1
|
Chen S, Ma X, Liu Y, Zhong Z, Wei C, Li M, Zhu X. Creatine Promotes Endometriosis by Inducing Ferroptosis Resistance via Suppression of PrP. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403517. [PMID: 39119937 PMCID: PMC11481182 DOI: 10.1002/advs.202403517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/18/2024] [Indexed: 08/10/2024]
Abstract
Endometriosis, a chronic inflammatory disease, significantly impairs the quality of life of women in their reproductive years; however, its pathogenesis remains poorly understood. The accumulation of retrograde menstruation and recurrent bleeding fosters a high-iron environment in ectopic lesions, triggering ferroptosis in ectopic endometrial stromal cells (EESCs), thereby hindering the establishment of endometriosis. However, abnormal EESCs demonstrate resistance to ferroptosis in high-iron environments, promoting the progression of this disease. Here, novel findings on the accumulation of creatine, derived from endogenous synthesis, in both peritoneal fluid and EESCs of patients with endometriosis are presented. Creatine supplementation reduces cellular iron concentrations, mitigating oxidative stress and lipid peroxidation, thereby enhancing cell viability and preventing ferroptosis under high-iron conditions. Utilizing the drug affinity-responsive target stabilization (DARTS) assay, prion protein (PrP) as a potential creatine-sensing protein is identified. Mechanistically, creatine binds to the active site of PrP, inhibits the conversion of trivalent iron to divalent iron, and decreases iron uptake, promoting the tolerance of EESCs to ferroptosis. This interaction contributes to the development of endometriosis. The novel association between creatine and ferroptosis provides valuable insights into the role of creatine in endometriosis progression and highlights its potential as a therapeutic target for endometriosis.
Collapse
Affiliation(s)
- Siman Chen
- Laboratory for Reproductive ImmunologyHospital of Obstetrics and GynecologyFudan UniversityShanghai200090P. R. China
| | - Xiaoqian Ma
- Fujian Provincial Key Laboratory of Reproductive Health ResearchDepartment of Obstetrics and GynecologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityFujian361102P. R. China
| | - Yukai Liu
- Laboratory for Reproductive ImmunologyHospital of Obstetrics and GynecologyFudan UniversityShanghai200090P. R. China
| | - Zhiqi Zhong
- Xinglin CollegeNantong UniversityNantong226001P. R. China
| | - Chunyan Wei
- Laboratory for Reproductive ImmunologyHospital of Obstetrics and GynecologyFudan UniversityShanghai200090P. R. China
| | - Mingqing Li
- Laboratory for Reproductive ImmunologyHospital of Obstetrics and GynecologyFudan UniversityShanghai200090P. R. China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesFudan UniversityShanghai200090P. R. China
| | - Xiaoyong Zhu
- Laboratory for Reproductive ImmunologyHospital of Obstetrics and GynecologyFudan UniversityShanghai200090P. R. China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesFudan UniversityShanghai200090P. R. China
| |
Collapse
|
2
|
Forbes AN, Xu D, Cohen S, Pancholi P, Khurana E. Discovery of therapeutic targets in cancer using chromatin accessibility and transcriptomic data. Cell Syst 2024; 15:824-837.e6. [PMID: 39236711 PMCID: PMC11415227 DOI: 10.1016/j.cels.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 09/22/2023] [Accepted: 08/08/2024] [Indexed: 09/07/2024]
Abstract
Most cancer types lack targeted therapeutic options, and when first-line targeted therapies are available, treatment resistance is a huge challenge. Recent technological advances enable the use of assay for transposase-accessible chromatin with sequencing (ATAC-seq) and RNA sequencing (RNA-seq) on patient tissue in a high-throughput manner. Here, we present a computational approach that leverages these datasets to identify drug targets based on tumor lineage. We constructed gene regulatory networks for 371 patients of 22 cancer types using machine learning approaches trained with three-dimensional genomic data for enhancer-to-promoter contacts. Next, we identified the key transcription factors (TFs) in these networks, which are used to find therapeutic vulnerabilities, by direct targeting of either TFs or the proteins that they interact with. We validated four candidates identified for neuroendocrine, liver, and renal cancers, which have a dismal prognosis with current therapeutic options.
Collapse
Affiliation(s)
- Andre Neil Forbes
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Duo Xu
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Sandra Cohen
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Priya Pancholi
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ekta Khurana
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
3
|
Lailler C, Didelot A, Garinet S, Berthou H, Sroussi M, de Reyniès A, Dedhar S, Martin-Lannerée S, Fabre E, Le Pimpec-Barthes F, Perrier A, Poindessous V, Mansuet-Lupo A, Djouadi F, Launay JM, Laurent-Puig P, Blons H, Mouillet-Richard S. PrP C controls epithelial-to-mesenchymal transition in EGFR-mutated NSCLC: implications for TKI resistance and patient follow-up. Oncogene 2024; 43:2781-2794. [PMID: 39147880 PMCID: PMC11379626 DOI: 10.1038/s41388-024-03130-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024]
Abstract
Patients with EGFR-mutated non-small cell lung cancer (NSCLC) benefit from treatment with tyrosine kinase inhibitors (TKI) targeting EGFR. Despite improvements in patient care, especially with the 3rd generation TKI osimertinib, disease relapse is observed in all patients. Among the various processes involved in TKI resistance, epithelial-to-mesenchymal transition (EMT) is far from being fully characterized. We hypothesized that the cellular prion protein PrPC could be involved in EMT and EGFR-TKI resistance in NSCLC. Using 5 independent lung adenocarcinoma datasets, including our own cohort, we document that the expression of the PRNP gene encoding PrPC is associated with EMT. By manipulating the levels of PrPC in different EGFR-mutated NSCLC cell lines, we firmly establish that the expression of PrPC is mandatory for cells to maintain or acquire a mesenchymal phenotype. Mechanistically, we show that PrPC operates through an ILK-RBPJ cascade, which also controls the expression of EGFR. Our data further demonstrate that PrPC levels are elevated in EGFR-mutated versus wild-type tumours or upon EGFR activation in vitro. In addition, we provide evidence that PRNP levels increase with TKI resistance and that reducing PRNP expression sensitizes cells to osimertinib. Finally, we found that plasma PrPC levels are increased in EGFR-mutated NSCLC patients from 2 independent cohorts and that their longitudinal evolution mirrors that of disease. Altogether, these findings define PrPC as a candidate driver of EMT-dependent resistance to EGFR-TKI in NSCLC. They further suggest that monitoring plasma PrPC levels may represent a valuable non-invasive strategy for patient follow-up and warrant considering PrPC-targeted therapies for EGFR-mutated NSCLC patients with TKI failure.
Collapse
Affiliation(s)
- Claire Lailler
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
| | - Audrey Didelot
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
| | - Simon Garinet
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
| | - Hugo Berthou
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
| | - Marine Sroussi
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
- Institut du Cancer Paris CARPEM, AP-HP, Department of Genetics and Molecular Medicine, Hôpital Européen Georges Pompidou, Paris, France
| | - Aurélien de Reyniès
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
| | - Shoukat Dedhar
- Genetics Unit, Integrative Oncology, BC Cancer, Vancouver, BC, Canada
| | - Séverine Martin-Lannerée
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
| | - Elizabeth Fabre
- AP-HP Department of Thoracic Oncology, Hôpital Européen Georges Pompidou, Paris, France
| | | | - Alexandre Perrier
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
| | - Virginie Poindessous
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
| | - Audrey Mansuet-Lupo
- AP-HP Department of Pathology, Hôpital Cochin, Université Paris Cité, Paris, France
| | - Fatima Djouadi
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
| | - Jean-Marie Launay
- INSERM U942 Lariboisière Hospital, Paris, France
- Pharma Research Department, F. Hoffmann-La-Roche Ltd., Basel, Switzerland
| | - Pierre Laurent-Puig
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France
- Institut du Cancer Paris CARPEM, AP-HP, Department of Genetics and Molecular Medicine, Hôpital Européen Georges Pompidou, Paris, France
| | - Hélène Blons
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France.
- Institut du Cancer Paris CARPEM, AP-HP, Department of Biochemistry, Pharmacogenetics and Molecular Oncology, Hôpital Européen Georges Pompidou, Paris, France.
| | - Sophie Mouillet-Richard
- Centre de Recherche des Cordeliers, INSERM UMRS-1138, Sorbonne Université, Université Paris Cité, Paris, France.
| |
Collapse
|
4
|
Chen H, Du Y, Kong Z, Liao X, Li W. PRNP is a pan-cancer prognostic and immunity-related to EMT in colorectal cancer. Front Cell Dev Biol 2024; 12:1391873. [PMID: 39170916 PMCID: PMC11336278 DOI: 10.3389/fcell.2024.1391873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024] Open
Abstract
Background Prion protein gene (PRNP) is widely expressed in a variety of tissues. Although the roles of PRNP in several cancers have been investigated, no pan-cancer analysis has revealed its relationship with tumorigenesis and immunity. Methods Comprehensive analyses were conducted on The Cancer Genome Atlas (TCGA) Pan-Cancer dataset from the University of California Santa Cruz (UCSC) database to determine the expression of PRNP and its potential prognostic implications. Immune infiltration and enrichment analysis methods were used to ascertain correlations between PRNP expression levels, tumor immunity, and immunotherapy. Additionally, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) methods were employed to examine possible signaling pathways involving PRNP. In vitro experiments using CCK-8 assay, Wound healing assay, and Transwell assay to detect the effect of Cellular prion protein (PrPC) on proliferation, migration, and invasion in colorectal cancer (CRC) cells. The expression levels of epithelial-mesenchymal transition (EMT)-related proteins (N-cadherin, E-cadherin, Vimentin and Snail) were detected by western blot. Results Among most cancer types, PRNP is expressed at high levels, which is linked to the prognosis of patients. PRNP expression is strongly associated with immune infiltrating cells, immunosuppressive cell infiltration and immune checkpoint molecules. In addition to tumor mutation burden (TMB), substantial correlations are detected between PRNP expression and microsatellite instability (MSI) in several cancers. In vitro cell studies inferred that PrPC enhanced the proliferation, migration, invasion, and EMT of CRC cells. Conclusion PRNP serves as an immune-related prognostic marker that holds promise for predicting outcomes related to CRC immunotherapy while simultaneously promoting cell proliferation, migration, and invasion activities. Furthermore, it potentially plays a role in governing EMT regulation within CRC.
Collapse
Affiliation(s)
- Haifeng Chen
- Department of Gastroenterology, The First People’s Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Taicang, Jiangsu, China
| | - Yao Du
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhiyuan Kong
- Department of Gastrointestinal Surgery, The First People’s Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Taicang, Jiangsu, China
| | - Xinghe Liao
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weiping Li
- Department of Gastrointestinal Surgery, The First People’s Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Taicang, Jiangsu, China
| |
Collapse
|
5
|
Xu Y, Hao J, Chen Q, Qin Y, Qin H, Ren S, Sun C, Zhu Y, Shao B, Zhang J, Wang H. Inhibition of the RBMS1/PRNP axis improves ferroptosis resistance-mediated oxaliplatin chemoresistance in colorectal cancer. Mol Carcinog 2024; 63:224-237. [PMID: 37861356 DOI: 10.1002/mc.23647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/25/2023] [Accepted: 10/01/2023] [Indexed: 10/21/2023]
Abstract
The majority of patients with advanced colorectal cancer have chemoresistance to oxaliplatin, and studies on oxaliplatin resistance are limited. Our research showed that RNA-binding motif single-stranded interacting protein 1 (RBMS1) caused ferroptosis resistance in tumor cells, leading to oxaliplatin resistance. We employed bioinformatics to evaluate publically accessible data sets and discovered that RBMS1 was significantly upregulated in oxaliplatin-resistant colorectal cancer cells, in tandem with ferroptosis suppression. In vivo and in vitro studies revealed that inhibiting RBMS1 expression caused ferroptosis in colorectal cancer cells, restoring tumor cell sensitivity to oxaliplatin. Mechanistically, this is due to RBMS1 inducing prion protein translation, resulting in ferroptosis resistance in tumor cells. Validation of clinical specimens revealed that RBMS1 is similarly linked to tumor development and a poor prognosis. Overall, RBMS1 is a potential therapeutic target with clinical translational potential, particularly for oxaliplatin chemoresistance in colorectal cancer.
Collapse
Affiliation(s)
- Yini Xu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Jingpeng Hao
- Department of Anorectal Surgery, Tianjin Medical University Second Hospital, Tianjin, China
| | - Qiang Chen
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Yafei Qin
- Department of Vascular Surgery, Henan Provincial People's Hospital, The Affiliated People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Shaohua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Chenglu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Yanglin Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Jingyi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| |
Collapse
|
6
|
Wang F, Luo M, Cheng Y. KLF5 promotes esophageal squamous cell cancer through the transcriptional activation of FGFBP1. Med Oncol 2023; 41:17. [PMID: 38087142 PMCID: PMC10716083 DOI: 10.1007/s12032-023-02244-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/19/2023] [Indexed: 12/18/2023]
Abstract
Krüpple-like factor 5 (KLF5) is a zinc-finger-containing transcription factor implicated in several human malignancies, but its potential regulatory mechanisms implicated in esophageal squamous cell carcinoma (ESCC) remain elusive. Here, we show that KLF5 is upregulated in ESCC, where its level was significantly associated with tumor differentiation and lymph node metastasis status. Upregulated KLF5 expression promoted the proliferation, migration, and invasion of ESCC cells. Reduced KLF5 showed the opposite effects. Mechanistically, KLF5 exerts its tumor promotion effect by up-regulating fibroblast growth factor binding protein 1 (FGF-BP1) and snail family transcriptional repressor 2 (SNAIL2). KLF5 binds to the promoter regions of FGF-BP1 and transcriptionally activates its expression. Our study indicated that KLF5 could promote esophageal squamous cell cancer proliferation, migration, and invasion by upregulating FGF-BP1/SNAIL2 signaling. Our work suggests that KLF5 might be a proto-oncogene in ESCC and implicated in ESCC metastasis.
Collapse
Affiliation(s)
- Fengyun Wang
- Department of Oncology, First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia, China
| | - Ming Luo
- Imaging Department, Third Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, China
| | - Yufeng Cheng
- Department of Radiotherapy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No.107, West Wenhua Road, Lixia District, Jinan, Shandong, China.
| |
Collapse
|
7
|
Zuo Q, Xu Q, Li Z, Luo D, Peng H, Duan Z. Kruppel-like factor 5 enhances proliferation, lipid droplet formation and oxaliplatin resistance in colorectal cancer by promoting fatty acid binding protein 6 transcription. Anticancer Drugs 2023; 34:1171-1182. [PMID: 37067981 DOI: 10.1097/cad.0000000000001515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Oxaliplatin (OXA) is a standard agent for colorectal cancer (CRC) adjuvant chemotherapy. However, acquired and intrinsic OXA resistance is a primary challenge for CRC treatment. This study investigates the function of the Kruppel-like factor 5/fatty acid binding proteins 6 (KLF5/FABP6) axis in CRC proliferation, lipid droplet formation and OXA resistance. OXA-resistant CRC cell lines were constructed, and FABP6 and KLF5 expression was assessed in parental and OXA-resistant CRC cells. Subsequent to gain- and loss-of-function experiments, CRC cell proliferation was assessed by cell counting kit-8 (CCK-8) and clone formation assays, the intracellular lipid synthesis by oil red O staining and the protein expression of lipid metabolism genes by western blot. OXA resistance of CRC cells was assessed by CCK-8 assay. The binding of KLF5 to FABP6 was analyzed by the dual-luciferase reporter and ChIP assays. A tumorigenicity assay in nude mice was adopted to examine the impact of KLF5 on CRC tumor growth and OXA resistance in vivo . FABP6 and KLF5 expression was high in CRC cell lines. Downregulation of FABP6 or KLF5 restrained CRC cell proliferation and lipid droplet formation in vitro . FABP6 and KLF5 expression was elevated in OXA-resistant CRC cells. Downregulation of FABP6 or KLF5 repressed the OXA resistance of OXA-resistant CRC cells. Mechanistically, KLF5 facilitated the transcription of FABP6. FABP6 overexpression counteracted the suppressive effects of KLF5 downregulation on CRC cell growth, lipid droplet formation and OXA resistance. KLF5 downregulation restrained CRC tumor growth and OXA resistance in vivo . In conclusion, KLF5 knockdown reduced FABP6 transcription to protect against proliferation, lipid droplet formation and OXA resistance in CRC.
Collapse
Affiliation(s)
| | - Qimei Xu
- Department of Pathology, The First Hospital of Changsha, Changsha, Hunan
| | - Zhen Li
- Department of Pathology, The First Hospital of Changsha, Changsha, Hunan
| | - Dixian Luo
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518052, People's Republic of China
| | | | - Zhi Duan
- Department of Pathology, The First Hospital of Changsha, Changsha, Hunan
| |
Collapse
|
8
|
Groveman BR, Schwarz B, Bohrnsen E, Foliaki ST, Carroll JA, Wood AR, Bosio CM, Haigh CL. A PrP EGFR signaling axis controls neural stem cell senescence through modulating cellular energy pathways. J Biol Chem 2023; 299:105319. [PMID: 37802314 PMCID: PMC10641666 DOI: 10.1016/j.jbc.2023.105319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023] Open
Abstract
Mis-folding of the prion protein (PrP) is known to cause neurodegenerative disease; however, the native function of this protein remains poorly defined. PrP has been linked with many cellular functions, including cellular proliferation and senescence. It is also known to influence epidermal growth factor receptor (EGFR) signaling, a pathway that is itself linked with both cell growth and senescence. Adult neural stem cells (NSCs) persist at low levels in the brain throughout life and retain the ability to proliferate and differentiate into new neural lineage cells. KO of PrP has previously been shown to reduce NSC proliferative capacity. We used PrP KO and WT NSCs from adult mouse brain to examine the influence of PrP on cellular senescence, EGFR signaling, and the downstream cellular processes. PrP KO NSCs showed decreased cell proliferation and increased senescence in in vitro cultures. Expression of EGFR was decreased in PrP KO NSCs compared with WT NSCs and additional supplementation of EGF was sufficient to reduce senescence. RNA-seq analysis confirmed that significant changes were occurring at the mRNA level within the EGFR signaling pathway and these were associated with reduced expression of mitochondrial components and correspondingly reduced mitochondrial function. Metabolomic analysis of cellular energy pathways showed that blockages were occurring at critical sites for production of energy and biomass, including catabolism of pyruvate. We conclude that, in the absence of PrP, NSC growth pathways are downregulated as a consequence of insufficient energy and growth intermediates.
Collapse
Affiliation(s)
- Bradley R Groveman
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, USA
| | - Benjamin Schwarz
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, USA
| | - Eric Bohrnsen
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, USA
| | - Simote T Foliaki
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, USA
| | - James A Carroll
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, USA
| | - Aleksandar R Wood
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, USA
| | - Catharine M Bosio
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, USA
| | - Cathryn L Haigh
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, USA.
| |
Collapse
|
9
|
Li J, Li S, Yu S, Yang J, Ke J, Li H, Chen H, Lu M, Sy MS, Gao Z, Li C. Persistent ER stress causes GPI anchor deficit to convert a GPI-anchored prion protein into pro-PrP via the ATF6-miR449c-5p-PIGV axis. J Biol Chem 2023; 299:104982. [PMID: 37390992 PMCID: PMC10388210 DOI: 10.1016/j.jbc.2023.104982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023] Open
Abstract
Endoplasmic reticulum (ER) stress and unfolded protein response are cells' survival strategies to thwart disruption of proteostasis. Tumor cells are continuously being challenged by ER stress. The prion protein, PrP, normally a glycosylphosphatidylinositol (GPI)-anchored protein exists as a pro-PrP retaining its GPI-peptide signal sequence in human pancreatic ductal cell adenocarcinoma (PDAC). Higher abundance of pro-PrP indicates poorer prognosis in PDAC patients. The reason why PDAC cells express pro-PrP is unknown. Here, we report that persistent ER stress causes conversion of GPI-anchored PrP to pro-PrP via a conserved ATF6-miRNA449c-5p-PIGV axis. Mouse neurons and AsPC-1, a PDAC cell line, express GPI-anchored PrP. However, continuous culture of these cells with the ER stress inducers thapsigargin or brefeldin A results in the conversion of a GPI-anchored PrP to pro-PrP. Such a conversion is reversible; removal of the inducers allows the cells to re-express a GPI-anchored PrP. Mechanistically, persistent ER stress increases the abundance of an active ATF6, which increases the level of miRNA449c-5p (miR449c-5p). By binding the mRNA of PIGV at its 3'-UTRs, miR449c-5p suppresses the level of PIGV, a mannosyltransferase pivotal in the synthesis of the GPI anchor. Reduction of PIGV leads to disruption of the GPI anchor assembly, causing pro-PrP accumulation and enhancing cancer cell migration and invasion. The importance of ATF6-miR449c-5p-PIGV axis is recapitulated in PDAC biopsies as the higher levels of ATF6 and miR449c-5p and lower levels of PIGV are markers of poorer outcome for patients with PDAC. Drugs targeting this axis may prevent PDAC progression.
Collapse
Affiliation(s)
- JingFeng Li
- Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - SaSa Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - ShuPei Yu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Jie Yang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - JingRu Ke
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Heng Chen
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - MingJian Lu
- Department of Interventional Radiology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Man-Sun Sy
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - ZhenXing Gao
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China.
| | - Chaoyang Li
- Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China.
| |
Collapse
|
10
|
Lee E, Cheung J, Bialkowska AB. Krüppel-like Factors 4 and 5 in Colorectal Tumorigenesis. Cancers (Basel) 2023; 15:cancers15092430. [PMID: 37173904 PMCID: PMC10177156 DOI: 10.3390/cancers15092430] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Krüppel-like factors (KLFs) are transcription factors regulating various biological processes such as proliferation, differentiation, migration, invasion, and homeostasis. Importantly, they participate in disease development and progression. KLFs are expressed in multiple tissues, and their role is tissue- and context-dependent. KLF4 and KLF5 are two fascinating members of this family that regulate crucial stages of cellular identity from embryogenesis through differentiation and, finally, during tumorigenesis. They maintain homeostasis of various tissues and regulate inflammation, response to injury, regeneration, and development and progression of multiple cancers such as colorectal, breast, ovarian, pancreatic, lung, and prostate, to name a few. Recent studies broaden our understanding of their function and demonstrate their opposing roles in regulating gene expression, cellular function, and tumorigenesis. This review will focus on the roles KLF4 and KLF5 play in colorectal cancer. Understanding the context-dependent functions of KLF4 and KLF5 and the mechanisms through which they exert their effects will be extremely helpful in developing targeted cancer therapy.
Collapse
Affiliation(s)
- Esther Lee
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jacky Cheung
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
11
|
Armocida D, Busceti CL, Biagioni F, Fornai F, Frati A. The Role of Cellular Prion Protein in Glioma Tumorigenesis Could Be through the Autophagic Mechanisms: A Narrative Review. Int J Mol Sci 2023; 24:ijms24021405. [PMID: 36674920 PMCID: PMC9865539 DOI: 10.3390/ijms24021405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
The carcinogenesis of glial tumors appears complex because of the many genetic and epigenetic phenomena involved. Among these, cellular prion protein (PrPC) is considered a key factor in cell-death resistance and important aspect implicated in tumorigenesis. Autophagy also plays an important role in cell death in various pathological conditions. These two cellular phenomena are related and share the same activation by specific alterations in the cellular microenvironment. Furthermore, there is an interdependence between autophagy and prion activity in glioma tumorigenesis. Glioma is one of the most aggressive known cancers, and the fact that such poorly studied processes as autophagy and PrPC activity are so strongly involved in its carcinogenesis suggests that by better understanding their interaction, more can be understood about its origin and treatment. Few studies in the literature relate these two cellular phenomena, much less try to explain their combined activity and role in glioma carcinogenesis. In this study, we explored the recent findings on the molecular mechanism and regulation pathways of autophagy, examining the role of PrPC in autophagy processes and how they may play a central role in glioma tumorigenesis. Among the many molecular interactions that PrP physiologically performs, it appears that processes shared with autophagy activity are those most implicated in glial tumor carcinogeneses such as activity on MAP kinases, PI3K, and mTOR. This work can be supportive and valuable as a basis for further future studies on this topic.
Collapse
Affiliation(s)
- Daniele Armocida
- Department of Human Neuroscience, Sapienza University of Rome, Via Caserta 6, 00161 Roma, Italy
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Via Caserta 6, 00161 Roma, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
- Correspondence: ; Tel.: +39-39-3287-4496
| | - Carla Letizia Busceti
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Francesca Biagioni
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Francesco Fornai
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Alessandro Frati
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| |
Collapse
|
12
|
Li H, Zhang J, Ke JR, Yu Z, Shi R, Gao SS, Li JF, Gao ZX, Ke CS, Han HX, Xu J, Leng Q, Wu GR, Li Y, Tao L, Zhang X, Sy MS, Li C. Pro-prion, as a membrane adaptor protein for E3 ligase c-Cbl, facilitates the ubiquitination of IGF-1R, promoting melanoma metastasis. Cell Rep 2022; 41:111834. [PMID: 36543142 DOI: 10.1016/j.celrep.2022.111834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/13/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Aberrant activation of receptor tyrosine kinase (RTK) is usually a result of mutation and plays important roles in tumorigenesis. How RTK without mutation affects tumorigenesis remains incompletely understood. Here we show that in human melanomas pro-prion (pro-PrP) is an adaptor protein for an E3 ligase c-Cbl, enabling it to polyubiquitinate activated insulin-like growth factor-1 receptor (IGF-1R), leading to enhanced melanoma metastasis. All human melanoma cell lines studied here express pro-PrP, retaining its glycosylphosphatidylinositol-peptide signal sequence (GPI-PSS). The sequence, PVILLISFLI in the GPI-PSS of pro-PrP, binds c-Cbl, docking c-Cbl to the inner cell membrane, forming a pro-PrP/c-Cbl/IGF-1R trimeric complex. Subsequently, IGF-1R polyubiquitination and degradation are augmented, which increases autophagy and tumor metastasis. Importantly, the synthetic peptide PVILLISFLI disrupts the pro-PrP/c-Cbl/IGF-1R complex, reducing cancer cell autophagy and mitigating tumor aggressiveness in vitro and in vivo. Targeting cancer-associated GPI-PSS may provide a therapeutic approach for treating human cancers expressing pro-PrP.
Collapse
Affiliation(s)
- Huan Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, 78 Heng Zhi Gang Road, Guangzhou 510095, China; Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiao Hong Shan Zhong Qu, Wuhan 430030, China
| | - Jie Zhang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, 78 Heng Zhi Gang Road, Guangzhou 510095, China
| | - Jing-Ru Ke
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Ze Yu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, 78 Heng Zhi Gang Road, Guangzhou 510095, China
| | - Run Shi
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, 78 Heng Zhi Gang Road, Guangzhou 510095, China
| | - Shan-Shan Gao
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, 78 Heng Zhi Gang Road, Guangzhou 510095, China
| | - Jing-Feng Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, 78 Heng Zhi Gang Road, Guangzhou 510095, China
| | - Zhen-Xing Gao
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, 78 Heng Zhi Gang Road, Guangzhou 510095, China
| | - Chang-Shu Ke
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Hui-Xia Han
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, No. 1023-1063 Shatai South Road, Guangzhou 510515, China
| | - Jiang Xu
- Department of Stomatology, First Affiliated Hospital, School of Medicine, Shihezi University, No. 107 North 2nd Road, Shihezi 832008, China
| | - Qibin Leng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, 78 Heng Zhi Gang Road, Guangzhou 510095, China
| | - Gui-Ru Wu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, 78 Heng Zhi Gang Road, Guangzhou 510095, China
| | - Yingqiu Li
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, 135 West Xingang Road, Guangzhou 510275, China
| | - Lin Tao
- Department of Pathology, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi 832008, China
| | - Xianghui Zhang
- Department of Public Health, Shihezi University School of Medicine, Shihezi 832000, China
| | - Man-Sun Sy
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Chaoyang Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, 78 Heng Zhi Gang Road, Guangzhou 510095, China.
| |
Collapse
|
13
|
Downregulated PRNP Facilitates Cell Proliferation and Invasion and Has Effect on the Immune Regulation in Ovarian Cancer. J Immunol Res 2022; 2022:3205040. [PMID: 36213323 PMCID: PMC9537007 DOI: 10.1155/2022/3205040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
Background. Ovarian cancer (OC) seriously threatens women’s life. Ferroptosis plays an essential role in the initiation and development of OC. However, more molecular targets and mechanisms for ferroptosis in OC remain to be further elucidated. Methods. Several OC datasets were integrated in this study and three candidate genes including PRNP were further screened out as the ferroptosis-related gene which was differentially expressed in OC. Then, comprehensive evaluations concerning gene expression, clinical implication, in vitro validation of expression and functional experiments, prediction of downstream molecules and related signal pathways, and immune-modulating function were performed. Results. PRNP was the only downregulated ferroptosis-related gene with prognostic value for OC patients. The decreased mRNA and protein expression was verified in OC tissues and cell lines. PRNP was significantly correlated with cancer stages, primary therapy outcomes, and age in OC patients. Moreover, we found that overexpression of PRNP inhibited the proliferation, migration, and invasion ability of OC cells through in vitro experiments. PRNP was enriched to the Ras signaling pathway. PRNP expression was positively correlated with the infiltration of immune cells, such as mast cells, T effector memory cells, plasmacytoid DC cells, NK cells, and eosinophils. In addition, the association of PRNP with other immune signatures was also found. Conclusion. This study demonstrated for the first time showed that ferroptosis-related gene PRNP exerted a tumor suppressive role in OC and the aberrant expression and function of PRNP making it a potential novel biomarker for OC diagnosis, prognosis, and response to immunotherapies.
Collapse
|
14
|
Mohammadi B, Song F, Matamoros-Angles A, Shafiq M, Damme M, Puig B, Glatzel M, Altmeppen HC. Anchorless risk or released benefit? An updated view on the ADAM10-mediated shedding of the prion protein. Cell Tissue Res 2022; 392:215-234. [PMID: 35084572 PMCID: PMC10113312 DOI: 10.1007/s00441-022-03582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/12/2022] [Indexed: 11/24/2022]
Abstract
The prion protein (PrP) is a broadly expressed glycoprotein linked with a multitude of (suggested) biological and pathological implications. Some of these roles seem to be due to constitutively generated proteolytic fragments of the protein. Among them is a soluble PrP form, which is released from the surface of neurons and other cell types by action of the metalloprotease ADAM10 in a process termed 'shedding'. The latter aspect is the focus of this review, which aims to provide a comprehensive overview on (i) the relevance of proteolytic processing in regulating cellular PrP functions, (ii) currently described involvement of shed PrP in neurodegenerative diseases (including prion diseases and Alzheimer's disease), (iii) shed PrP's expected roles in intercellular communication in many more (patho)physiological conditions (such as stroke, cancer or immune responses), (iv) and the need for improved research tools in respective (future) studies. Deeper mechanistic insight into roles played by PrP shedding and its resulting fragment may pave the way for improved diagnostics and future therapeutic approaches in diseases of the brain and beyond.
Collapse
Affiliation(s)
- Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Working Group for Interdisciplinary Neurobiology and Immunology (INI Research), Hamburg, Germany
| | - Feizhi Song
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Andreu Matamoros-Angles
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Markus Damme
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Berta Puig
- Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | |
Collapse
|
15
|
Loh D, Reiter RJ. Melatonin: Regulation of Prion Protein Phase Separation in Cancer Multidrug Resistance. Molecules 2022; 27:705. [PMID: 35163973 PMCID: PMC8839844 DOI: 10.3390/molecules27030705] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
The unique ability to adapt and thrive in inhospitable, stressful tumor microenvironments (TME) also renders cancer cells resistant to traditional chemotherapeutic treatments and/or novel pharmaceuticals. Cancer cells exhibit extensive metabolic alterations involving hypoxia, accelerated glycolysis, oxidative stress, and increased extracellular ATP that may activate ancient, conserved prion adaptive response strategies that exacerbate multidrug resistance (MDR) by exploiting cellular stress to increase cancer metastatic potential and stemness, balance proliferation and differentiation, and amplify resistance to apoptosis. The regulation of prions in MDR is further complicated by important, putative physiological functions of ligand-binding and signal transduction. Melatonin is capable of both enhancing physiological functions and inhibiting oncogenic properties of prion proteins. Through regulation of phase separation of the prion N-terminal domain which targets and interacts with lipid rafts, melatonin may prevent conformational changes that can result in aggregation and/or conversion to pathological, infectious isoforms. As a cancer therapy adjuvant, melatonin could modulate TME oxidative stress levels and hypoxia, reverse pH gradient changes, reduce lipid peroxidation, and protect lipid raft compositions to suppress prion-mediated, non-Mendelian, heritable, but often reversible epigenetic adaptations that facilitate cancer heterogeneity, stemness, metastasis, and drug resistance. This review examines some of the mechanisms that may balance physiological and pathological effects of prions and prion-like proteins achieved through the synergistic use of melatonin to ameliorate MDR, which remains a challenge in cancer treatment.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
16
|
Genome-Wide Profiling Reveals HPV Integration Pattern and Activated Carcinogenic Pathways in Penile Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13236104. [PMID: 34885212 PMCID: PMC8657281 DOI: 10.3390/cancers13236104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Penile squamous cell carcinoma (PSCC) has been regarded as an HPV-related cancer for a long time. However, the integration pattern and carcinogenic pathways of HPV in PSCC remain unclear. The results of this study provide insights into the HPV-related carcinogenic mechanism in PSCC, which may be less prone to involvement in the traditional E6/E7 carcinogenic process, and are characterized by effects on the host genome, which result in the inactivation of tumor suppressors (CADM2, etc.) and the activation of oncogenes (KLF5, etc.), thus activating oncogenic signaling pathways (MAPK, JAK/STAT, etc.). This study could enhance our understanding of HPV integration and pave the way for subsequent HPV studies in PSCC. Abstract Human papillomavirus (HPV) is a significant etiologic driver of penile squamous cell carcinoma (PSCC). The integration pattern of HPV and its carcinogenic mechanism in PSCC remain largely unclear. We retrospectively reviewed 108 PSCC cases who received surgery between 2008 and 2017. Using high-throughput viral integration detection, we identified 35 HPV-integrated PSCCs. Unlike cervical cancer, the HPV E2 oncogene was not prone to involvement in integration. Eleven of the 35 (31.4%) HPV-integrated PSCCs harbored intact HPV E2; these tumors had lower HPV E6 and E7 expression and higher expression of p53 and pRb proteins than those with disrupted E2 did (p < 0.001 and p = 0.024). Integration breakpoints are preferentially distributed in or near host genes, including previously reported hotspots (KLF5, etc.) and newly identified hotspots (CADM2, etc.), which are mainly involved in oncogenic signaling pathways (MAPK, JAK/STAT, etc.). Regarding the phosphorylation levels of JNK, p38 was higher in HPV-positive tumors with MAPK-associated integration than those in HPV-positive tumors with other integration and those in HPV-negative tumors. In vitro, KLF5 knockdown inhibited proliferation and invasion of PSCC cells, while silencing CADM2 promoted migration and invasion. In conclusion, this study enhances our understanding of HPV-induced carcinogenesis in PSCC, which may not only rely on the E6/E7 oncogenes, but mat also affect the expression of critical genes and thus activate oncogenic pathways.
Collapse
|
17
|
Bianchini M, Giambelluca MA, Scavuzzo MC, Di Franco G, Guadagni S, Palmeri M, Furbetta N, Gianardi D, Funel N, Ricci C, Gaeta R, Pollina LE, Falcone A, Vivaldi C, Di Candio G, Biagioni F, Busceti CL, Morelli L, Fornai F. Detailing the ultrastructure's increase of prion protein in pancreatic adenocarcinoma. World J Gastroenterol 2021; 27:7324-7339. [PMID: 34876792 PMCID: PMC8611201 DOI: 10.3748/wjg.v27.i42.7324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/14/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Recent evidences have shown a relationship between prion protein (PrPc) expression and pancreatic ductal adenocarcinoma (PDAC). Indeed, PrPc could be one of the markers explaining the aggressiveness of this tumor. However, studies investigating the specific compartmentalization of increased PrPc expression within PDAC cells are lacking, as well as a correlation between ultrastructural evidence, ultrastructural morphometry of PrPc protein and clinical data. These data, as well as the quantitative stoichiometry of this protein detected by immuno-gold, provide a significant advancement in understanding the biology of disease and the outcome of surgical resection. AIM To analyze quantitative stoichiometry and compartmentalization of PrPc in PDAC cells and to correlate its presence with prognostic data. METHODS Between June 2018 and December 2020, samples from pancreatic tissues of 45 patients treated with pancreatic resection for a preoperative suspicion of PDAC at our Institution were collected. When the frozen section excluded a PDAC diagnosis, or the nodules were too small for adequate sampling, patients were ruled out from the present study. Western blotting was used to detect, quantify and compare the expression of PrPc in PDAC and control tissues, such as those of non-affected neighboring pancreatic tissue of the same patient. To quantify the increase of PrPc and to detect the subcellular compartmentalization of PrPc within PDAC cells, immuno-gold stoichiometry within specific cell compartments was analyzed with electron microscopy. Finally, an analysis of quantitative PrPc expression according to prognostic data, such as cancer stage, recurrence of the disease at 12 mo after surgery and recurrence during adjuvant chemotherapy was made. RESULTS The amount of PrPc within specimen from 38 out of 45 patients was determined by semi-quantitative analysis by using Western blotting, which indicates that PrPc increases almost three-fold in tumor pancreatic tissue compared with healthy pancreatic regions [242.41 ± 28.36 optical density (OD) vs 95 ± 17.40 OD, P < 0.0001]. Quantitative morphometry carried out by using immuno-gold detection at transmission electron microscopy confirms an increased PrPc expression in PDAC ductal cells of all patients and allows to detect a specific compartmentalization of PrPc within tumor cells. In particular, the number of immuno-gold particles of PrPc was significantly higher in PDAC cells respect to controls, when considering the whole cell (19.8 ± 0.79 particles vs 9.44 ± 0.45, P < 0.0001). Remarkably, considering PDAC cells, the increase of PrPc was higher in the nucleus than cytosol of tumor cells, which indicates a shift in PrPc compartmentalization within tumor cells. In fact, the increase of immuno-gold within nuclear compartment exceeds at large the augment of PrPc which was detected in the cytosol (nucleus: 12.88 ± 0.59 particles vs 5.12 ± 0.32, P < 0.0001; cytosol: 7.74. ± 0.44 particles vs 4.3 ± 0.24, P < 0.0001). In order to analyze the prognostic impact of PrPc, we found a correlation between PrPc expression and cancer stage according to pathology results, with a significantly higher expression of PrPc for advanced stages. Moreover, 24 patients with a mean follow-up of 16.8 mo were considered. Immuno-blot analysis revealed a significantly higher expression of PrPc in patients with disease recurrence at 12 mo after radical surgery (360.71 ± 69.01 OD vs 170.23 ± 23.06 OD, P = 0.023), also in the subgroup of patients treated with adjuvant CT (368.36 ± 79.26 OD in the recurrence group vs 162.86 ± 24.16 OD, P = 0.028), which indicates a correlation with a higher chemo-resistance. CONCLUSION Expression of PrPc is significantly higher in PDAC cells compared with control, with the protein mainly placed in the nucleus. Preliminary clinical data confirm the correlation with a poorer prognosis.
Collapse
Affiliation(s)
- Matteo Bianchini
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56124, Italy
| | - Maria Anita Giambelluca
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56124, Italy
| | - Maria Concetta Scavuzzo
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56124, Italy
| | - Gregorio Di Franco
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56124, Italy
| | - Simone Guadagni
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56124, Italy
| | - Matteo Palmeri
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56124, Italy
| | - Niccolò Furbetta
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56124, Italy
| | - Desirée Gianardi
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56124, Italy
| | - Niccola Funel
- Division of Surgical Pathology, Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa 56124, Italy
| | - Claudio Ricci
- Division of Surgical Pathology, Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa 56124, Italy
| | - Raffaele Gaeta
- Division of Surgical Pathology, Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa 56124, Italy
| | - Luca Emanuele Pollina
- Division of Surgical Pathology, Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa 56124, Italy
| | - Alfredo Falcone
- Division of Medical Oncology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56124, Italy
| | - Caterina Vivaldi
- Division of Medical Oncology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56124, Italy
| | - Giulio Di Candio
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56124, Italy
| | - Francesca Biagioni
- IRCCS Neuromed, Istituto Neurologico Mediterraneo, Pozzilli 86077, Italy
| | | | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56124, Italy
- EndoCAS (Center for Computer Assisted Surgery), University of Pisa, Pisa 56124, Italy
| | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56124, Italy
- IRCCS Neuromed, Istituto Neurologico Mediterraneo, Pozzilli 86077, Italy
| |
Collapse
|
18
|
Mouillet-Richard S, Ghazi A, Laurent-Puig P. The Cellular Prion Protein and the Hallmarks of Cancer. Cancers (Basel) 2021; 13:cancers13195032. [PMID: 34638517 PMCID: PMC8508458 DOI: 10.3390/cancers13195032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary The cellular prion protein PrPC is best known for its involvement, under its pathogenic isoform, in a group of neurodegenerative diseases. Notwithstanding, an emerging role for PrPC in various cancer-associated processes has attracted increasing attention over recent years. PrPC is overexpressed in diverse types of solid cancers and has been incriminated in various aspects of cancer biology, most notably proliferation, migration, invasion and metastasis, as well as resistance to cytotoxic agents. This article aims to provide a comprehensive overview of the current knowledge of PrPC with respect to the hallmarks of cancer, a reference framework encompassing the major characteristics of cancer cells. Abstract Beyond its causal involvement in a group of neurodegenerative diseases known as Transmissible Spongiform Encephalopathies, the cellular prion protein PrPC is now taking centre stage as an important contributor to cancer progression in various types of solid tumours. The prion cancer research field has progressively expanded in the last few years and has yielded consistent evidence for an involvement of PrPC in cancer cell proliferation, migration and invasion, therapeutic resistance and cancer stem cell properties. Most recent data have uncovered new facets of the biology of PrPC in cancer, ranging from its control on enzymes involved in immune tolerance to its radio-protective activity, by way of promoting angiogenesis. In the present review, we aim to summarise the body of literature dedicated to the study of PrPC in relation to cancer from the perspective of the hallmarks of cancer, the reference framework defined by Hanahan and Weinberg.
Collapse
Affiliation(s)
- Sophie Mouillet-Richard
- Centre de Recherche des Cordeliers, Université de Paris, INSERM, Sorbonne Université, F-75006 Paris, France; (A.G.); (P.L.-P.)
- Correspondence:
| | - Alexandre Ghazi
- Centre de Recherche des Cordeliers, Université de Paris, INSERM, Sorbonne Université, F-75006 Paris, France; (A.G.); (P.L.-P.)
| | - Pierre Laurent-Puig
- Centre de Recherche des Cordeliers, Université de Paris, INSERM, Sorbonne Université, F-75006 Paris, France; (A.G.); (P.L.-P.)
- Department of Biology, Institut du Cancer Paris CARPEM, APHP, Hôpital Européen Georges Pompidou, F-75015 Paris, France
| |
Collapse
|
19
|
Abreu de Oliveira WA, Moens S, El Laithy Y, van der Veer BK, Athanasouli P, Cortesi EE, Baietti MF, Koh KP, Ventura JJ, Amant F, Annibali D, Lluis F. Wnt/β-Catenin Inhibition Disrupts Carboplatin Resistance in Isogenic Models of Triple-Negative Breast Cancer. Front Oncol 2021; 11:705384. [PMID: 34367990 PMCID: PMC8340846 DOI: 10.3389/fonc.2021.705384] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/28/2021] [Indexed: 12/11/2022] Open
Abstract
Triple-Negative Breast Cancer (TNBC) is the most aggressive breast cancer subtype, characterized by limited treatment options and higher relapse rates than hormone-receptor-positive breast cancers. Chemotherapy remains the mainstay treatment for TNBC, and platinum salts have been explored as a therapeutic alternative in neo-adjuvant and metastatic settings. However, primary and acquired resistance to chemotherapy in general and platinum-based regimens specifically strongly hampers TNBC management. In this study, we used carboplatin-resistant in vivo patient-derived xenograft and isogenic TNBC cell-line models and detected enhanced Wnt/β-catenin activity correlating with an induced expression of stem cell markers in both resistant models. In accordance, the activation of canonical Wnt signaling in parental TNBC cell lines increases stem cell markers' expression, formation of tumorspheres and promotes carboplatin resistance. Finally, we prove that Wnt signaling inhibition resensitizes resistant models to carboplatin both in vitro and in vivo, suggesting the synergistic use of Wnt inhibitors and carboplatin as a therapeutic option in TNBC. Here we provide evidence for a prominent role of Wnt signaling in mediating resistance to carboplatin, and we establish that combinatorial targeting of Wnt signaling overcomes carboplatin resistance enhancing chemotherapeutic drug efficacy.
Collapse
Affiliation(s)
| | - Stijn Moens
- Leuven Cancer Institute (LKI), Department of Oncology, Gynecological Oncology Lab 3000, KU Leuven, Leuven, Belgium
| | - Youssef El Laithy
- Stem Cell Institute, Department of Development and Regeneration, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Bernard K van der Veer
- Stem Cell Institute, Department of Development and Regeneration, Laboratory for Stem Cell and Developmental Epigenetics, KU Leuven, Leuven, Belgium
| | - Paraskevi Athanasouli
- Stem Cell Institute, Department of Development and Regeneration, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Emanuela Elsa Cortesi
- Translational Cell and Tissue Research - Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | | | - Kian Peng Koh
- Stem Cell Institute, Department of Development and Regeneration, Laboratory for Stem Cell and Developmental Epigenetics, KU Leuven, Leuven, Belgium
| | - Juan-Jose Ventura
- Translational Cell and Tissue Research - Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Frédéric Amant
- Leuven Cancer Institute (LKI), Department of Oncology, Gynecological Oncology Lab 3000, KU Leuven, Leuven, Belgium.,Centre for Gynecologic Oncology Amsterdam (CGOA), Antoni Van Leeuwenhoek-Netherlands Cancer Institute (AvL-NKI), University Medical Center (UMC), Amsterdam, Netherlands
| | - Daniela Annibali
- Leuven Cancer Institute (LKI), Department of Oncology, Gynecological Oncology Lab 3000, KU Leuven, Leuven, Belgium.,Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Frederic Lluis
- Stem Cell Institute, Department of Development and Regeneration, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Silva JD, Nogueira L, Coelho R, Deus A, Khayat A, Marchi R, Oliveira ED, Santos APD, Cavalli L, Pereira S. HPV-associated penile cancer: Impact of copy number alterations in miRNA/mRNA interactions and potential druggable targets. Cancer Biomark 2021; 32:147-160. [PMID: 34151841 DOI: 10.3233/cbm-210035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Penile cancer (PeCa) is a rare disease, but its incidence has increased worldwide, mostly in HPV+ patients. Nevertheless, there is still no targeted treatment for this carcinoma. OBJECTIVE To predict the main signaling pathways involved in penile tumorigenesis and its potential drug targets. METHODS Genome-wide copy number profiling was performed in 28 PeCa. Integration analysis of CNAs and miRNAs and mRNA targets was performed by DIANA-TarBase v.8. The potential impact of the miRNAs/target genes on biological pathways was assessed by DIANA-miRPath v.3.0. For each miRNA, KEGG pathways were generated based on the tarbase and microT-CDS algorithms. Pharmaco-miR was used to identify associations between miRNAs and their target genes to predict druggable targets. RESULTS 269 miRNAs and 2,395 genes were mapped in cytobands with CNAs. The comparison of the miRNAs mapped at these cytobands and the miRNAs that were predicted to regulate the genes also mapped in these regions, resulted in a set of common 35 miRNAs and 292 genes. Enrichment pathway revealed their involvement in five top signaling pathways. EGFR and COX2 were identified as potential druggable targets. CONCLUSION Our data indicate the potential use of EGFR and COX2 inhibitors as a target treatment for PeCa patients.
Collapse
Affiliation(s)
- Jenilson da Silva
- Postgraduate Program in Health Science, Federal University of Maranhão, São Luís, MA, Brazil
| | - Leudivan Nogueira
- Postgraduate Program in Health Science, Federal University of Maranhão, São Luís, MA, Brazil.,Aldenora Bello Cancer Hospital, São Luís, MA, Brazil
| | - Ronald Coelho
- Aldenora Bello Cancer Hospital, São Luís, MA, Brazil
| | - Amanda Deus
- Postgraduate Program in Health Science, Federal University of Maranhão, São Luís, MA, Brazil.,Aldenora Bello Cancer Hospital, São Luís, MA, Brazil
| | - André Khayat
- Oncology Research Center, Federal University of Pará, Belém, PA, Brazil
| | - Rafael Marchi
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Edivaldo de Oliveira
- Tissue Culture and Cytogenetics Laboratory, Institute of Evandro Chagas, Belém, PA, Brazil
| | - Ana Paula Dos Santos
- Department of Physiological Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Luciane Cavalli
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Silma Pereira
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luís, MA, Brazil
| |
Collapse
|
21
|
Tumor resistance to radiotherapy is triggered by an ATM/TAK1-dependent-increased expression of the cellular prion protein. Oncogene 2021; 40:3460-3469. [PMID: 33767435 DOI: 10.1038/s41388-021-01746-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 02/24/2021] [Accepted: 03/03/2021] [Indexed: 02/02/2023]
Abstract
In solid cancers, high expression of the cellular prion protein (PrPC) is associated with stemness, invasiveness, and resistance to chemotherapy, but the role of PrPC in tumor response to radiotherapy is unknown. Here, we show that, in neuroblastoma, breast, and colorectal cancer cell lines, PrPC expression is increased after ionizing radiation (IR) and that PrPC deficiency increases radiation sensitivity and decreases radiation-induced radioresistance in tumor cells. In neuroblastoma cells, IR activates ATM that triggers TAK1-dependent phosphorylation of JNK and subsequent activation of the AP-1 transcription factor that ultimately increases PRNP promoter transcriptional activity through an AP-1 binding site in the PRNP promoter. Importantly, we show that this ATM-TAK1-PrPC pathway mediated radioresistance is activated in all tumor cell lines studied and that pharmacological inhibition of TAK1 activity recapitulates the effects of PrPC deficiency. Altogether, these results unveil how tumor cells activate PRNP to acquire resistance to radiotherapy and might have implications for therapeutic targeting of solid tumors radioresistance.
Collapse
|
22
|
Wang S, Wei H, Huang Z, Wang X, Shen R, Wu Z, Lin J. Epidermal growth factor receptor promotes tumor progression and contributes to gemcitabine resistance in osteosarcoma. Acta Biochim Biophys Sin (Shanghai) 2021; 53:317-324. [PMID: 33432347 DOI: 10.1093/abbs/gmaa177] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma (OS) is the most common type of primary malignant tumors that originate in the bone. Resistance to chemotherapy confers a poor prognosis on OS patients. Dysregulation of the epidermal growth factor receptor (EGFR) signaling has been reported in sarcomas. However, the functional contribution of EGFR hyperactivation to the tumor biology and chemoresistance remains largely unexplored in OS. In this study, we aimed to investigate the role of EGFR in OS progression and in the response of OS to gemcitabine treatment. The EGFR expression was found to be upregulated in fibroblastic OS cell lines. EGFR knockdown suppressed OS cell proliferation, migration, and invasion in vitro and tumor formation in vivo. Conversely, EGFR overexpression promoted the growth and motility of OS cells. In terms of mechanism, the levels of phospho-Akt and phospho-ERK were decreased upon EGFR knockdown but increased as a result of EGFR overexpression, implying a possible involvement of PI3K/Akt and ERK pathways in mediating the effects of EGFR on OS cells. Moreover, the level of phospho-EGFR was increased in OS cells when exposed to gemcitabine treatment. A more profound proliferative inhibition and a higher rate of apoptosis were obtained in OS cells via inducing cell cycle arrest at G1 phase upon gemcitabine treatment combined with EGFR knockdown, as compared to gemcitabine alone. On the contrary, EGFR overexpression counteracted the growth-inhibiting and pro-apoptotic effects of gemcitabine in OS cells. The present study suggests that EGFR promotes tumor progression and contributes to gemcitabine resistance in OS.
Collapse
Affiliation(s)
- Shenglin Wang
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Hongxiang Wei
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Zhen Huang
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Xinwen Wang
- Department of Orthopedics, The People’s Hospital of Jiangmen City, Jiangmen 529051, China
| | - Rongkai Shen
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Zhaoyang Wu
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Jianhua Lin
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
23
|
Gel-Free 3D Tumoroids with Stem Cell Properties Modeling Drug Resistance to Cisplatin and Imatinib in Metastatic Colorectal Cancer. Cells 2021; 10:cells10020344. [PMID: 33562088 PMCID: PMC7914642 DOI: 10.3390/cells10020344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/25/2021] [Accepted: 02/03/2021] [Indexed: 01/16/2023] Open
Abstract
Researchers have developed several three-dimensional (3D) culture systems, including spheroids, organoids, and tumoroids with increased properties of cancer stem cells (CSCs), also called cancer-initiating cells (CICs). Drug resistance is a crucial issue involving recurrence in cancer patients. Many studies on anti-cancer drugs have been reported using 2D culture systems, whereas 3D cultured tumoroids have many advantages for assessing drug sensitivity and resistance. Here, we aimed to investigate whether Cisplatin (a DNA crosslinker), Imatinib (a multiple tyrosine kinase inhibitor), and 5-Fluorouracil (5-FU: an antimetabolite) alter the tumoroid growth of metastatic colorectal cancer (mCRC). Gene expression signatures of highly metastatic aggregative CRC (LuM1 cells) vs. low-metastatic, non-aggregative CRC (Colon26 and NM11 cells) were analyzed using microarray. To establish a 3D culture-based multiplexing reporter assay system, LuM1 was stably transfected with the Mmp9 promoter-driven ZsGreen fluorescence reporter gene, which was designated as LuM1/m9 cells and cultured in NanoCulture Plate®, a gel-free 3D culture device. LuM1 cells highly expressed mRNA encoding ABCG2 (a drug resistance pump, i.e., CSC/CIC marker), other CSC/CIC markers (DLL1, EpCAM, podoplanin, STAT3/5), pluripotent stem cell markers (Sox4/7, N-myc, GATA3, Nanog), and metastatic markers (MMPs, Integrins, EGFR), compared to the other two cell types. Hoechst efflux stem cell-like side population was increased in LuM1 (7.8%) compared with Colon26 (2.9%), both of which were markedly reduced by verapamil treatment, an ABCG2 inhibitor. Smaller cell aggregates of LuM1 were more sensitive to Cisplatin (at 10 μM), whereas larger tumoroids with increased ABCG2 expression were insensitive. Notably, Cisplatin (2 μM) and Imatinib (10 μM) at low concentrations significantly promoted tumoroid formation (cell aggregation) and increased Mmp9 promoter activity in mCRC LuM1/m9, while not cytotoxic to them. On the other hand, 5-FU significantly inhibited tumoroid growth, although not completely. Thus, drug resistance in cancer with increased stem cell properties was modeled using the gel-free 3D cultured tumoroid system. The tumoroid culture is useful and easily accessible for the assessment of drug sensitivity and resistance.
Collapse
|
24
|
The Role of Cellular Prion Protein in Promoting Stemness and Differentiation in Cancer. Cancers (Basel) 2021; 13:cancers13020170. [PMID: 33418999 PMCID: PMC7825291 DOI: 10.3390/cancers13020170] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Aside from its well-established role in prion disorders, in the last decades the significance of cellular prion protein (PrPC) expression in human cancers has attracted great attention. An extensive body of work provided evidence that PrPC contributes to tumorigenesis by regulating tumor growth, differentiation, and resistance to conventional therapies. In particular, PrPC over-expression has been related to the acquisition of a malignant phenotype of cancer stem cells (CSCs) in a variety of solid tumors, encompassing pancreatic ductal adenocarcinoma, osteosarcoma, breast, gastric, and colorectal cancers, and primary brain tumors as well. According to consensus, increased levels of PrPC endow CSCs with self-renewal, proliferative, migratory, and invasive capacities, along with increased resistance to anti-cancer agents. In addition, increasing evidence demonstrates that PrPc also participates in multi-protein complexes to modulate the oncogenic properties of CSCs, thus sustaining tumorigenesis. Therefore, strategies aimed at targeting PrPC and/or PrPC-organized complexes could be a promising approach for anti-cancer therapy. Abstract Cellular prion protein (PrPC) is seminal to modulate a variety of baseline cell functions to grant homeostasis. The classic role of such a protein was defined as a chaperone-like molecule being able to rescue cell survival. Nonetheless, PrPC also represents the precursor of the deleterious misfolded variant known as scrapie prion protein (PrPSc). This variant is detrimental in a variety of prion disorders. This multi-faceted role of PrP is greatly increased by recent findings showing how PrPC in its folded conformation may foster tumor progression by acting at multiple levels. The present review focuses on such a cancer-promoting effect. The manuscript analyzes recent findings on the occurrence of PrPC in various cancers and discusses the multiple effects, which sustain cancer progression. Within this frame, the effects of PrPC on stemness and differentiation are discussed. A special emphasis is provided on the spreading of PrPC and the epigenetic effects, which are induced in neighboring cells to activate cancer-related genes. These detrimental effects are further discussed in relation to the aberrancy of its physiological and beneficial role on cell homeostasis. A specific paragraph is dedicated to the role of PrPC beyond its effects in the biology of cancer to represent a potential biomarker in the follow up of patients following surgical resection.
Collapse
|
25
|
Li H, Wang R, Yu Z, Shi R, Zhang J, Gao S, Shao M, Cui S, Gao Z, Xu J, Sy MS, Li C. Tumor Necrosis Factor α Reduces SNAP29 Dependent Autolysosome Formation to Increase Prion Protein Level and Promote Tumor Cell Migration. Virol Sin 2020; 36:458-475. [PMID: 33237393 DOI: 10.1007/s12250-020-00320-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/10/2020] [Indexed: 12/20/2022] Open
Abstract
Tumor Necrosis Factor α (TNFα) is best known as a mediator of inflammation and immunity, and also plays important roles in tumor biology. However, the role of TNFα in tumor biology is complex and not completely understood. In a human melanoma cell line, M2, and a lung carcinoma cell line, A549, TNFα up-regulates prion protein (PrP) level, and promotes tumor cell migration in a PrP dependent manner. Silencing PRNP abrogates TNFα induced tumor cell migration; this phenotype is reversed when PRNP is re-introduced. Treatment with TNFα activates nuclear factor kappa B (NF-κB) signaling, which then mitigates autophagy by reducing the expression of Forkhead Box P3 (FOXP3). Down regulation of FOXP3 reduces the transcription of synaptosome associated protein 29 (SNAP29), which is essential in the fusion of autophagosome and lysosome creating autolysosome. FOXP3 being a bona fide transcription factor for SNAP29 is confirmed in a promoter binding assay. Accordingly, silencing SNAP29 in these cell lines also up-regulates PrP, and promotes tumor cell migration without TNFα treatment. But, when SNAP29 or FOXP3 is silenced in these cells, they are no longer respond to TNFα. Thus, a reduction in autophagy is the underlying mechanism by which expression of PrP is up-regulated, and tumor cell migration is enhanced upon TNFα treatment. Disrupting the TNFα-NF-κB-FOXP3-SNAP29 signaling axis may provide a therapeutic approach to mitigate tumor cell migration.
Collapse
Affiliation(s)
- Huan Li
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100000, China.,Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, 510095, China
| | - Ren Wang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, 510095, China
| | - Ze Yu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, 510095, China
| | - Run Shi
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, 510095, China
| | - Jie Zhang
- Department of Stomatology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832008, China
| | - Shanshan Gao
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ming Shao
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Shuzhong Cui
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, 510095, China.,Abdominal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Zhenxing Gao
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, 510095, China
| | - Jiang Xu
- Department of Stomatology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832008, China
| | - Man-Sun Sy
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Chaoyang Li
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China. .,Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, 510095, China.
| |
Collapse
|
26
|
You F, Li J, Zhang P, Zhang H, Cao X. miR106a Promotes the Growth of Transplanted Breast Cancer and Decreases the Sensitivity of Transplanted Tumors to Cisplatin. Cancer Manag Res 2020; 12:233-246. [PMID: 32021439 PMCID: PMC6968812 DOI: 10.2147/cmar.s231375] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/07/2019] [Indexed: 12/24/2022] Open
Abstract
Objective To explore the effect of miR106a on the growth of breast cancer xenografts and the sensitivity of chemotherapeutic agents. Methods Breast cancer cell lines (MDA-MB231 and MCF7) were transfected with an miR106 mimic and miR106a inhibitor. BALB/c female nude mice were selected to construct a transplanted-tumor model. Cisplatin treatment was performed 2 weeks after inoculation. After 5 weeks, tumor tissue was weighed. Apoptosis of tumor cells was detected by TUNEL staining. The expression of these proteins (Ki67, β-catenin, cyclin D1 and cMyc) was detected by immunohistochemistry. The contents of P53, RUNX3, ABCG2, β-catenin, BAX, and BCL2 mRNA were detected by qRT-PCR. Results The miR106a mimic (MM) group’s tumor volume and weight were significantly bigger than those of the model group. miR106a mRNA content was higher than the blank control group, and β-catenin and Ki67 protein were strongly positive. β-catenin, BCL2, and ABCG2 mRNA content was were increased. P53, BAX, and RUNX3 mRNA content was decreased. The number of positive cells on TUNEL staining was significantly lower in the miR106a inhibitor (MI) group. After cisplatin treatment, inhibition of tumor growth was most obvious in the MI+DDP (cisplatin) group. Compared with the MM group, tumor growth in the MM+FH535 (Wnt-pathway inhibitor) group was significantly lower, and Wnt-pathway activity was decreased. Conclusion Overexpression of miR106a can promote the growth of transplanted breast cancer and decrease the sensitivity of transplanted tumors to cisplatin. The mechanism may be related to abnormal activation of the Wnt-signaling pathway.
Collapse
Affiliation(s)
- Faping You
- First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, People's Republic of China.,Shengli Oilfield Central Hospital, Dongying, Shandong Province 257034, People's Republic of China
| | - Junhui Li
- First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, People's Republic of China
| | - Peijin Zhang
- First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, People's Republic of China
| | - Hui Zhang
- First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, People's Republic of China
| | - Xuchen Cao
- First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, People's Republic of China.,Tianjin's Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, People's Republic of China
| |
Collapse
|
27
|
Ke J, Wu G, Zhang J, Li H, Gao S, Shao M, Gao Z, Sy MS, Cao Y, Yang X, Xu J, Li C. Melanoma migration is promoted by prion protein via Akt-hsp27 signaling axis. Biochem Biophys Res Commun 2019; 523:375-381. [PMID: 31870551 DOI: 10.1016/j.bbrc.2019.12.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/07/2019] [Indexed: 10/25/2022]
Abstract
Patients with metastatic melanoma have a poorer prognosis. Prion protein (PrP) in melanoma is known to play an important role in cancer cell migration and invasion by interacting with filamin A (FLNa), a cytolinker protein. To investigate if PrP may contribute to cancer cell mobility independent of its binding to FLNa, we knocked out PRNP in M2 melanoma cell, which lacked FLNa expression. We found that deletion of PRNP in M2 significantly reduced its motility. When PRNP was deleted, the level of Akt was decreased. As a consequence, phosphorylation of small heat shock protein (hsp27) was also reduced, which resulted in polymerization of F-actin rendering the cells less migratory. Accordingly, when PrP was re-expressed in PRNP null M2 cells, the mobility of the recurred cells was rescued, so were the expression levels of Akt and phosphorylated hsp27, resulting in a decrease in the polymerization of F-actin. These results revealed that PrP can play a FLNa independent role in cytoskeletal organization and tumor cell migration by modulating Akt-hsp27-F-actin axis.
Collapse
Affiliation(s)
- Jingru Ke
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, 78 Hengzhigang Road, Guangzhou, 510095, China
| | - Guiru Wu
- The Joint Laboratory for Translational Precision Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China; Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan, 430071, China
| | - Jie Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, 78 Hengzhigang Road, Guangzhou, 510095, China; Department of Stomatology, First Affiliated Hospital, School of Medicine, Shihezi University, No. 107 North 2nd Road, Shihezi, Xinjiang, 832008, China
| | - Huan Li
- Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan, 430071, China
| | - Shanshan Gao
- Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan, 430071, China
| | - Ming Shao
- Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan, 430071, China
| | - Zhenxing Gao
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, 78 Hengzhigang Road, Guangzhou, 510095, China
| | - Man-Sun Sy
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yuchun Cao
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xiaowen Yang
- Department of the First Abdominal Surgery, Jiangxi Tumor Hospital, Nanchang, Jiangxi, 330029, China.
| | - Jiang Xu
- Department of Stomatology, First Affiliated Hospital, School of Medicine, Shihezi University, No. 107 North 2nd Road, Shihezi, Xinjiang, 832008, China.
| | - Chaoyang Li
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, 78 Hengzhigang Road, Guangzhou, 510095, China.
| |
Collapse
|
28
|
Zhang H, Shao F, Guo W, Gao Y, He J. Knockdown of KLF5 promotes cisplatin-induced cell apoptosis via regulating DNA damage checkpoint proteins in non-small cell lung cancer. Thorac Cancer 2019; 10:1069-1077. [PMID: 30900384 PMCID: PMC6501027 DOI: 10.1111/1759-7714.13046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Previous research has revealed that Krüppel-like factor 5 (KLF5) may affect DNA damage repair pathways; however, the associated molecular mechanisms are unclear. METHODS The expression of KLF5 was studied by immunohistochemical staining in paired tumour and normal tissues from 90 patients with ESCC. We studied the effects of KLF5 knockdown on cell proliferation and apoptosis with or without cisplatin treatment in A549 and H1299 cell lines. Moreover, we examined the effect of KLF5 on the DNA damage response. RESULTS KLF5 was significantly overexpressed in non-small cell lung cancer (NSCLC) tissues, and high KLF5 expression predicted poor prognosis for NSCLC patients. The inhibition of KLF5 markedly augmented cisplatin-induced cell apoptosis. In addition, we observed that KLF5 knockdown could decrease DNA repair potential by inhibiting H2AX S139 phosphorylation in response to cisplatin. Moreover, silencing of KLF5 in NSCLC cell lines inhibited the phosphorylation of checkpoint kinases Chk1 S345 and Chk2 T68. KLF5 knockdown permits cells with broken or damaged DNA strands to enter mitosis by inhibiting the activation of H2AX, Chk1 and Chk2, resulting in mitotic catastrophe. CONCLUSION KLF5 plays a significant role in the DNA damage response by regulating DNA damage checkpoint proteins. Inhibition of KLF5 may be a potential therapeutic target for NSCLC patients with cisplatin resistance.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Shao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Guo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|