1
|
Wu G, Su J, Zeng L, Deng S, Huang X, Ye Y, Li R, Bai R, Zhuang L, Li M, Zhou Q, Zheng Y, Deng J, Zhang S, Chen R, Lin D, Zhang J, Zheng J. LncRNA BCAN-AS1 stabilizes c-Myc via N 6-methyladenosine-mediated binding with SNIP1 to promote pancreatic cancer. Cell Death Differ 2023; 30:2213-2230. [PMID: 37726400 PMCID: PMC10589284 DOI: 10.1038/s41418-023-01225-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
C-Myc overexpression contributes to multiple hallmarks of human cancer but directly targeting c-Myc is challenging. Identification of key factors involved in c-Myc dysregulation is of great significance to develop potential indirect targets for c-Myc. Herein, a collection of long non-coding RNAs (lncRNAs) interacted with c-Myc is detected in pancreatic ductal adenocarcinoma (PDAC) cells. Among them, lncRNA BCAN-AS1 is identified as the one with highest c-Myc binding enrichment. BCAN-AS1 was abnormally elevated in PDAC tumors and high BCAN-AS1 level was significantly associated with poor prognosis. Mechanistically, Smad nuclear-interacting protein 1 (SNIP1) was characterized as a new N6-methyladenosine (m6A) mediator binding to BCAN-AS1 via recognizing its m6A modification. m6A-modified BCAN-AS1 acts as a scaffold to facilitate the formation of a ternary complex together with c-Myc and SNIP1, thereby blocking S phase kinase-associated protein 2 (SKP2)-mediated c-Myc ubiquitination and degradation. Biologically, BCAN-AS1 promotes malignant phenotypes of PDAC in vitro and in vivo. Treatment of metastasis xenograft and patient-derived xenograft mouse models with in vivo-optimized antisense oligonucleotide of BCAN-AS1 effectively represses tumor growth and metastasis. These findings shed light on the pro-tumorigenic role of BCAN-AS1 and provide an innovant insight into c-Myc-interacted lncRNA in PDAC.
Collapse
Affiliation(s)
- Guandi Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jiachun Su
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Clinical Laboratory Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lingxing Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shuang Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xudong Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ying Ye
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Rui Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ruihong Bai
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lisha Zhuang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Mei Li
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Quanbo Zhou
- Department of Pancreaticobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanfen Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Junge Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shaoping Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Rufu Chen
- Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Dongxin Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Jialiang Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Jian Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Kotekar A, Singh AK, Devaiah BN. BRD4 and MYC: power couple in transcription and disease. FEBS J 2023; 290:4820-4842. [PMID: 35866356 PMCID: PMC9867786 DOI: 10.1111/febs.16580] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/16/2022] [Accepted: 07/20/2022] [Indexed: 01/26/2023]
Abstract
The MYC proto-oncogene and BRD4, a BET family protein, are two cardinal proteins that have a broad influence in cell biology and disease. Both proteins are expressed ubiquitously in mammalian cells and play central roles in controlling growth, development, stress responses and metabolic function. As chromatin and transcriptional regulators, they play a critical role in regulating the expression of a burgeoning array of genes, maintaining chromatin architecture and genome stability. Consequently, impairment of their function or regulation leads to many diseases, with cancer being the most predominant. Interestingly, accumulating evidence indicates that regulation of the expression and functions of MYC are tightly intertwined with BRD4 at both transcriptional and post-transcriptional levels. Here, we review the mechanisms by which MYC and BRD4 are regulated, their functions in governing various molecular mechanisms and the consequences of their dysregulation that lead to disease. We present a perspective of how the regulatory mechanisms for the two proteins could be entwined at multiple points in a BRD4-MYC nexus that leads to the modulation of their functions and disease upon dysregulation.
Collapse
Affiliation(s)
- Aparna Kotekar
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Amit Kumar Singh
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
3
|
García-Caballero D, Hart JR, Vogt PK. Long Non-Coding RNAs as "MYC Facilitators". PATHOPHYSIOLOGY 2023; 30:389-399. [PMID: 37755396 PMCID: PMC10534484 DOI: 10.3390/pathophysiology30030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/28/2023] Open
Abstract
In this article, we discuss a class of MYC-interacting lncRNAs (long non-coding RNAs) that share the following criteria: They are direct transcriptional targets of MYC. Their expression is coordinated with the expression of MYC. They are required for sustained MYC-driven cell proliferation, and they are not essential for cell survival. We refer to these lncRNAs as "MYC facilitators" and discuss two representative members of this class of lncRNAs, SNHG17 (small nuclear RNA host gene) and LNROP (long non-coding regulator of POU2F2). We also present a general hypothesis on the role of lncRNAs in MYC-mediated transcriptional regulation.
Collapse
Affiliation(s)
| | | | - Peter K. Vogt
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
4
|
Sun R, Wang C, Wang Y, Wu Y, Du P, Sun X, Li Q, Bi K, Jiang G. Role of miR‑let‑7c‑5p/c‑myc signaling axis in the committed differentiation of leukemic THP‑1 cells into monocytes/macrophages. Oncol Lett 2023; 26:403. [PMID: 37600342 PMCID: PMC10433716 DOI: 10.3892/ol.2023.13989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
In a preliminary experiment, it was found that c-myc expression was decreased following the differentiation of THP-1 cells into monocytes/macrophages induced by phorbol 12-myristate 13 acetate (PMA) + lipopolysaccharide (LPS) + interferon (IFN)-γ. The expression of miR-let-7c-5p was then found to be elevated by cross-sectional analysis using TargetScan and PubMed and differential microarray analysis. The present study aimed to investigate the role of the miR-let-7c-5p/c-myc signaling axis in the committed differentiation of THP-1 leukemic cells into monocytes/macrophages induced by PMA + LPS + IFN-γ. Human THP-1 leukemic cells were induced to differentiate into monocytes/macrophages by PMA + LPS + IFN-γ. Following induction for 48 h, the growth density of the THP-1 cells was observed directly under an inverted microscope, cell proliferation was measured using Cell Counting Kit-8 assay and the cell cycle and the expression of differentiation-related antigens (CD11b and CD14) were measured using flow cytometry. The mRNA expression of miR-let-7c-5p and c-myc was detected using reverse transcription-quantitative PCR and the protein expression of c-myc was detected using western blot analysis. Dual luciferase reporter gene analysis was used to detect the targeted binding of miR-let-7c-5p on the 3'UTR of c-myc. The relative expression of miR-let-7c-5p and c-myc genes in THP-1 cells induced by PMA + LPS + IFN-γ was found to be up- and downregulated respectively, and expression of miR-let-7c-5p was negatively correlated with the expression of c-myc gene. Dual luciferase reporter gene assays confirmed that miR-let-7c-5p targeted the 3'UTR of c-myc and inhibited luciferase activity. Following transfection with miR-let-7c-5p mimics, the expression of c-myc was markedly downregulated and the proliferative ability of the THP-1 cells was decreased, while the expression rate of CD11b and CD14 was significantly increased. The rescue experiment revealed that the effects of miR-let-7c-5p mimics on the proliferation and differentiation of THP-1 cells were attenuated by transfection with c-myc overexpression vector. Together, the findings of the present study demonstrated that miR-let-7c-5p can target the 3'UTR region of c-myc and that the miR-let-7c-5p/c-myc signaling axis is one of the critical pathways involved in the directional differentiation of leukemic cells into monocytes/macrophages.
Collapse
Affiliation(s)
- Ruijing Sun
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Chaozhe Wang
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Yufang Wang
- Department of Laboratory Medicine, Fushan District People's Hospital, Yantai, Shandong 265500, P.R. China
| | - Yunhua Wu
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Pengchao Du
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Xiaolin Sun
- Department of Laboratory Medicine, Zibo First Hospital, Zibo, Shandong 255200, P.R. China
| | - Qing Li
- Department of Laboratory Medicine, Zibo First Hospital, Zibo, Shandong 255200, P.R. China
| | - Kehong Bi
- Department of Hematology, The First Affiliated Hospital of Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250062, P.R. China
| | - Guosheng Jiang
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
- Department of Precision Molecular Laboratory Medicine, Zhangqiu District People's Hospital of Jinan Affiliated to Jining Medical University, Jinan, Shandong 250200, P.R. China
| |
Collapse
|
5
|
Agarwal P, Glowacka A, Mahmoud L, Bazzar W, Larsson LG, Alzrigat M. MYCN Amplification Is Associated with Reduced Expression of Genes Encoding γ-Secretase Complex and NOTCH Signaling Components in Neuroblastoma. Int J Mol Sci 2023; 24:8141. [PMID: 37175848 PMCID: PMC10179553 DOI: 10.3390/ijms24098141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/06/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Amplification of the MYCN oncogene is found in ~20% of neuroblastoma (NB) cases and correlates with high-risk disease and poor prognosis. Despite the plethora of studies describing the role of MYCN in NB, the exact molecular mechanisms underlying MYCN's contribution to high-risk disease are not completely understood. Herein, we implemented an integrative approach combining publicly available RNA-Seq and MYCN ChIP-Seq datasets derived from human NB cell lines to define biological processes directly regulated by MYCN in NB. Our approach revealed that MYCN-amplified NB cell lines, when compared to non-MYCN-amplified cell lines, are characterized by reduced expression of genes involved in NOTCH receptor processing, axoneme assembly, and membrane protein proteolysis. More specifically, we found genes encoding members of the γ-secretase complex, which is known for its ability to liberate several intracellular signaling molecules from membrane-bound proteins such as NOTCH receptors, to be down-regulated in MYCN-amplified NB cell lines. Analysis of MYCN ChIP-Seq data revealed an enrichment of MYCN binding at the transcription start sites of genes encoding γ-secretase complex subunits. Notably, using publicly available gene expression data from NB primary tumors, we revealed that the expression of γ-secretase subunits encoding genes and other components of the NOTCH signaling pathway was also reduced in MYCN-amplified tumors and correlated with worse overall survival in NB patients. Genetic or pharmacological depletion of MYCN in NB cell lines induced the expression of γ-secretase genes and NOTCH-target genes. Chemical inhibition of γ-secretase activity dampened the expression of NOTCH-target genes upon MYCN depletion in NB cells. In conclusion, this study defines a set of MYCN-regulated pathways that are specific to MYCN-amplified NB tumors, and it suggests a novel role for MYCN in the suppression of genes of the γ-secretase complex, with an impact on the NOTCH-target gene expression in MYCN-amplified NB.
Collapse
Affiliation(s)
- Prasoon Agarwal
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 22362 Lund, Sweden
| | - Aleksandra Glowacka
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Solna, Sweden
| | - Loay Mahmoud
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Wesam Bazzar
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Solna, Sweden
- Department of Pharmaceutical Biosciences, Biomedical Center, Uppsala University, 75124 Uppsala, Sweden
| | - Lars-Gunnar Larsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Solna, Sweden
- Department of Pharmaceutical Biosciences, Biomedical Center, Uppsala University, 75124 Uppsala, Sweden
| | - Mohammad Alzrigat
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Solna, Sweden
- Department of Pharmaceutical Biosciences, Biomedical Center, Uppsala University, 75124 Uppsala, Sweden
| |
Collapse
|
6
|
García-Caballero D, Hart JR, Vogt PK. The MYC-regulated lncRNA LNROP (ENSG00000254887) enables MYC-driven cell proliferation by controlling the expression of OCT2. Cell Death Dis 2023; 14:168. [PMID: 36849510 PMCID: PMC9971199 DOI: 10.1038/s41419-023-05683-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023]
Abstract
MYC controls most of the non-coding genome. Several long noncoding transcripts were originally identified in the human B cell line P496-3 and then shown to be required for MYC-driven proliferation of Burkitt lymphoma-derived RAMOS cells. In this study, we used RAMOS cells exclusively as a representative of the human B cell lineage. One of the MYC-controlled lncRNAs required for RAMOS cell proliferation is ENSG00000254887 which we will term LNROP (long non-coding regulator of POU2F2). In the genome, LNROP is located in close proximity of POU2F2, the gene encoding OCT2. OCT2 is a transcription factor with important roles in sustaining the proliferation of human B cells. Here we show that LNROP is a nuclear RNA and a direct target of MYC. Downregulation of LNROP attenuates the expression of OCT2. This effect of LNROP on the expression of OCT2 is unidirectional as downregulation of OCT2 does not alter the expression of LNROP. Our data suggest that LNROP is a cis-acting regulator of OCT2. To illustrate the downstream reach of LNROP, we chose a prominent target of OCT2, the tyrosine phosphatase SHP-1. Downregulation of OCT2 elevates the expression of SHP-1. Our data suggest the following path of interactions: LNROP enables the proliferation of B cells by positively and unidirectionally regulating the growth-stimulatory transcription factor OCT2. In actively proliferating B cells, OCT2 attenuates the expression and anti-proliferative activity of SHP-1.
Collapse
Affiliation(s)
- Daniel García-Caballero
- Scripps Research, Department of Molecular Medicine, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Jonathan R Hart
- Scripps Research, Department of Molecular Medicine, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peter K Vogt
- Scripps Research, Department of Molecular Medicine, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
7
|
Pandey GK, Kanduri C. Long Non-Coding RNAs: Tools for Understanding and Targeting Cancer Pathways. Cancers (Basel) 2022; 14:cancers14194760. [PMID: 36230680 PMCID: PMC9564174 DOI: 10.3390/cancers14194760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
The regulatory nature of long non-coding RNAs (lncRNAs) has been well established in various processes of cellular growth, development, and differentiation. Therefore, it is vital to examine their contribution to cancer development. There are ample examples of lncRNAs whose cellular levels are significantly associated with clinical outcomes. However, whether these non-coding molecules can work as either key drivers or barriers to cancer development remains unknown. The current review aims to discuss some well-characterised lncRNAs in the process of oncogenesis and extrapolate the extent of their decisive contribution to tumour development. We ask if these lncRNAs can independently initiate neoplastic lesions or they always need the modulation of well characterized oncogenes or tumour suppressors to exert their functional properties. Finally, we discuss the emerging genetic approaches and appropriate animal and humanised models that can significantly contribute to the functional dissection of lncRNAs in cancer development and progression.
Collapse
Affiliation(s)
- Gaurav Kumar Pandey
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
- Correspondence: (G.K.P.); (C.K.)
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, The Sahlgrenska Academy, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Correspondence: (G.K.P.); (C.K.)
| |
Collapse
|
8
|
Kong W, Yin G, Zheng S, Liu X, Zhu A, Yu P, Zhang J, Shan Y, Ying R, Jin H. Long noncoding RNA (lncRNA) HOTAIR: Pathogenic roles and therapeutic opportunities in gastric cancer. Genes Dis 2022; 9:1269-1280. [PMID: 35873034 PMCID: PMC9293693 DOI: 10.1016/j.gendis.2021.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 01/17/2023] Open
Abstract
Gastric cancer is one of the first malignant cancers in the world and a large number of people die every year due to this disease. Many genetic and epigenetic risk factors have been identified that play a major role in gastric cancer. HOTAIR is an effective epigenetic agent known as long noncoding RNA (lncRNA). HOTAIR has been described to have biological functions in biochemical and cellular processes through interactions with many factors, leading to genomic stability, proliferation, survival, invasion, migration, metastasis, and drug resistance. In the present article, we reviewed the prognostic value of the molecular mechanisms underlying the HOTAIR regulation and its function in the development of Gastric Cancer, whereas elucidation of HOTAIR–protein and HOTAIR–DNA interactions can be helpful in the identification of cancer processes, leading to the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Wencheng Kong
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Guang Yin
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Sixin Zheng
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Xinchun Liu
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Akao Zhu
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Panpan Yu
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Jian Zhang
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Yuqiang Shan
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Rongchao Ying
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Huicheng Jin
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| |
Collapse
|
9
|
CREB1 contributes colorectal cancer cell plasticity by regulating lncRNA CCAT1 and NF-κB pathways. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1481-1497. [PMID: 35696016 DOI: 10.1007/s11427-022-2108-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
Abstract
The CREB1 gene encodes an exceptionally pleiotropic transcription factor that frequently dysregulated in human cancers. CREB1 can regulate tumor cell status of proliferation and/or migration; however, the molecular basis for this switch involvement in cell plasticity has not fully been understood yet. Here, we first show that knocking out CREB1 triggers a remarkable effect of epithelial-mesenchymal transition (EMT) and leads to the occurrence of inhibited proliferation and enhanced motility in HCT116 colorectal cancer cells. By monitoring 45 cellular signaling pathway activities, we find that multiple growth-related pathways decline significantly while inflammatory pathways including NF-κB are largely upregulated in comparing between the CREB1 wild-type and knocked out cells. Mechanistically, cells with CREB1 knocked out show downregulation of MYC as a result of impaired CREB1-dependent transcription of the oncogenic lncRNA CCAT1. Interestingly, the unbalanced competition between the coactivator CBP/p300 for CREB1 and p65 leads to the activation of the NF-κB pathway in cells with CREB1 disrupted, which induces an obvious EMT phenotype of the cancer cells. Taken together, these studies identify previously unknown mechanisms of CREB1 in CRC cell plasticity via regulating lncRNA CCAT1 and NF-κB pathways, providing a critical insight into a combined strategy for CREB1-targeted tumor therapies.
Collapse
|
10
|
Gao SJ, Ren SN, Liu YT, Yan HW, Chen XB. Targeting EGFR sensitizes 5-Fu-resistant colon cancer cells through modification of the lncRNA-FGD5-AS1-miR-330-3p-Hexokinase 2 axis. MOLECULAR THERAPY-ONCOLYTICS 2021; 23:14-25. [PMID: 34589581 PMCID: PMC8455313 DOI: 10.1016/j.omto.2021.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022]
Abstract
5-Fluorouracil (5-Fu) is a widely applied anti-cancer agent against colorectal cancer (CRC), yet a number of CRC patients have developed resistance to 5-Fu-based chemotherapy. The epidermal growth factor receptor (EGFR) is recognized as an oncogene that promotes diverse cancer progresses. In addition, long noncoding RNAs (lncRNAs) are essential regulators of cancers. Here we report that EGFR and lncRNA-FGD5-AS1 promoted 5-Fu resistance of CRC. By establishing the 5-Fu-resistant CRC cell line, we detected that EGFR, FGD5-AS1, and glucose metabolism were significantly elevated in 5-Fu-resistant CRC cells. A microRNA-microarray analysis revealed that miR-330-3p functions as a downstream effector of FGD5-AS1. FGD5-AS1 directly sponged miR-330-3p to form a competing endogenous RNA (ceRNA) network, leading to inhibition of miR-330-3p expression. Furthermore, bioinformatics analysis revealed that Hexokinase 2 (HK2) was a potential target of miR-330-3p, which was validated by luciferase assay. Rescue experiments demonstrated that FGD5-AS1 promotes glycolysis through modulating the miR-330-3p-HK2 axis, leading to 5-Fu resistance of CRC cancer cells. Finally, in vitro and in vivo xenograft experiments consistently demonstrated that inhibition of EGFR by the specific inhibitor erlotinib effectively enhanced the anti-tumor toxicity of 5-Fu by targeting the EGFR-FGD5-AS1-miR-330-3p-HK2 pathway. In summary, this study demonstrates new mechanisms of the EGFR-modulated 5-Fu resistance through modulating the noncoding RNA network, contributing to development of new approaches against chemoresistant CRC.
Collapse
Affiliation(s)
- Su-Jie Gao
- Department of Anesthesia, China-Japan Union Hospital of Jilin University, Changchun, 130033 Jilin Province, China
| | - Sheng-Nan Ren
- Department of General Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033 Jilin Province, China
| | - Yi-Ting Liu
- Department of Radiology, Peking University School of Oncology, Beijing Cancer Hospital & Institute, 100871 Beijing, China
| | - Hong-Wei Yan
- Department of General Surgery, Chinese Medicine Hospital, Liuhe, 135300 Jilin Province, China
| | - Xue-Bo Chen
- Department of General Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033 Jilin Province, China
| |
Collapse
|
11
|
Ramesh P, Lannagan TRM, Jackstadt R, Atencia Taboada L, Lansu N, Wirapati P, van Hooff SR, Dekker D, Pritchard J, Kirov AB, van Neerven SM, Tejpar S, Kops GJPL, Sansom OJ, Medema JP. BCL-XL is crucial for progression through the adenoma-to-carcinoma sequence of colorectal cancer. Cell Death Differ 2021; 28:3282-3296. [PMID: 34117376 PMCID: PMC8630104 DOI: 10.1038/s41418-021-00816-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Evasion of apoptosis is a hallmark of cancer, which is frequently mediated by upregulation of the antiapoptotic BCL-2 family proteins. In colorectal cancer (CRC), previous work has highlighted differential antiapoptotic protein dependencies determined by the stage of the disease. While intestinal stem cells (ISCs) require BCL-2 for adenoma outgrowth and survival during transformation, ISC-specific MCL1 deletion results in disturbed intestinal homeostasis, eventually contributing to tumorigenesis. Colon cancer stem cells (CSCs), however, no longer require BCL-2 and depend mainly on BCL-XL for their survival. We therefore hypothesized that a shift in antiapoptotic protein reliance occurs in ISCs as the disease progresses from normal to adenoma to carcinoma. By targeting antiapoptotic proteins with specific BH3 mimetics in organoid models of CRC progression, we found that BCL-2 is essential only during ISC transformation while MCL1 inhibition did not affect adenoma outgrowth. BCL-XL, on the other hand, was crucial for stem cell survival throughout the adenoma-to-carcinoma sequence. Furthermore, we identified that the limited window of BCL-2 reliance is a result of its downregulation by miR-17-5p, a microRNA that is upregulated upon APC-mutation driven transformation. Here we show that BCL-XL inhibition effectively impairs adenoma outgrowth in vivo and enhances the efficacy of chemotherapy. In line with this dependency, expression of BCL-XL, but not BCL-2 or MCL1, directly correlated to the outcome of chemotherapy-treated CRC patients. Our results provide insights to enable the rational use of BH3 mimetics in CRC management, particularly underlining the therapeutic potential of BCL-XL targeting mimetics in both early and late-stage disease.
Collapse
Affiliation(s)
- Prashanthi Ramesh
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, AmsterdamUMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | | | - Rene Jackstadt
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, G61 1BD, UK
| | - Lidia Atencia Taboada
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, AmsterdamUMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Nico Lansu
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Sander R van Hooff
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, AmsterdamUMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Danielle Dekker
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, AmsterdamUMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jessica Pritchard
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, AmsterdamUMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Aleksandar B Kirov
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, AmsterdamUMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Sanne M van Neerven
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, AmsterdamUMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Sabine Tejpar
- Molecular Digestive Oncology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Geert J P L Kops
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, G61 1QH, UK
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, AmsterdamUMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Li T, Liu D, Li C, Ru L, Wang X. Silencing of LncRNA AFAP1-AS1 Inhibits Cell Proliferation in Oral Squamous Cancer by Suppressing CCNA2. Cancer Manag Res 2021; 13:7897-7908. [PMID: 34703311 PMCID: PMC8526521 DOI: 10.2147/cmar.s328737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/07/2021] [Indexed: 12/09/2022] Open
Abstract
Background Evidence has indicated that dysregulation of long noncoding RNAs (lncRNA) is a critical factor in the occurrence of many diseases, including cancer. The lncRNA AFAP1-AS1 has been shown to participate in oncogenesis, metastasis, or drug resistance in many types of cancer. However, the potential role of AFAP1-AS1 in oral squamous cell carcinoma (OSCC) has not been fully elucidated. Methods Bioinformatics analysis was performed to compare AFAP1-AS1 expression levels in OSCC cancer samples and in normal controls. The biological function of AFAP1-AS1 was studied through loss-of-function assays. To study the potential mechanisms, high-throughput sequencing was applied to OSCC cancer samples and a series of bioinformatics analyses were performed. The effects of AFAP1-AS1 on OSCC tumor growth was evaluated by in vivo xenograft tumor formation assays. Results Bioinformatics analyses indicated that AFAP1-AS1 was upregulated in OSCC. Overexpression of AFAP1-AS1 was positively correlated with lymph node metastasis, tumor stage, and pathological grade. Down-regulation of AFAP1-AS1 in OSCC led to decreased proliferation in vitro and, notably, inhibition of tumor growth in vivo. Further research indicated that AFAP1-AS1 regulated OSCC cell proliferation by targeting CCNA2. Conclusion AFAP1-AS1 promotes tumor proliferation and indicates a poor prognosis in OSCC, providing a potential therapeutic strategy.
Collapse
Affiliation(s)
- Tao Li
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, People's Republic of China
| | - Duanqin Liu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, People's Republic of China
| | - Chenglong Li
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, People's Republic of China
| | - Lu Ru
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, People's Republic of China
| | - Xuixia Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, People's Republic of China
| |
Collapse
|
13
|
Krappinger JC, Bonstingl L, Pansy K, Sallinger K, Wreglesworth NI, Grinninger L, Deutsch A, El-Heliebi A, Kroneis T, Mcfarlane RJ, Sensen CW, Feichtinger J. Non-coding Natural Antisense Transcripts: Analysis and Application. J Biotechnol 2021; 340:75-101. [PMID: 34371054 DOI: 10.1016/j.jbiotec.2021.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/30/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022]
Abstract
Non-coding natural antisense transcripts (ncNATs) are regulatory RNA sequences that are transcribed in the opposite direction to protein-coding or non-coding transcripts. These transcripts are implicated in a broad variety of biological and pathological processes, including tumorigenesis and oncogenic progression. With this complex field still in its infancy, annotations, expression profiling and functional characterisations of ncNATs are far less comprehensive than those for protein-coding genes, pointing out substantial gaps in the analysis and characterisation of these regulatory transcripts. In this review, we discuss ncNATs from an analysis perspective, in particular regarding the use of high-throughput sequencing strategies, such as RNA-sequencing, and summarize the unique challenges of investigating the antisense transcriptome. Finally, we elaborate on their potential as biomarkers and future targets for treatment, focusing on cancer.
Collapse
Affiliation(s)
- Julian C Krappinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signalling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; Christian Doppler Laboratory for innovative Pichia pastoris host and vector systems, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria
| | - Lilli Bonstingl
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signalling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; Center for Biomarker Research in Medicine, Stiftingtalstraße 5, 8010 Graz, Austria
| | - Katrin Pansy
- Division of Haematology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria
| | - Katja Sallinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signalling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; Center for Biomarker Research in Medicine, Stiftingtalstraße 5, 8010 Graz, Austria
| | - Nick I Wreglesworth
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, LL57 2UW Bangor, United Kingdom
| | - Lukas Grinninger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signalling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; Austrian Biotech University of Applied Sciences, Konrad Lorenz-Straße 10, 3430 Tulln an der Donau, Austria
| | - Alexander Deutsch
- Division of Haematology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Amin El-Heliebi
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signalling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; Center for Biomarker Research in Medicine, Stiftingtalstraße 5, 8010 Graz, Austria
| | - Thomas Kroneis
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signalling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; Center for Biomarker Research in Medicine, Stiftingtalstraße 5, 8010 Graz, Austria
| | - Ramsay J Mcfarlane
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, LL57 2UW Bangor, United Kingdom
| | - Christoph W Sensen
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria; Institute of Computational Biotechnology, Graz University of Technology, Petersgasse 14/V, 8010 Graz, Austria; HCEMM Kft., Római blvd. 21, 6723 Szeged, Hungary
| | - Julia Feichtinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signalling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; Christian Doppler Laboratory for innovative Pichia pastoris host and vector systems, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria.
| |
Collapse
|
14
|
Strand E, Hollås H, Sakya SA, Romanyuk S, Saraste MEV, Grindheim AK, Patil SS, Vedeler A. Annexin A2 binds the internal ribosomal entry site of c- myc mRNA and regulates its translation. RNA Biol 2021; 18:337-354. [PMID: 34346292 PMCID: PMC8677036 DOI: 10.1080/15476286.2021.1947648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The expression and localization of the oncoprotein c-Myc is highly regulated at the level of transcription, mRNA transport, translation, as well as stability of the protein. We previously showed that Annexin A2 (AnxA2) binds to a specific localization element in the 3'untranslated region (UTR) of c-myc mRNA and is involved in its localization to the perinuclear region. In the present study, we demonstrate that AnxA2 binds in a Ca2+-dependent manner to the internal ribosomal entry site (IRES) containing two pseudo-knots in the 5´UTR of the c-myc mRNA. Here, we employ an in vitro rabbit reticulocyte lysate system with chimeric c-myc reporter mRNAs to demonstrate that binding of AnxA2 to the c-myc IRES modulates the expression of c-Myc. Notably, we show that low levels of AnxA2 appear to increase, while high levels of AnxA2 inhibits translation of the chimeric mRNA. However, when both the AnxA2-binding site and the ribosomal docking site in the c-myc IRES are deleted, AnxA2 has no effect on the translation of the reporter mRNA. Forskolin-treatment of PC12 cells results in upregulation of Ser25 phosphorylated AnxA2 expression while c-Myc expression is down-regulated. The effect of forskolin on c-Myc expression and the level of Ser25 phosphorylated AnxA2 was abolished in the presence of EGTA. These findings indicate that AnxA2 regulates both the transport and subsequent translation of the c-myc mRNA, possibly by silencing the mRNA during its transport. They also suggest that AnxA2 act as a switch to turn off the c-myc IRES activity in the presence of calcium.Abbreviations: AnxA2, Annexin A2; β2--µglob, β2-microglobulin; cpm, counts per minute; hnRNP, heterogenous nuclear ribonucleoprotein; IRES, internal ribosomal entry site; ITAF, IRES trans-acting factor; MM, multiple myeloma; PABP, poly(A)-binding protein; PCBP, poly(rC) binding protein; PSF, PTB-associated splicing factor; PTB, polypyrimidine tract binding protein; RRL, rabbit reticulocyte lysate; UTR, untranslated region; YB, Y-box binding protein.
Collapse
Affiliation(s)
- Elin Strand
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Hanne Hollås
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Siri Aastedatter Sakya
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Norway
| | - Sofya Romanyuk
- Department of Biomedicine, University of Bergen, Bergen, Norway.,City Hospital №40, St. Petersburg, Russia
| | - Mikko E V Saraste
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Quality Control Unit, Thermo Fisher Scientific - Life Technologies, Lillestrøm, Norway
| | | | | | - Anni Vedeler
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
15
|
The Role of Non-Coding RNAs in the Regulation of the Proto-Oncogene MYC in Different Types of Cancer. Biomedicines 2021; 9:biomedicines9080921. [PMID: 34440124 PMCID: PMC8389562 DOI: 10.3390/biomedicines9080921] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 01/17/2023] Open
Abstract
Alterations in the expression level of the MYC gene are often found in the cells of various malignant tumors. Overexpressed MYC has been shown to stimulate the main processes of oncogenesis: uncontrolled growth, unlimited cell divisions, avoidance of apoptosis and immune response, changes in cellular metabolism, genomic instability, metastasis, and angiogenesis. Thus, controlling the expression of MYC is considered as an approach for targeted cancer treatment. Since c-Myc is also a crucial regulator of many cellular processes in healthy cells, it is necessary to find ways for selective regulation of MYC expression in tumor cells. Many recent studies have demonstrated that non-coding RNAs play an important role in the regulation of the transcription and translation of this gene and some RNAs directly interact with the c-Myc protein, affecting its stability. In this review, we summarize current data on the regulation of MYC by various non-coding RNAs that can potentially be targeted in specific tumor types.
Collapse
|
16
|
Sun Y, Liu W, Zhao Q, Zhang R, Wang J, Pan P, Shang H, Liu C, Wang C. Down-Regulating the Expression of miRNA-21 Inhibits the Glucose Metabolism of A549/DDP Cells and Promotes Cell Death Through the PI3K/AKT/mTOR/HIF-1α Pathway. Front Oncol 2021; 11:653596. [PMID: 34046349 PMCID: PMC8144645 DOI: 10.3389/fonc.2021.653596] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/12/2021] [Indexed: 12/28/2022] Open
Abstract
miRNA-21 is a single-stranded non-coding RNA that is highly expressed in a variety of tumor cells. It participates in tumor cell proliferation, metabolism, metastasis, and drug resistance. Here, we tested the potential mechanism of miRNA-21 in cisplatin-resistant non-small cell lung cancer A549/DDP (human lung adenocarcinoma drug-resistant cell line) cells. A549 and A549/DDP RNAs were sequenced to show that miRNA-21 was highly expressed in the latter, and this was verified by qRT-PCR. In addition, we found that miRNA-21 combined with cisplatin can significantly inhibit glycolysis and glycolysis rate-limiting enzyme protein expression in A549/DDP cells. We also found that miRNA-21 combined with cisplatin can promote A549/DDP cell death. Further investigations showed that miRNA-21 combined with cisplatin caused excessive inactivation of the pI3K/AKT/mTOR/HIF-1α signaling pathway in cisplatin-resistant A549/DDP cells. Hence, reduction of the expression of miRNA-21 in combination with cisplatin chemotherapy may effectively improve the therapeutic effect on patients with non-small cell lung cancer, and this may provide a theoretical basis for the treatment of this disease.
Collapse
Affiliation(s)
- Ye Sun
- Department of Cell Biology, College of Integrated Chinese and Western Medical, Liaoning University of Traditional Chinese Medicine, Shenyang, China.,Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Shenyang, China
| | - Wenjun Liu
- Teaching and Experimental Center, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Qiuyu Zhao
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine (TCM) Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | | | - Jianbo Wang
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine (TCM) Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Pengyu Pan
- Department of Cell Biology, College of Integrated Chinese and Western Medical, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Hai Shang
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Chunying Liu
- Department of Cell Biology, College of Integrated Chinese and Western Medical, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Chun Wang
- Department of Cell Biology, College of Integrated Chinese and Western Medical, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
17
|
Xie W, Wang Y, Zhang Y, Xiang Y, Wu N, Wu L, Li C, Cai T, Ma X, Yu Z, Bai L, Li Y. Single-nucleotide polymorphism rs4142441 and MYC co-modulated long non-coding RNA OSER1-AS1 suppresses non-small cell lung cancer by sequestering ELAVL1. Cancer Sci 2021; 112:2272-2286. [PMID: 33113263 PMCID: PMC8177763 DOI: 10.1111/cas.14713] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 12/12/2022] Open
Abstract
Single‐nucleotide polymorphisms (SNP) and long non‐coding RNAs (lncRNAs) have been involved in the process of lung cancer. Following clues given by lung cancer risk‐associated SNP, we aimed to find novel functional lncRNAs as candidate targets in lung cancer. We identified a lncRNA Oxidative Stress Responsive Serine Rich 1 Antisense RNA 1 (OSER1‐AS1) through a lung cancer risk‐associated SNP rs4142441. OSER1‐AS1 was down‐regulated in tumor tissue and its low expression was significantly associated with poor overall survival among non‐smokers in non‐small cell lung cancer (NSCLC) patients. Gain‐ and loss‐of‐function studies showed that OSER1‐AS1 acted as a tumor suppressor by inhibiting lung cancer cell growth, migration and invasion in vitro. Xenograft tumor assays and a metastasis mouse model confirmed that OSER1‐AS1 suppressed tumor growth and metastasis in vivo. The promoter of OSER1‐AS1 was repressed by MYC, and the 3′‐end of OSER1‐AS1 was competitively targeted by microRNA hsa‐miR‐17‐5p and RNA‐binding protein ELAVL1. Our results indicated that OSER1‐AS1 exerted tumor‐suppressive functions by acting as an ELAVL1 decoy to keep it away from its target mRNAs. Our findings characterized OSER1‐AS1 as a new tumor‐suppressive lncRNA in NSCLC, suggesting that OSER1‐AS1 may be suitable as a potential biomarker for prognosis, and a potential target for treatment.
Collapse
Affiliation(s)
- Weijia Xie
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Third Military Medical University), Chongqing, China
| | - Youhao Wang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Third Military Medical University), Chongqing, China
| | - Yao Zhang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Third Military Medical University), Chongqing, China
| | - Ying Xiang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Third Military Medical University), Chongqing, China
| | - Na Wu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Third Military Medical University), Chongqing, China
| | - Long Wu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Third Military Medical University), Chongqing, China
| | - Chengying Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Third Military Medical University), Chongqing, China
| | - Tongjian Cai
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Third Military Medical University), Chongqing, China
| | - Xiangyu Ma
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Third Military Medical University), Chongqing, China
| | - Zubin Yu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Third Military Medical University), Chongqing, China
| | - Li Bai
- Department of Respiratory Disease, Xinqiao Hospital, Army Medical University, Third Military Medical University), Chongqing, China
| | - Yafei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Third Military Medical University), Chongqing, China
| |
Collapse
|
18
|
Hussen BM, Hidayat HJ, Salihi A, Sabir DK, Taheri M, Ghafouri-Fard S. MicroRNA: A signature for cancer progression. Biomed Pharmacother 2021; 138:111528. [PMID: 33770669 DOI: 10.1016/j.biopha.2021.111528] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs that post-transcriptionally control expression of genes by targeting mRNAs. miRNA alterations partake in the establishment and progression of different types of human cancer. Consequently, expression profiling of miRNA in human cancers has correlations with cancer detection, staging, progression, and response to therapies. Particularly, amplification, deletion, abnormal pattern of epigenetic factors and the transcriptional factors that mediate regulation of primary miRNA frequently change the landscape of miRNA expression in cancer. Indeed, changes in the quantity and quality of miRNAs are associated with the initiation of cancer, its progression and metastasis. Additionally, miRNA profiling has been used to categorize genes that can affect oncogenic pathways in cancer. Here, we discuss several circulating miRNA signatures, their expression profiles in different types of cancer and their impacts on cellular processes.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq; Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Iraq
| | - Dana K Sabir
- Department of Medical Laboratory Sciences, Charmo University, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
MIAT Is an Upstream Regulator of NMYC and the Disruption of the MIAT/NMYC Axis Induces Cell Death in NMYC Amplified Neuroblastoma Cell Lines. Int J Mol Sci 2021; 22:ijms22073393. [PMID: 33806217 PMCID: PMC8038079 DOI: 10.3390/ijms22073393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/29/2022] Open
Abstract
Neuroblastoma (NBL) is the most common extracranial childhood malignant tumor and represents a major cause of cancer-related deaths in infants. NMYC amplification or overexpression is associated with the malignant behavior of NBL tumors. In the present study, we revealed an association between long non-coding RNA (lncRNA) myocardial infarction associated transcript (MIAT) and NMYC amplification in NBL cell lines and MIAT expression in NBL tissue samples. MIAT silencing induces cell death only in cells with NMYC amplification, but in NBL cells without NMYC amplification it decreases only the proliferation. MIAT downregulation markedly reduces the NMYC expression in NMYC-amplified NBL cell lines and c-Myc expression in NMYC non-amplified NBL cell lines, but the ectopic overexpression or downregulation of NMYC did not affect the expression of MIAT. Moreover, MIAT downregulation results in decreased ornithine decarboxylase 1 (ODC1), a known transcriptional target of MYC oncogenes, and decreases the glycolytic metabolism and respiratory function. These results indicate that MIAT is an upstream regulator of NMYC and that MIAT/NMYC axis disruption induces cell death in NMYC-amplified NBL cell lines. These findings reveal a novel mechanism for the regulation of NMYC in NBL, suggesting that MIAT might be a potential therapeutic target, especially for those with NMYC amplification.
Collapse
|
20
|
Weiss JBW, Wagner AE, Eberherr C, Häberle B, Vokuhl C, von Schweinitz D, Kappler R. High expression of IGF2-derived intronic miR-483 predicts outcome in hepatoblastoma. Cancer Biomark 2021; 28:321-328. [PMID: 32390604 DOI: 10.3233/cbm-191390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND The role of microRNAs (miRs) as biomarkers to predict outcome in hepatoblastoma (HB), the most common malignant liver tumor in childhood, has still to be determined. Recently, the so-called four-miR signature has been described to efficiently stratify HB patients according to their prognosis. OBJECTIVE We examined the recently described four-miR signature for its clinical relevance in an independent validation cohort of HB patients and tried to optimize its predictive value by analyzing four additional miRs involved in HB biology. METHODS Expression of eight miR was determined in 29 tumor and 10 normal liver samples by TaqMan assays and association studies and Kaplan-Meier estimators determined their clinical relevance. RESULTS Stratifying HB patients by the four-miR signature showed no difference in patients' outcome, which was also reflected by the lack of association with any clinical risk parameter. Adding miR-23b-5p and miR-23b-3p did also not increase its discriminating power. However, the integration of miR-483-5p and miR-483-3p into the four-miR signature could predict patients with poor outcome that were associated with large tumors and vessel invasive growth with high accuracy. CONCLUSIONS The expansion of the four-miR signature by miR-483 serves as a useful biomarker to predict outcome of HB patients.
Collapse
Affiliation(s)
- Jakob Benjamin Wilhelm Weiss
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany.,Department of Plastic and Hand Surgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Alexandra Elisabeth Wagner
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany.,Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Corinna Eberherr
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Beate Häberle
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | | | - Dietrich von Schweinitz
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Roland Kappler
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
21
|
Thean LF, Blöcker C, Li HH, Lo M, Wong M, Tang CL, Tan EKW, Rozen SG, Cheah PY. Enhancer-derived long non-coding RNAs CCAT1 and CCAT2 at rs6983267 has limited predictability for early stage colorectal carcinoma metastasis. Sci Rep 2021; 11:404. [PMID: 33432117 PMCID: PMC7801656 DOI: 10.1038/s41598-020-79906-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Up-regulation of long non-coding RNAs (lncRNAs), colon-cancer associated transcript (CCAT) 1 and 2, was associated with worse prognosis in colorectal cancer (CRC). Nevertheless, their role in predicting metastasis in early-stage CRC is unclear. We measured the expression of CCAT1, CCAT2 and their oncotarget, c-Myc, in 150 matched mucosa-tumour samples of early-stage microsatellite-stable Chinese CRC patients with definitive metastasis status by multiplex real-time RT-PCR assay. Expression of CCAT1, CCAT2 and c-Myc were significantly up-regulated in the tumours compared to matched mucosa (p < 0.0001). The expression of c-Myc in the tumours was significantly correlated to time to metastasis [hazard ratio = 1.47 (1.10–1.97)] and the risk genotype (GG) of rs6983267, located within CCAT2. Expression of c-Myc and CCAT2 in the tumour were also significantly up-regulated in metastasis-positive compared to metastasis-negative patients (p = 0.009 and p = 0.04 respectively). Nevertheless, integrating the expression of CCAT1 and CCAT2 by the Random Forest classifier did not improve the predictive values of ColoMet19, the mRNA-based predictor for metastasis previously developed on the same series of tumours. The role of these two lncRNAs is probably mitigated via their oncotarget, c-Myc, which was not ranked high enough previously to be included in ColoMet19.
Collapse
Affiliation(s)
- Lai Fun Thean
- Department of Colorectal Surgery, Singapore General Hospital, Academia, Level 9, Discovery Tower, 20 College Road, Singapore, 169856, Singapore
| | | | - Hui Hua Li
- Health Service Research Unit, Singapore General Hospital, Singapore, Singapore
| | - Michelle Lo
- Department of Colorectal Surgery, Singapore General Hospital, Academia, Level 9, Discovery Tower, 20 College Road, Singapore, 169856, Singapore
| | - Michelle Wong
- Department of Colorectal Surgery, Singapore General Hospital, Academia, Level 9, Discovery Tower, 20 College Road, Singapore, 169856, Singapore
| | - Choong Leong Tang
- Department of Colorectal Surgery, Singapore General Hospital, Academia, Level 9, Discovery Tower, 20 College Road, Singapore, 169856, Singapore
| | - Emile K W Tan
- Department of Colorectal Surgery, Singapore General Hospital, Academia, Level 9, Discovery Tower, 20 College Road, Singapore, 169856, Singapore
| | - Steven G Rozen
- Duke-NUS Center for Computational Biology, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Peh Yean Cheah
- Department of Colorectal Surgery, Singapore General Hospital, Academia, Level 9, Discovery Tower, 20 College Road, Singapore, 169856, Singapore. .,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore. .,Duke-NUS Medical School, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
22
|
Tu R, Chen Z, Bao Q, Liu H, Qing G. Crosstalk between oncogenic MYC and noncoding RNAs in cancer. Semin Cancer Biol 2020; 75:62-71. [PMID: 33160022 DOI: 10.1016/j.semcancer.2020.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/09/2020] [Accepted: 10/24/2020] [Indexed: 12/19/2022]
|
23
|
Liu J, Zhan Y, Wang J, Wang J, Guo J, Kong D. Long noncoding RNA LINC01578 drives colon cancer metastasis through a positive feedback loop with the NF-κB/YY1 axis. Mol Oncol 2020; 14:3211-3233. [PMID: 33040438 PMCID: PMC7718957 DOI: 10.1002/1878-0261.12819] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/25/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Metastasis accounts for poor prognosis of cancers and related deaths. Accumulating evidence has shown that long noncoding RNAs (lncRNAs) play critical roles in several types of cancer. However, which lncRNAs contribute to metastasis of colon cancer is still largely unknown. In this study, we found that lncRNA LINC01578 was correlated with metastasis and poor prognosis of colon cancer. LINC01578 was upregulated in colon cancer, associated with metastasis, advanced clinical stages, poor overall survival, disease-specific survival, and disease-free survival. Gain-of-function and loss-of-function assays revealed that LINC01578 enhanced colon cancer cell viability and mobility in vitro and colon cancer liver metastasis in vivo. Mechanistically, nuclear factor kappa B (NF-κB) and Yin Yang 1 (YY1) directly bound to the LINC01578 promoter, enhanced its activity, and activated LINC01578 expression. LINC01578 was shown to be a chromatin-bound lncRNA, which directly bound NFKBIB promoter. Furthermore, LINC01578 interacted with and recruited EZH2 to NFKBIB promoter and further repressed NFKBIB expression, thereby activating NF-κB signaling. Through activation of NF-κB, LINC01578 further upregulated YY1 expression. Through activation of the NF-κB/YY1 axis, LINC01578 in turn enhanced its own promoter activity, suggesting that LINC01578 and NF-κB/YY1 formed a positive feedback loop. Blocking NF-κB signaling abolished the oncogenic roles of LINC01578 in colon cancer. Furthermore, the expression levels of LINC01578, NFKBIB, and YY1 were correlated in clinical tissues. Collectively, this study demonstrated that LINC01578 promoted colon cancer metastasis via forming a positive feedback loop with NF-κB/YY1 and suggested that LINC01578 represents a potential prognostic biomarker and therapeutic target for colon cancer metastasis.
Collapse
Affiliation(s)
- Jia Liu
- Department of Colorectal Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yang Zhan
- Department of Colorectal Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jiefu Wang
- Department of Colorectal Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Junfeng Wang
- Department of Colorectal Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jiansheng Guo
- Department of Colorectal Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Dalu Kong
- Department of Colorectal Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
24
|
Beylerli O, Beeraka NM, Gareev I, Pavlov V, Yang G, Liang Y, Aliev G. MiRNAs as Noninvasive Biomarkers and Therapeutic Agents of Pituitary Adenomas. Int J Mol Sci 2020; 21:E7287. [PMID: 33023145 PMCID: PMC7583927 DOI: 10.3390/ijms21197287] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/19/2020] [Accepted: 09/20/2020] [Indexed: 12/14/2022] Open
Abstract
Pituitary adenoma (PA) accounts for 10-15% of all intracranial neoplasms. Even though most pituitary adenomas are benign, it is known that almost 35% of them exhibit an aggressive clinical course, including rapid proliferative activity and invasion of neighboring tissues. MicroRNAs (miRNAs) are short single-stranded RNA molecules that can influence post-transcriptional regulation by controlling target genes. Based on research data on miRNAs over the past 20 years, more than 60% of genes encoding human proteins are regulated by miRNAs, which ultimately control basic cellular mechanisms, including cell proliferation, differentiation, and apoptosis. Dysregulation of miRNAs has been observed in a number of diseases, especially tumors like PA. A majority of miRNAs are expressed within the cells themselves. However, the circulating miRNAs can be detected in several biological fluids of the human body. The identification of circulating miRNAs as new molecular markers may increase the ability to detect a tumor, predict the course of a disease, plan to choose suitable treatment, and diagnose at the earliest signs of impending neoplastic transformation. Therapy of PAs with aggressive behavior is a complex task. When surgery and chemotherapy fail, radiotherapy becomes the treatment of choice against PAs. Therefore, the possibility of implementing circulating miRNAs as innovative diagnostic and therapeutic agents for PA is one of the main exciting ideas.
Collapse
Affiliation(s)
- Ozal Beylerli
- Central Research Laboratory, Bashkir State Medical University, 450008 Ufa, Republic of Bashkortostan, Russia; (O.B.); (I.G.); (V.P.)
| | - Narasimha M. Beeraka
- Department of Biochemistry, JSS Academy of Higher Education & Research, CEMR lab, DST-FIST Supported Department and Center, Mysuru 570015, Karnataka, India;
| | - Ilgiz Gareev
- Central Research Laboratory, Bashkir State Medical University, 450008 Ufa, Republic of Bashkortostan, Russia; (O.B.); (I.G.); (V.P.)
| | - Valentin Pavlov
- Central Research Laboratory, Bashkir State Medical University, 450008 Ufa, Republic of Bashkortostan, Russia; (O.B.); (I.G.); (V.P.)
| | - Guang Yang
- Department of Neurosurgery, the First Affiliated Harbin Medical University, Harbin 150001, China;
- Institute of Brain Science, Harbin Medical University, Harbin 150001, China
| | - Yanchao Liang
- Department of Neurosurgery, the First Affiliated Harbin Medical University, Harbin 150001, China;
- Institute of Brain Science, Harbin Medical University, Harbin 150001, China
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University Sechenov University, 119146 Moscow, Russia
- Research Institute of Human Morphology, Russian Academy of Medical Science, 117418 Moscow, Russia
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432 Moscow, Russia
- GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX 78229, USA
| |
Collapse
|
25
|
Chu Y, Kilikevicius A, Liu J, Johnson KC, Yokota S, Corey DR. Argonaute binding within 3'-untranslated regions poorly predicts gene repression. Nucleic Acids Res 2020; 48:7439-7453. [PMID: 32501500 PMCID: PMC7367155 DOI: 10.1093/nar/gkaa478] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
Despite two decades of study, the full scope of RNAi in mammalian cells has remained obscure. Here we combine: (i) Knockout of argonaute (AGO) variants; (ii) RNA sequencing analysis of gene expression changes and (iii) Enhanced Crosslinking Immunoprecipitation Sequencing (eCLIP-seq) using anti-AGO2 antibody to identify potential microRNA (miRNA) binding sites. We find that knocking out AGO1, AGO2 and AGO3 together are necessary to achieve full impact on steady state levels of mRNA. eCLIP-seq located AGO2 protein associations within 3'-untranslated regions. The standard mechanism of miRNA action would suggest that these associations should repress gene expression. Contrary to this expectation, associations between AGO and RNA are poorly correlated with gene repression in wild-type versus knockout cells. Many clusters are associated with increased steady state levels of mRNA in wild-type versus knock out cells, including the strongest cluster within the MYC 3'-UTR. Our results suggest that assumptions about miRNA action should be re-examined.
Collapse
Affiliation(s)
- Yongjun Chu
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75205, USA
| | - Audrius Kilikevicius
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75205, USA
| | - Jing Liu
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75205, USA
| | - Krystal C Johnson
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75205, USA
| | - Shinnichi Yokota
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75205, USA
| | - David R Corey
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75205, USA
| |
Collapse
|
26
|
Liu X, Feng S, Zhang XD, Li J, Zhang K, Wu M, Thorne RF. Non-coding RNAs, metabolic stress and adaptive mechanisms in cancer. Cancer Lett 2020; 491:60-69. [PMID: 32726612 DOI: 10.1016/j.canlet.2020.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 06/28/2020] [Indexed: 12/18/2022]
Abstract
Metabolic reprogramming in cancer describes the multifaceted alterations in metabolism that contribute to tumorigenesis. Major determinants of metabolic phenotypes are the changes in signalling pathways associated with oncogenic activation together with cues from the tumor microenvironment. Therein, depleted oxygen and nutrient levels elicit metabolic stress, requiring cancer cells to engage adaptive mechanisms. Non-coding RNAs (ncRNAs) act as regulatory elements within metabolic pathways and their widespread dysregulation in cancer contributes to altered metabolic phenotypes. Indeed, ncRNAs are the regulatory accomplices of many prominent effectors of metabolic reprogramming including c-MYC and HIFs that are activated by metabolic stress. By example, this review illustrates the range of ncRNAs mechanisms impacting these effectors throughout their DNA-RNA-protein lifecycle along with presenting the mechanistic roles of ncRNAs in adaptive responses to glucose, glutamine and lipid deprivation. We also discuss the facultative activation of metabolic enzymes by ncRNAs, a phenomenon which may reflect a broad but currently invisible level of metabolic regulation. Finally, the translational challenges associated with ncRNA discoveries are discussed, emphasizing the gaps in knowledge together with importance of understanding the molecular basis of ncRNA regulatory mechanisms.
Collapse
Affiliation(s)
- Xiaoying Liu
- Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Molecular Pathology Centre, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450053, China; School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Shanshan Feng
- Key Laboratory of Regenerative Medicine, Ministry of Education, Department of Developmental & Regenerative Biology, School of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xu Dong Zhang
- Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Molecular Pathology Centre, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450053, China; School of Biomedical Sciences & Pharmacy, University of Newcastle, Newcastle, NSW, Australia
| | - Jinming Li
- Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Molecular Pathology Centre, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450053, China
| | - Kaiguang Zhang
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, 230027, China.
| | - Mian Wu
- Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Molecular Pathology Centre, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450053, China; The First Affiliated Hospital of University of Science and Technology of China, Hefei, 230027, China; Key Laboratory of Stem Cell Differentiation & Modification, School of Clinical Medicine, Henan University, Zhengzhou, China.
| | - Rick F Thorne
- Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Molecular Pathology Centre, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450053, China; School of Environmental & Life Sciences, University of Newcastle, NSW, Australia.
| |
Collapse
|
27
|
Chen Q, Shen H, Zhu X, Liu Y, Yang H, Chen H, Xiong S, Chi H, Xu W. A nuclear lncRNA Linc00839 as a Myc target to promote breast cancer chemoresistance via PI3K/AKT signaling pathway. Cancer Sci 2020; 111:3279-3291. [PMID: 32619088 PMCID: PMC7469761 DOI: 10.1111/cas.14555] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 12/16/2022] Open
Abstract
Chemoresistance has become a leading cause of mortality in breast cancer patients and is one of the major obstacles for improving the clinical outcome. Long noncoding RNAs play important roles in breast cancer tumorigenesis and chemoresistance. However, the involvement and regulation of lncRNAs in breast cancer chemoresistance are not completely understood. Here, we reported that Linc00839 was localized in the nucleus and upregulated in chemoresistant breast cancer cells and tissues, and high level of Linc00839 was associated with a poor prognosis. Knockdown of Linc00839 significantly suppressed proliferation, invasion, and migration, sensitized cells to paclitaxel in vitro and inhibited transplant tumor development in vivo. Mechanistically, we found that Myc could directly bind to the promoter region of Linc00839 and activate its transcription. Furthermore, Linc00839 overexpression increased the expression of Myc and the RNA‐binding protein Lin28B and activated the PI3K/AKT signaling pathway. We also discovered that Lin28B positively interacted with Linc00839 and was upregulated in breast cancer tissues. Taken together, for the first time, we showed that Linc00839 was activated by Myc and promoted proliferation and chemoresistance in breast cancer through binding with Lin28B. These findings provide new insight into the regulatory mechanism of Linc00839 and propose a Myc/Linc00839/Lin28B feedback loop that could be used as a novel therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Qi Chen
- Department of Breast Diseases, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,School of medicine, Jiangsu University, Zhenjiang, China
| | - Huiling Shen
- Department of Oncology, Affiliated People Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaolan Zhu
- Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yueqin Liu
- Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hui Yang
- Department of Breast Diseases, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hui Chen
- School of medicine, Jiangsu University, Zhenjiang, China
| | - Shangwan Xiong
- School of medicine, Jiangsu University, Zhenjiang, China
| | - Huamao Chi
- Department of Breast Diseases, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wenlin Xu
- Department of Breast Diseases, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,School of medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
28
|
Evolutionary-driven C-MYC gene expression in mammalian fibroblasts. Sci Rep 2020; 10:11056. [PMID: 32632086 PMCID: PMC7338511 DOI: 10.1038/s41598-020-67391-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/08/2020] [Indexed: 11/09/2022] Open
Abstract
The extent to which mammalian cells share similar transcriptomes remains unclear. Notwithstanding, such cross-species gene expression inquiries have been scarce for defined cell types and most lack the dissection of gene regulatory landscapes. Therefore, the work was aimed to determine C-MYC relative expression across mammalian fibroblasts (Ovis aries and Bos taurus) via cross-species RT-qPCR and comprehensively explore its regulatory landscape by in silico tools. The prediction of transcription factor binding sites in C-MYC and its 2.5 kb upstream sequence revealed substantial variation, thus indicating evolutionary-driven re-wiring of cis-regulatory elements. C-MYC and its downstream target TBX3 were up-regulated in Bos taurus fibroblasts. The relative expression of C-MYC regulators [RONIN (also known as THAP11), RXRβ, and TCF3] and the C-MYC-associated transcript elongation factor CDK9 did not differ between species. Additional in silico analyses suggested Bos taurus-specific C-MYC exonization, alternative splicing, and binding sites for non-coding RNAs. C-MYC protein orthologs were highly conserved, while variation was in the transactivation domain and the leucine zipper motif. Altogether, mammalian fibroblasts display evolutionary-driven C-MYC relative expression that should be instructive for understanding cellular physiology, cellular reprogramming, and C-MYC-related diseases.
Collapse
|
29
|
Benetatos L, Benetatou A, Vartholomatos G. Long non-coding RNAs and MYC association in hematological malignancies. Ann Hematol 2020; 99:2231-2242. [PMID: 32621182 DOI: 10.1007/s00277-020-04166-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022]
Abstract
Long non-coding RNAs (lncRNAs) have an established role in cell biology. Among their functions is the regulation of hematopoiesis. They characterize the different stages of hematopoiesis in a more lineage-restricted expression pattern than coding mRNAs. They affect hematopoietic stem cell renewal, proliferation, and differentiation of committed progenitors by interacting with master regulators transcription factors. Among these transcription factors, MYC has a prominent role. Similar to MYC's transcriptional activation/amplification of protein coding genes, MYC also regulates lncRNAs' expression profile, while it is also regulated by lncRNAs. Both myeloid and lymphoid malignancies are prone to the association of MYC with lncRNAs. Such interaction inhibits apoptosis, enhances cell proliferation, deregulates metabolism, and promotes genomic instability and resistance to treatment. In this review, we discuss the recent findings that encompass the crosstalk between lncRNAs and describe the pathways that very probably have a pathogenetic role in both acute and chronic hematologic malignancies.
Collapse
Affiliation(s)
| | - Agapi Benetatou
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
| | | |
Collapse
|
30
|
Huang W, Dong S, Cha Y, Yuan X. SNHG11 promotes cell proliferation in colorectal cancer by forming a positive regulatory loop with c-Myc. Biochem Biophys Res Commun 2020; 527:985-992. [PMID: 32439170 DOI: 10.1016/j.bbrc.2020.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/01/2020] [Indexed: 12/24/2022]
Abstract
Dysregulation of long non-coding RNAs (lncRNA) have long been linked to the onset and development of colorectal cancer (CRC), yet the underlying mechanisms remain elusive. Small nucleolar RNA host gene 11 (SNHG11) is a novel lncRNA with few information about its role in development and progression of CRC. Here, we found SNHG11, a highly conserved lncRNA, was commonly overexpressed in various cancer including CRC. High expression of SNHG11 correlated with poor prognosis in patients with CRC. Gain of function and loss-of function experiments showed that SNHG11 visibly promoted proliferation in CRC cells. Mechanistic assays revealed that SNHG11 interacted with Insulin-like growth factor 2 (IGF2) mRNA-binding protein 1 (IGF2BP1), thereby enhancing the interaction between IGF2BP1 and c-Myc mRNA, a well-known target of IGF2BP1. Consequently, c-Myc mRNA expression was stabilized and its downstream targets were significantly upregulated. Further investigation demonstrated that SNHG11 upregulated c-Myc which in turn transcriptionally upregulated SNHG11. Taken together, our findings suggested that reciprocal regulation of SNHG11 and c-Myc promotes cell proliferation in CRC.
Collapse
Affiliation(s)
- Weizhen Huang
- Department of Medical Oncology, Huizhou Municipal Central Hospital of Guangdong Province, 41 North Eling Road, Huizhou, Guangdong Province, 516000, PR China
| | - Shaoting Dong
- Department of Medical Oncology, Huizhou Municipal Central Hospital of Guangdong Province, 41 North Eling Road, Huizhou, Guangdong Province, 516000, PR China
| | - Yinlian Cha
- Department of Medical Oncology, Huizhou Municipal Central Hospital of Guangdong Province, 41 North Eling Road, Huizhou, Guangdong Province, 516000, PR China
| | - Xia Yuan
- Department of Medical Oncology, Huizhou Municipal Central Hospital of Guangdong Province, 41 North Eling Road, Huizhou, Guangdong Province, 516000, PR China.
| |
Collapse
|
31
|
Gao J, Ma S, Yang F, Chen X, Wang W, Zhang J, Li Y, Wang T, Shan L. miR‑193b exhibits mutual interaction with MYC, and suppresses growth and metastasis of osteosarcoma. Oncol Rep 2020; 44:139-155. [PMID: 32377743 PMCID: PMC7254955 DOI: 10.3892/or.2020.7601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 02/19/2020] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence has indicated that microRNAs (miRs) are involved in the malignant behavior of cancer. The present study explored the role of miR‑193b in the development and metastasis of osteosarcoma. Compared with F4 osteosarcoma cells, which have a relatively low metastatic potential, highly metastatic F5M2 cells exhibited a lower expression of miR‑193b. Furthermore, miR‑193b exerted negative effects on cell proliferation, colony formation, cell cycle progression, migration and invasion, and induced apoptosis. In vivo studies revealed negative influences of miR‑193b on tumorigenesis and metastasis. The tumor‑suppressive role of miR‑193b was achieved by targeting KRAS and stathmin 1 (STMN1). Notably, overexpression of KRAS and STMN1 attenuated the miR‑193b‑induced inhibition of malignant behaviors. There was a double‑negative regulatory loop between MYC and miR‑193b, with MYC inhibiting miR‑193b expression by directly binding to its promoter region and miR‑193b negatively influencing MYC expression indirectly through some unknown mechanism. Collectively, these findings indicated that miR‑193b may serve a tumor suppressive role in osteosarcoma by targeting KRAS and STMN1. The double‑negative regulatory loop between MYC and miR‑193b may contribute to the sustained upregulation of MYC, the downregulation of miR‑193b, and to the subsequently enhanced expression of KRAS and STMN1, which may eventually lead to the development and metastasis of osteosarcoma.
Collapse
Affiliation(s)
- Jinjian Gao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Sai Ma
- Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Fan Yang
- Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xu Chen
- Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wei Wang
- Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jianping Zhang
- Department of Orthopedics, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan 650032, P.R. China
| | - Yufang Li
- Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Tao Wang
- Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lequn Shan
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| |
Collapse
|
32
|
Anauate AC, Leal MF, Calcagno DQ, Gigek CO, Karia BTR, Wisnieski F, dos Santos LC, Chen ES, Burbano RR, Smith MAC. The Complex Network between MYC Oncogene and microRNAs in Gastric Cancer: An Overview. Int J Mol Sci 2020; 21:ijms21051782. [PMID: 32150871 PMCID: PMC7084225 DOI: 10.3390/ijms21051782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/24/2022] Open
Abstract
Despite the advancements in cancer treatments, gastric cancer is still one of the leading causes of death worldwide. In this context, it is of great interest to discover new and more effective ways of treating this disease. Accumulated evidences have demonstrated the amplification of 8q24.21 region in gastric tumors. Furthermore, this is the region where the widely known MYC oncogene and different microRNAs are located. MYC deregulation is key in tumorigenesis in various types of tissues, once it is associated with cell proliferation, survival, and drug resistance. microRNAs are a class of noncoding RNAs that negatively regulate the protein translation, and which deregulation is related with gastric cancer development. However, little is understood about the interactions between microRNAs and MYC. Here, we overview the MYC role and its relationship with the microRNAs network in gastric cancer aiming to identify potential targets useful to be used in clinic, not only as biomarkers, but also as molecules for development of promising therapies.
Collapse
Affiliation(s)
- Ana Carolina Anauate
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
- Disciplina de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil
| | - Mariana Ferreira Leal
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
| | - Danielle Queiroz Calcagno
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém PA 66075-110, Brazil; (D.Q.C.); (R.R.B.)
| | - Carolina Oliveira Gigek
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
- Departamento de Patologia, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil
| | - Bruno Takao Real Karia
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
| | - Fernanda Wisnieski
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
- Disciplina de Gastroenterologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil
| | - Leonardo Caires dos Santos
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
| | - Elizabeth Suchi Chen
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
| | - Rommel Rodríguez Burbano
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém PA 66075-110, Brazil; (D.Q.C.); (R.R.B.)
- Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém PA 66075-110, Brazil
- Laboratório de Biologia Molecular, Hospital Ophir Loyola, Belém PA 66063-240, Brazil
| | - Marília Arruda Cardoso Smith
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
- Correspondence: ; Tel.: +55-11-5576-4848
| |
Collapse
|
33
|
Liang CY, Li ZY, Gan TQ, Fang YY, Gan BL, Chen WJ, Dang YW, Shi K, Feng ZB, Chen G. Downregulation of hsa-microRNA-204-5p and identification of its potential regulatory network in non-small cell lung cancer: RT-qPCR, bioinformatic- and meta-analyses. Respir Res 2020; 21:60. [PMID: 32102656 PMCID: PMC7045575 DOI: 10.1186/s12931-020-1274-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022] Open
Abstract
Background Pulmonary malignant neoplasms have a high worldwide morbidity and mortality, so the study of these malignancies using microRNAs (miRNAs) has attracted great interest and enthusiasm. The aim of this study was to determine the clinical effect of hsa-microRNA-204-5p (miR-204-5p) and its underlying molecular mechanisms in non-small cell lung cancer (NSCLC). Methods Expression of miR-204-5p was investigated by real-time quantitative PCR (RT-qPCR). After data mining from public online repositories, several integrative assessment methods, including receiver operating characteristic (ROC) curves, hazard ratios (HR) with 95% confidence intervals (95% CI), and comprehensive meta-analyses, were conducted to explore the expression and clinical utility of miR-204-5p. The potential objects regulated and controlled by miR-204-5p in the course of NSCLC were identified by estimated target prediction and analysis. The regulatory network of miR-204-5p, with its target genes and transcription factors (TFs), was structured from database evidence and literature references. Results The expression of miR-204-5p was downregulated in NSCLC, and the downtrend was related to gender, histological type, vascular invasion, tumor size, clinicopathologic grade and lymph node metastasis (P<0.05). MiR-204-5p was useful in prognosis, but was deemed unsuitable at present as an auxiliary diagnostic or prognostic risk factor for NSCLC due to the lack of statistical significance in meta-analyses and absence of large-scale investigations. Gene enrichment and annotation analyses identified miR-204-5p candidate targets that took part in various genetic activities and biological functions. The predicted TFs, like MAX, MYC, and RUNX1, interfered in regulatory networks involving miR-204-5p and its predicted hub genes, though a modulatory loop or axis of the miRNA-TF-gene that was out of range with shortage in database prediction, experimental proof and literature confirmation. Conclusions The frequently observed decrease in miR-204-5p was helpful for NSCLC diagnosis. The estimated target genes and TFs contributed to the anti-oncogene effects of miR-204-5p.
Collapse
Affiliation(s)
- Chang-Yu Liang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zu-Yun Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ting-Qing Gan
- Department of Medical Oncology, Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ye-Ying Fang
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Bin-Liang Gan
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Wen-Jie Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ke Shi
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhen-Bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
34
|
Umu SU, Langseth H, Keller A, Meese E, Helland Å, Lyle R, Rounge TB. A 10-year prediagnostic follow-up study shows that serum RNA signals are highly dynamic in lung carcinogenesis. Mol Oncol 2020; 14:235-247. [PMID: 31851411 PMCID: PMC6998662 DOI: 10.1002/1878-0261.12620] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/26/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022] Open
Abstract
The majority of lung cancer (LC) patients are diagnosed at a late stage, and survival is poor. Circulating RNA molecules are known to have a role in cancer; however, their involvement before diagnosis remains an open question. In this study, we investigated circulating RNA dynamics in prediagnostic LC samples, focusing on smokers, to identify if and when disease-related signals can be detected in serum. We sequenced small RNAs in 542 serum LC samples donated up to 10 years before diagnosis and 519 matched cancer-free controls coming from 905 individuals in the Janus Serum Bank. This sample size provided sufficient statistical power to independently analyze time to diagnosis, stage, and histology. The results showed dynamic changes in differentially expressed circulating RNAs specific to LC histology and stage. The greatest number of differentially expressed RNAs was identified around 7 years before diagnosis for early-stage LC and 1-4 years prior to diagnosis for locally advanced and advanced-stage LC, regardless of LC histology. Furthermore, NSCLC and SCLC histologies have distinct prediagnostic signals. The majority of differentially expressed RNAs were associated with cancer-related pathways. The dynamic RNA signals pinpointed different phases of tumor development over time. Stage-specific RNA profiles may be associated with tumor aggressiveness. Our results improve the molecular understanding of carcinogenesis. They indicate substantial opportunity for screening and improved treatment and will guide further research on early detection of LC. However, the dynamic nature of the RNA signals also suggests challenges for prediagnostic biomarker discovery.
Collapse
Affiliation(s)
- Sinan Uğur Umu
- Department of ResearchCancer Registry of NorwayOsloNorway
| | - Hilde Langseth
- Department of ResearchCancer Registry of NorwayOsloNorway
| | - Andreas Keller
- Department of Clinical BioinformaticsSaarland UniversitySaarbrückenGermany
- Department of Neurology and Neurological SciencesSchool of MedicineStanford UniversityCAUSA
| | - Eckart Meese
- Department of Human GeneticsSaarland UniversityHomburgSaarGermany
| | - Åslaug Helland
- Department of OncologyOslo University HospitalNorway
- Institute for Cancer ResearchOslo University HospitalNorway
- Institute of Clinical MedicineUniversity of OsloNorway
| | - Robert Lyle
- Department of Medical GeneticsOslo University Hospital and University of OsloNorway
- Faculty of Mathematics and Natural SciencesPharmaTox Strategic Research InitiativeSchool of PharmacyUniversity of OsloNorway
| | - Trine B. Rounge
- Department of ResearchCancer Registry of NorwayOsloNorway
- Department of InformaticsUniversity of OsloNorway
| |
Collapse
|
35
|
Tian X, Wu Y, Yang Y, Wang J, Niu M, Gao S, Qin T, Bao D. Long noncoding RNA LINC00662 promotes M2 macrophage polarization and hepatocellular carcinoma progression via activating Wnt/β-catenin signaling. Mol Oncol 2019; 14:462-483. [PMID: 31785055 PMCID: PMC6998656 DOI: 10.1002/1878-0261.12606] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/29/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022] Open
Abstract
Tumor-associated macrophages have important roles in hepatocellular carcinoma (HCC) initiation and progression. Long noncoding RNAs (lncRNAs) have also been reported to be involved in HCC. In this study, we explored how lncRNA LINC00662 may influence HCC progression through both tumor cell-dependent and macrophage-dependent mechanisms. LINC00662 was found to be upregulated in HCC, and high LINC00662 levels correlated with poor survival of HCC patients. LINC00662 upregulated WNT3A expression and secretion via competitively binding miR-15a, miR-16, and miR-107. Through inducing WNT3A secretion, LINC00662 activated Wnt/β-catenin signaling in HCC cells in an autocrine manner and further promoted HCC cell proliferation, cell cycle, and tumor cell invasion, while repressing HCC cell apoptosis. In addition, acting through WNT3A secretion, LINC00662 activated Wnt/β-catenin signaling in macrophages in a paracrine manner and further promoted M2 macrophage polarization. Via activating Wnt/β-catenin signaling and M2 macrophages polarization, LINC00662 significantly promoted HCC tumor growth and metastasis in vivo. Hence, targeting LINC00662 may provide novel therapeutic strategy against HCC.
Collapse
Affiliation(s)
- Xiaohui Tian
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, China
| | - Yuanyuan Wu
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, China
| | - Yating Yang
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, China
| | - Jiaxin Wang
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, China
| | - Menglan Niu
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, China
| | - Shanjun Gao
- Microbiome Laboratory, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, China
| | - Tao Qin
- Department of Hepatobiliary Pancreatic Surgery, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, China
| | - Dengke Bao
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, China.,Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, China.,Department of Hepatobiliary Pancreatic Surgery, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, China
| |
Collapse
|
36
|
The Pivotal Role of Long Noncoding RNA RAB5IF in the Proliferation of Hepatocellular Carcinoma Via LGR5 Mediated β-Catenin and c-Myc Signaling. Biomolecules 2019; 9:biom9110718. [PMID: 31717443 PMCID: PMC6920882 DOI: 10.3390/biom9110718] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023] Open
Abstract
In the current study, the function of long noncoding RNA (LncRNA) RAB5IF was elucidated in hepatocellular carcinoma (HCCs) in association with LGR5 related signaling. Here TCGA analysis revealed that LncRNA RAB5IF was overexpressed in HCC, and its overexpression level was significantly (p < 0.05) correlated with poor prognosis in patients with HCC. Furthermore, LncRNA RAB5IF depletion suppressed cell proliferation and colony formation, increased sub G1 population, cleavage of poly ADP-ribose polymerase (PARP) and cysteine aspartyl-specific protease (caspase 3) and attenuated the expression of procaspase 3, pro-PARP and B-cell lymphoma 2 (Bcl-2) in HepG2 and Hep3B cells. Furthermore, LncRNA RAB5IF depletion reduced the expression of LGR5 and its downstreams such as β-catenin and c-Myc in HepG2 and Hep3B cells. Notably, LGR5 depletion also attenuated the expression of pro-PARP, pro-caspase3, β-catenin and c-Myc in HepG2 and Hep3B cells. Conversely, LGR5 overexpression upregulated β-catenin and c-Myc in Alpha Mouse Liver 12 (AML-12) normal hepatocytes. Overall, these findings provide novel evidence that LncRNA RAB5IF promotes the growth of hepatocellular carcinoma cells via LGR5 mediated β-catenin and c-Myc signaling as a potent oncogenic target.
Collapse
|
37
|
Hua Q, Jin M, Mi B, Xu F, Li T, Zhao L, Liu J, Huang G. LINC01123, a c-Myc-activated long non-coding RNA, promotes proliferation and aerobic glycolysis of non-small cell lung cancer through miR-199a-5p/c-Myc axis. J Hematol Oncol 2019; 12:91. [PMID: 31488218 PMCID: PMC6728969 DOI: 10.1186/s13045-019-0773-y] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/16/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have been associated with non-small cell lung cancer (NSCLC), but the underlying molecular mechanisms of their specific roles in mediating aerobic glycolysis have been poorly explored. METHODS Next-generation RNA sequencing assay was performed to identify the differentially expressed RNAs between NSCLC tissues with high 18F-fluorodeoxyglucose (FDG) uptake and their adjacent normal lung tissues. LINC01123 expression in NSCLC tissues was measured by real-time PCR and in situ hybridization (ISH) assay. The biological role of LINC01123 in cell growth and aerobic glycolysis capability was determined by performing functional experiments in vitro and in vivo. Further, the transcription of LINC01123 was explored by bioinformatics analysis, dual-luciferase reporter assay, and chromatin immunoprecipitation (ChIP) assay. RNA immunoprecipitation (RIP) and luciferase analyses were used to confirm the predicted competitive endogenous RNA (ceRNA) mechanisms between LINC01123 and c-Myc. RESULTS Three hundred sixty-four differentially expressed genes were identified in RNA-seq assay, and LINC01123 was one of the most overexpressed lncRNAs. Further validation in expanded NSCLC cohorts confirmed that LINC01123 was upregulated in 92 paired NSCLC tissues and associated with poor survival. Functional assays showed that LINC01123 promoted NSCLC cell proliferation and aerobic glycolysis. Mechanistic investigations revealed that LINC01123 was a direct transcriptional target of c-Myc. Meanwhile, LINC01123 increased c-Myc mRNA expression by sponging miR-199a-5p. In addition, rescue experiments showed that LINC01123 functioned as an oncogene depending on miR-199a-5p and c-Myc. CONCLUSION Since LINC01123 is upregulated in NSCLC, correlates with prognosis, and controls proliferation and aerobic glycolysis by a positive feedback loop with c-Myc, it is expected to be a potential biomarker and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Qian Hua
- grid.415869.7Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127 China
| | - Mingming Jin
- 0000 0001 2323 5732grid.39436.3bShanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318 China
| | - Baoming Mi
- 0000 0004 1758 9149grid.459328.1Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University (Wuxi 4th People’s Hospital), Wuxi, 214062 Jiangsu China
| | - Fei Xu
- grid.415869.7Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127 China
| | - Tian Li
- 0000 0001 2323 5732grid.39436.3bShanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318 China
| | - Li Zhao
- grid.415869.7Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127 China
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China. .,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
38
|
Xie Y, Dang W, Zhang S, Yue W, Yang L, Zhai X, Yan Q, Lu J. The role of exosomal noncoding RNAs in cancer. Mol Cancer 2019; 18:37. [PMID: 30849983 PMCID: PMC6408816 DOI: 10.1186/s12943-019-0984-4] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/25/2019] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EVs) membranes enclose nanosized vesicles with a size range of 30-150 nm and are plentiful in our body in both physiological and pathological conditions. Exosomes, a type of EV, are important mediators of intracellular communication among tumor cells, immune cells, and stromal cells. They can shuttle bioactive molecules, such as proteins, lipids, RNA, and DNA; however, the precise function of EVs remains largely unknown. In recent years, tumor-associated cargo in exosomes has been a hot topic in research, especially with respect to noncoding RNAs (ncRNAs). Herein, we review the role of exosomal ncRNAs, including miRNAs and long noncoding RNAs, in tumor biological processes. Clinically, exosomal ncRNAs may eventually become novel biomarkers and therapeutic targets in cancer progression.
Collapse
Affiliation(s)
- Yan Xie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Wei Dang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Siwei Zhang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Wenxing Yue
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Li Yang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Xingyu Zhai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Qijia Yan
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China
| | - Jianhong Lu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China. .,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China.
| |
Collapse
|
39
|
Affiliation(s)
- George A Calin
- Experimental Therapeutics and Leukemia Departments, The Center for RNA Interference and Non-Coding RNAs, University of Texas, MD Anderson Cancer, Houston, TX, USA
| |
Collapse
|
40
|
Zhang Y, Huang Z, Sheng F, Yin Z. MYC upregulated LINC00319 promotes human acute myeloid leukemia (AML) cells growth through stabilizing SIRT6. Biochem Biophys Res Commun 2018; 509:314-321. [PMID: 30587342 DOI: 10.1016/j.bbrc.2018.12.133] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been identified by accumulating studies as critical regulator in tumorigenesis and tumor development in human cancers, including in acute myeloid leukemia (AML). This study investigated the function and the underlying mechanism of LINC00319 in AML progression. Firstly, the low expression level of LINC00319 in whole blood of healthy individuals was obtained from UCSC, and its upregulation was detected in AML patients as well as AML cell lines. Besides, the prognostic significance of LINC00319 was revealed in AML patients. Functionally, the loss-of-function assays revealed that LINC00319 silence restrained proliferation but stimulated apoptosis in AML cells. Furthermore, LINC00319 expression was demonstrated proportional to MYC level in AML samples and transcriptionally regulated by MYC. Mechanistically, we identified FUS as a shared RNA binding protein (RBP) interacting with both LINC00319 and SIRT6. And LINC00319 regulated SIRT6 expression at post-transcriptional level through FUS-dependent pathway. Last but not least, SIRT6 overexpression rescued the suppressive effect of LINC00319 knockdown on AML cells growth. Overall, our findings unveiled that LINC00319 contributed to AML leukemogenesis via elevating SIRT6 expression, indicating a possible molecular target of LINC00319 for AML treatment.
Collapse
Affiliation(s)
- Yanni Zhang
- Department of Neonatal Department, Ankang Maternal and Child Health Hospital, Ankang, Shaanxi, 725000, China
| | - Zongxuan Huang
- Department of Paediatrics, Affiliated Hospital of JiNing Medical Universrty, Jining, Shandong, 272029, China
| | - Fen Sheng
- Department of Intensive Care Unit, First People's Hospital of Jining City, Shandong Province, Jining, Shandong, 272000, China
| | - Zhaoyang Yin
- Department of Pediatrics, Central Hospital of Shangluo City, Shanxi province, 726000, China.
| |
Collapse
|