1
|
Kumar S, Ranga A. Role of miRNAs in breast cancer development and progression: Current research. Biofactors 2025; 51:e2146. [PMID: 39601401 DOI: 10.1002/biof.2146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024]
Abstract
Breast cancer, a complex and heterogeneous ailment impacting numerous women worldwide, persists as a prominent cause of cancer-related fatalities. MicroRNAs (miRNAs), small non-coding RNAs, have garnered significant attention for their involvement in breast cancer's progression. These molecules post-transcriptionally regulate gene expression, influencing crucial cellular processes including proliferation, differentiation, and apoptosis. This review provides an overview of the current research on the role of miRNAs in breast cancer. It discusses the role of miRNAs in breast cancer, including the different subtypes of breast cancer, their molecular characteristics, and the mechanisms by which miRNAs regulate gene expression in breast cancer cells. Additionally, the review highlights recent studies identifying specific miRNAs that are dysregulated in breast cancer and their potential use as diagnostic and prognostic biomarkers. Furthermore, the review explores the therapeutic potential of miRNAs in breast cancer treatment. Preclinical studies have shown the effectiveness of miRNA-based therapies, such as antagomir and miRNA mimic therapies, in inhibiting tumor growth and metastasis. Emerging areas, including the application of artificial intelligence (AI) to advance miRNA research and the "One Health" approach that integrates human and animal cancer insights, are also discussed. However, challenges remain before these therapies can be fully translated into clinical practice. In conclusion, this review emphasizes the significance of miRNAs in breast cancer research and their potential as innovative diagnostic and therapeutic tools. A deeper understanding of miRNA dysregulation in breast cancer is essential for their successful application in clinical settings. With continued research, miRNA-based approaches hold promise for improving patient outcomes in this devastating disease.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Pharmacology, DIPSAR, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Abhishek Ranga
- Department of Pharmacology, DIPSAR, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| |
Collapse
|
2
|
Ma J, Chen Z, Liu S, Chen C, Guan W, Geng M, Xiao H, Mao B, Wang B. Prognostic effect of DNA methylation of BTG2 gene in Chinese hepatocellular carcinoma. Heliyon 2024; 10:e28580. [PMID: 38560180 PMCID: PMC10979207 DOI: 10.1016/j.heliyon.2024.e28580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
Background This study aims to develop a prognostic model for overall survival based on potential methylation sites within B-cell translocation gene 2 (BTG2) in Chinese patients with hepatocellular carcinoma (HCC). Methods This is a retrospective study. The beta values of nine CpG sites and RSEM normalized count values of BTG2 gene were extracted from the Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) (TCGA-LIHC) dataset, with the beta value representing the methylation level by indicating the ratio of the intensity of the methylated bead type to the combined locus intensity. Pyrosequencing was performed to determine the range of methylation values surrounding cg01798157 site in BTG2 gene. A weighted linear model was developed to predict the overall survival (OS). Results The beta value of cg01798157 was significantly negatively associated with the mRNA expression of BTG2 in the TCGA-LIHC dataset (Spearman's rho = -0.5306, P = 2.27 × 10-27). The methylation level of cg01798157 was significantly associated with OS in the cohort of 51 Chinese HCC patients (Hazard ratio = 0.597, 95% CI: 0.434-0.820, P = 0.001). Multivariate Cox regression analysis identified methylation level of cg01798157, cirrhosis, and microvascular invasion as independent prognostic factors. The prognostic efficiency of death risk score was superior to that of cirrhosis or microvascular invasion alone. Conclusions The methylation level of cg01798157 in BTG2 may be an epigenetic biomarker in Chinese patients with resectable HCC.
Collapse
Affiliation(s)
- Jungang Ma
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zhuo Chen
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Shuixia Liu
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Chuan Chen
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Wei Guan
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Mingying Geng
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - He Xiao
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Bijing Mao
- Department of Oncology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Bin Wang
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing, 400054, China
| |
Collapse
|
3
|
Yang W, Wei C, Cheng J, Ding R, Li Y, Wang Y, Yang Y, Wang J. BTG2 and SerpinB5, a novel gene pair to evaluate the prognosis of lung adenocarcinoma. Front Immunol 2023; 14:1098700. [PMID: 37006240 PMCID: PMC10064863 DOI: 10.3389/fimmu.2023.1098700] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
IntroductionLung adenocarcinoma (LUAD), as the most frequent pathological subtype of non−small cell lung cancer, is often characterized by poor prognosis and low 5-year survival rate. Exploriton of new biomarkers and accurate molecular mechanisms for effectively predicting the prognosis of LUAD patients is still necessary. Presently, BTG2 and SerpinB5, which play important roles in tumors, are studied as a gene pair for the first time with the aim of exploring whether they can be used as potential prognostic markers.MethodsUsing the bioinformatics method to explore whether BTG2 and SerpinB5 can become independent prognostic factors, and explore their clinical application value and whether they can be used as immunotherapeutic markers. In addition, we also verify the conclusions obtained from external datasets, molecular docking, and SqRT-PCR.ResultsThe results show that compared with normal lung tissue, BTG2 expression level was down-regulated and SerpinB5 was up-regulated in LUAD. Additionally, Kaplan–Meier survival analysis demonstrate that the prognosis of low expression level of BTG2 was poor, and that of high expression level of SerpinB5 was poor, suggesting that both of them can be used as independent prognostic factors. Moreover, the prognosis models of the two genes were constructed respectively in this study, and their prediction effect was verified by external data. Besides, ESTIMATE algorithm reveals the relationship between this gene pair and the immune microenvironment. Furthermore, patients with a high expression level of BTG2 and a low expression level of SerpinB5 have higher immunophenoscore for CTLA-4 and PD-1 inhibitors than patients with a low expression level of BTG2 and a high expression level of SerpinB5, indicating that such patients have a more obvious effect of immunotherapy.DiscussionCollectively, all the results demonstrate that BTG2 and SerpinB5 might serve as potential prognostic biomarkers and novel therapeutic targets for LUAD.
Collapse
Affiliation(s)
- Wanting Yang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Chunli Wei
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Ran Ding
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Yonghua Wang
- College of Life Sciences, Northwest University, Shaanxi, China
| | - Yinfeng Yang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, Anhui, China
- *Correspondence: Yinfeng Yang, ; Jinghui Wang,
| | - Jinghui Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
- *Correspondence: Yinfeng Yang, ; Jinghui Wang,
| |
Collapse
|
4
|
Shen S. Editorial: Integrative Approaches to Analyze Cancer Based on Multi‐Omics. Front Genet 2022; 13:1057408. [DOI: 10.3389/fgene.2022.1057408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
|
5
|
Zhang C, Sun Q, Zhang X, Qin N, Pu Z, Gu Y, Yan C, Zhu M, Dai J, Wang C, Li N, Jin G, Ma H, Hu Z, Zhang E, Tan F, Shen H. Gene amplification-driven RNA methyltransferase KIAA1429 promotes tumorigenesis by regulating BTG2 via m6A-YTHDF2-dependent in lung adenocarcinoma. Cancer Commun (Lond) 2022; 42:609-626. [PMID: 35730068 PMCID: PMC9257983 DOI: 10.1002/cac2.12325] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/09/2022] [Accepted: 06/09/2022] [Indexed: 11/22/2022] Open
Abstract
Background Epigenetic alterations have been shown to contribute immensely to human carcinogenesis. Dynamic and reversible N6‐methyladenosine (m6A) RNA modification regulates gene expression and cell fate. However, the reasons for activation of KIAA1429 (also known as VIRMA, an RNA methyltransferase) and its underlying mechanism in lung adenocarcinoma (LUAD) remain largely unexplored. In this study, we aimed to clarify the oncogenic role of KIAA1429 in the tumorigenesis of LUAD. Methods Whole‐genome sequencing and transcriptome sequencing of LUAD data were used to analyze the gene amplification of RNA methyltransferase. The in vitro and in vivo functions of KIAA1429 were investigated. Transcriptome sequencing, methylated RNA immunoprecipitation sequencing (MeRIP‐seq), m6A dot blot assays and RNA immunoprecipitation (RIP) were performed to confirm the modified gene mediated by KIAA1429. RNA stability assays were used to detect the half‐life of the target gene. Results Copy number amplification drove higher expression of KIAA1429 in LUAD, which was correlated with poor overall survival. Manipulating the expression of KIAA1429 could regulate the proliferation and metastasis of LUAD. Mechanistically, the target genes of KIAA1429‐mediated m6A modification were confirmed by transcriptome sequencing and MeRIP‐seq assays. We also revealed that KIAA1429 could regulate BTG2 expression in an m6A‐dependent manner. Knockdown of KIAA1429 significantly decreased the m6A levels of BTG2 mRNA, leading to enhanced YTH m6A RNA binding protein 2 (YTHDF2, the m6A “reader”)‐dependent BTG2 mRNA stability and promoted the expression of BTG2; thus, participating in the tumorigenesis of LUAD. Conclusions Our data revealed the activation mechanism and important role of KIAA1429 in LUAD tumorigenesis, which may provide a novel view on the targeted molecular therapy of LUAD.
Collapse
Affiliation(s)
- Chang Zhang
- Department of Epidemiology, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, P. R. China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Qi Sun
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Xu Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Na Qin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Zhening Pu
- Center of Clinical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, P. R. China
| | - Yayun Gu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Caiwang Yan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Cheng Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Ni Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Gusu School, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Erbao Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Hongbing Shen
- Department of Epidemiology, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, P. R. China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Gusu School, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Research Unit of Prospective Cohort of Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing, 100142, P. R. China
| |
Collapse
|
6
|
Nai A, Ma F, He Z, Zeng S, Bashir S, Song J, Xu M. Development and Validation of a 7-Gene Inflammatory Signature Forecasts Prognosis and Diverse Immune Landscape in Lung Adenocarcinoma. Front Mol Biosci 2022; 9:822739. [PMID: 35372503 PMCID: PMC8964604 DOI: 10.3389/fmolb.2022.822739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/15/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Inflammatory responses are strongly linked with tumorigenesis and cancer development. This research aimed to construct and validate a novel inflammation response–related risk predictive signature for forecasting the prognosis of patients with LUAD. Methods: Differential expression analysis, univariate Cox, LASSO, and multivariate Cox regression analyses of 200 inflammatory response–related genes (IRRG) were performed to establish a risk predictive model in the TCGA training cohort. The performance of the IRRG model was verified in eight GEO datasets. GSEA analysis, ESTIMATE algorithms, and ssGSEA analysis were applied to elucidate the possible mechanisms. Furthermore, the relationship analysis between risk score, model genes, and chemosensitivity was performed. Last, we verified the protein expression of seven model genes by immunohistochemical staining or Western blotting. Results: We constructed a novel inflammatory response–related 7-gene signature (MMP14, BTG2, LAMP3, CCL20, TLR2, IL7R, and PCDH7). Patients in the high-risk group presented markedly decreased survival time in the TCGA cohort and eight GEO cohorts than the low-risk group. Interestingly, multiple pathways related to immune response were suppressed in high-risk groups. The low infiltration levels of B cell, dendritic cell, natural killer cell, and eosinophil can significantly affect the unsatisfactory prognosis of the high-risk group in LUAD. Moreover, the tumor cells’ sensitivity to anticancer drugs was markedly related to risk scores and model genes. The protein expression of seven model genes was consistent with the mRNA expression. Conclusion: Our IRRG prognostic model can effectively forecast LUAD prognosis and is tightly related to immune infiltration.
Collapse
Affiliation(s)
- Aitao Nai
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Feng Ma
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zirui He
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shuwen Zeng
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shoaib Bashir
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jian Song
- Department of Oncology, ZhongShan Torch Development Zone Hospital, Zhongshan, China
- *Correspondence: Meng Xu, ; Jian Song,
| | - Meng Xu
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Meng Xu, ; Jian Song,
| |
Collapse
|
7
|
Zhang XZ, Chen MJ, Fan PM, Jiang W, Liang SX. BTG2 Serves as a Potential Prognostic Marker and Correlates with Immune Infiltration in Lung Adenocarcinoma. Int J Gen Med 2022; 15:2727-2745. [PMID: 35300128 PMCID: PMC8922043 DOI: 10.2147/ijgm.s340565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/26/2022] [Indexed: 11/23/2022] Open
Abstract
Background B-cell translocation gene 2 (BTG2) has been revealed to be involved in the occurrence and development of multiple cancers. However, the role of BTG2 in lung adenocarcinoma (LUAD) is still ambiguous. Thus, this study aims to investigate the prognostic value of BTG2 and its correlation with immune infiltration in LUAD. Methods The expression of BTG2 in LUAD was analyzed using the TIMER and UALCAN databases. The correlations between BTG2 expression and clinicopathological factors were investigated using the UALCAN databases. The Kaplan–Meier plotter, GEPIA, and TCGA databases were employed to assess the prognostic value of BTG2. The STRING database and Cytoscape software were used to construct an interaction network and mine co-expression genes. The TISIDB database was examined for a correlation between BTG2 and driver genes in LUAD. Enrichment analysis of co-expressed genes and BTG2 was performed using the LinkedOmics database. Finally, the correlations between BTG2 and immune infiltrates were investigated using the TIMER, GEO, and TISIDB database. Results BTG2 was significantly downregulated in LUAD. The decreased expression of BTG2 in LUAD was significantly correlated with higher cancer stages and shorter duration of overall survival. The expressions of BTG2-related co-expression genes were associated with the prognosis in LUAD. The expression of BTG2 was closely associated with the mutations of TP53 and ROS1. Enrichment analysis revealed that BTG2 was significantly correlated with immune‐associated signaling pathways and function. In addition, the expression of BTG2 was found to be closely related to immune infiltration, multiple gene markers of immune cells, chemokines, and chemokine receptors. Conclusion Our findings have effectively demonstrated that BTG2 expression was downregulated in LUAD, indicating poor prognosis. Closely relating to immune cell infiltration, BTG2 may be a promising immune-related biomarker and molecular target for patients with LUAD.
Collapse
Affiliation(s)
- Xiao Zhen Zhang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Mao Jian Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, People’s Republic of China
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Ping Ming Fan
- Department of Breast-Thoracic Tumor Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, Hainan, People’s Republic of China
| | - Wei Jiang
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Shi Xiong Liang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Correspondence: Shi Xiong Liang; Wei Jiang, Email ;
| |
Collapse
|
8
|
Ji X, Lin L, Fan J, Li Y, Wei Y, Shen S, Su L, Shafer A, Bjaanæs MM, Karlsson A, Planck M, Staaf J, Helland Å, Esteller M, Zhang R, Chen F, Christiani DC. Epigenome-wide three-way interaction study identifies a complex pattern between TRIM27, KIAA0226, and smoking associated with overall survival of early-stage NSCLC. Mol Oncol 2022; 16:717-731. [PMID: 34932879 PMCID: PMC8807353 DOI: 10.1002/1878-0261.13167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/23/2021] [Accepted: 12/20/2021] [Indexed: 01/12/2023] Open
Abstract
The interaction between DNA methylation of tripartite motif containing 27 (cg05293407TRIM27 ) and smoking has previously been identified to reveal histologically heterogeneous effects of TRIM27 DNA methylation on early-stage non-small-cell lung cancer (NSCLC) survival. However, to understand the complex mechanisms underlying NSCLC progression, we searched three-way interactions. A two-phase study was adopted to identify three-way interactions in the form of pack-year of smoking (number of cigarettes smoked per day × number of years smoked) × cg05293407TRIM27 × epigenome-wide DNA methylation CpG probe. Two CpG probes were identified with FDR-q ≤ 0.05 in the discovery phase and P ≤ 0.05 in the validation phase: cg00060500KIAA0226 and cg17479956EXT2 . Compared to a prediction model with only clinical information, the model added 42 significant three-way interactions using a looser criterion (discovery: FDR-q ≤ 0.10, validation: P ≤ 0.05) had substantially improved the area under the receiver operating characteristic curve (AUC) of the prognostic prediction model for both 3-year and 5-year survival. Our research identified the complex interaction effects among multiple environment and epigenetic factors, and provided therapeutic target for NSCLC patients.
Collapse
Affiliation(s)
- Xinyu Ji
- Department of BiostatisticsCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Lijuan Lin
- Department of BiostatisticsCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Juanjuan Fan
- Department of BiostatisticsCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Yi Li
- Department of BiostatisticsUniversity of MichiganAnn ArborMIUSA
| | - Yongyue Wei
- Department of BiostatisticsCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjingChina
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMAUSA
- China International Cooperation Center for Environment and Human HealthNanjing Medical UniversityNanjingChina
| | - Sipeng Shen
- Department of BiostatisticsCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Li Su
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Andrea Shafer
- Pulmonary and Critical Care DivisionDepartment of MedicineMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| | - Maria Moksnes Bjaanæs
- Department of Cancer GeneticsInstitute for Cancer ResearchOslo University HospitalOsloNorway
| | - Anna Karlsson
- Division of OncologyDepartment of Clinical Sciences Lund and CREATE Health Strategic Center for Translational Cancer ResearchLund UniversityLundSweden
| | - Maria Planck
- Division of OncologyDepartment of Clinical Sciences Lund and CREATE Health Strategic Center for Translational Cancer ResearchLund UniversityLundSweden
| | - Johan Staaf
- Division of OncologyDepartment of Clinical Sciences Lund and CREATE Health Strategic Center for Translational Cancer ResearchLund UniversityLundSweden
| | - Åslaug Helland
- Department of Cancer GeneticsInstitute for Cancer ResearchOslo University HospitalOsloNorway
- Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Manel Esteller
- Josep Carreras Leukaemia Research InstituteBarcelonaSpain
- Centro de Investigacion Biomedica en Red CancerMadridSpain
- Institucio Catalana de Recerca i Estudis AvançatsBarcelonaSpain
- Physiological Sciences DepartmentSchool of Medicine and Health SciencesUniversity of BarcelonaBarcelonaSpain
| | - Ruyang Zhang
- Department of BiostatisticsCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjingChina
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMAUSA
- China International Cooperation Center for Environment and Human HealthNanjing Medical UniversityNanjingChina
| | - Feng Chen
- Department of BiostatisticsCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjingChina
- China International Cooperation Center for Environment and Human HealthNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCancer CenterCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingChina
| | - David C. Christiani
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMAUSA
- Pulmonary and Critical Care DivisionDepartment of MedicineMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| |
Collapse
|
9
|
Erfani M, Zamani M, Tamaddon G, Hosseini SV, Mokarram P. Expression and methylation status of BTG2, PPP1CA, and PEG3 genes in colon adenocarcinoma cell lines: promising treatment targets. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2022; 15:395-405. [PMID: 36762213 PMCID: PMC9876769 DOI: 10.22037/ghfbb.v15i4.2577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/30/2022] [Indexed: 02/11/2023]
Abstract
Aim This study investigated the association between methylation status and expression levels of BTG2, PPP1CA, and PEG3 genes in colon cancer. Background Aberrant DNA methylation is one of the most important epigenetic modifications in the development of cancer. Evidence indicates that hypermethylation of various tumor suppressor genes could be a potential mechanism of colon tumorigenesis. Methods The expression levels of BTG2, PPP1CA, and PEG3 genes were evaluated in HT-29/219, HCT116, SW48, SW742, SW480, and LS180 cell lines using quantitative Real-Time PCR. The methylation status of BTG2 and PPP1CA was determined by methylation-specific PCR (MSP) method, and the methylation pattern of PEG3 was evaluated by bisulfite sequencing PCR (BSP). To investigate the effect of methylation on the expression of these genes, all colon cancer cell lines were treated by 5-Azacitidine (5-Aza) and/or Trichostatin A (TSA). Results The expression levels of BTG2, PPP1CA, and PEG3 were highly heterogeneous and quantitatively correlated to their promoter methylation status in the studied colon cancer cell lines. Treatment by 5-Aza and/or TSA increased the expression of the above-named genes in colon cancer cell lines. Conclusion Overall, it seems that BTG2, PPP1CA, and PEG3 act as tumor suppressor genes in colon cancer, and methylation is a potential mechanism for their loss of expression. Therefore, these genes may be considered as suitable targets for demethylation approaches and, eventually, colon cancer treatment. Combined treatment by 5-Aza and TSA may be a promising therapeutic strategy for colon cancer treatment. Further studies may contribute to confirm these results.
Collapse
Affiliation(s)
- Mehran Erfani
- Department of Biochemistry, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran, Department of Biochemistry, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mozhdeh Zamani
- Colorectal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran, Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamhossein Tamaddon
- Department of Clinical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Pooneh Mokarram
- Department of Biochemistry, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran, Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Ikeda Y, Taniguchi K, Nagase N, Tsuji A, Kitagishi Y, Matsuda S. Reactive oxygen species may influence on the crossroads of stemness, senescence, and carcinogenesis in a cell via the roles of APRO family proteins. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Excessive reactive oxygen species (ROS) may cause oxidative stress which is involved in aging and in the pathogenesis of various human diseases. Whereas unregulated levels of the ROS may be harmful, regulated basal level of ROS are even necessary to support cellular functions as a second messenger for homeostasis under physiological conditions. Therefore, redox medicine could develop as a new therapeutic concept for human health-benefits. Here, we introduce the involvement of ROS on the crossroads of stemness, senescence, and carcinogenesis in a stem cell and cancer cell biology. Amazingly, the anti-proliferative (APRO) family anti-proliferative proteins characterized by immediate early growth responsive genes may also be involved in the crossroads machinery. The biological functions of APRO proteins (APROs) seem to be quite intricate, however, which might be a key modulator of microRNAs (miRNAs). Given the crucial roles of ROS and APROs for pathophysiological functions, upcoming novel therapeutics should include vigilant modulation of the redox state. Next generation of medicine including regenerative medicine and/or cancer therapy will likely comprise strategies for altering the redox environment with the APROs via the modulation of miRNAs as well as with the regulation of ROS of cells in a sustainable manner.
Collapse
Affiliation(s)
- Yuka Ikeda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Kurumi Taniguchi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Nozomi Nagase
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Ai Tsuji
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
11
|
An Inflammation-Related Nine-Gene Signature to Improve Prognosis Prediction of Lung Adenocarcinoma. DISEASE MARKERS 2021; 2021:9568057. [PMID: 34580602 PMCID: PMC8464410 DOI: 10.1155/2021/9568057] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/26/2021] [Indexed: 11/18/2022]
Abstract
Background A novel predictive model was rarely reported based on inflammation-related genes to explore clinical outcomes of lung adenocarcinoma (LUAD) patients. Methods Using TCGA database, we screened nine inflammation-related genes with a prognostic value, and LASSO regression was applied for model construction. The predictive value of the prognostic signature developed from inflammation-related genes was assessed by survival assays and multivariate assays. PCA and t-SNE analysis were performed to demonstrate clustering abilities of risk scores. Results Thirteen inflammation-related genes (BTG2, CCL20, CD69, DCBLD2, GPC3, IL7R, LAMP3, MMP14, NMUR1, PCDH7, PIK3R5, RNF144B, and TPBG) with prognostic values were finally identified. LASSO regression further screened nine candidates (BTG2, CCL20, CD69, IL7R, MMP14, NMUR1, PCDH7, RNF144B, and TPBG). Then, a prognostic prediction model using the above nine genes was constructed. A reliable clustering ability of risk score was demonstrated by PCA and t-SNE assays in 500 LUAD patients. The survival assays revealed that the overall survivals of the high-risk group were distinctly poorer than those of the low-risk group with 1-, 3-, and 5-year AUC values of 0.695, 0.666, and 0.694, respectively. Finally, multivariate assays demonstrated the scoring system as an independent prognostic factor for overall survival. Conclusions Our study shows that the signature of nine inflammation-related genes can be used as a prognostic marker for LUAD.
Collapse
|
12
|
Shao Z, Wang T, Zhang M, Jiang Z, Huang S, Zeng P. IUSMMT: Survival mediation analysis of gene expression with multiple DNA methylation exposures and its application to cancers of TCGA. PLoS Comput Biol 2021; 17:e1009250. [PMID: 34464378 PMCID: PMC8437300 DOI: 10.1371/journal.pcbi.1009250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 09/13/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023] Open
Abstract
Effective and powerful survival mediation models are currently lacking. To partly fill such knowledge gap, we particularly focus on the mediation analysis that includes multiple DNA methylations acting as exposures, one gene expression as the mediator and one survival time as the outcome. We proposed IUSMMT (intersection-union survival mixture-adjusted mediation test) to effectively examine the existence of mediation effect by fitting an empirical three-component mixture null distribution. With extensive simulation studies, we demonstrated the advantage of IUSMMT over existing methods. We applied IUSMMT to ten TCGA cancers and identified multiple genes that exhibited mediating effects. We further revealed that most of the identified regions, in which genes behaved as active mediators, were cancer type-specific and exhibited a full mediation from DNA methylation CpG sites to the survival risk of various types of cancers. Overall, IUSMMT represents an effective and powerful alternative for survival mediation analysis; our results also provide new insights into the functional role of DNA methylation and gene expression in cancer progression/prognosis and demonstrate potential therapeutic targets for future clinical practice.
Collapse
Affiliation(s)
- Zhonghe Shao
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ting Wang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng Zhang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhou Jiang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shuiping Huang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ping Zeng
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
13
|
Huang L, Yu X, Jiang Z, Zeng P. Novel Autophagy-Related Gene Signature Investigation for Patients With Oral Squamous Cell Carcinoma. Front Genet 2021; 12:673319. [PMID: 34220946 PMCID: PMC8248343 DOI: 10.3389/fgene.2021.673319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/26/2021] [Indexed: 12/26/2022] Open
Abstract
The correlation between autophagy defects and oral squamous cell carcinoma (OSCC) has been previously studied, but only based on a limited number of autophagy-related genes in cell lines or animal models. The aim of the present study was to analyze differentially expressed autophagy-related genes through The Cancer Genome Atlas (TCGA) database to explore enriched pathways and potential biological function. Based on TCGA database, a signature composed of four autophagy-related genes (CDKN2A, NKX2-3, NRG3, and FADD) was established by using multivariate Cox regression models and two Gene Expression Omnibus datasets were applied for external validation. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to study the function of autophagy-related genes and their pathways. The most significant GO and KEGG pathways were enriched in several key pathways that were related to the progression of autophagy and OSCC. Furthermore, a prognostic risk score was constructed based on the four genes; patients were then divided into two groups (i.e., high risk and low risk) in terms of the median of risk score. Prognosis of the two groups and results showed that patients at the low-risk group had a much better prognosis than those at the high-risk group, regardless of whether they were in the training datasets or validation datasets. Multivariate Cox regression results indicated that the risk score of the autophagy-related gene signatures could greatly predict the prognosis of patients after controlling for several clinical covariates. The findings of the present study revealed that autophagy-related gene signatures play an important role in OSCC and are potential prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Lihong Huang
- Department of Biostatistics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinghao Yu
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Zhou Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Ping Zeng
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China.,Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
14
|
Jinghua H, Qinghua Z, Chenchen C, Lili C, Xiao X, Yunfei W, Zhengzhe A, Changxiu L, Hui H. MicroRNA miR-92a-3p regulates breast cancer cell proliferation and metastasis via regulating B-cell translocation gene 2 (BTG2). Bioengineered 2021; 12:2033-2044. [PMID: 34082648 PMCID: PMC8806219 DOI: 10.1080/21655979.2021.1924543] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
MicroRNAs (miRNAs) dysregulation contributes to tumorigenesis, and it is reported that abnormal miR-92a-3p expression participates in multiple cancers’ occurrence and progression. This study focuses on miR-92a-3p’s functions and regulatory mechanism in breast cancer (BC). The current study proved miR-92a-3p expression was enhanced in BC tissues and cells, and its high expression was related to increased TNM stage and larger tumor size of BC patients. Functionally, transfection of miR-92a-3p mimics facilitated BC cell proliferation and metastasis, yet transfection of miR-92a-3p inhibitors functioned oppositely. In addition, BTG2 was verified as a direct miR-92a-3p target in BC cells. This research indicated that miR-92a-3p facilitates BC cell proliferation and metastasis through repressing BTG2 expression.
Collapse
Affiliation(s)
- Huang Jinghua
- Department of Radiation Oncology, Affiliated Hospital of Yanbian University, Yanbian, Jilin, China
| | - Zhou Qinghua
- Department of Pain Control, Zoucheng People 'S Hospital, Shandong, China
| | - Chen Chenchen
- Department of Gynecology, Affiliated Hospital of Jining Medical University. Jining, Shandong, China
| | - Chen Lili
- Department of Anesthesiology, Huaiyin People's Hospital, Huaiyin District, Jinan, Shandong, China
| | - Xu Xiao
- Department of Gynecology, Affiliated Hospital of Jining Medical University. Jining, Shandong, China
| | - Wang Yunfei
- Department of Gynecology, Affiliated Hospital of Jining Medical University. Jining, Shandong, China
| | - An Zhengzhe
- Department of Radiation Oncology, Affiliated Hospital of Yanbian University, Yanbian, Jilin, China
| | - Lin Changxiu
- Central Laboratory, Affiliated Hospital of Yanbian University, Yanbian, Jilin, China
| | - Han Hui
- Department of Gynecology, Affiliated Hospital of Jining Medical University. Jining, Shandong, China
| |
Collapse
|
15
|
Amine H, Ripin N, Sharma S, Stoecklin G, Allain FH, Séraphin B, Mauxion F. A conserved motif in human BTG1 and BTG2 proteins mediates interaction with the poly(A) binding protein PABPC1 to stimulate mRNA deadenylation. RNA Biol 2021; 18:2450-2465. [PMID: 34060423 PMCID: PMC8632095 DOI: 10.1080/15476286.2021.1925476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Antiproliferative BTG/Tob proteins interact directly with the CAF1 deadenylase subunit of the CCR4-NOT complex. This binding requires the presence of two conserved motifs, boxA and boxB, characteristic of the BTG/Tob APRO domain. Consistently, these proteins were shown to stimulate mRNA deadenylation and decay in several instances. Two members of the family, BTG1 and BTG2, were reported further to associate with the protein arginine methyltransferase PRMT1 through a motif, boxC, conserved only in this subset of proteins. We recently demonstrated that BTG1 and BTG2 also contact the first RRM domain of the cytoplasmic poly(A) binding protein PABPC1. To decipher the mode of interaction of BTG1 and BTG2 with partners, we performed nuclear magnetic resonance experiments as well as mutational and biochemical analyses. Our data demonstrate that, in the context of an APRO domain, the boxC motif is necessary and sufficient to allow interaction with PABPC1 but, unexpectedly, that it is not required for BTG2 association with PRMT1. We show further that the presence of a boxC motif in an APRO domain endows it with the ability to stimulate deadenylation in cellulo and in vitro. Overall, our results identify the molecular interface allowing BTG1 and BTG2 to activate deadenylation, a process recently shown to be necessary for maintaining T-cell quiescence.
Collapse
Affiliation(s)
- Hamza Amine
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de Santé et de Recherche Médicale (INSERM) U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Nina Ripin
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, Switzerland
| | - Sahil Sharma
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Cancer Research Center (DKFZ)-ZMBH Alliance, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Georg Stoecklin
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Cancer Research Center (DKFZ)-ZMBH Alliance, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Frédéric H Allain
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, Switzerland.,Department of Biology, Institute of Biochemistry, ETH Zürich, Switzerland
| | - Bertrand Séraphin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de Santé et de Recherche Médicale (INSERM) U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Fabienne Mauxion
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de Santé et de Recherche Médicale (INSERM) U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
16
|
Shen S, Wei Y, Li Y, Duan W, Dong X, Lin L, You D, Tardon A, Chen C, Field JK, Hung RJ, Liu G, Zhu D, Amos CI, Su L, Zhao Y, Hu Z, Shen H, Zhang R, Chen F, Christiani DC. A multi-omics study links TNS3 and SEPT7 to long-term former smoking NSCLC survival. NPJ Precis Oncol 2021; 5:39. [PMID: 34002017 PMCID: PMC8128887 DOI: 10.1038/s41698-021-00182-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/19/2021] [Indexed: 11/15/2022] Open
Abstract
The genetic architecture of non-small cell lung cancer (NSCLC) is relevant to smoking status. However, the genetic contribution of long-term smoking cessation to the prognosis of NSCLC patients remains largely unknown. We conducted a genome-wide association study primarily on the prognosis of 1299 NSCLC patients of long-term former smokers from independent discovery (n = 566) and validation (n = 733) sets, and used in-silico function prediction and multi-omics analysis to identify single nucleotide polymorphisms (SNPs) on prognostics with NSCLC. We further detected SNPs with at least moderate association strength on survival within each group of never, short-term former, long-term former, and current smokers, and compared their genetic similarity at the SNP, gene, expression quantitative trait loci (eQTL), enhancer, and pathway levels. We identified two SNPs, rs34211819TNS3 at 7p12.3 (P = 3.90 × 10-9) and rs1143149SEPT7 at 7p14.2 (P = 9.75 × 10-9), were significantly associated with survival of NSCLC patients who were long-term former smokers. Both SNPs had significant interaction effects with years of smoking cessation (rs34211819TNS3: Pinteraction = 8.0 × 10-4; rs1143149SEPT7: Pinteraction = 0.003). In addition, in silico function prediction and multi-omics analysis provided evidence that these QTLs were associated with survival. Moreover, comparison analysis found higher genetic similarity between long-term former smokers and never-smokers, compared to short-term former smokers or current smokers. Pathway enrichment analysis indicated a unique pattern among long-term former smokers that was related to immune pathways. This study provides important insights into the genetic architecture associated with long-term former smoking NSCLC.
Collapse
Affiliation(s)
- Sipeng Shen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- China International Cooperation Center of Environment and Human Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yongyue Wei
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- China International Cooperation Center of Environment and Human Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yi Li
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Weiwei Duan
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Xuesi Dong
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Lijuan Lin
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Dongfang You
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Adonina Tardon
- University of Oviedo and CIBERESP, Faculty of Medicine, Oviedo, 33003, Spain
| | - Chu Chen
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - John K Field
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Rayjean J Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health System and University of Toronto, Toronto, ON, M5T 3L9, Canada
| | - Geoffrey Liu
- Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada
| | - Dakai Zhu
- Department of Medicine, Epidemiology Section, Institute for Clinical and Translational Research, Baylor Medical College, Houston, TX, 77030, USA
| | - Christopher I Amos
- Department of Medicine, Epidemiology Section, Institute for Clinical and Translational Research, Baylor Medical College, Houston, TX, 77030, USA
| | - Li Su
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Yang Zhao
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- China International Cooperation Center of Environment and Human Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- China International Cooperation Center of Environment and Human Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Hongbing Shen
- China International Cooperation Center of Environment and Human Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Ruyang Zhang
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- China International Cooperation Center of Environment and Human Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Feng Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- China International Cooperation Center of Environment and Human Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA.
- Pulmonary and Critical Care Division, Massachusetts General Hospital, Department of Medicine, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
17
|
Wang W, Guo H, Zhou S, Zhu J, Liu Y, Yu R, Pu J. Expression and clinical significance of B cell translocation gene 2 in esophageal squamous cell carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2021; 14:475-483. [PMID: 33936370 PMCID: PMC8085815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is widely known as a highly fatal cancer, and thus it is important to identify tumor-specific and radiosensitivity-specific markers in ESCC. B cell translocation gene 2 (BTG2) has been considered a novel tumor suppressor gene or radiotherapy sensitivity-associated gene. However, the relationship between BTG2 and ESCC development and radiotherapy sensitivity is uncertain. The present study aims to explore the expression and clinical significance of B cell translocation gene 2 (BTG2) in ESCC by analyzing the RNAseq data from the TCGA and immunohistochemical staining of ESCC samples. We found that the level of BTG2 mRNA was significantly decreased in ESCC patients, and further decreased significantly in radiotherapy resistant patients compared to sensitive patients. The positive expression rate of BTG2 protein was 56.0% (103/184) in 184 ESCC tissue samples and 84.0% (42/50) in normal esophageal mucosal samples, respectively. The positive ratios of BTG2 expression in radiotherapy-sensitive group and radiotherapy resistant group were 57.9% (22/38) and 23.5% (4/17), respectively. Furthermore, the analysis indicates that the expression level of BTG2 significantly correlated with lymph node metastasis and clinical staging in ESCC patients. A multivariate analysis with Cox regression model showed that BTG2 level was an independent risk factor affecting the prognosis of ESCC patients. Above all, the downregulation of BTG2 may be used as a molecular marker to identify and predict ESCC progression and radiosensitivity.
Collapse
Affiliation(s)
- Wanpeng Wang
- Department of Radiation Oncology, Lianshui County People’s Hospital, Kangda College of Nanjing Medical UniversityHuai’an 223400, Jiangsu, P. R. China
- Department of Central Laboratory, Lianshui County People’s Hospital, Kangda College of Nanjing Medical UniversityHuai’an 223400, Jiangsu, P. R. China
| | - Haochun Guo
- Departments of Radiation Oncology, Zhongda Hospital, Medical School of Southeast UniversityNanjing 210009, Jiangsu, P. R. China
| | - Suqin Zhou
- Department of Pharmacy, Lianshui County People’s Hospital, Kangda College of Nanjing Medical UniversityHuai’an 223400, Jiangsu, P. R. China
| | - Jinxin Zhu
- Department of Central Laboratory, Lianshui County People’s Hospital, Kangda College of Nanjing Medical UniversityHuai’an 223400, Jiangsu, P. R. China
| | - Yanyan Liu
- Department of Radiation Oncology, Lianshui County People’s Hospital, Kangda College of Nanjing Medical UniversityHuai’an 223400, Jiangsu, P. R. China
| | - Ran Yu
- Department of Central Laboratory, Lianshui County People’s Hospital, Kangda College of Nanjing Medical UniversityHuai’an 223400, Jiangsu, P. R. China
| | - Juan Pu
- Department of Radiation Oncology, Lianshui County People’s Hospital, Kangda College of Nanjing Medical UniversityHuai’an 223400, Jiangsu, P. R. China
| |
Collapse
|
18
|
Qu L, Zhang W, Li J, Liu P. The miR-146b-5p promotes Ewing's sarcoma cells progression via suppressing the expression of BTG2. Sci Prog 2021; 104:368504211002043. [PMID: 33844600 PMCID: PMC10454925 DOI: 10.1177/00368504211002043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ewing sarcoma (ES) is a malignant tumor that occurs mostly in children. However, the underlying mechanisms of ES are still unknown. Analyzing the results of two previous miRNA array reports, we found that miR-146b-5p might be an onco-miRNA in ES progression. To test this hypothesis, we detected the expression levels of miR-146b-5p by real-time PCR and observed the effects of miR-146b-5p on the progression of ES cells by CCK8 and transwell assays. Bioinformatics and luciferase assays were used to identify the target genes of miR-146b-5p. It showed that the expression levels of miR-146b-5p were upregulated in ES cell lines compared with human mesenchymal stem cells (MSCs). Up- or downregulation of miR-146b-5p in ES cell lines could effectively promote or block the proliferation, migration, and invasion of ES cells, respectively. Furthermore, we demonstrated that BTG2 was one of the target genes and mediated the effects of miR-146b-5p in ES cells. Interestingly, we also found that miR-146b-5p was partly involved in the anticancer effects of pemetrexed in ES cells. Our study revealed that miR-146b-5p affected the progression of ES by suppressing BTG2, which might shed light on anticancer drug development and ES treatment in the future.
Collapse
Affiliation(s)
- Lizhen Qu
- Department of Orthopedics Trauma, Zaozhuang Municipal Hospital, Zaozhuang, Shandong, P.R. China
| | - Wu Zhang
- Department of Orthopedics, Zaozhuang Hospital of ZaoZhuang Mining Group, ZaoZhuang, Shandong, P.R. China
| | - Jiajiang Li
- Department of Orthopedics, Zaozhuang Hospital of ZaoZhuang Mining Group, ZaoZhuang, Shandong, P.R. China
| | - Peng Liu
- Department of Orthopedics Trauma, Zaozhuang Municipal Hospital, Zaozhuang, Shandong, P.R. China
| |
Collapse
|
19
|
Ji X, Lin L, Shen S, Dong X, Chen C, Li Y, Zhu Y, Huang H, Chen J, Chen X, Wei L, He J, Duan W, Su L, Jiang Y, Fan J, Guan J, You D, Shafer A, Bjaanaes MM, Karlsson A, Planck M, Staaf J, Helland Å, Esteller M, Wei Y, Zhang R, Chen F, Christiani DC. Epigenetic-smoking interaction reveals histologically heterogeneous effects of TRIM27 DNA methylation on overall survival among early-stage NSCLC patients. Mol Oncol 2020; 14:2759-2774. [PMID: 33448640 PMCID: PMC7607178 DOI: 10.1002/1878-0261.12785] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 01/09/2023] Open
Abstract
Tripartite motif containing 27 (TRIM27) is highly expressed in lung cancer, including non-small-cell lung cancer (NSCLC). Here, we profiled DNA methylation of lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) tumours from 613 early-stage NSCLC patients and evaluated associations between CpG methylation of TRIM27 and overall survival. Significant CpG probes were confirmed in 617 samples from The Cancer Genome Atlas. The methylation of the CpG probe cg05293407TRIM27 was significantly associated with overall survival in patients with LUSC (HR = 1.65, 95% CI: 1.30-2.09, P = 4.52 × 10-5), but not in patients with LUAD (HR = 1.08, 95% CI: 0.87-1.33, P = 0.493). As incidence of LUSC is associated with higher smoking intensity compared to LUAD, we investigated whether smoking intensity impacted on the prognostic effect of cg05293407TRIM27 methylation in NSCLC. LUSC patients had a higher average pack-year of smoking (37.49LUAD vs 54.79LUSC, P = 1.03 × 10-19) and included a higher proportion of current smokers than LUAD patients (28.24%LUAD vs 34.09%LUSC, P = 0.037). cg05293407TRIM27 was significantly associated with overall survival only in NSCLC patients with medium-high pack-year of smoking (HR = 1.58, 95% CI: 1.26-1.96, P = 5.25 × 10-5). We conclude that cg05293407TRIM27 methylation is a potential predictor of LUSC prognosis, and smoking intensity may impact on its prognostic value across the various types of NSCLC.
Collapse
Affiliation(s)
- Xinyu Ji
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lijuan Lin
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sipeng Shen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Xuesi Dong
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, China
| | - Chao Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yi Li
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Ying Zhu
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hui Huang
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiajin Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xin Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Liangmin Wei
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jieyu He
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Weiwei Duan
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Li Su
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yue Jiang
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Juanjuan Fan
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jinxing Guan
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dongfang You
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrea Shafer
- Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Maria Moksnes Bjaanaes
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Anna Karlsson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund and CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Sweden
| | - Maria Planck
- Division of Oncology and Pathology, Department of Clinical Sciences Lund and CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Sweden
| | - Johan Staaf
- Division of Oncology and Pathology, Department of Clinical Sciences Lund and CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Sweden
| | - Åslaug Helland
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Spain.,Centro de Investigacion Biomedica en Red Cancer, Madrid, Spain.,Institucio Catalana de Recerca i Estudis Avançats, Barcelona, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Yongyue Wei
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Ruyang Zhang
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Zhang R, Chen C, Dong X, Shen S, Lai L, He J, You D, Lin L, Zhu Y, Huang H, Chen J, Wei L, Chen X, Li Y, Guo Y, Duan W, Liu L, Su L, Shafer A, Fleischer T, Moksnes Bjaanæs M, Karlsson A, Planck M, Wang R, Staaf J, Helland Å, Esteller M, Wei Y, Chen F, Christiani DC. Independent Validation of Early-Stage Non-Small Cell Lung Cancer Prognostic Scores Incorporating Epigenetic and Transcriptional Biomarkers With Gene-Gene Interactions and Main Effects. Chest 2020; 158:808-819. [PMID: 32113923 PMCID: PMC7417380 DOI: 10.1016/j.chest.2020.01.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/28/2019] [Accepted: 01/26/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND DNA methylation and gene expression are promising biomarkers of various cancers, including non-small cell lung cancer (NSCLC). Besides the main effects of biomarkers, the progression of complex diseases is also influenced by gene-gene (G×G) interactions. RESEARCH QUESTION Would screening the functional capacity of biomarkers on the basis of main effects or interactions, using multiomics data, improve the accuracy of cancer prognosis? STUDY DESIGN AND METHODS Biomarker screening and model validation were used to construct and validate a prognostic prediction model. NSCLC prognosis-associated biomarkers were identified on the basis of either their main effects or interactions with two types of omics data. A prognostic score incorporating epigenetic and transcriptional biomarkers, as well as clinical information, was independently validated. RESULTS Twenty-six pairs of biomarkers with G×G interactions and two biomarkers with main effects were significantly associated with NSCLC survival. Compared with a model using clinical information only, the accuracy of the epigenetic and transcriptional biomarker-based prognostic model, measured by area under the receiver operating characteristic curve (AUC), increased by 35.38% (95% CI, 27.09%-42.17%; P = 5.10 × 10-17) and 34.85% (95% CI, 26.33%-41.87%; P = 2.52 × 10-18) for 3- and 5-year survival, respectively, which exhibited a superior predictive ability for NSCLC survival (AUC3 year, 0.88 [95% CI, 0.83-0.93]; and AUC5 year, 0.89 [95% CI, 0.83-0.93]) in an independent Cancer Genome Atlas population. G×G interactions contributed a 65.2% and 91.3% increase in prediction accuracy for 3- and 5-year survival, respectively. INTERPRETATION The integration of epigenetic and transcriptional biomarkers with main effects and G×G interactions significantly improves the accuracy of prognostic prediction of early-stage NSCLC survival.
Collapse
Affiliation(s)
- Ruyang Zhang
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA; China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China; Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Chao Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xuesi Dong
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA; Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, China
| | - Sipeng Shen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA; China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Linjing Lai
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jieyu He
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dongfang You
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Lijuan Lin
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Ying Zhu
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hui Huang
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiajin Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Liangmin Wei
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xin Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yi Li
- Department of Biostatistics, University of Michigan, Ann Arbor, MI
| | - Yichen Guo
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA; Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Weiwei Duan
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Liya Liu
- Department of Preventive Medicine, Medical School of Ningbo University, Ningbo, China
| | - Li Su
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Andrea Shafer
- Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Thomas Fleischer
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Maria Moksnes Bjaanæs
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Anna Karlsson
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund and CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Sweden
| | - Maria Planck
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund and CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Sweden
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Johan Staaf
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund and CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Sweden
| | - Åslaug Helland
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Manel Esteller
- Josep Carreras Leukemia Research Institute, Badalona, Barcelona, Spain; Centro de Investigacion Biomedica en Red Cancer, Madrid, Spain; Institucio Catalana de Recerca i Estudis Avançats, Barcelona, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Yongyue Wei
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA; China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - David C Christiani
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA; Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
21
|
Shen H, Zheng E, Yang Z, Yang M, Xu X, Zhou Y, Ni J, Li R, Zhao G. YRDC is upregulated in non-small cell lung cancer and promotes cell proliferation by decreasing cell apoptosis. Oncol Lett 2020; 20:43-52. [PMID: 32565932 PMCID: PMC7285791 DOI: 10.3892/ol.2020.11560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 09/20/2019] [Indexed: 02/06/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-associated mortality worldwide. yrdC N6-threonylcarbamoltransferase domain containing protein (YRDC) has been demonstrated to be involved in the formation of threonylcarbamoyladenosine in transfer ribonucleic acid. However, the molecular mechanisms underlying NSCLC progression remain largely unclear. The present study revealed that YRDC was upregulated in NSCLC samples compared with adjacent non-cancerous tissues by analyzing datasets obtained from the Gene Expression Omnibus and The Cancer Genome Atlas. Higher expression of YRDC was associated with overall survival time and disease-free survival time in patients with NSCLC, particularly in lung adenocarcinoma. Furthermore, knockdown of YRDC in NSCLS cell lines significantly suppressed cell growth and cell colony formation in vitro. Additionally, the results demonstrated that silencing of YRDC induced apoptosis of A549 cells. Then, the protein-protein interaction networks associated with yrdC N6-threonylcarbamoltransferase domain containing protein (YRDC) in NSCLC were subsequently constructed to investigate the potential molecular mechanism underlying the role of YRDC in NSCLC. The results revealed that YRDC was involved in the regulation of spliceosomes, ribosomes, the p53 signaling pathway, proteasomes, the cell cycle and DNA replication. The present study demonstrated that YRDC may serve as a novel biomarker for the prognosis prediction and treatment of NSCLC.
Collapse
Affiliation(s)
- Haibo Shen
- Cardiothoracic Surgery Department, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Enkuo Zheng
- Cardiothoracic Surgery Department, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Zhenhua Yang
- Cardiothoracic Surgery Department, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Minglei Yang
- Cardiothoracic Surgery Department, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Xiang Xu
- Cardiothoracic Surgery Department, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Yinjie Zhou
- Cardiothoracic Surgery Department, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Junjun Ni
- Cardiothoracic Surgery Department, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Rui Li
- Cardiothoracic Surgery Department, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Guofang Zhao
- Cardiothoracic Surgery Department, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
22
|
Chen C, Wei Y, Wei L, Chen J, Chen X, Dong X, He J, Lin L, Zhu Y, Huang H, You D, Lai L, Shen S, Duan W, Su L, Shafer A, Fleischer T, Bjaanæs MM, Karlsson A, Planck M, Wang R, Staaf J, Helland Å, Esteller M, Zhang R, Chen F, Christiani DC. Epigenome-wide gene-age interaction analysis reveals reversed effects of PRODH DNA methylation on survival between young and elderly early-stage NSCLC patients. Aging (Albany NY) 2020; 12:10642-10662. [PMID: 32511103 PMCID: PMC7346054 DOI: 10.18632/aging.103284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/27/2020] [Indexed: 12/29/2022]
Abstract
DNA methylation changes during aging, but it remains unclear whether the effect of DNA methylation on lung cancer survival varies with age. Such an effect could decrease prediction accuracy and treatment efficacy. We performed a methylation–age interaction analysis using 1,230 early-stage lung adenocarcinoma patients from five cohorts. A Cox proportional hazards model was used to investigate lung adenocarcinoma and squamous cell carcinoma patients for methylation–age interactions, which were further confirmed in a validation phase. We identified one adenocarcinoma-specific CpG probe, cg14326354PRODH, with effects significantly modified by age (HRinteraction = 0.989; 95% CI: 0.986–0.994; P = 9.18×10–7). The effect of low methylation was reversed for young and elderly patients categorized by the boundary of 95% CI standard (HRyoung = 2.44; 95% CI: 1.26–4.72; P = 8.34×10-3; HRelderly = 0.58; 95% CI: 0.42–0.82; P = 1.67×10-3). Moreover, there was an antagonistic interaction between low cg14326354PRODH methylation and elderly age (HRinteraction = 0.21; 95% CI: 0.11–0.40; P = 2.20×10−6). In summary, low methylation of cg14326354PRODH might benefit survival of elderly lung adenocarcinoma patients, providing new insight to age-specific prediction and potential drug targeting.
Collapse
Affiliation(s)
- Chao Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China.,China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yongyue Wei
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China.,China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Liangmin Wei
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jiajin Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Xin Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Xuesi Dong
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China.,Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Jieyu He
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Lijuan Lin
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Ying Zhu
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Hui Huang
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Dongfang You
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Linjing Lai
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Sipeng Shen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China.,China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Weiwei Duan
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China.,Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Li Su
- China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Andrea Shafer
- Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Thomas Fleischer
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo 0424, Norway
| | - Maria Moksnes Bjaanæs
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo 0424, Norway
| | - Anna Karlsson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund and CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund 22381, Sweden
| | - Maria Planck
- Division of Oncology and Pathology, Department of Clinical Sciences Lund and CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund 22381, Sweden
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu China
| | - Johan Staaf
- Division of Oncology and Pathology, Department of Clinical Sciences Lund and CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund 22381, Sweden
| | - Åslaug Helland
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo 0424, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo 0424, Norway
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, 08021, Catalonia, Spain.,Centro de Investigacion Biomedica en Red Cancer, Madrid 28029, Spain.,Institucio Catalana de Recerca i Estudis Avançats, Barcelona 08010, Catalonia, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, Barcelona 08007, Catalonia, Spain
| | - Ruyang Zhang
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China.,China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.,Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu China
| | - Feng Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China.,China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.,Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
23
|
Wang HL, Li KZ, Li JL, Hu BL. Prognostic value of AKAP13 methylation and expression in lung squamous cell carcinoma. Biomark Med 2020; 14:503-512. [PMID: 32208871 DOI: 10.2217/bmm-2020-0054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: This study aimed to analyze the prognostic value and clinical significance of AKAP13 mRNA expression and AKAP13 methylation in lung squamous cell carcinoma (LUSC). Materials & methods: The mRNA expression and methylation of AKAP13 data of LUSC patients were downloaded from the Broad GDAC Firehose database and analyzed. Results: AKAP13 mRNA expression was downregulated and methylation was upregulated in LUSC tissue. Three CpG sites of AKAP13 were associated with overall survival. Combination of AKAP13 mRNA and methylation revealed 11 CpG sites associated with overall survival of LUSC patients. AKAP13 mRNA expression was associated with distant metastasis of LUSC, no associations were found between methylation status of CpG sites and clinical features. Conclusion: AKAP13 mRNA and its methylated CpG sites are potential prognostic indicators in LUSC patients.
Collapse
Affiliation(s)
- Hui-Lin Wang
- Second Department of Chemotherapy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Ke-Zhi Li
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Ji-Lin Li
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Bang-Li Hu
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| |
Collapse
|
24
|
Tong H, Zhao K, Wang J, Xu H, Xiao J. CircZNF609/miR-134-5p/BTG-2 axis regulates proliferation and migration of glioma cell. J Pharm Pharmacol 2019; 72:68-75. [PMID: 31721211 DOI: 10.1111/jphp.13188] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022]
Abstract
Abstract
Objectives
MicroRNAs are abundant in eukaryotic cells and play key roles in cancers. Circular RNAs (CircRNAs) served as the competing endogenous RNAs (ceRNAs) in mediating multiple cell processes. This study aims to define the role of CircRNA CircZNF609/miR-134-5p in glioma as well as the underlying regulating mechanism.
Methods
Relative expression of miR-134-5p, CircZNF609 and BTG-2 mRNA was determined by quantitative real-time PCR. Cell proliferation was analysed by CCK-8 assay. Cell migration was assessed by cell wound scratch assay. The direct regulatory of miR-134-5p on BTG-2 and CircZNF609 was verified by luciferase report gene assay.
Key findings
MiR-134-5p was significantly upregulated in glioma cells. The overexpression of miR-134-5p inhibited cell proliferation and migration of glioma cell U251 and U87. Reversely, knock-down of miR-134-5p enhanced cell proliferation and migration. Both BTG-2 and CircZNF609 are the direct targets of miR-134-5p, and their expression could be negatively regulated by miR-134-5p. CircZNF609 was significantly upregulated in U251 and U87 cells and acted as an oncogene to promote cell proliferation and cell migration of glioma cell U251 and U87.
Conclusions
These data proved that CircZNF609 served as a competing RNA to bind miR-134-5p that promoted BTG-2 expression leading to reduced proliferation and migration of glioma cell.
Collapse
Affiliation(s)
- Hui Tong
- Department of Neurosurgery, Linyi Central Hospital, Linyi, China
| | - Kai Zhao
- Department of Neurosurgery, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, China
| | - Jiangjie Wang
- Department of Neurosurgery, Linyi Central Hospital, Linyi, China
| | - Hui Xu
- Department of Neurosurgery, Lianshui County People's Hospital, the Affiliated Lianshui County People's Hospital of Kangda College of Nanjing Medical University, Huai'an, China
| | - Jianqi Xiao
- Department of Neurosurgery, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, China
| |
Collapse
|
25
|
Dong X, Zhang R, He J, Lai L, Alolga RN, Shen S, Zhu Y, You D, Lin L, Chen C, Zhao Y, Duan W, Su L, Shafer A, Salama M, Fleischer T, Bjaanæs MM, Karlsson A, Planck M, Wang R, Staaf J, Helland Å, Esteller M, Wei Y, Chen F, Christiani DC. Trans-omics biomarker model improves prognostic prediction accuracy for early-stage lung adenocarcinoma. Aging (Albany NY) 2019; 11:6312-6335. [PMID: 31434796 PMCID: PMC6738411 DOI: 10.18632/aging.102189] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
Limited studies have focused on developing prognostic models with trans-omics biomarkers for early-stage lung adenocarcinoma (LUAD). We performed integrative analysis of clinical information, DNA methylation, and gene expression data using 825 early-stage LUAD patients from 5 cohorts. Ranger algorithm was used to screen prognosis-associated biomarkers, which were confirmed with a validation phase. Clinical and biomarker information was fused using an iCluster plus algorithm, which significantly distinguished patients into high- and low-mortality risk groups (Pdiscovery = 0.01 and Pvalidation = 2.71×10-3). Further, potential functional DNA methylation-gene expression-overall survival pathways were evaluated by causal mediation analysis. The effect of DNA methylation level on LUAD survival was significantly mediated through gene expression level. By adding DNA methylation and gene expression biomarkers to a model of only clinical data, the AUCs of the trans-omics model improved by 18.3% (to 87.2%) and 16.4% (to 85.3%) in discovery and validation phases, respectively. Further, concordance index of the nomogram was 0.81 and 0.77 in discovery and validation phases, respectively. Based on systematic review of published literatures, our model was superior to all existing models for early-stage LUAD. In summary, our trans-omics model may help physicians accurately identify patients with high mortality risk.
Collapse
Affiliation(s)
- Xuesi Dong
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing 210009, China
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ruyang Zhang
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Jieyu He
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Linjing Lai
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Raphael N. Alolga
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 211198, China
| | - Sipeng Shen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Ying Zhu
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Dongfang You
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lijuan Lin
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chao Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yang Zhao
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Weiwei Duan
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Li Su
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Andrea Shafer
- Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Moran Salama
- Bellvitge Biomedical Research Institute and University of Barcelona, Institucio Catalana de Recerca i Estudis Avançats, Barcelona 08908, Catalonia , Spain
| | - Thomas Fleischer
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo 0424, Norway
| | - Maria Moksnes Bjaanæs
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo 0424, Norway
| | - Anna Karlsson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund 2238, Skåne, Sweden
| | - Maria Planck
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund 2238, Skåne, Sweden
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Johan Staaf
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund 2238, Skåne, Sweden
| | - Åslaug Helland
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo 0424, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo 0424, Norway
| | - Manel Esteller
- Bellvitge Biomedical Research Institute and University of Barcelona, Institucio Catalana de Recerca i Estudis Avançats, Barcelona 08908, Catalonia , Spain
| | - Yongyue Wei
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Feng Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing 210009, China
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
| | - David C. Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
- Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
26
|
Zhang R, Lai L, Dong X, He J, You D, Chen C, Lin L, Zhu Y, Huang H, Shen S, Wei L, Chen X, Guo Y, Liu L, Su L, Shafer A, Moran S, Fleischer T, Bjaanæs MM, Karlsson A, Planck M, Staaf J, Helland Å, Esteller M, Wei Y, Chen F, Christiani DC. SIPA1L3 methylation modifies the benefit of smoking cessation on lung adenocarcinoma survival: an epigenomic-smoking interaction analysis. Mol Oncol 2019; 13:1235-1248. [PMID: 30924596 PMCID: PMC6487703 DOI: 10.1002/1878-0261.12482] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 01/10/2023] Open
Abstract
Smoking cessation prolongs survival and decreases mortality of patients with non-small-cell lung cancer (NSCLC). In addition, epigenetic alterations of some genes are associated with survival. However, potential interactions between smoking cessation and epigenetics have not been assessed. Here, we conducted an epigenome-wide interaction analysis between DNA methylation and smoking cessation on NSCLC survival. We used a two-stage study design to identify DNA methylation-smoking cessation interactions that affect overall survival for early-stage NSCLC. The discovery phase contained NSCLC patients from Harvard, Spain, Norway, and Sweden. A histology-stratified Cox proportional hazards model adjusted for age, sex, clinical stage, and study center was used to test DNA methylation-smoking cessation interaction terms. Interactions with false discovery rate-q ≤ 0.05 were further confirmed in a validation phase using The Cancer Genome Atlas database. Histology-specific interactions were identified by stratification analysis in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) patients. We identified one CpG probe (cg02268510SIPA1L3 ) that significantly and exclusively modified the effect of smoking cessation on survival in LUAD patients [hazard ratio (HR)interaction = 1.12; 95% confidence interval (CI): 1.07-1.16; P = 4.30 × 10-7 ]. Further, the effect of smoking cessation on early-stage LUAD survival varied across patients with different methylation levels of cg02268510SIPA1L3 . Smoking cessation only benefited LUAD patients with low methylation (HR = 0.53; 95% CI: 0.34-0.82; P = 4.61 × 10-3 ) rather than medium or high methylation (HR = 1.21; 95% CI: 0.86-1.70; P = 0.266) of cg02268510SIPA1L3 . Moreover, there was an antagonistic interaction between elevated methylation of cg02268510SIPA1L3 and smoking cessation (HRinteraction = 2.1835; 95% CI: 1.27-3.74; P = 4.46 × 10-3 ). In summary, smoking cessation benefited survival of LUAD patients with low methylation at cg02268510SIPA1L3 . The results have implications for not only smoking cessation after diagnosis, but also possible methylation-specific drug targeting.
Collapse
|
27
|
Zhang R, Lai L, He J, Chen C, You D, Duan W, Dong X, Zhu Y, Lin L, Shen S, Guo Y, Su L, Shafer A, Moran S, Fleischer T, Bjaanæs MM, Karlsson A, Planck M, Staaf J, Helland Å, Esteller M, Wei Y, Chen F, Christiani DC. EGLN2 DNA methylation and expression interact with HIF1A to affect survival of early-stage NSCLC. Epigenetics 2019; 14:118-129. [PMID: 30665327 PMCID: PMC6557590 DOI: 10.1080/15592294.2019.1573066] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/10/2019] [Accepted: 01/17/2019] [Indexed: 12/19/2022] Open
Abstract
Hypoxia occurs frequently in human cancers and promotes stabilization and activation of hypoxia inducible factor (HIF). HIF-1α is specific for the hypoxia response, and its degradation mediated by three enzymes EGLN1, EGLN2 and EGLN3. Although EGLNs expression has been found to be related to prognosis of many cancers, few studies examined DNA methylation in EGLNs and its relationship to prognosis of early-stage non-small cell lung cancer (NSCLC). We analyzed EGLNs DNA methylation data from tumor tissue samples of 1,230 early-stage NSCLC patients, as well as gene expression data from The Cancer Genome Atlas. The sliding windows sequential forward feature selection method and weighted random forest were used to screen out the candidate CpG probes in lung adenocarcinomas (LUAD) and lung squamous cell carcinomas patients, respectively, in both discovery and validation phases. Then Cox regression was performed to evaluate the association between DNA methylation and overall survival. Among the 34 CpG probes in EGLNs, DNA methylation at cg25923056EGLN2 was identified to be significantly associated with LUAD survival (HR = 1.02, 95% CI: 1.01-1.03, P = 9.90 × 10-5), and correlated with EGLN2 expression (r = - 0.36, P = 1.52 × 10-11). Meanwhile, EGLN2 expression was negatively correlated with HIF1A expression in tumor tissues (r = - 0.30, P = 4.78 × 10-8) and significantly (P = 0.037) interacted with HIF1A expression on overall survival. Therefore, DNA methylation of EGLN2- HIF1A is a potential marker for LUAD prognosis and these genes are potential treatment targets for further development of HIF-1α inhibitors in lung cancer therapy.
Collapse
Affiliation(s)
- Ruyang Zhang
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Linjing Lai
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jieyu He
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dongfang You
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weiwei Duan
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuesi Dong
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Ying Zhu
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lijuan Lin
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sipeng Shen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yichen Guo
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Li Su
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Andrea Shafer
- Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sebastian Moran
- Bellvitge Biomedical Research Institute and University of Barcelona and Institucio Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain
| | - Thomas Fleischer
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Maria Moksnes Bjaanæs
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Anna Karlsson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund and CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Skåne, Sweden
| | - Maria Planck
- Division of Oncology and Pathology, Department of Clinical Sciences Lund and CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Skåne, Sweden
| | - Johan Staaf
- Division of Oncology and Pathology, Department of Clinical Sciences Lund and CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Skåne, Sweden
| | - Åslaug Helland
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Manel Esteller
- Bellvitge Biomedical Research Institute and University of Barcelona and Institucio Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain
| | - Yongyue Wei
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - David C. Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Xie Y, Du J, Liu Z, Zhang D, Yao X, Yang Y. MiR-6875-3p promotes the proliferation, invasion and metastasis of hepatocellular carcinoma via BTG2/FAK/Akt pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:7. [PMID: 30621734 PMCID: PMC6323674 DOI: 10.1186/s13046-018-1020-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/26/2018] [Indexed: 12/30/2022]
Abstract
Background Increasing evidence supports the association of microRNA with tumor occurrence and development. However, the expression of miR-6875-3p and its role in cell proliferation, invasion and metastasis in hepatocellular carcinoma (HCC) remains elusive. Methods The expression of miR-6875-3p and BTG2 in HCC tissues and cell lines was detected by using in situ hybridization, immunohistochemistry and qRT-PCR, respectively. A western blot assay, qRT-PCR and Luciferase reporter assay were employed to study the interaction between miR-6875-3p and BTG2. Cell proliferation invasion and metastasis were measured by MTT, transwell and matrigel analyses in vitro. In vivo, tumorigenicity and metastasis assays were performed in nude mice. Results We found that miR-6875-3p were elevated expressed in HCC tissues and cell lines, and negatively correlated with BTG2 expression, while positively correlated with tumor staging, size, degree of differentiation, and vascular invasion of HCC. Moreover, in vitro and in vivo assays showed that miR-6875-3p regulates EMT and improve the proliferation, metastasis and stem cell-like properties of HCC cells. BTG2 was identified as a direct and functional target of miR-6875-3p via the 3’-UTR of BTG2. We also confirmed that miR-6875-3p plays its biological functions via the BTG2/FAK/Akt pathway. Conclusion Our study provides evidence that high expression of miR-6875-3p can promote tumorigenesis of HCC in vitro and in vivo, so as to function as a novel oncogene in HCC. In mechanism, we found that miR-6875-3p plays its biological functions via the BTG2/FAK/Akt pathway. Electronic supplementary material The online version of this article (10.1186/s13046-018-1020-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yingjun Xie
- Department of Hepatobiliary Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, 130041, Jilin, People's Republic of China
| | - Jian Du
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
| | - Zefeng Liu
- Department of Hepatobiliary Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, 130041, Jilin, People's Republic of China
| | - Dan Zhang
- Department of Hepatobiliary Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, 130041, Jilin, People's Republic of China
| | - Xiaoxiao Yao
- Department of Hepatobiliary Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, 130041, Jilin, People's Republic of China
| | - Yongsheng Yang
- Department of Hepatobiliary Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, 130041, Jilin, People's Republic of China.
| |
Collapse
|
29
|
Jin Y, Yang Y, Su Y, Ye X, Liu W, Yang Q, Wang J, Fu X, Gong Y, Sun H. Identification a novel clinical biomarker in early diagnosis of human non-small cell lung cancer. Glycoconj J 2019; 36:57-68. [PMID: 30607521 DOI: 10.1007/s10719-018-09853-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/29/2018] [Accepted: 12/18/2018] [Indexed: 12/20/2022]
Abstract
Non-small cell lung cancer (NSCLC) is a malignant tumor with high morbidity and mortality. The clinical biomarkers currently used for the early diagnosis of lung cancer have poor sensitivity and specificity. Therefore, it is urgent to identify sensitive biomarkers for the early detection of NSCLC to improve the patient survival of patients. In our previously study, we identified glycoprotein alpha-1-antichymotrypsin (AACT) as an early biomarker of NSCLC. In this study, serum glycopeptides were enriched using the high-GlcNAc-specific binding lectin, AANL/AAL2, for further quantitative proteomics analysis using LC-MS/MS. A total of 55 differentially expressed proteins were identified by using demethylation labelling proteomics. Serum paraoxonase/arylesterase 1 (PON1) was selected for validation by western blotting and lectin-ELISA in samples from 120 enrolled patients. Our data showed that AANL-enriched PON1 has better diagnostic performance than total PON1 in early NSCLC, since it differed between early Stage I tumor samples and tumor-free samples (healthy and benign). Combining AANL-enriched PON1 with carcinoembryonic antigen (CEA) significantly improved the diagnostic specificity of CEA. Moreover, combined AANL-enriched PON1 and AANL-enriched AACT was significantly different between early NSCLC samples and tumor-free samples with an AUC of 0.940, 94.4% sensitivity, and 90.2% specificity. Our findings suggest that combined AANL-enriched PON1 and AANL-enriched AACT is a potential clinical biomarker for the early diagnosis of NSCLC.
Collapse
Affiliation(s)
- Yanxia Jin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, 435002, People's Republic of China
| | - Yajun Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Yanting Su
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Xiangdong Ye
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Wei Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Qing Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Jie Wang
- Tongji Medical Hospital, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xiangning Fu
- Tongji Medical Hospital, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yongsheng Gong
- Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215008, People's Republic of China.
| | - Hui Sun
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|