in PDAC cells with the Kras G12D genotype and provide novel therapeutic strategies to combat PDAC drug resistance.
Collapse
Affiliation(s)
- Mahmut Mijit
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Randall Wireman
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lee Armstrong
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Silpa Gampala
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Zonera Hassan
- Department of Clinic and Polyclinic for Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian Schneeweis
- Department of Clinic and Polyclinic for Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Guenter Schneider
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biohealth Informatics, Indiana University-Purdue University (IUPUI), Indianapolis, IN, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Melissa L. Fishel
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Mark R. Kelley
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN, United States
| |
Collapse
|
9
|
Alghamdi N, Chang W, Dang P, Lu X, Wan C, Gampala S, Huang Z, Wang J, Ma Q, Zang Y, Fishel M, Cao S, Zhang C. A graph neural network model to estimate cell-wise metabolic flux using single-cell RNA-seq data. Genome Res 2021; 31:1867-1884. [PMID: 34301623 PMCID: PMC8494226 DOI: 10.1101/gr.271205.120] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 07/01/2021] [Indexed: 11/24/2022]
Abstract
The metabolic heterogeneity and metabolic interplay between cells are known as significant contributors to disease treatment resistance. However, with the lack of a mature high-throughput single-cell metabolomics technology, we are yet to establish systematic understanding of the intra-tissue metabolic heterogeneity and cooperative mechanisms. To mitigate this knowledge gap, we developed a novel computational method, namely, single-cell flux estimation analysis (scFEA), to infer the cell-wise fluxome from single-cell RNA-sequencing (scRNA-seq) data. scFEA is empowered by a systematically reconstructed human metabolic map as a factor graph, a novel probabilistic model to leverage the flux balance constraints on scRNA-seq data, and a novel graph neural network-based optimization solver. The intricate information cascade from transcriptome to metabolome was captured using multilayer neural networks to capitulate the nonlinear dependency between enzymatic gene expressions and reaction rates. We experimentally validated scFEA by generating an scRNA-seq data set with matched metabolomics data on cells of perturbed oxygen and genetic conditions. Application of scFEA on this data set showed the consistency between predicted flux and the observed variation of metabolite abundance in the matched metabolomics data. We also applied scFEA on five publicly available scRNA-seq and spatial transcriptomics data sets and identified context- and cell group-specific metabolic variations. The cell-wise fluxome predicted by scFEA empowers a series of downstream analyses including identification of metabolic modules or cell groups that share common metabolic variations, sensitivity evaluation of enzymes with regards to their impact on the whole metabolic flux, and inference of cell-tissue and cell-cell metabolic communications.
Collapse
Affiliation(s)
- Norah Alghamdi
- Department of Medical and Molecular Genetics and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Wennan Chang
- Department of Medical and Molecular Genetics and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
- Department of Electrical and Computer Engineering, Purdue University, Indianapolis, Indiana 46202, USA
| | - Pengtao Dang
- Department of Medical and Molecular Genetics and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
- Department of Electrical and Computer Engineering, Purdue University, Indianapolis, Indiana 46202, USA
| | - Xiaoyu Lu
- Department of Medical and Molecular Genetics and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Changlin Wan
- Department of Medical and Molecular Genetics and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
- Department of Electrical and Computer Engineering, Purdue University, Indianapolis, Indiana 46202, USA
| | - Silpa Gampala
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Zhi Huang
- Department of Medical and Molecular Genetics and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
- Department of Electrical and Computer Engineering, Purdue University, Indianapolis, Indiana 46202, USA
| | - Jiashi Wang
- Department of Medical and Molecular Genetics and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Qin Ma
- Department of Biomedical Informatics, Ohio State University, Columbus, Ohio 43210, USA
| | - Yong Zang
- Department of Medical and Molecular Genetics and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Melissa Fishel
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Sha Cao
- Department of Medical and Molecular Genetics and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Chi Zhang
- Department of Medical and Molecular Genetics and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
- Department of Electrical and Computer Engineering, Purdue University, Indianapolis, Indiana 46202, USA
| |
Collapse
|
10
|
Inhibition of APE1/Ref-1 for Neovascular Eye Diseases: From Biology to Therapy. Int J Mol Sci 2021; 22:ijms221910279. [PMID: 34638620 PMCID: PMC8508814 DOI: 10.3390/ijms221910279] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 01/05/2023] Open
Abstract
Proliferative diabetic retinopathy (PDR), neovascular age-related macular degeneration (nvAMD), retinopathy of prematurity (ROP) and other eye diseases are characterized by retinal and/or choroidal neovascularization, ultimately causing vision loss in millions of people worldwide. nvAMD and PDR are associated with aging and the number of those affected is expected to increase as the global median age and life expectancy continue to rise. With this increase in prevalence, the development of novel, orally bioavailable therapies for neovascular eye diseases that target multiple pathways is critical, since current anti-vascular endothelial growth factor (VEGF) treatments, delivered by intravitreal injection, are accompanied with tachyphylaxis, a high treatment burden and risk of complications. One potential target is apurinic/apyrimidinic endonuclease 1/reduction-oxidation factor 1 (APE1/Ref-1). The multifunctional protein APE1/Ref-1 may be targeted via inhibitors of its redox-regulating transcription factor activation activity to modulate angiogenesis, inflammation, oxidative stress response and cell cycle in neovascular eye disease; these inhibitors also have neuroprotective effects in other tissues. An APE1/Ref-1 small molecule inhibitor is already in clinical trials for cancer, PDR and diabetic macular edema. Efforts to develop further inhibitors are underway. APE1/Ref-1 is a novel candidate for therapeutically targeting neovascular eye diseases and alleviating the burden associated with anti-VEGF intravitreal injections.
Collapse
|
11
|
Gampala S, Shah F, Lu X, Moon HR, Babb O, Umesh Ganesh N, Sandusky G, Hulsey E, Armstrong L, Mosely AL, Han B, Ivan M, Yeh JRJ, Kelley MR, Zhang C, Fishel ML. Ref-1 redox activity alters cancer cell metabolism in pancreatic cancer: exploiting this novel finding as a potential target. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:251. [PMID: 34376225 PMCID: PMC8353735 DOI: 10.1186/s13046-021-02046-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 07/18/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Pancreatic cancer is a complex disease with a desmoplastic stroma, extreme hypoxia, and inherent resistance to therapy. Understanding the signaling and adaptive response of such an aggressive cancer is key to making advances in therapeutic efficacy. Redox factor-1 (Ref-1), a redox signaling protein, regulates the conversion of several transcription factors (TFs), including HIF-1α, STAT3 and NFκB from an oxidized to reduced state leading to enhancement of their DNA binding. In our previously published work, knockdown of Ref-1 under normoxia resulted in altered gene expression patterns on pathways including EIF2, protein kinase A, and mTOR. In this study, single cell RNA sequencing (scRNA-seq) and proteomics were used to explore the effects of Ref-1 on metabolic pathways under hypoxia. METHODS scRNA-seq comparing pancreatic cancer cells expressing less than 20% of the Ref-1 protein was analyzed using left truncated mixture Gaussian model and validated using proteomics and qRT-PCR. The identified Ref-1's role in mitochondrial function was confirmed using mitochondrial function assays, qRT-PCR, western blotting and NADP assay. Further, the effect of Ref-1 redox function inhibition against pancreatic cancer metabolism was assayed using 3D co-culture in vitro and xenograft studies in vivo. RESULTS Distinct transcriptional variation in central metabolism, cell cycle, apoptosis, immune response, and genes downstream of a series of signaling pathways and transcriptional regulatory factors were identified in Ref-1 knockdown vs Scrambled control from the scRNA-seq data. Mitochondrial DEG subsets downregulated with Ref-1 knockdown were significantly reduced following Ref-1 redox inhibition and more dramatically in combination with Devimistat in vitro. Mitochondrial function assays demonstrated that Ref-1 knockdown and Ref-1 redox signaling inhibition decreased utilization of TCA cycle substrates and slowed the growth of pancreatic cancer co-culture spheroids. In Ref-1 knockdown cells, a higher flux rate of NADP + consuming reactions was observed suggesting the less availability of NADP + and a higher level of oxidative stress in these cells. In vivo xenograft studies demonstrated that tumor reduction was potent with Ref-1 redox inhibitor similar to Devimistat. CONCLUSION Ref-1 redox signaling inhibition conclusively alters cancer cell metabolism by causing TCA cycle dysfunction while also reducing the pancreatic tumor growth in vitro as well as in vivo.
Collapse
Affiliation(s)
- Silpa Gampala
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Fenil Shah
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiaoyu Lu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Biohealth Informatics, IUPUI, Indianapolis, IN, 46202, USA
| | - Hye-Ran Moon
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Olivia Babb
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Nikkitha Umesh Ganesh
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, 02115, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - George Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine , Indianapolis, IN, 46202, USA.,Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 1044 W Walnut St. R4-321, Indianapolis, IN, 46202, USA
| | - Emily Hulsey
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine , Indianapolis, IN, 46202, USA
| | - Lee Armstrong
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Amber L Mosely
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 1044 W Walnut St. R4-321, Indianapolis, IN, 46202, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47906, USA.,Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
| | - Mircea Ivan
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 1044 W Walnut St. R4-321, Indianapolis, IN, 46202, USA.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jing-Ruey Joanna Yeh
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, 02115, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Mark R Kelley
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 1044 W Walnut St. R4-321, Indianapolis, IN, 46202, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Biohealth Informatics, IUPUI, Indianapolis, IN, 46202, USA. .,Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 1044 W Walnut St. R4-321, Indianapolis, IN, 46202, USA.
| | - Melissa L Fishel
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 1044 W Walnut St. R4-321, Indianapolis, IN, 46202, USA. .,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
12
|
Sun G, Li Z, Rong D, Zhang H, Shi X, Yang W, Zheng W, Sun G, Wu F, Cao H, Tang W, Sun Y. Single-cell RNA sequencing in cancer: Applications, advances, and emerging challenges. Mol Ther Oncolytics 2021; 21:183-206. [PMID: 34027052 PMCID: PMC8131398 DOI: 10.1016/j.omto.2021.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cancer has become one of the greatest threats to human health, and new technologies are urgently needed to further clarify the mechanisms of cancer so that better detection and treatment strategies can be developed. At present, extensive genomic analysis and testing of clinical specimens shape the insights into carcinoma. Nevertheless, carcinoma of humans is a complex ecosystem of cells, including carcinoma cells and immunity-related and stroma-related subsets, with accurate characteristics obscured by extensive genome-related approaches. A growing body of research shows that sequencing of single-cell RNA (scRNA-seq) is emerging to be an effective way for dissecting human tumor tissue at single-cell resolution, presenting one prominent way for explaining carcinoma biology. This review summarizes the research progress of scRNA-seq in the field of tumors, focusing on the application of scRNA-seq in tumor circulating cells, tumor stem cells, tumor drug resistance, the tumor microenvironment, and so on, which provides a new perspective for tumor research.
Collapse
Affiliation(s)
- Guangshun Sun
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhouxiao Li
- Department of Hand Surgery, Plastic Surgery and Aesthetic Surgery, Ludwig Maximilians University, Munich, Germany
| | - Dawei Rong
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Hao Zhang
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xuesong Shi
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weijun Yang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wubin Zheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guoqiang Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fan Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongyong Cao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weiwei Tang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Yangbai Sun
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Gampala S, Shah F, Zhang C, Rhodes SD, Babb O, Grimard M, Wireman RS, Rad E, Calver B, Bai RY, Staedtke V, Hulsey EL, Saadatzadeh MR, Pollok KE, Tong Y, Smith AE, Clapp DW, Tee AR, Kelley MR, Fishel ML. Exploring transcriptional regulators Ref-1 and STAT3 as therapeutic targets in malignant peripheral nerve sheath tumours. Br J Cancer 2021; 124:1566-1580. [PMID: 33658640 PMCID: PMC8076291 DOI: 10.1038/s41416-021-01270-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 12/03/2020] [Accepted: 01/05/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND MPNST is a rare soft-tissue sarcoma that can arise from patients with NF1. Existing chemotherapeutic and targeted agents have been unsuccessful in MPNST treatment, and recent findings implicate STAT3 and HIF1-α in driving MPNST. The DNA-binding and transcriptional activity of both STAT3 and HIF1-α is regulated by Redox factor-1 (Ref-1) redox function. A first-generation Ref-1 inhibitor, APX3330, is being tested in cancer clinical trials and could be applied to MPNST. METHODS We characterised Ref-1 and p-STAT3 expression in various MPNST models. Tumour growth, as well as biomarkers of apoptosis and signalling pathways, were measured by qPCR and western blot following treatment with inhibitors of Ref-1 or STAT3. RESULTS MPNSTs from Nf1-Arfflox/floxPostnCre mice exhibit significantly increased positivity of p-STAT3 and Ref-1 expression when malignant transformation occurs. Inhibition of Ref-1 or STAT3 impairs MPNST growth in vitro and in vivo and induces apoptosis. Genes highly expressed in MPNST patients are downregulated following inhibition of Ref-1 or STAT3. Several biomarkers downstream of Ref-1 or STAT3 were also downregulated following Ref-1 or STAT3 inhibition. CONCLUSIONS Our findings implicate a unique therapeutic approach to target important MPNST signalling nodes in sarcomas using new first-in-class small molecules for potential translation to the clinic.
Collapse
Affiliation(s)
- Silpa Gampala
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Fenil Shah
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University, School of Medicine, Indianapolis, IN, USA.,Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Steven D Rhodes
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Olivia Babb
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Michelle Grimard
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Randall S Wireman
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Ellie Rad
- Division of Cancer and Genetics, Cardiff University, Cardiff, Wales, UK
| | - Brian Calver
- Division of Cancer and Genetics, Cardiff University, Cardiff, Wales, UK
| | - Ren-Yuan Bai
- Neurosurgery and Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Verena Staedtke
- Neurosurgery and Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Emily L Hulsey
- Department of Pathology and Laboratory Medicine, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - M Reza Saadatzadeh
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Karen E Pollok
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine, Indianapolis, IN, USA.,Department of Pharmacology and Toxicology, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Yan Tong
- Department of Biostatistics and Data Management, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Abbi E Smith
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - D Wade Clapp
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Andrew R Tee
- Division of Cancer and Genetics, Cardiff University, Cardiff, Wales, UK
| | - Mark R Kelley
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine, Indianapolis, IN, USA.,Department of Pharmacology and Toxicology, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Melissa L Fishel
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine, Indianapolis, IN, USA. .,Department of Pharmacology and Toxicology, Indiana University, School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
14
|
Caston RA, Gampala S, Armstrong L, Messmann RA, Fishel ML, Kelley MR. The multifunctional APE1 DNA repair-redox signaling protein as a drug target in human disease. Drug Discov Today 2021; 26:218-228. [PMID: 33148489 PMCID: PMC7855940 DOI: 10.1016/j.drudis.2020.10.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/27/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
Apurinic/apyrimidinic (AP) endonuclease-reduction/oxidation factor 1 (APE1/Ref-1, also called APE1) is a multifunctional enzyme with crucial roles in DNA repair and reduction/oxidation (redox) signaling. APE1 was originally described as an endonuclease in the Base Excision Repair (BER) pathway. Further study revealed it to be a redox signaling hub regulating critical transcription factors (TFs). Although a significant amount of focus has been on the role of APE1 in cancer, recent findings support APE1 as a target in other indications, including ocular diseases [diabetic retinopathy (DR), diabetic macular edema (DME), and age-related macular degeneration (AMD)], inflammatory bowel disease (IBD) and others, where APE1 regulation of crucial TFs impacts important pathways in these diseases. The central responsibilities of APE1 in DNA repair and redox signaling make it an attractive therapeutic target for cancer and other diseases.
Collapse
Affiliation(s)
- Rachel A Caston
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA
| | - Silpa Gampala
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA
| | - Lee Armstrong
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA
| | | | - Melissa L Fishel
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA
| | - Mark R Kelley
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA.
| |
Collapse
|
15
|
Caston RA, Shah F, Starcher CL, Wireman R, Babb O, Grimard M, McGeown J, Armstrong L, Tong Y, Pili R, Rupert J, Zimmers TA, Elmi AN, Pollok KE, Motea EA, Kelley MR, Fishel ML. Combined inhibition of Ref-1 and STAT3 leads to synergistic tumour inhibition in multiple cancers using 3D and in vivo tumour co-culture models. J Cell Mol Med 2021; 25:784-800. [PMID: 33274592 PMCID: PMC7812272 DOI: 10.1111/jcmm.16132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022] Open
Abstract
With a plethora of molecularly targeted agents under investigation in cancer, a clear need exists to understand which pathways can be targeted simultaneously with multiple agents to elicit a maximal killing effect on the tumour. Combination therapy provides the most promise in difficult to treat cancers such as pancreatic. Ref-1 is a multifunctional protein with a role in redox signalling that activates transcription factors such as NF-κB, AP-1, HIF-1α and STAT3. Formerly, we have demonstrated that dual targeting of Ref-1 (redox factor-1) and STAT3 is synergistic and decreases cell viability in pancreatic cancer cells. Data presented here extensively expands upon this work and provides further insights into the relationship of STAT3 and Ref-1 in multiple cancer types. Using targeted small molecule inhibitors, Ref-1 redox signalling was blocked along with STAT3 activation, and tumour growth evaluated in the presence and absence of the relevant tumour microenvironment. Our study utilized qPCR, cytotoxicity and in vivo analysis of tumour and cancer-associated fibroblasts (CAF) response to determine the synergy of Ref-1 and STAT3 inhibitors. Overall, pancreatic tumours grown in the presence of CAFs were sensitized to the combination of STAT3 and Ref-1 inhibition in vivo. In vitro bladder and pancreatic cancer demonstrated the most synergistic responses. By disabling both of these important pathways, this combination therapy has the capacity to hinder crosstalk between the tumour and its microenvironment, leading to improved tumour response.
Collapse
Affiliation(s)
- Rachel A. Caston
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Fenil Shah
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Colton L. Starcher
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisINUSA
| | - Randall Wireman
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Olivia Babb
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Michelle Grimard
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Jack McGeown
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Lee Armstrong
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Yan Tong
- Department of BiostatisticsIndiana University School of MedicineIndianapolisINUSA
| | - Roberto Pili
- Department of Pharmacology and ToxicologyIndiana University School of MedicineIndianapolisINUSA
- Department of UrologyIndiana University School of MedicineIndianapolisINUSA
- Department of Hematology and OncologyIndiana University School of MedicineIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisINUSA
| | - Joseph Rupert
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisINUSA
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
| | - Teresa A. Zimmers
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisINUSA
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- Richard L. Roudebush Veterans Administration Medical CenterIndianapolisINUSA
| | - Adily N. Elmi
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Karen E. Pollok
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
- Department of Pharmacology and ToxicologyIndiana University School of MedicineIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisINUSA
| | - Edward A. Motea
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisINUSA
| | - Mark R. Kelley
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisINUSA
- Department of Pharmacology and ToxicologyIndiana University School of MedicineIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisINUSA
| | - Melissa L. Fishel
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
- Department of Pharmacology and ToxicologyIndiana University School of MedicineIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisINUSA
| |
Collapse
|
16
|
Luo Q, Fu Q, Zhang X, Zhang H, Qin T. Application of Single-Cell RNA Sequencing in Pancreatic Cancer and the Endocrine Pancreas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1255:143-152. [PMID: 32949397 DOI: 10.1007/978-981-15-4494-1_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The pancreas is a complex organ composed of an endocrine (pancreatic islets) and an exocrine portion. This mixed cell population has resulted in an implacable barrier to exploring the detailed mechanism and function of each cell type in previous investigative approaches. In recent years, single-cell RNA sequencing (scRNA-seq) technologies have provided in-depth analysis of cell heterogeneity in the pancreas and in pancreatic cancer. It is especially effective in cell-type-specific molecule identification and detection of interactions between cancer cells and the stromal microenvironment. To date, numerous reports have described the application of scRNA-seq in studies of pancreatic islets and pancreatic cancer. The aim of this paper is to review recent advances of pancreatic transcriptomics and pancreatic cancer using scRNA-seq strategies.
Collapse
Affiliation(s)
- Qiankun Luo
- Department of Hepato-Biliary-Pancreatic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qiang Fu
- Department of Hepato-Biliary-Pancreatic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xu Zhang
- Department of Hepato-Biliary-Pancreatic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongwei Zhang
- Department of Hepato-Biliary-Pancreatic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tao Qin
- Department of Hepato-Biliary-Pancreatic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
17
|
Wang Y, Li X, Zhang L, Li M, Dai N, Luo H, Shan J, Yang X, Xu M, Feng Y, Xu C, Qian C, Wang D. A randomized, double-blind, placebo-controlled study of B-cell lymphoma 2 homology 3 mimetic gossypol combined with docetaxel and cisplatin for advanced non-small cell lung cancer with high expression of apurinic/apyrimidinic endonuclease 1. Invest New Drugs 2020; 38:1862-1871. [PMID: 32529467 PMCID: PMC7575477 DOI: 10.1007/s10637-020-00927-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/16/2020] [Indexed: 01/28/2023]
Abstract
Background Overexpression of apurinic/apyrimidinic endonuclease 1 (APE1) is an important cause of poor chemotherapeutic efficacy in advanced non-small cell lung cancer (NSCLC) patients. Gossypol, a new inhibitor of APE1, in combination with docetaxel and cisplatin is believed to improve the efficacy of chemotherapy for advanced NSCLC with high APE1 expression. Methods Sixty-two patients were randomly assigned to two groups. Thirty-one patients in the experimental group received 75 mg/m2 docetaxel and 75 mg/m2 cisplatin on day 1 with gossypol administered at 20 mg once daily on days 1 to 14 every 21 days. The control group received placebo with the same docetaxel and cisplatin regimen. The primary endpoint was progression-free survival (PFS); secondary endpoints included overall survival (OS), response rate, and toxicity. Results There were no significant differences in PFS and OS between the experimental group and the control group. The median PFS (mPFS) in the experimental and control groups was 7.43 and 4.9 months, respectively (HR = 0.54; p = 0.06), and the median OS (mOS) was 18.37 and 14.7 months, respectively (HR = 0.68; p = 0.27). No significant differences in response rate and serious adverse events were found between the groups. Conclusion The experimental group had a better mPFS and mOS than did the control group, though no significant difference was observed. Because the regimen of gossypol combined with docetaxel and cisplatin was well tolerated, future studies with larger sample sizes should be performed.
Collapse
Affiliation(s)
- Yuxiao Wang
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China
| | - Xuemei Li
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China
| | - Liang Zhang
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China
| | - Mengxia Li
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China
| | - Nan Dai
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China
| | - Hao Luo
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China
| | - Jinlu Shan
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China
| | - Xueqin Yang
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China
| | - Mingfang Xu
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China
| | - Yan Feng
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China
| | - Chengxiong Xu
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China
| | - Chengyuan Qian
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China.
| | - Dong Wang
- Cancer Center, Daping Hospital & Army Medical Center of PLA, Army Medical University, 400042, Chongqing, China.
| |
Collapse
|
18
|
Liu Y, Zhang Z, Zhang L, Zhong Z. Cytoplasmic APE1 promotes resistance response in osteosarcoma patients with cisplatin treatment. Cell Biochem Funct 2020; 38:195-203. [PMID: 31930546 DOI: 10.1002/cbf.3461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/02/2019] [Accepted: 10/28/2019] [Indexed: 11/09/2022]
Abstract
Chemotherapy resistance has become a hold back and major clinical challenge in osteosarcoma cancer. The alteration and subcellular distribution of apurinic/apyrimidinic endonuclease 1 (APE1) has been reported to be involved in chemotherapy resistance in many cancers. Here, we report that the cytoplasmic distribution of APE1 plays a key role in the sensitivity of combination platinum chemotherapy in osteosarcoma. Interestingly, the prevalence of cisplatin-induced DNA damage and apoptosis in low cytoplasmic APE1 osteosarcoma cell lines was higher than in high expression of cytoplasmic APE1 cell lines. Overexpression of cytoplasmic APE1 protected the osteosarcoma cells from CDDP-induced apoptosis. In addition, clinical data also show that the level of cytoplasmic APE1 was negatively associated with sensitivity to combination chemotherapy of cisplatin in osteosarcoma patients. Our findings suggest that cytoplasmic APE1 plays a significant role in chemotherapy resistance. This role is a supplement to the extranuclear function of APE1, and cytoplasmic APE1 expression level could be a promising predictor of platinum treatment prognosis for osteosarcoma patients.
Collapse
Affiliation(s)
- Yufeng Liu
- Cancer Center, The Third Affiliated Hospital and Research Institute of Surgery of Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Zhimin Zhang
- Cancer Center, The Third Affiliated Hospital and Research Institute of Surgery of Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Liang Zhang
- Cancer Center, The Third Affiliated Hospital and Research Institute of Surgery of Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Zhaoyang Zhong
- Cancer Center, The Third Affiliated Hospital and Research Institute of Surgery of Army Medical University (Third Military Medical University), Chongqing, PR China
| |
Collapse
|
19
|
Architecture of The Human Ape1 Interactome Defines Novel Cancers Signatures. Sci Rep 2020; 10:28. [PMID: 31913336 PMCID: PMC6949240 DOI: 10.1038/s41598-019-56981-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
APE1 is essential in cancer cells due to its central role in the Base Excision Repair pathway of DNA lesions and in the transcriptional regulation of genes involved in tumor progression/chemoresistance. Indeed, APE1 overexpression correlates with chemoresistance in more aggressive cancers, and APE1 protein-protein interactions (PPIs) specifically modulate different protein functions in cancer cells. Although important, a detailed investigation on the nature and function of protein interactors regulating APE1 role in tumor progression and chemoresistance is still lacking. The present work was aimed at analyzing the APE1-PPI network with the goal of defining bad prognosis signatures through systematic bioinformatics analysis. By using a well-characterized HeLa cell model stably expressing a flagged APE1 form, which was subjected to extensive proteomics analyses for immunocaptured complexes from different subcellular compartments, we here demonstrate that APE1 is a central hub connecting different subnetworks largely composed of proteins belonging to cancer-associated communities and/or involved in RNA- and DNA-metabolism. When we performed survival analysis in real cancer datasets, we observed that more than 80% of these APE1-PPI network elements is associated with bad prognosis. Our findings, which are hypothesis generating, strongly support the possibility to infer APE1-interactomic signatures associated with bad prognosis of different cancers; they will be of general interest for the future definition of novel predictive disease biomarkers. Future studies will be needed to assess the function of APE1 in the protein complexes we discovered. Data are available via ProteomeXchange with identifier PXD013368.
Collapse
|
20
|
Wan C, Chang W, Zhang Y, Shah F, Lu X, Zang Y, Zhang A, Cao S, Fishel ML, Ma Q, Zhang C. LTMG: a novel statistical modeling of transcriptional expression states in single-cell RNA-Seq data. Nucleic Acids Res 2019; 47:e111. [PMID: 31372654 PMCID: PMC6765121 DOI: 10.1093/nar/gkz655] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022] Open
Abstract
A key challenge in modeling single-cell RNA-seq data is to capture the diversity of gene expression states regulated by different transcriptional regulatory inputs across individual cells, which is further complicated by largely observed zero and low expressions. We developed a left truncated mixture Gaussian (LTMG) model, from the kinetic relationships of the transcriptional regulatory inputs, mRNA metabolism and abundance in single cells. LTMG infers the expression multi-modalities across single cells, meanwhile, the dropouts and low expressions are treated as left truncated. We demonstrated that LTMG has significantly better goodness of fitting on an extensive number of scRNA-seq data, comparing to three other state-of-the-art models. Our biological assumption of the low non-zero expressions, rationality of the multimodality setting, and the capability of LTMG in extracting expression states specific to cell types or functions, are validated on independent experimental data sets. A differential gene expression test and a co-regulation module identification method are further developed. We experimentally validated that our differential expression test has higher sensitivity and specificity, compared with other five popular methods. The co-regulation analysis is capable of retrieving gene co-regulation modules corresponding to perturbed transcriptional regulations. A user-friendly R package with all the analysis power is available at https://github.com/zy26/LTMGSCA.
Collapse
Affiliation(s)
- Changlin Wan
- Department of Medical and Molecular Genetics, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
- Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Electrical and Computer Engineering, Purdue University, Indianapolis, IN 46202, USA
| | - Wennan Chang
- Department of Medical and Molecular Genetics, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
- Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Electrical and Computer Engineering, Purdue University, Indianapolis, IN 46202, USA
| | - Yu Zhang
- Department of Medical and Molecular Genetics, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
- Colleges of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Fenil Shah
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
| | - Xiaoyu Lu
- Department of Medical and Molecular Genetics, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
| | - Yong Zang
- Department of Biostatistics, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
| | - Anru Zhang
- Department of Statistics, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Sha Cao
- Department of Medical and Molecular Genetics, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
- Department of Biostatistics, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
| | - Melissa L Fishel
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University, School of Medicine, Indianapolis, IN,46202, USA
| | - Qin Ma
- Department of Biomedical Informatics, the Ohio State University, Columbus, OH 43210, USA
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
- Department of Electrical and Computer Engineering, Purdue University, Indianapolis, IN 46202, USA
| |
Collapse
|
21
|
Sharapov MG, Novoselov VI. Catalytic and Signaling Role of Peroxiredoxins in Carcinogenesis. BIOCHEMISTRY (MOSCOW) 2019; 84:79-100. [PMID: 31216969 DOI: 10.1134/s0006297919020019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer cells experience strong oxidative stress caused by disorders in cell metabolism and action of external factors. For survival, cancer cells have developed a highly efficient system of antioxidant defense, some of the most important elements of which are peroxiredoxins (Prxs). Prxs are an evolutionarily ancient family of selenium-independent peroxidases that reduce a wide range of organic and inorganic hydroperoxides in the cell and the extracellular space. In addition, some Prxs exhibit chaperone and phospholipase activities. Prxs play an important role in the maintenance of the cell redox homeostasis; they prevent oxidation and aggregation of regulatory proteins, thereby affecting many cell signaling pathways. Prxs are involved in the regulation of cell growth, differentiation, and apoptosis. Due to their versatility and wide representation in all tissues and organs, Prxs participate in the development/suppression of many pathological conditions, among which cancer occupies a special place. This review focuses on the role of Prxs in the development of various forms of cancer. Understanding molecular mechanisms of Prx involvement in these processes will allow to develop new approaches to the prevention and treatment of cancer.
Collapse
Affiliation(s)
- M G Sharapov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - V I Novoselov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
22
|
Sun Z, Zhu Y, Aminbuhe, Fan Q, Peng J, Zhang N. Differential expression of APE1 in hepatocellular carcinoma and the effects on proliferation and apoptosis of cancer cells. Biosci Trends 2019; 12:456-462. [PMID: 30473552 DOI: 10.5582/bst.2018.01239] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This research aimed to investigate the differential expression of apurinic-apyrimidinic endonuclease 1 (APE1) in hepatocellular carcinoma (HCC) tissues and cells and the effects on proliferation and apoptosis of cancer cells. Immunohistochemical techniques were used to detect the expression of APE1 in 80 cases of HCC and the corresponding paracancerous tissue microarrays; meanwhile, Western blots were used to detect the expression of APE1 in both human HCC BEL-7402, BEL-7405, HCC-9204, Hep3B, HepG2, SMMC-7721 and Huh-7 cells, and normal hepatocyte L-02 cells. The relationship between APE1 expression and clinical pathological characteristics of HCC was statistically analyzed. APE1 shRNA vector was constructed in Hep 3B cells to establish a stably transfected cell line, using Western blots to determine the interference efficiency. Cell proliferation activity was detected with MTT assays, while apoptosis was detected with the Annexin V-FITC/PI double-labeling technique. The expression of APE1 in HCC tissues and cells was significantly up-regulated, and its expression was significantly different from TNM staging and histopathological grading. Down-regulation of APE1 expression significantly reduced the proliferative activity and increased the apoptosis rate of Hep 3B cells. In conclusion, APE1 demonstrates cancer progression potential at the clinical, tissue and cell level. It provides a new idea and theoretical basis for APE1-based clinical diagnosis, prognosis determination and molecular targeted therapy in treatment of HCC.
Collapse
Affiliation(s)
- Zhipeng Sun
- Oncology Surgery Department, Beijing Shijitan Hospital, Capital Medical University (Peking University Ninth School of Clinical Medicine)
| | - Yubing Zhu
- Oncology Surgery Department, Beijing Shijitan Hospital, Capital Medical University (Peking University Ninth School of Clinical Medicine)
| | - Aminbuhe
- Oncology Surgery Department, Beijing Shijitan Hospital, Capital Medical University (Peking University Ninth School of Clinical Medicine)
| | - Qing Fan
- Oncology Surgery Department, Beijing Shijitan Hospital, Capital Medical University (Peking University Ninth School of Clinical Medicine)
| | - Jirun Peng
- Oncology Surgery Department, Beijing Shijitan Hospital, Capital Medical University (Peking University Ninth School of Clinical Medicine)
| | - Nengwei Zhang
- Oncology Surgery Department, Beijing Shijitan Hospital, Capital Medical University (Peking University Ninth School of Clinical Medicine)
| |
Collapse
|
23
|
Sharapov MG, Novoselov VI, Gudkov SV. Radioprotective Role of Peroxiredoxin 6. Antioxidants (Basel) 2019; 8:E15. [PMID: 30621289 PMCID: PMC6356814 DOI: 10.3390/antiox8010015] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/30/2018] [Accepted: 01/01/2019] [Indexed: 02/06/2023] Open
Abstract
Peroxiredoxin 6 (Prdx6) is a member of an evolutionary ancient family of peroxidase enzymes with diverse functions in the cell. Prdx6 is an important enzymatic antioxidant. It reduces a wide range of peroxide substrates in the cell, thus playing a leading role in the maintenance of the redox homeostasis in mammalian cells. Beside peroxidase activity, Prdx6 has been shown to possess an activity of phospholipase A2, an enzyme playing an important role in membrane phospholipid metabolism. Moreover, Prdx6 takes part in intercellular and intracellular signal transduction due to its peroxidase and phospholipase activity, thus facilitating the initiation of regenerative processes in the cell, suppression of apoptosis, and activation of cell proliferation. Being an effective and important antioxidant enzyme, Prdx6 plays an essential role in neutralizing oxidative stress caused by various factors, including action of ionizing radiation. Endogenous Prdx6 has been shown to possess a significant radioprotective potential in cellular and animal models. Moreover, intravenous infusion of recombinant Prdx6 to animals before irradiation at lethal or sublethal doses has shown its high radioprotective effect. Exogenous Prdx6 effectively alleviates the severeness of radiation lesions, providing normalization of the functional state of radiosensitive organs and tissues, and leads to a significant elevation of the survival rate of animals. Prdx6 can be considered as a potent and promising radioprotective agent for reducing the pathological effect of ionizing radiation on mammalian organisms. The radioprotective properties and mechanisms of radioprotective action of Prdx6 are discussed in the current review.
Collapse
Affiliation(s)
- Mars G Sharapov
- Laboratory of Mechanisms of Reception, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia.
| | - Vladimir I Novoselov
- Laboratory of Mechanisms of Reception, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia.
| | - Sergey V Gudkov
- Wave Research Center, Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia.
- Department of Experimental Clinical Studies, Moscow Regional Research and Clinical Institute (MONIKI), 129110 Moscow, Russia.
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, 603950 Nizhni Novgorod, Russia.
| |
Collapse
|
24
|
Xu X, Zhang P, Zhang R, Zhang N, Jiang W. A DNA walker powered by endogenous enzymes for imaging uracil-DNA glycosylase activity in living cells. Chem Commun (Camb) 2019; 55:6026-6029. [DOI: 10.1039/c9cc01912j] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A DNA walker powered by endogenous enzymes detects uracil-DNA glycosylase activity in living cells.
Collapse
Affiliation(s)
- Xiaowen Xu
- School of Chemistry and Chemical Engineering
- Shandong University
- 250100 Jinan
- P. R. China
| | - Pingping Zhang
- School of Chemistry and Chemical Engineering
- Shandong University
- 250100 Jinan
- P. R. China
| | - Ruiyuan Zhang
- School of Chemistry and Chemical Engineering
- Shandong University
- 250100 Jinan
- P. R. China
| | - Nan Zhang
- Department of Oncology
- Jinan Central Hospital Affiliated to Shandong University
- 250012 Jinan
- P. R. China
| | - Wei Jiang
- School of Chemistry and Chemical Engineering
- Shandong University
- 250100 Jinan
- P. R. China
| |
Collapse
|
25
|
Xie J, Li Y, Kong J, Li C. Apurinic/Apyrimidinic Endonuclease 1/Redox Factor-1 Could Serve as a Potential Serological Biomarker for the Diagnosis and Prognosis of Oral Squamous Cell Carcinoma. J Oral Maxillofac Surg 2018; 77:859-866. [PMID: 30611690 DOI: 10.1016/j.joms.2018.11.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/28/2018] [Accepted: 11/25/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a multifunctional protein that shows elevated expression in many cancers, including oral squamous cell carcinoma (OSCC). However, the serum APE1/REF-1 level remains unknown in such patients. The purpose of the present study was to estimate the serum APE/Ref-1 levels in patients with OSCC and measure its association with the diagnosis, clinicopathologic features, and prognosis of OSCC. PATIENTS AND METHODS A total of 98 primary patients with OSCC and 109 age- or gender-matched normal controls were included in our case-control study. The predictor variable was the serum APE1/Ref-1 level, which was measured using an enzyme-linked immunosorbent assay. The outcome variables included diagnosis, clinicopathologic characteristics, treatment response, and OSCC prognosis. The optimal cutoff points of serum APE1/Ref-1 were identified using the X-tile program with minimum P values. Prognostic factors were evaluated using univariate and multivariate Cox regression models. RESULTS The average patient and control age was 51.6 ± 8.7 years (63 men; 35 women) and 52.4 ± 10.3 years (67 men; 42 women), respectively. The serum APE1/Ref-1 level was significantly greater in patients with OSCC than that in the controls (4.56 ± 1.09 ng/mL vs 3.18 ± 0.88 ng/mL; P < .01). Much higher serum APE1/Ref-1 levels were observed in those with OSCC with late TNM stage, lymph node metastases, and worse pathologic differentiation. The receiver operating characteristic curve analysis illustrated that the serum APE1/Ref-1 level was a potential biomarker for differentiating OSCC, with an area under the curve of 0.83 (95% confidence interval, 0.78 to 0.88; sensitivity, 0.87; specificity, 0.68). The log-rank analysis revealed that patients with OSCC and a low APE1/Ref-1 level experienced longer disease-free survival after postoperative cisplatin chemotherapy and overall survival (P < .05). CONCLUSIONS An elevated APE1/Ref-1 level might serve as a novel potential diagnostic biomarker for OSCC and can reflect the treatment response to cisplatin chemotherapy and prognosis.
Collapse
Affiliation(s)
- Jianli Xie
- Attending Doctor, Department of Prosthodontics, Jinan Stomatological Hospital, Jinan, Shandong, People's Republic of China
| | - Ying Li
- Nurse-in-Charge, Department of Liver Disease, Infectious Disease Hospital, Jinan, Shandong, People's Republic of China
| | - Jingjing Kong
- Resident, Department of Prosthodontics, Jinan Stomatological Hospital, Jinan, Shandong, People's Republic of China
| | - Chong Li
- Doctor, Department of Oral Medicine, Jinan Stomatological Hospital, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
26
|
Blocking HIF signaling via novel inhibitors of CA9 and APE1/Ref-1 dramatically affects pancreatic cancer cell survival. Sci Rep 2018; 8:13759. [PMID: 30214007 PMCID: PMC6137035 DOI: 10.1038/s41598-018-32034-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/31/2018] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has reactive stroma that promotes tumor signaling, fibrosis, inflammation, and hypoxia, which activates HIF-1α to increase tumor cell metastasis and therapeutic resistance. Carbonic anhydrase IX (CA9) stabilizes intracellular pH following induction by HIF-1α. Redox effector factor-1 (APE1/Ref-1) is a multifunctional protein with redox signaling activity that converts certain oxidized transcription factors to a reduced state, enabling them to upregulate tumor-promoting genes. Our studies evaluate PDAC hypoxia responses and APE1/Ref-1 redox signaling contributions to HIF-1α-mediated CA9 transcription. Our previous studies implicated this pathway in PDAC cell survival under hypoxia. We expand those studies, comparing drug responses using patient-derived PDAC cells displaying differential hypoxic responses in 3D spheroid tumor-stroma models to characterize second generation APE1/Ref-1 redox signaling and CA9 inhibitors. Our data demonstrates that HIF-1α-mediated CA9 induction differs between patient-derived PDAC cells and that APE1/Ref-1 redox inhibition attenuates this induction by decreasing hypoxia-induced HIF-1 DNA binding. Dual-targeting of APE1/Ref-1 and CA9 in 3D spheroids demonstrated that this combination effectively kills PDAC tumor cells displaying drastically different levels of CA9. New APE1/Ref-1 and CA9 inhibitors were significantly more potent alone and in combination, highlighting the potential of combination therapy targeting the APE1-Ref-1 signaling axis with significant clinical potential.
Collapse
|
27
|
Ho J, Li X, Zhang L, Liang Y, Hu W, Yau JCW, Chan H, Gin T, Chan MTV, Tse G, Wu WKK. Translational genomics in pancreatic ductal adenocarcinoma: A review with re-analysis of TCGA dataset. Semin Cancer Biol 2018; 55:70-77. [PMID: 29705685 DOI: 10.1016/j.semcancer.2018.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/16/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022]
Abstract
Malignancy of the pancreas is a leading cause of cancer-related mortality, with the highest case-fatality of all cancers. Nevertheless, the lack of sensitive biomarkers and presence of biological heterogeneity precludes its early detection and effective treatment. The recent introduction of next-generation sequencing allows characterization of multiple driver mutations at genome- and exome-wide levels. Sequencing of DNA and RNA from circulating tumour cells has also opened an exciting era of non-invasive procedures for tumour detection and prognostication. This massively-parallel sequencing technology has uncovered the previously obscure molecular mechanisms, providing clues for better stratification of patients and identification of druggable targets for the disease. Identification of active oncogenic pathways and gene-gene interactions may reveal oncogene addiction and synthetic lethality. Relevant findings can be extrapolated to develop targeted and personalized therapeutic interventions. In addition to known mutational events, the role of chromosomal rearrangements in pancreatic neoplasms is gradually uncovered. Coupled with bioinformatics pipelines and epidemiological analyses, a better framework for risk stratification and prognostication of pancreatic cancer will be possible in the near future. In this review, we discuss how translational genomic studies facilitate our understanding of pathobiology, and development of novel diagnostics and therapeutics for pancreatic ductal adenocarcinoma with emphases on whole genome sequencing, whole exome sequencing, and liquid biopsies. We have also re-analyzed The Cancer Genome Atlas (TCGA) dataset to look for genetic features associated with altered survival in patients with pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Jeffery Ho
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Xianchun Li
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 00060, China
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Yonghao Liang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Hu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Johnny C W Yau
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Hung Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Tony Gin
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China.
| | - Gary Tse
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|