1
|
Li Y, Ma L, Li P. Circ_FNDC3B Promotes Cell Proliferation and Metastasis in Esophageal Squamous Cell Carcinoma via Regulating MAPK1 by Binding to miR-136-5p. Biochem Genet 2024; 62:3803-3820. [PMID: 38228844 DOI: 10.1007/s10528-023-10585-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 11/01/2023] [Indexed: 01/18/2024]
Abstract
A handful of circular RNAs (circRNAs) associated with cancer progression have been indicated in esophageal squamous cell carcinoma (ESCC). The current study aimed to investigate the functional mechanism of circular RNA Fibronectin type III domain containing 3B (circ_FNDC3B) in ESCC. Circ_FNDC3B, FNDC3B, microRNA-136-5p (miR-136-5p) and mitogen-activated protein kinase 1 (MAPK1) were examined via the quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was evaluated by Cell Counting Kit-8 (CCK-8) and colony formation assays. Transwell assay was performed to measure cell migration and invasion. Protein analysis was implemented by western blot. Cell apoptosis was assessed via flow cytometry. Target interaction was affirmed using dual-luciferase reporter assay. The function analysis of circ_FNDC3B in vivo was explored by xenograft models. The upregulation of circ_FNDC3B was detected in ESCC tissues and cells. Functionally, ESCC cell proliferation and metastasis were repressed but apoptosis was promoted by circ_FNDC3B knockdown. Besides, circ_FNDC3B silence inhibited ESCC progression through MAPK1 downregulation. Further target analysis identified miR-136-5p as a target of circ_FNDC3B and an upstream control of MAPK1. Additionally, the regulation of si-circ_FNDC3B in ESCC was also dependent on targeting miR-136-5p. Moreover, circ_FNDC3B targeted miR-136-5p to affect MAPK1 level. Tumorigenesis in vivo was also suppressed by downregulating circ_FNDC3B to regulate miR-136-5p/MAPK1 axis. Circ_FNDC3B downregulation impeded the development of ESCC via the mediation of miR-136-5p/MAPK1 axis. This report afforded a novel insight into the functional mechanism of circ_FNDC3B in ESCC.
Collapse
Affiliation(s)
- Yuwei Li
- Center of Medical Genetics, Northwest Women's and Children's Hospital, Xi'an, People's Republic of China
| | - Lieting Ma
- Department of Laboratory, First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| | - Peng Li
- Department of Laboratory, First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
2
|
Ye G, Ye M, Jin X. Roles of clinical application of lenvatinib and its resistance mechanism in advanced hepatocellular carcinoma (Review). Am J Cancer Res 2024; 14:4113-4171. [PMID: 39417171 PMCID: PMC11477829 DOI: 10.62347/ujvp4361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Lenvatinib (LEN) is a multi-target TKI, which plays a pivotal role in the treatment of advanced hepatocellular carcinoma (HCC). The inevitable occurrence of drug resistance still prevents curative potential and is deleterious for the prognosis, and a growing body of studies is accumulating, which have devoted themselves to unveiling its underlying resistance mechanism and made some progress. The dysregulation of crucial signaling pathways, non-coding RNA and RNA modifications were proven to be associated with LEN resistance. A range of drugs were found to influence LEN therapeutic efficacy. In addition, the superiority of LEN combination therapy has been shown to potentially overcome the limitations of LEN monotherapy in a series of research, and a range of promising indicators for predicting treatment response and prognosis have been discovered in recent years. In this review, we summarize the latest developments in LEN resistance, the efficacy and safety of LEN combination therapy as well as associated indicators, which may provide new insight into its resistance as well as ideas in the treatment of advanced HCC.
Collapse
Affiliation(s)
- Ganghui Ye
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
- Department of Oncology, The First Hospital of Ningbo UniversityNingbo 315020, Zhejiang, P. R. China
- Department of Radiation Oncology, Taizhou Central Hospital (Taizhou University Hospital)Taizhou 318000, Zhejiang, P. R. China
| | - Meng Ye
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
- Department of Oncology, The First Hospital of Ningbo UniversityNingbo 315020, Zhejiang, P. R. China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
- Department of Oncology, The First Hospital of Ningbo UniversityNingbo 315020, Zhejiang, P. R. China
| |
Collapse
|
3
|
Hama Faraj GS, Hussen BM, Abdullah SR, Fatih Rasul M, Hajiesmaeili Y, Baniahmad A, Taheri M. Advanced approaches of the use of circRNAs as a replacement for cancer therapy. Noncoding RNA Res 2024; 9:811-830. [PMID: 38590433 PMCID: PMC10999493 DOI: 10.1016/j.ncrna.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024] Open
Abstract
Cancer is a broad name for a group of diseases in which abnormal cells grow out of control and are characterized by their complexity and recurrence. Although there has been progress in cancer therapy with the entry of precision medicine and immunotherapy, cancer incidence rates have increased globally. Non-coding RNAs in the form of circular RNAs (circRNAs) play crucial roles in the pathogenesis, clinical diagnosis, and therapy of different diseases, including cancer. According to recent studies, circRNAs appear to serve as accurate indicators and therapeutic targets for cancer treatment. However, circRNAs are promising candidates for cutting-edge cancer therapy because of their distinctive circular structure, stability, and wide range of capabilities; many challenges persist that decrease the applications of circRNA-based cancer therapeutics. Here, we explore the roles of circRNAs as a replacement for cancer therapy, highlight the main challenges facing circRNA-based cancer therapies, and discuss the key strategies to overcome these challenges to improve advanced innovative therapies based on circRNAs with long-term health effects.
Collapse
Affiliation(s)
- Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, 46001, Iraq
| | - Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, 44001, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, 44001, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, Lebanese French University, Erbil, Kurdistan Region, 44001, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | | | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Liao Q, Xia W, Chen J, Wang K, Xiao E. Circular RNA DNAH14 molecular mechanism in an experimental model of hepatocellular carcinoma treated with Cobalt chloride to mimic the hypoxia-like response of transcatheter arterial chemoembolization. Sci Rep 2024; 14:1992. [PMID: 38263208 PMCID: PMC10805718 DOI: 10.1038/s41598-024-52578-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/20/2024] [Indexed: 01/25/2024] Open
Abstract
Transcatheter arterial chemoembolization (TACE) is the primary local treatment for patients with unresectable hepatocellular carcinoma (HCC). Numerous studies have demonstrated the pivotal role of circular RNAs (circRNAs) in TACE efficacy. This study aimed to investigate the function of circular RNA DNAH14 (circDNAH14) in TACE for HCC and to elucidate its molecular mechanisms. To simulate hypoxia conditions experienced during TACE, HCC cells were treated with cobalt chloride. The expression levels of circDNAH14, microRNA-508-3p (miR-508-3p), and Prothymosin Alpha (PTMA) were modulated via transfection for knockdown or overexpression. Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine assays, flow cytometry, and Transwell assays, along with epithelial-mesenchymal transition (EMT) evaluations, were employed to assess cell proliferation, apoptosis, invasion, migration, and EMT. The results indicated that hypoxia treatment downregulated the expression of circDNAH14 and PTMA while upregulating miR-508-3p. Such treatment suppressed HCC cell proliferation, invasion, migration, and EMT, and induced apoptosis. Knockdown of circDNAH14 or PTMA intensified the suppressive effects of hypoxia on the malignant behaviors of HCC cells. Conversely, upregulation of miR-508-3p or PTMA mitigated the effects of circDNAH14 overexpression and knockdown, respectively. Mechanistically, circDNAH14 was found to competitively bind to miR-508-3p, thereby regulating PTMA expression. In vivo, nude mouse xenograft experiments demonstrated that circDNAH14 knockdown augmented the hypoxia-induced suppression of HCC tumor growth. In conclusion, circDNAH14 mitigates the suppressive effects of hypoxia on HCC, both in vitro and in vivo, by competitively binding to miR-508-3p and regulating PTMA expression.
Collapse
Affiliation(s)
- Qiuling Liao
- Department of Radiology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Middle Road, Changsha City, 410011, Hunan Province, China
| | - Weiping Xia
- Department of Urology Surgery, Xiangya Hospital Central South University, No. 87 Xiangya Road, Kaifu District, Changsha City, 410008, Hunan Province, China
| | - Jiawen Chen
- Department of Urology Surgery, Xiangya Hospital Central South University, No. 87 Xiangya Road, Kaifu District, Changsha City, 410008, Hunan Province, China
| | - Kangning Wang
- Department of Urology Surgery, Xiangya Hospital Central South University, No. 87 Xiangya Road, Kaifu District, Changsha City, 410008, Hunan Province, China.
| | - Enhua Xiao
- Department of Radiology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Middle Road, Changsha City, 410011, Hunan Province, China.
| |
Collapse
|
5
|
Jia Y, Pan H, Liu J, Huang T, Han K, Mei Q, Zeng L, Zhou J, Zhang Y. MiR-484 promotes nonalcoholic fatty liver disease progression in mice via downregulation of Sorbs2. Obesity (Silver Spring) 2023; 31:2972-2985. [PMID: 37752619 DOI: 10.1002/oby.23884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 09/28/2023]
Abstract
OBJECTIVE MicroRNA 484 (miR-484) plays a pivotal role in the development and progression of different diseases and is typically described as a mitochondrial regulator. Whether miR-484 is involved in lipid metabolism or exerts a role in nonalcoholic fatty liver disease remains unclear. METHODS miR-484 levels were examined in the livers of male mice fed a high-fat diet and in hepatocytes treated with free fatty acids. Sorbin and SH3 structural domain-containing protein 2 (Sorbs2) were identified as a novel target of miR-484 by sequencing mRNA in the livers of miR-484 knockout mice. Sorbs2 liver-specific knockdown mice were constructed by tail vein injection of adeno-associated virus vector to miR-484 knockout mice. In addition, genetic manipulation of SORBS2 was performed in human hepatocyte lines, mouse primary hepatocytes, and the liver. RESULTS Serum and hepatic miR-484 levels are upregulated in nonalcoholic fatty liver disease mice. miR-484 knockdown ameliorated hepatocyte steatosis, whereas miR-484 overexpression increased hepatocyte lipid load. miR-484 knockdown-mediated alleviation of hepatic steatosis, liver injury, inflammation, and apoptosis was compromised after high-fat diet-induced knockdown of Sorbs2 in mouse liver and free fatty acid-induced primary mouse hepatocytes. CONCLUSIONS These results identify Sorbs2-mediated mitochondrial β-oxidation and apoptosis that promote miR-484 knockdown-mediated remission of hepatic steatosis.
Collapse
Affiliation(s)
- Yinzhao Jia
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Pan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Liu
- Key Laboratory of Coal Science and Technology of Ministry of Education, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Tiezeng Huang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Han
- Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Qiaojuan Mei
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Zeng
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinzhao Zhou
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
张 铃, 赵 春, 许 瑶, 陈 炎, 蔡 志, 林 浩, 蔡 巧. [Circular RNA hsa_circ_0006834 is a potential prognostic biomarker for hepatocellular carcinoma]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1850-1856. [PMID: 38081601 PMCID: PMC10713463 DOI: 10.12122/j.issn.1673-4254.2023.11.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Indexed: 12/18/2023]
Abstract
OBJECTIVE To explore the differentially expressed circular RNAs (circRNAs) in hepatocellular carcinoma (HCC) and their association with clinical features and prognosis of HCC patients. METHODS RNA sequencing was performed on 56 pairs of HCC and adjacent tissues to identify the differentially expressed circRNAs in HCC, whose expressions were validated by RT-qPCR in another 15 pairs of HCC and adjacent tissues. The correlation of the selected circRNAs with the clinical features and prognosis of the patients was analyzed using Chi-square test, Cox proportional hazards regression model and Kaplan-Meier analysis. The predictive value of the identified circRNA for recurrence-free survival and overall survival of HCC patients was assessed using ROC curves. RESULTS We identified 17 significantly up-regulated and 45 down-regulated circRNAs in HCC tissues using RNA sequencing (P < 0.05). Among these circRNAs, hsa_circ_0006834 was found to be significantly down-regulated in HCC tissues, and its expression level was negatively correlated with vascular invasion and Barcelona Clinic Liver Cancer (BCLC) stage and positively with recurrence-free survival and overall survival of the patients (P < 0.05). As an independent prognostic factor for HCC, hsa_circ_0006834 had an AUC of 0.750 and 0.7601 for predicting 2-year recurrence-free survival and overall survival of HCC patients, respectively. CONCLUSION hsa_circ_0006834 is a new potential biomarker for evaluating the prognosis of HCC patients.
Collapse
Affiliation(s)
- 铃 张
- 福建中医药大学中西医结合研究院,福建 福州 350122Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- 福建省中西医结合老年性疾病重点实验室,福建 福州 350122Fujian Provincial Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou 350122, China
| | - 春雨 赵
- 福建中医药大学中西医结合研究院,福建 福州 350122Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - 瑶瑶 许
- 福建中医药大学中西医结合研究院,福建 福州 350122Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - 炎森 陈
- 福建中医药大学中西医结合学院,福建 福州 350122College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - 志雄 蔡
- 福建医科大学孟超肝胆医院,福建 福州 350000Meng Chao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350000, China
| | - 浩伟 林
- 福建中医药大学中西医结合研究院,福建 福州 350122Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - 巧燕 蔡
- 福建中医药大学中西医结合研究院,福建 福州 350122Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- 福建省中西医结合老年性疾病重点实验室,福建 福州 350122Fujian Provincial Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou 350122, China
| |
Collapse
|
7
|
Rao G, Peng X, Tian Y, Fu X, Zhang Y. Circular RNAs in hepatocellular carcinoma: biogenesis, function, and pathology. Front Genet 2023; 14:1106665. [PMID: 37485335 PMCID: PMC10361733 DOI: 10.3389/fgene.2023.1106665] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. Both genetic and environmental factors through a multitude of underlying molecular mechanisms participate in the pathogenesis of HCC. Recently, numerous studies have shown that circular RNAs (circRNAs), an emerging class of non-coding RNAs characterized by the presence of covalent bonds linking 3' and 5' ends, play an important role in the initiation and progression of cancers, including HCC. In this review, we outline the current status of the field of circRNAs, with an emphasis on the functions and mechanisms of circRNAs in HCC and its microenvironment. We also summarize and discuss recent advances of circRNAs as biomarkers and therapeutic targets. These efforts are anticipated to throw new insights into future perspectives about circRNAs in basic, translational and clinical research, eventually advancing the diagnosis, prevention and treatment of HCC.
Collapse
Affiliation(s)
- Guocheng Rao
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Xi Peng
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yan Tian
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yuwei Zhang
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Chaudhari U, Pohjolainen L, Ruskoaho H, Talman V. Genome-wide profiling of miRNA-gene regulatory networks in mouse postnatal heart development-implications for cardiac regeneration. Front Cardiovasc Med 2023; 10:1148618. [PMID: 37283582 PMCID: PMC10241105 DOI: 10.3389/fcvm.2023.1148618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/02/2023] [Indexed: 06/08/2023] Open
Abstract
Background After birth, mammalian cardiomyocytes substantially lose proliferative capacity with a concomitant switch from glycolytic to oxidative mitochondrial energy metabolism. Micro-RNAs (miRNAs) regulate gene expression and thus control various cellular processes. Their roles in the postnatal loss of cardiac regeneration are however still largely unclear. Here, we aimed to identify miRNA-gene regulatory networks in the neonatal heart to uncover role of miRNAs in regulation of cell cycle and metabolism. Methods and results We performed global miRNA expression profiling using total RNA extracted from mouse ventricular tissue samples collected on postnatal day 1 (P01), P04, P09, and P23. We used the miRWalk database to predict the potential target genes of differentially expressed miRNAs and our previously published mRNA transcriptomics data to identify verified target genes that showed a concomitant differential expression in the neonatal heart. We then analyzed the biological functions of the identified miRNA-gene regulatory networks using enriched Gene Ontology (GO) and KEGG pathway analyses. Altogether 46 miRNAs were differentially expressed in the distinct stages of neonatal heart development. For twenty miRNAs, up- or downregulation took place within the first 9 postnatal days thus correlating temporally with the loss of cardiac regeneration. Importantly, for several miRNAs, including miR-150-5p, miR-484, and miR-210-3p there are no previous reports about their role in cardiac development or disease. The miRNA-gene regulatory networks of upregulated miRNAs negatively regulated biological processes and KEGG pathways related to cell proliferation, while downregulated miRNAs positively regulated biological processes and KEGG pathways associated with activation of mitochondrial metabolism and developmental hypertrophic growth. Conclusion This study reports miRNAs and miRNA-gene regulatory networks with no previously described role in cardiac development or disease. These findings may help in elucidating regulatory mechanism of cardiac regeneration and in the development of regenerative therapies.
Collapse
|
9
|
Lu J, Wang Y, Wang J, Li Y, Shi Y, Tang L. Circ_0082476 targets miR-138-5p to promote proliferation, invasion, migration and inflammation in IL-22-treated human keratinocytes by upregulating BRD4. Int Immunopharmacol 2023; 119:110095. [PMID: 37044031 DOI: 10.1016/j.intimp.2023.110095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) are implicated in the disease progression via acting as sponges of microRNAs (miRNAs) to regulate gene expression. The purpose of this study was to analyze the involvement of circ_0082476 in Interleukin-22 (IL-22)-induced psoriasis. METHODS Expression detection for circ_0082476, microRNA-424-5p (miR-138-5p) or toll-like receptor (BRD4) was completed using reverse transcription-quantitative polymerase chain reaction assay. Cell Counting Kit-8 assay and EdU assay were used for analysis of cell viability and proliferation, respectively. Cell invasion and migration abilities were assessed through transwell assay and wound healing assay. The protein expression was examined via western blot. Inflammatory reaction was determined via Enzyme-linked immunosorbent assay. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were conducted for target binding research. RESULTS Circ_0082476 was significantly elevated in psoriasis patients and IL-22-treated keratinocytes (HaCaT). Knockdown of circ_0082476 reduced cell proliferation, invasion and migration in IL-22-treated HaCaT cells. Circ_0082476 induced sponge effect on miR-138-5p. Circ_0082476 regulated IL-22-induced cell injury through targeting miR-138-5p. BRD4 was confirmed as a target of miR-138-5p, and miR-138-5p relieved IL-22-induced cell dysfunction by the direct downregulation of BRD4. BRD4 was positively regulated by circ_0082476 via sponging miR-138-5p. CONCLUSION These findings disclosed that circ_0082476 facilitated the IL22-induced epidermis cell injury in psoriasis through the upregulation of BRD4 via binding to miR-138-5p.
Collapse
Affiliation(s)
- Jiajing Lu
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Institute of Psoriasis, School of Medicine, Tongji University, Shanghai 200443, China
| | - Yu Wang
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Institute of Psoriasis, School of Medicine, Tongji University, Shanghai 200443, China
| | - Jing Wang
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Institute of Psoriasis, School of Medicine, Tongji University, Shanghai 200443, China
| | - Ying Li
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Institute of Psoriasis, School of Medicine, Tongji University, Shanghai 200443, China
| | - Yuling Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Institute of Psoriasis, School of Medicine, Tongji University, Shanghai 200443, China.
| | - Li Tang
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Institute of Psoriasis, School of Medicine, Tongji University, Shanghai 200443, China.
| |
Collapse
|
10
|
Zheng J, Yan X, Lu T, Song W, Li Y, Liang J, Zhang J, Cai J, Sui X, Xiao J, Chen H, Chen G, Zhang Q, Liu Y, Yang Y, Zheng K, Pan Z. CircFOXK2 promotes hepatocellular carcinoma progression and leads to a poor clinical prognosis via regulating the Warburg effect. J Exp Clin Cancer Res 2023; 42:63. [PMID: 36922872 PMCID: PMC10018916 DOI: 10.1186/s13046-023-02624-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/15/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND The Warburg effect is well-established to be essential for tumor progression and accounts for the poor clinical outcomes of hepatocellular carcinoma (HCC) patients. An increasing body of literature suggests that circular RNAs (circRNAs) are important regulators for HCC. However, few circRNAs involved in the Warburg effect of HCC have hitherto been investigated. Herein, we aimed to explore the contribution of circFOXK2 to glucose metabolism reprogramming in HCC. METHODS In the present study, different primers were designed to identify 14 circRNAs originating from the FOXK2 gene, and their differential expression between HCC and adjacent liver tissues was screened. Ultimately, circFOXK2 (hsa_circ_0000817) was selected for further research. Next, the clinical significance of circFOXK2 was evaluated. We then assessed the pro-oncogenic activity of circFOXK2 and its impact on the Warburg effect in both HCC cell lines and animal xenografts. Finally, the molecular mechanisms of how circFOXK2 regulates the Warburg effect of HCC were explored. RESULTS CircFOXK2 was aberrantly upregulated in HCC tissues and positively correlated with poor clinical outcomes in patients that underwent radical hepatectomy. Silencing of circFOXK2 significantly suppressed HCC progression both in vitro and in vivo. Mechanistically, circFOXK2 upregulated the expression of protein FOXK2-142aa to promote LDHA phosphorylation and led to mitochondrial fission by regulating the miR-484/Fis1 pathway, ultimately activating the Warburg effect in HCC. CONCLUSIONS CircFOXK2 is a prognostic biomarker of HCC that promotes the Warburg effect by promoting the expression of proteins and miRNA sponges that lead to tumor progression. Overall, circFOXK2 has huge prospects as a potential therapeutic target for patients with HCC.
Collapse
Affiliation(s)
- Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-Sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xijing Yan
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-Sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Tongyu Lu
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-Sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Wen Song
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yang Li
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-Sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jinliang Liang
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jiebin Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-Sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jianye Cai
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-Sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xin Sui
- Surgical ICU of the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jiaqi Xiao
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-Sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Haitian Chen
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-Sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Guihua Chen
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-Sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Qi Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-Sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China.
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Yubin Liu
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-Sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China.
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Kanghong Zheng
- Department of General Surgery of Guangdong Tongjiang Hospital, Foshan, 528300, China.
| | - Zihao Pan
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
11
|
Dawoud A, Ihab Zakaria Z, Hisham Rashwan H, Braoudaki M, Youness RA. Circular RNAs: New layer of complexity evading breast cancer heterogeneity. Noncoding RNA Res 2023; 8:60-74. [PMID: 36380816 PMCID: PMC9637558 DOI: 10.1016/j.ncrna.2022.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/04/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
Advances in high-throughput sequencing techniques and bioinformatic analysis have refuted the "junk" RNA hypothesis that was claimed against non-coding RNAs (ncRNAs). Circular RNAs (circRNAs); a class of single-stranded covalently closed loop RNA molecules have recently emerged as stable epigenetic regulators. Although the exact regulatory role of circRNAs is still to be clarified, it has been proven that circRNAs could exert their functions by interacting with other ncRNAs or proteins in their own physiologically authentic environment, regulating multiple cellular signaling pathways and other classes of ncRNAs. CircRNAs have also been reported to exhibit a tissue-specific expression and have been associated with the malignant transformation process of several hematological and solid malignancies. Along this line of reasoning, this review aims to highlight the importance of circRNAs in Breast Cancer (BC), which is ranked as the most prevalent malignancy among females. Notwithstanding the substantial efforts to develop a suitable anticancer therapeutic regimen against the heterogenous BC, inter- and intra-tumoral heterogeneity have resulted in an arduous challenge for drug development research, which in turn necessitates the investigation of other markers to be therapeutically targeted. Herein, the potential of circRNAs as possible diagnostic and prognostic biomarkers have been highlighted together with their possible application as novel therapeutic targets.
Collapse
Affiliation(s)
- Alyaa Dawoud
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Zeina Ihab Zakaria
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Hannah Hisham Rashwan
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Maria Braoudaki
- Clinical, Pharmaceutical, and Biological Science Department, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
- Clinical, Pharmaceutical, and Biological Science Department, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire hosted By Global Academic Foundation, New Administrative Capital, 11586, Cairo, Egypt
| |
Collapse
|
12
|
Liu Z, Yang F, Xiao Z, Liu Y. Review of novel functions and implications of circular RNAs in hepatocellular carcinoma. Front Oncol 2023; 13:1093063. [PMID: 36890830 PMCID: PMC9986438 DOI: 10.3389/fonc.2023.1093063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/27/2023] [Indexed: 02/22/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent malignancies, with high incidence and mortality. As the majority of HCC patients are diagnosed at an advanced stage and die of recurrence and metastasis, its pathology and new biomarkers are needed. Circular RNAs (circRNAs) are a large subclass of long non-coding RNAs (lncRNAs) with covalently closed loop structures and abundant, conserved, stable, tissue-specific expression in mammalian cells. CircRNAs exert multiple functions in HCC initiation, growth and progression, serving as promising biomarkers for diagnosis, prognosis and therapeutic targets for this disease. This review briefly describes the biogenesis and biological functions of circRNAs and elucidates the roles of circRNAs in the development and progression of HCC, especially regarding epithelial-mesenchymal transition (EMT), drug resistance and interactions with epigenetic modifications. In addition, this review highlights the implications of circRNAs as potential biomarkers and therapeutic targets for HCC. We hope to provide novel insight into the roles of circRNAs in HCC.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Combination of Traditional Chinese Medicine and Western Medicine, School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Fangming Yang
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhun Xiao
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yuexuan Liu
- Department of Combination of Traditional Chinese Medicine and Western Medicine, School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
13
|
Ceramide Metabolism Regulated by Sphingomyelin Synthase 2 Is Associated with Acquisition of Chemoresistance via Exosomes in Human Leukemia Cells. Int J Mol Sci 2022; 23:ijms231810648. [PMID: 36142562 PMCID: PMC9505618 DOI: 10.3390/ijms231810648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
Ceramide levels controlled by the sphingomyelin (SM) cycle have essential roles in cancer cell fate through the regulation of cell proliferation, death, metastasis, and drug resistance. Recent studies suggest that exosomes confer cancer malignancy. However, the relationship between ceramide metabolism and exosome-mediated cancer malignancy is unclear. In this study, we elucidated the role of ceramide metabolism via the SM cycle in exosomes and drug resistance in human leukemia HL-60 and adriamycin-resistant HL-60/ADR cells. HL-60/ADR cells showed significantly increased exosome production and release compared with parental chemosensitive HL-60 cells. In HL-60/ADR cells, increased SM synthase (SMS) activity reduced ceramide levels, although released exosomes exhibited a high ceramide ratio in both HL-60- and HL-60/ADR-derived exosomes. Overexpression of SMS2 but not SMS1 suppressed intracellular ceramide levels and accelerated exosome production and release in HL-60 cells. Notably, HL-60/ADR exosomes conferred cell proliferation and doxorubicin resistance properties to HL-60 cells. Finally, microRNA analysis in HL-60 and HL-60/ADR cells and exosomes showed that miR-484 elevation in HL-60/ADR cells and exosomes was associated with exosome-mediated cell proliferation. This suggests that intracellular ceramide metabolism by SMS2 regulates exosome production and release, leading to acquisition of drug resistance and enhanced cell proliferation in leukemia cells.
Collapse
|
14
|
Ye R, Lu X, Liu J, Duan Q, Xiao J, Duan X, Yue Z, Liu F. CircSOD2 Contributes to Tumor Progression, Immune Evasion and Anti-PD-1 Resistance in Hepatocellular Carcinoma by Targeting miR-497-5p/ANXA11 Axis. Biochem Genet 2022; 61:597-614. [PMID: 36008700 DOI: 10.1007/s10528-022-10273-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 06/22/2022] [Indexed: 11/25/2022]
Abstract
Circular RNAs (circRNAs) can function as functional molecules in hepatocellular carcinoma (HCC). Herein, circRNA superoxide dismutase 2 (circSOD2) was researched in HCC progression and immune system. The real-time polymerase chain reaction (qRT-PCR) was used for quantification of circSOD2, microRNA-497-5p (miR-497-5p) and Annexin A11 (ANXA11). Cell assays were performed by 3-(4, 5-dimethylthiazol-2-y1)-2, 5-diphenyl tetrazolium bromide (MTT) and colony formation assays for proliferation, flow cytometry for apoptosis and cell cycle, wound healing assay for migration and transwell assay for migration/invasion. ANXA11 and metastatic protein levels were measured by western blot. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were performed to analyze target binding. CD8+ T cell immunity was assessed by Immunohistochemistry (IHC) assay, and the effect of circSOD2 on programmed cell death 1 (PD-1) immune checkpoint inhibitors (anti-PD-1) therapy was evaluated by mice xenograft assay. CircSOD2 was upregulated in HCC tissues and cells. Knockdown of circSOD2 resulted in HCC cell growth inhibition, apoptosis promotion, cell cycle arrest and metastasis suppression. Mechanically, circSOD2 promoted HCC development by acting as a miR-497-5p sponge and miR-497-5p played a tumor-inhibitory role in HCC cells by targeting ANXA11. Moreover, circSOD2 induced upregulation of ANXA11 expression by interacting with miR-497-5p. Also, the promoting effects of circSOD2 on immune evasion and anti-PD-1 resistance were related to miR-497-5p/ANXA11 axis. This study elucidated the pivotal function of circSOD2 in HCC progression and immunosuppression by mediating miR-497-6p/ANXA11 axis. CircSOD2/miR-497-5p/ANXA11 axis was a novel view of circRNA research in HCC.
Collapse
Affiliation(s)
- Rong Ye
- Department of General Surgery 3, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Jingkai District, Ganzhou, 341000, China
| | - Xingyu Lu
- Outpatient department, Ganzhou City Third People's Hospital, Ganzhou, 341001, China
| | - Jianping Liu
- Department of General Surgery 3, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Jingkai District, Ganzhou, 341000, China
| | - Qing Duan
- Department of General Surgery 3, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Jingkai District, Ganzhou, 341000, China
| | - Junqi Xiao
- Department of General Surgery 3, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Jingkai District, Ganzhou, 341000, China
| | - Xunhong Duan
- Department of General Surgery 3, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Jingkai District, Ganzhou, 341000, China
| | - Zhibiao Yue
- Department of General Surgery 3, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Jingkai District, Ganzhou, 341000, China.
| | - Fengen Liu
- Department of General Surgery 3, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Jingkai District, Ganzhou, 341000, China.
| |
Collapse
|
15
|
Circular Noncoding RNA hsa_circ_0003570 as a Prognostic Biomarker for Hepatocellular Carcinoma. Genes (Basel) 2022; 13:genes13081484. [PMID: 36011395 PMCID: PMC9407695 DOI: 10.3390/genes13081484] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Circular RNAs (circRNAs) are potential biomarkers owing to their stability, tissue specificity, and abundance. This study aimed to evaluate the clinical significance of hsa_circ_0003570 expression and to investigate its potential as a biomarker in hepatocellular carcinoma (HCC). We evaluated hsa_circ_0003570 expression in 121 HCC tissue samples, its association with clinicopathological characteristics, and overall and progression-free survival. Hsa_circ_0003570 expression was downregulated in HCC tissues. Low hsa_circ_0003570 expression was more common in tumors larger than 5 cm (odds ratio (OR), 6.369; 95% confidence interval (CI), 2.725−14.706; p < 0.001), vessel invasion (OR, 5.128; 95% CI, 2.288−11.494; p < 0.001); advanced tumor-node metastasis stage (III/IV; OR, 4.082; 95% CI, 1.866−8.929; p < 0.001); higher Barcelona Clinic Liver Cancer stage (B/C; OR, 3.215; 95% CI, 1.475−6.993; p = 0.003); and higher AFP (>200 ng/mL; OR, 2.475; 95% CI, 1.159−5.291; p = 0.018). High hsa_circ_0003570 expression was an independent prognostic factor for overall survival (hazard ratio (HR), 0.541; 95% confidence interval (CI), 0.327−0.894; p = 0.017) and progression-free survival (HR, 0.633; 95% CI, 0.402−0.997; p = 0.048). Hsa_circ_0003570 is a potential prognostic biomarker in patients with HCC, and further validation of hsa_circ_0003570 is needed.
Collapse
|
16
|
Zhu H, Yang W, Cheng Q, Yang S. Circ_0010235 Regulates HOXA10 Expression to Promote Malignant Phenotypes and Radioresistance in Non-small Cell Lung Cancer Cells Via Decoying miR-588. Balkan Med J 2022; 39:255-266. [PMID: 35872625 PMCID: PMC9326941 DOI: 10.4274/balkanmedj.galenos.2022.2022-2-50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background: Circular RNAs (circRNAs) are key modulators in carcinogenesis and radioresistance in multiple kinds of human cancers. Aims: To explore the role of circ_0010235 in non-small cell lung cancer (NSCLC). Study Design: Cell culture study and animal study. Methods: The detection of circ_0010235, microRNA-588 (miR-588), and homeobox protein A10 (HOXA10) was implemented via reverse transcription-quantitative polymerase chain reaction (RT-qPCR). CCK-8, EdU, flow cytometry, transwell, and wound healing assays. These strategies were applied to evaluate cell functions. The western blot technique was employed for protein examination. The colony formation assay was used to determine cell survival after radiation treatment. In vivo research was performed by tumor xenograft assay. The binding analysis was also carried out through dual-luciferase reporter and RNA immunoprecipitation studies. Results: Circ_0010235 had an enhanced expression in NSCLC. Circ_0010235 deficiency inhibited cell proliferation, invasiveness, and migratory ability but promoted apoptosis and radiosensitivity. Downregulation of circ_0010235 decelerated tumor growth and promoted radiation sensitivity in vivo. Circ_0010235 was controlled biologically in NSCLC cells by combining with miR-588 and targeting miR-588. HOXA10 acted as a target of miR-588. MiR-588 upregulation inhibited NSCLC cell malignant phenotypes and elevated radiosensitivity via downregulating HOXA10. Circ_0010235 could regulate the level of HOXA10 by sponging miR-588. Conclusion: Circ_0010235 contributed to the malignant progression of NSCLC, but suppressed the radiation sensitivity via targeting miR-588 to induce HOXA10 upregulation.
Collapse
|
17
|
Li Y, Li R, Cheng D, Fu X, Fu L, Peng S. The potential of CircRNA1002 as a biomarker in hepatitis B virus-related hepatocellular carcinoma. PeerJ 2022; 10:e13640. [PMID: 35782101 PMCID: PMC9248787 DOI: 10.7717/peerj.13640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 06/06/2022] [Indexed: 01/17/2023] Open
Abstract
Background Although hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, there is a lack of effective diagnostic measures. Circular RNAs (circRNAs) can be used as biomarkers for monitoring the occurrence and development of HCC. However, a convenient and reliable serum circRNA biomarker is not currently available. Materials & Methods CircRNA expression profiles were explored using high-throughput sequencing technology, and targeted circRNAs and mRNAs were validated by quantitative reverse transcription PCR (RT-qPCR). The biological functions of circRNAs were investigated using Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Downstream miRNAs and mRNAs of dysregulated circRNAs were predicted using TargetScan, miRanda, and miRDB; then circRNA-miRNA-mRNA interaction networks were constructed based on sequencing data and the Cancer Genome Atlas (TCGA). Results A total of 50,327 circRNAs were identified, with 1,187 circRNAs significantly differentially expressed between hepatitis B virus (HBV)-related HCC and HBV asymptomatic carriers. Among these circRNAs, four (circRNA1002, circRNA7941, circRNA 39338, and circRNA44142) were validated by RT-qPCR as being statistically different either in HCC tissue or serum samples. circRNA1002 was significantly down-regulated in both HCC serum and tissue, indicating its reliability. Bioinformatics analysis showed that circRNA1002-associated genes were enriched in GO terms relating to hormone pathway and cell-cell interaction processes, which are involved in the progression of HCC. Conclusion Our circRNA analysis of HCC patients and HBV asymptomatic carriers showed that circRNA1002 may be a reliable serum biomarker for HCC. These results could provide an improved assay for the early detection of HCC.
Collapse
Affiliation(s)
- Ying Li
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha Hunan, China
| | - Ronghua Li
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha Hunan, China
| | - Da Cheng
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha Hunan, China
| | - Xiaoyu Fu
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha Hunan, China
| | - Lei Fu
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha Hunan, China
| | - Shifang Peng
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha Hunan, China
| |
Collapse
|
18
|
Meng H, Niu R, Huang C, Li J. Circular RNA as a Novel Biomarker and Therapeutic Target for HCC. Cells 2022; 11:cells11121948. [PMID: 35741077 PMCID: PMC9222032 DOI: 10.3390/cells11121948] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
Circular RNA (circRNA) is a kind of endogenous non-coding RNA (ncRNA), which is produced by the reverse splicing of precursor mRNA (pre mRNA). It is widely expressed in a variety of biological cells. Due to the special formation mode, circRNA does not have a 5′ terminal cap and 3′ poly (A) tail structure. Compared with linear RNA, circRNA is more stable to exonuclease and ribonuclease. In addition, circRNA is structurally conserved, has a stable sequence and is tissue-specific. With the development of high-throughput sequencing and bioinformatics technology, more and more circRNAs have been found. CircRNA plays an important pathophysiological role in the occurrence and development of alcoholic liver injury (ALI), hepatic fibrosis (HF), hepatocellular carcinoma (HCC), and other liver diseases. Our group has been committed to the research of liver disease diagnosis and treatment targets. We review the function and mechanism of circRNA in ALI, HF and HCC, expecting to provide new ideas for the diagnosis, treatment, and prognosis of liver diseases.
Collapse
Affiliation(s)
- Hongwu Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China;
| | - Ruowen Niu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China;
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China;
- Correspondence: (C.H.); (J.L.)
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China;
- Correspondence: (C.H.); (J.L.)
| |
Collapse
|
19
|
Message in a Bottle: Endothelial Cell Regulation by Extracellular Vesicles. Cancers (Basel) 2022; 14:cancers14081969. [PMID: 35454874 PMCID: PMC9026533 DOI: 10.3390/cancers14081969] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Elucidating the role of extracellular vesicles (EVs) in the communication mechanisms between cancer and endothelial cells (ECs) within the tumor microenvironment is an exciting challenge. At the same time, due to their ability to convey bioactive molecules, EVs may be potentially relevant from a therapeutic perspective for diverse vascular pathologies. Abstract Intercellular communication is a key biological mechanism that is fundamental to maintain tissue homeostasis. Extracellular vesicles (EVs) have emerged as critical regulators of cell–cell communication in both physiological and pathological conditions, due to their ability to shuttle a variety of cell constituents, such as DNA, RNA, lipids, active metabolites, cytosolic, and cell surface proteins. In particular, endothelial cells (ECs) are prominently regulated by EVs released by neighboring cell types. The discovery that cancer cell-derived EVs can control the functions of ECs has prompted the investigation of their roles in tumor angiogenesis and cancer progression. In particular, here, we discuss evidence that supports the roles of exosomes in EC regulation within the tumor microenvironment and in vascular dysfunction leading to atherosclerosis. Moreover, we survey the molecular mechanisms and exosomal cargoes that have been implicated in explanations of these regulatory effects.
Collapse
|
20
|
Tao D, Liu Z, Wang L, Li C, Zhang R, Ni N. CircPAG1 interacts with miR-211-5p to promote the E2F3 expression and inhibit the high glucose-induced cell apoptosis and oxidative stress in diabetic cataract. Cell Cycle 2022; 21:708-719. [PMID: 35174780 PMCID: PMC8973334 DOI: 10.1080/15384101.2021.2018213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Circular RNAs (circRNAs) are regulatory endogenous RNAs in human diseases by sponging microRNAs (miRNAs) to affect the gene expression. However, little research focused on the circRNA/miRNA/mRNA axis in diabetic cataract. This study was performed for the exploration of circRNA phosphoprotein associated with glycosphingolipid-enriched microdomains 1 (circPAG1) in diabetic cataract. Human lens epithelial cells were treated with high glucose. The quantitative real-time polymerase chain reaction was used for the expression detection of circPAG1, microRNA-211-5p (miR-211-5p), and E2F transcription factor 3 (E2F3). Cell viability and proliferation were detected using Cell Counting Kit-8 assay and EdU assay. Cell apoptosis was analyzed by flow cytometry. The protein levels were measured by Western blot. Oxidative stress was assessed by malondialdehyde, reactive oxygen species, and superoxide dismutase via the corresponding detection kits. The target interaction was validated using the dual-luciferase reporter assay and RNA immunoprecipitation assay. The expression of circPAG1 was downregulated in diabetic cataract patients. The upregulation of circPAG1 could attenuate the high glucose-induced inhibition of cell viability and proliferation but promotion of cell apoptosis and oxidative stress. CircPAG1 served as a miR-211-5p sponge, and the protective role of circPAG1 was partly achieved by sponging miR-211-5p. MiR-211-5p targeted E2F3 and circPAG1 upregulated the E2F3 level by absorbing miR-211-5p. Inhibition of miR-211-5p repressed the high glucose-mediated cell dysfunction by increasing the expression of E2F3. This study clarified that circPAG1 protected human lens epithelial cells from the high glucose-induced cell damages by the mediation of miR-211-5p/E2F3 axis.
Collapse
Affiliation(s)
- Dan Tao
- Department of Ophthalmology, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Zeyuan Liu
- Department of Ophthalmology, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Ling Wang
- Department of Ophthalmology, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Chunli Li
- Department of Ophthalmology, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Rongci Zhang
- Department of Ophthalmology, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Ninghua Ni
- Department of Ophthalmology, The First People’s Hospital of Yunnan Province, Kunming City, Yunnan Province, China,CONTACT Ninghua Ni Department of Ophthalmology, The First People’s Hospital of Yunnan Province, No. 157 Jinbi Road, Xishan District, Kunming City, Yunnan Province650031, China
| |
Collapse
|
21
|
Jia YZ, Liu J, Wang GQ, Song ZF. miR-484: A Potential Biomarker in Health and Disease. Front Oncol 2022; 12:830420. [PMID: 35356223 PMCID: PMC8959652 DOI: 10.3389/fonc.2022.830420] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/11/2022] [Indexed: 01/30/2023] Open
Abstract
Disorders of miR-484 expression are observed in cancer, different diseases or pathological states. There is accumulating evidence that miR-484 plays an essential role in the development as well as the regression of different diseases, and miR-484 has been reported as a key regulator of common cancer and non-cancer diseases. The miR-484 targets that have effects on inflammation, apoptosis and mitochondrial function include SMAD7, Fis1, YAP1 and BCL2L13. For cancer, identified targets include VEGFB, VEGFR2, MAP2, MMP14, HNF1A, TUSC5 and KLF12. The effects of miR-484 on these targets have been documented separately. Moreover, miR-484 is typically described as an oncosuppressor, but this claim is simplistic and one-sided. This review will combine relevant basic and clinical studies to find that miR-484 promotes tumorigenesis and metastasis in liver, prostate and lung tissues. It will provide a basis for the possible mechanisms of miR-484 in early tumor diagnosis, prognosis determination, disease assessment, and as a potential therapeutic target for tumors.
Collapse
Affiliation(s)
- Yin-Zhao Jia
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Liu
- Key Laboratory of Coal Science and Technology of Ministry of Education, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Geng-Qiao Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zi-Fang Song
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Wang P, Zhang Y, Deng L, Qu Z, Guo P, Liu L, Yu Z, Wang P, Liu N. The function and regulation network mechanism of circRNA in liver diseases. Cancer Cell Int 2022; 22:141. [PMID: 35361205 PMCID: PMC8973545 DOI: 10.1186/s12935-022-02559-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/22/2022] [Indexed: 12/04/2022] Open
Abstract
Circular RNA (circRNA), a new type of endogenous non-coding RNA, is abundantly present in eukaryotic cells, and characterized as stable high conservation and tissue specific expression. It has been generated increasing attention because of their close association with the progress of diseases. The liver is the vital organ of humans, while it is prone to acute and chronic diseases due to the influence of multiple pathogenic factors. Moreover, hepatocellular carcinoma (HCC) is the one of most common cancer and the leading cause of cancer death worldwide. Overwhelming evidences indicate that some circRNAs are differentially expressed in liver diseases, such as, HCC, chronic hepatitis B, hepatic steatosis and hepatoblastoma tissues, etc. Additionally, these circRNAs are related to proliferation, invasion, migration, angiogenesis, apoptosis, and metastasis of cell in liver diseases and act as oncogenic agents or suppressors, and linked to clinical manifestations. In this review, we briefly summarize the biogenesis, characterization and biological functions, recent detection and identification technologies of circRNA, and regulation network mechanism of circRNA in liver diseases, and discuss their potential values as biomarkers or therapeutic targets for liver diseases, especially on HCC.
Collapse
Affiliation(s)
- Panpan Wang
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China.,South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China
| | - Yunhuan Zhang
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, People's Republic of China
| | - Lugang Deng
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China
| | - Zhi Qu
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, People's Republic of China.
| | - Peisen Guo
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China.,South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China
| | - Limin Liu
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China.,Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, People's Republic of China.,South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China
| | - Zengli Yu
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China.
| | - Peixi Wang
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, People's Republic of China
| | - Nan Liu
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China. .,Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, People's Republic of China. .,South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China.
| |
Collapse
|
23
|
Allegra A, Cicero N, Tonacci A, Musolino C, Gangemi S. Circular RNA as a Novel Biomarker for Diagnosis and Prognosis and Potential Therapeutic Targets in Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14071700. [PMID: 35406472 PMCID: PMC8997050 DOI: 10.3390/cancers14071700] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
Circular RNAs (circRNAs) are a novel type of covalently closed RNAs involved in several physiological and pathological processes. They display tissue-specific expression and are constant, abundant, and highly conserved, making them perfect markers for diagnosis and prognosis. Several studies have proposed that circRNAs are also differentially produced in malignancies where they have oncogenic effects. Furthermore, circRNAs affecting microRNAs modify the expression profile of several transcription factors which play essential roles in tumors. CircRNAs within the hematopoietic compartment were identified as modulators of mechanisms able to enhance or suppress tumor progression in blood malignancies. Moreover, several circRNAs were suggested to confer resistance to the conventional drugs employed in hematopoietic cancers. In this review, we highlight the growing role and the controlling mechanisms by which circRNAs modify multiple myeloma genesis. We propose that circRNAs can be considered as potential diagnostic and prognostic markers, can induce chemoresistance, and might represent novel therapeutic targets for multiple myeloma.
Collapse
Affiliation(s)
- Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Hematology, University of Messina, 98125 Messina, Italy;
- Correspondence:
| | - Nicola Cicero
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy;
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy;
| | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Hematology, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
24
|
Hsa_circ_0070194 targets the miR-384/HDAC2 axis to enhance proliferation, cell cycle, migration and invasion of trophoblast cells. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-021-00216-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Louis C, Leclerc D, Coulouarn C. Emerging roles of circular RNAs in liver cancer. JHEP Rep 2022; 4:100413. [PMID: 35036887 PMCID: PMC8749337 DOI: 10.1016/j.jhepr.2021.100413] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinoma and cholangiocarcinoma are the most common primary liver tumours, whose incidence and associated mortality have increased over recent decades. Liver cancer is often diagnosed late when curative treatments are no longer an option. Characterising new molecular determinants of liver carcinogenesis is crucial for the development of innovative treatments and clinically relevant biomarkers. Recently, circular RNAs (circRNAs) emerged as promising regulatory molecules involved in cancer onset and progression. Mechanistically, circRNAs are mainly known for their ability to sponge and regulate the activity of microRNAs and RNA-binding proteins, although other functions are emerging (e.g. transcriptional and post-transcriptional regulation, protein scaffolding). In liver cancer, circRNAs have been shown to regulate tumour cell proliferation, migration, invasion and cell death resistance. Their roles in regulating angiogenesis, genome instability, immune surveillance and metabolic switching are emerging. Importantly, circRNAs are detected in body fluids. Due to their circular structure, circRNAs are often more stable than mRNAs or miRNAs and could therefore serve as promising biomarkers - quantifiable with high specificity and sensitivity through minimally invasive methods. This review focuses on the role and the clinical relevance of circRNAs in liver cancer, including the development of innovative biomarkers and therapeutic strategies.
Collapse
Key Words
- ASO, antisense oligonucleotide
- CCA, cholangiocarcinoma
- CLIP, cross-linking immunoprecipitation
- EMT, epithelial-to-mesenchymal transition
- EVs, extracellular vesicles
- HCC, hepatocellular carcinoma
- HN1, haematopoietic- and neurologic-expressed sequence 1
- IRES, internal ribosome entry sites
- NGS, next-generation sequencing
- QKI, Quaking
- RBP, RNA-binding protein
- RISC, RNA-induced silencing complex
- TAM, tumour-associated macrophage
- TSB, target site blockers
- biomarker
- cancer hallmarks
- cholangiocarcinoma
- circRNA
- circRNA, circular RNA
- hepatocellular carcinoma
- miRNA, microRNA
- shRNA, small-hairpin RNA
- snRNP, small nuclear ribonuclear proteins
Collapse
Affiliation(s)
- Corentin Louis
- Inserm, Univ Rennes 1, COSS (Chemistry, Oncogenesis Stress Signaling), UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, F-35042, Rennes, France
| | - Delphine Leclerc
- Inserm, Univ Rennes 1, COSS (Chemistry, Oncogenesis Stress Signaling), UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, F-35042, Rennes, France
| | - Cédric Coulouarn
- Inserm, Univ Rennes 1, COSS (Chemistry, Oncogenesis Stress Signaling), UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, F-35042, Rennes, France
| |
Collapse
|
26
|
Han B, Wang X, Yin X. Knockdown of circRAD23B Exerts Antitumor Response in Colorectal Cancer via the Regulation of miR-1205/TRIM44 axis. Dig Dis Sci 2022; 67:504-515. [PMID: 33634427 DOI: 10.1007/s10620-021-06859-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/18/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is a common cancer with high metastatic property. Circular RNAs (circRNAs) have important involvement in cancer processes. This study focused on the regulation of circRNA RAD23 homologue B (circRAD23B) in CRC. METHODS The levels of circRAD23B, microRNA-1205 (miR-1205), and tripartite motif-44 (TRIM44) were examined by quantitative real-time polymerase chain reaction (qRT-PCR). Functional analyses were performed by Cell Counting Kit-8 (CCK-8) for cell proliferation, flow cytometry for cell cycle or cell apoptosis, and transwell assay for cell migration and invasion. Western blot was administrated for protein detection. The interaction of targets was analyzed by dual-luciferase reporter and RNA pull-down assays. The in vivo experiment was conducted via xenograft tumor in mice. RESULTS We identified that circRAD23B was overexpressed in CRC tissues and cells. CRC cell proliferation, cell cycle progression, and cell metastasis were inhibited, while apoptosis was promoted by downregulating circRAD23B. Target analysis indicated that circRAD23B-targeted miR-1205 and TRIM44 were downstream genes of miR-1205. Moreover, the antitumor response of circRAD23B downregulation and miR-1205 overexpression was, respectively, achieved by increasing miR-1205 and decreasing TRIM44. CircRAD23B could regulate TRIM44 level by sponging miR-1205. In vivo, circRAD23B knockdown also reduced CRC tumorigenesis via the miR-1205/TRIM44 axis. CONCLUSION These results suggested that the inhibition of circRAD23B retarded the progression of CRC via acting on the miR-1205/TRIM44 axis. CircRAD23B might be a novel target in CRC treatment.
Collapse
Affiliation(s)
- Bingbing Han
- Department of Gastroenterology, Weifang No.2 People's Hospital, Weifang, Shandong, China
| | - Xiaohong Wang
- Department of Health, Weifang No.2 People's Hospital, Weifang, Shandong, China
| | - Xia Yin
- Department of Neurology, Weifang No.2 People's Hospital, No.7 Yuanxiao Street, Kuiwen District 261042, Weifang, Shandong, China.
| |
Collapse
|
27
|
CircCBFB is a mediator of hepatocellular carcinoma cell autophagy and proliferation through miR-424-5p/ATG14 axis. Immunol Res 2022; 70:341-353. [DOI: 10.1007/s12026-021-09255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/27/2021] [Indexed: 11/05/2022]
|
28
|
Zhang W, Wang B, Lin Y, Yang Y, Zhang Z, Wang Q, Zhang H, Jiang K, Ye Y, Wang S, Shen Z. hsa_circ_0000231 Promotes colorectal cancer cell growth through upregulation of CCND2 by IGF2BP3/miR-375 dual pathway. Cancer Cell Int 2022; 22:27. [PMID: 35033075 PMCID: PMC8760675 DOI: 10.1186/s12935-022-02455-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022] Open
Abstract
Background Circular RNAs (circRNAs) have emerged as vital regulators of the initiation and progression of diverse kinds of human cancers. In this study, we explored the role of hsa_circ_0000231 and its downstream pathway in CRC. Methods The expression profile of circRNAs in 5 pairs of CRC tissues and adjacent normal tissues were analyzed by Microarray. Quantitative real-time PCR and in situ hybridization and Base Scope Assay were used to determine the level and prognostic values of hsa_circ_0000231. Then, functional experiments in vitro and in vivo were performed to investigate the effects of hsa_circ_0000231 on cell proliferation. Mechanistically, fluorescent in situ hybridization, dual luciferase reporter assay, RNA pull-down and RNA immunoprecipitation experiments were performed to confirm the interaction between hsa_circ_0000231 and IGF2BP3 or has_miR-375. Results We acquired data through circRNA microarray profiles, showing that the expression of hsa_circ_0000231 was upregulated in CRC primary tissues compared to adjacent normal tissues, which was indicated poor prognosis of patients with CRC. Functional analysis indicated that inhibition of hsa_circ_0000231 in CRC cell lines could suppress CRC cell proliferation as well as tumorigenesis in vitro and in vivo. The mechanistic analysis showed that hsa_circ_0000231 might, on the one hand, act as a competing endogenous RNA of miR-375 to promote cyclin D2 (CCND2) and, on the other hand, bind to the IGF2BP3 protein to prevent CCND2 degradation. Conclusions The findings suggested that hsa_circ_0000231 facilitated CRC progression by sponging miR-375 or binding to IGF2BP3 to modulate CCND2, implying that hsa_circ_0000231 might be a potential new diagnostic and therapeutic biomarker of CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02455-8.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China
| | - Bo Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China
| | - Yilin Lin
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China
| | - Yang Yang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China
| | - Zhen Zhang
- Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China
| | - Quan Wang
- Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China
| | - Haoran Zhang
- Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China
| | - Kewei Jiang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Shan Wang
- Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China. .,Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, 100044, People's Republic of China. .,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China.
| |
Collapse
|
29
|
He W, Zhu X, Tang X, Xiang X, Yu J, Sun H. Circ_0027089 regulates NACC1 by targeting miR-136-5p to aggravate the development of hepatitis B virus-related hepatocellular carcinoma. Anticancer Drugs 2022; 33:e336-e348. [PMID: 34419960 DOI: 10.1097/cad.0000000000001211] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hepatitis B virus (HBV) infection is the main trigger of hepatocellular carcinoma (HCC). Circular RNA plays an indispensable role in cancer development, and this study aimed to disclose the function and mechanism of circ_0027089 in HBV-related HCC. The expression levels of circ_0027089, miR-136-5p and nucleus accumbens associated protein 1 (NACC1) mRNA were measured by quantitative real-time PCR, and the protein level of NACC1 was detected by western blot. For functional analyses, cell proliferation was assessed by cell counting kit-8 assay and colony formation assay. Cell apoptosis and cell cycle were detected by flow cytometry assay, and cell apoptosis was also assessed by caspase 3/7 activity. The capacities of migration and invasion were evaluated by wound healing assay and transwell assay, respectively. The predicted relationship between miR-136-5p and circ_0027089 or NACC1 was validated by dual-luciferase reporter assay and RNA binding protein immunoprecipitation assay. Animal experiments were performed in nude mice to explore the role of circ_0027089 in vivo. Circ_0027089 expression and NACC1 expression were elevated, while miR-136-5p expression was decreased in HBV-related HCC tissues and cells. In function, circ_0027089 knockdown inhibited HepG2.2.15 and HepAD38 (tet-off) cell proliferation, migration and invasion but induced cell cycle arrest and apoptosis, while circ_0027089 overexpression played the reversed effects. For mechanism exploration, miR-136-5p was a target of circ_0027089, and miR-136-5p deficiency could reverse the role of circ_0027089 knockdown. Circ_0027089 functioned as an oncogene to promote the development of HBV-related HCC by regulating NACC1 via competitively targeting miR-136-5p.
Collapse
Affiliation(s)
- Wei He
- Department of General Surgery, Lichuan People's Hospital, Lichuan
| | - Xingyang Zhu
- Department of General Surgery, the Fourth Affiliated Hospital of Anhui Medical University, Anhui
| | - Xueyan Tang
- Department of Respiratory Medicine, Lichuan People's Hospital, Lichuan, China
| | - Xianhui Xiang
- Department of General Surgery, Lichuan People's Hospital, Lichuan
| | - Jian Yu
- Department of General Surgery, Lichuan People's Hospital, Lichuan
| | - Huirong Sun
- Department of General Surgery, Lichuan People's Hospital, Lichuan
| |
Collapse
|
30
|
Zhou Y, Mao X, Peng R, Bai D. CircRNAs in hepatocellular carcinoma: characteristic, functions and clinical significance. Int J Med Sci 2022; 19:2033-2043. [PMID: 36483595 PMCID: PMC9724243 DOI: 10.7150/ijms.74713] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/07/2022] [Indexed: 11/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and serious types of cancer worldwide, with high incidence and mortality rates. Circular RNAs (circRNAs) are a novel class of non-coding RNA with important biological functions. In recent years, multiple circRNAs have been found to be involved in the biological processes of tumorigenesis and tumor development. Increasing evidence has shown that circRNAs also play a crucial role in the occurrence and development of HCC. However, the specific molecular mechanism of circRNAs in HCC has not been fully elucidated. The present review systematically summarized the classification and basic characteristics of circRNAs, their biological functions and their role in the occurrence and development of HCC. By summarizing the previous studies on circRNAs in HCC, this study aimed to indicate potential approaches to improving the early diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Yujun Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Huaihua First People's Hospital, Huaihua, Hunan, P. R. China
| | - Xingkang Mao
- Cardiovascular Center, Huizhou First Municipal People's Hospital, Huizhou, Guangdong, P. R. China
| | - Rui Peng
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Dousheng Bai
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| |
Collapse
|
31
|
Hui Y, Jin D, Leng J, Liu D, Yuan P, Tang C, Wang Q. Hsa_circ_0007059 sponges miR-421 to repress cell growth and stemness in hepatocellular carcinoma by the PTEN-AKT/mTOR pathway. Pathol Res Pract 2021; 229:153692. [PMID: 34847369 DOI: 10.1016/j.prp.2021.153692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/01/2021] [Accepted: 11/16/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a substantial health concern worldwide. Increasing studies have suggested that circle RNAs (circRNAs) function as new regulators in HCC progression. The present work explored the role of hsa_circ_0007059 (circ_0007059) in the developing process of hepatocarcinogenesis. METHODS The circ_0007059 level in HCC was determined by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) and northern blot. Its biological role in HCC cells was assessed using 3-(4,5-Dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide (MTT), colony formation, flow cytometry, Transwell, sphere formation and western blotting analyses. Bioinformatics analysis, luciferase reporter, and RNA immunoprecipitation (RIP) assays were used to test the regulatory mechanisms of circ_0007059. RESULTS Our results revealed that circ_0007059 expression was downregulated in HCC samples and cells. Moreover, circ_0007059 overexpression inhibited HCC cell proliferation, migration, invasion, and stem cell-like property, and strengthened cell apoptosis. In mechanism, circ_0007059 suppressed AKT/mTOR pathway by positively regulating phosphatase and tensin homolog (PTEN) expression. Additionally, circ_0007059 acted as a positive regulator of PTEN through controlling the availability of miR-421. Rescue assays demonstrated that PTEN knockdown or SC79 (AKT agonist) eliminated the effect of circ_0007059 on HCC cell phenotypes. CONCLUSION Circ_0007059 sponges miR-421 to inhibit oncogenic cellular process in HCC by mediating the PTEN-AKT/mTOR pathway.
Collapse
Affiliation(s)
- Yongfeng Hui
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Dong Jin
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Junzhi Leng
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Di Liu
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Peng Yuan
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Chaofeng Tang
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Qi Wang
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China.
| |
Collapse
|
32
|
Huang Z, Xia H, Liu S, Zhao X, He R, Wang Z, Shi W, Chen W, Kang P, Su Z, Cui Y, Yam JWP, Xu Y. The Mechanism and Clinical Significance of Circular RNAs in Hepatocellular Carcinoma. Front Oncol 2021; 11:714665. [PMID: 34540684 PMCID: PMC8445159 DOI: 10.3389/fonc.2021.714665] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/09/2021] [Indexed: 01/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors worldwide. In view of the lack of early obvious clinical symptoms and related early diagnostic biomarkers with high specificity and sensitivity, most HCC patients are already at the advanced stages at the time of diagnosis, and most of them are accompanied by distant metastasis. Furthermore, the unsatisfactory effect of the follow-up palliative care contributes to the poor overall survival of HCC patients. Therefore, it is urgent to identify effective early diagnosis and prognostic biomarkers and to explore novel therapeutic approaches to improve the prognosis of HCC patients. Circular RNA (CircRNA), a class of plentiful, stable, and highly conserved ncRNA subgroup with the covalent closed loop, is dysregulated in HCC. Increasingly, emerging evidence have confirmed that dysregulated circRNAs can regulate gene expression at the transcriptional or post-transcriptional level, mediating various malignant biological behaviors of HCC cells, including proliferation, invasion, metastasis, immune escape, stemness, and drug resistance, etc.; meanwhile, they are regarded as potential biomarkers for early diagnosis and prognostic evaluation of HCC. This article reviews the research progress of circRNAs in HCC, expounding the potential molecular mechanisms of dysregulated circRNAs in the carcinogenesis and development of HCC, and discusses those application prospects in the diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Ziyue Huang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haoming Xia
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuqiang Liu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xudong Zhao
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Risheng He
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhongrui Wang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenguang Shi
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wangming Chen
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pengcheng Kang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhilei Su
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong, SAR China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong, SAR China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| |
Collapse
|
33
|
Cao C, Li J, Li G, Hu G, Deng Z, Huang B, Yang J, Li J, Cao S. Long Non-coding RNA TMEM220-AS1 Suppressed Hepatocellular Carcinoma by Regulating the miR-484/MAGI1 Axis as a Competing Endogenous RNA. Front Cell Dev Biol 2021; 9:681529. [PMID: 34422806 PMCID: PMC8376477 DOI: 10.3389/fcell.2021.681529] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have a considerable regulatory influence on multiple biological processes. Nevertheless, the role of TMEM220-AS1 in hepatocellular carcinoma (HCC) remains unclear. We used The Cancer Genome Atlas (TCGA) database to analyze the differentially expressed lncRNAs. qRT-PCR was used to verify the results for a large population. The in vitro effects of TMEM220-AS1 on HCC cells were determined using Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, and Transwell assays in HCC cells. We used qRT-PCR and western blotting to identify the epithelial-mesenchymal transition (EMT). Moreover, we performed bioinformatics analysis, western blotting, dual luciferase reporter gene assay, RNA pull-down, and RNA binding protein immunoprecipitation (RIP) to investigate the underlying molecular mechanisms of TMEM220-AS1 function. Finally, the function of TMEM220-AS1 was verified in vivo. The results showed that TMEM220-AS1 was expressed at considerably low levels in HCC. It was demonstrated that malignant phenotypes and EMT of HCC cells were promoted by the knock down of TMEM220-AS1 both in vivo and in vitro. TMEM220-AS1, which was detected primarily in the cytoplasm, functioned as an miRNA sponge to bind miR-484 and promote the level of membrane-associated guanylate kinase, WW, and PDZ domain containing 1 (MAGI1), thereby curbing the malignant phenotypes of HCC cells. In conclusion, low levels of TMEM220-AS1 promote proliferation and metastasis through the miR-484/MAGI1 axis in HCC.
Collapse
Affiliation(s)
- Cong Cao
- Department of General Practice, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jun Li
- Department of General Practice, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Guangzhi Li
- Department of General Practice, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Gaoyu Hu
- Department of Gastroenterology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zhihua Deng
- Department of Gastroenterology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Bing Huang
- Department of General Practice, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jing Yang
- Department of General Practice, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jiequn Li
- Department of Liver Transplantation, Second Xiangya Hospital, Central South University, Changsha, China.,Transplant Medical Research Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Song Cao
- Department of Liver Transplantation, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
34
|
Wu Z, He X, Chen S. Oncogenic circDHTKD1 promotes tumor growth and metastasis of oral squamous cell carcinoma in vitro and in vivo via upregulating miR-326-mediated GAB1. ACTA ACUST UNITED AC 2021; 54:e10837. [PMID: 34287578 PMCID: PMC8289343 DOI: 10.1590/1414-431x2020e10837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/27/2021] [Indexed: 01/14/2023]
Abstract
Circular RNAs (circRNAs) have been extensively elucidated with regard to their significant implications in oral squamous cell carcinoma (OSCC). This study performed the functional investigation of circRNA dehydrogenase E1 and transketolase domain containing 1 (circDHTKD1) in OSCC. RNA expression levels of different molecules were measured via quantitative real-time polymerase chain reaction (qRT-PCR). Cellular behaviors were detected by 3-(4, 5-dimethylthiazol-2-y1)-2,5-diphenyl tetrazolium bromide (MTT) for cell viability, colony formation assay for clonal capacity, flow cytometry for cell apoptosis, wound healing assay for migration, and transwell assay for migration/invasion. Western blot was used for analyzing protein expression. RNA pull-down and dual-luciferase reporter assays were applied to assess the binding between targets. A xenograft tumor model was established in nude mice for in vivo experiments. Our expression analysis revealed that circDHTKD1 was upregulated in OSCC tissues and cells. circDHTKD1 knockdown was shown to impede OSCC cell growth and metastasis but motivate apoptosis. Additionally, circDHTKD1 served as a microRNA-326 (miR-326) sponge and the function of circDHTKD1 was achieved by sponging miR-326 in OSCC cells. Also, miR-326 inhibited OSCC development via targeting GRB2-associated-binding protein 1 (GAB1). circDHTKD1 could sponge miR-326 to alter GAB1 expression. Furthermore, circDHTKD1 contributed to OSCC progression in vivo via the miR-326/GAB1 axis. These data disclosed a specific circDHTKD1/miR-326/GAB1 signal axis in governing the malignant progression of OSCC, showing the considerable possibility of circDHTKD1 as a predictive and therapeutic target for clinical diagnosis and treatment of OSCC.
Collapse
Affiliation(s)
- Zhuangzhi Wu
- Department of Stomatology, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Xiaoning He
- Department of Stomatology, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Siqi Chen
- Department of Stomatology, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| |
Collapse
|
35
|
Xu M, Li XY, Song L, Tao C, Fang J, Tao L. miR-484 targeting of Yap1-induced LPS-inhibited proliferation, and promoted apoptosis and inflammation in cardiomyocyte. Biosci Biotechnol Biochem 2021; 85:378-385. [PMID: 33604630 DOI: 10.1093/bbb/zbaa009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 11/12/2022]
Abstract
Apoptosis and inflammation were the main hallmarks of sepsis-induced cardiomyopathy (SIC). Yes-associated protein isoform 1 (Yap1) and miR-484 were involved in mitochondrial fission and apoptosis, especially proapoptotic roles in SIC. Here, we investigated the role of Yap1 and miR-484 in lipopolysaccharide (LPS)-treated H9c2 cells. Yap1 was downregulated, while miR-484 was elevated by LPS treatment. Cell counting kit-8, flow cytometry, western blotting, and ELISA showed that miR-484 inhibitor significantly improved cell viability, decreased apoptosis, suppressed NLRP3 inflammasome formation, and reduced secretion of inflammatory cytokines TNF-α, IL-1β, and IL-6. Yap1, directly targeted by miR-484 shown in the luciferase assay, was more like a compensatory regulator of LPS stimulation. Knockdown of Yap1 inverted the effects of miR-484 inhibitor, including decreased cell viability, and promoted apoptosis and inflammation. These revealed miR-484 directly targeted mRNA of Yap1 to inhibit cell viability, and promote apoptosis and inflammation in LPS-treated H9c2 cells.
Collapse
Affiliation(s)
- Ming Xu
- Department of Cardiac Surgery, Wuhan Asia Heart Hospital, Wuhan, P. R. China
| | - Xiao-Yong Li
- Department of Cardiac Surgery, Wuhan Asia Heart Hospital, Wuhan, P. R. China
| | - Laichun Song
- Department of Cardiac Surgery, Wuhan Asia Heart Hospital, Wuhan, P. R. China
| | - Chao Tao
- Department of Cardiac Surgery, Wuhan Asia Heart Hospital, Wuhan, P. R. China
| | - Jihui Fang
- Department of Cardiac Surgery, Wuhan Asia Heart Hospital, Wuhan, P. R. China
| | - Liang Tao
- Department of Cardiac Surgery, Wuhan Asia Heart Hospital, Wuhan, P. R. China
| |
Collapse
|
36
|
Shahrisa A, Tahmasebi-Birgani M, Ansari H, Mohammadi Z, Carloni V, Mohammadi Asl J. The pattern of gene copy number alteration (CNAs) in hepatocellular carcinoma: an in silico analysis. Mol Cytogenet 2021; 14:33. [PMID: 34215297 PMCID: PMC8254242 DOI: 10.1186/s13039-021-00553-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/19/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common type of liver cancer that occurs predominantly in patients with previous liver conditions. In the absence of an ideal screening modality, HCC is usually diagnosed at an advanced stage. Recent studies show that loss or gain of genomic materials can activate the oncogenes or inactivate the tumor suppressor genes to predispose cells toward carcinogenesis. Here, we evaluated both the copy number alteration (CNA) and RNA sequencing data of 361 HCC samples in order to locate the frequently altered chromosomal regions and identify the affected genes. RESULTS Our data show that the chr1q and chr8p are two hotspot regions for genomic amplifications and deletions respectively. Among the amplified genes, YY1AP1 (chr1q22) possessed the largest correlation between CNA and gene expression. Moreover, it showed a positive correlation between CNA and tumor grade. Regarding deleted genes, CHMP7 (chr8p21.3) possessed the largest correlation between CNA and gene expression. Protein products of both genes interact with other cellular proteins to carry out various functional roles. These include ASH1L, ZNF496, YY1, ZMYM4, CHMP4A, CHMP5, CHMP2A and CHMP3, some of which are well-known cancer-related genes. CONCLUSIONS Our in-silico analysis demonstrates the importance of copy number alterations in the pathology of HCC. These findings open a door for future studies that evaluate our results by performing additional experiments.
Collapse
Affiliation(s)
- Arman Shahrisa
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Tahmasebi-Birgani
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Hossein Ansari
- Department of Biotechnology, Islamic Azad University, Ahvaz Branch, Ahvaz, Iran
| | - Zahra Mohammadi
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vinicio Carloni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Javad Mohammadi Asl
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
37
|
Cai X, Li B, Wang Y, Zhu H, Zhang P, Jiang P, Yang X, Sun J, Hong L, Shao L. CircJARID2 Regulates Hypoxia-Induced Injury in H9c2 Cells by Affecting miR-9-5p-Mediated BNIP3. J Cardiovasc Pharmacol 2021; 78:e77-e85. [PMID: 34009856 DOI: 10.1097/fjc.0000000000001033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/10/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Myocardial infarction (MI) is a common cardiovascular disease, and many circular RNAs (circRNAs) have been found to participate in the pathological process. This study was to research circRNA jumonji and AT-rich interaction domain containing 2 (circJARID2) in MI. MI cell model was established by hypoxia treatment in H9c2 cells. CircJARID2 and microRNA-9-5p (miR-9-5p) levels were examined using real-time polymerase chain reaction. Cell viability detection was performed by Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (Edu) assays. Cell apoptosis was evaluated by flow cytometry and caspase-3 activity assay. Apoptotic markers and B-cell lymphoma-2 (Bcl-2) interacting protein 3 (BNIP3) were quantified by western blot. Inflammatory cytokines were determined via enzyme-linked immunosorbent assay. The genic interaction was analyzed through dual-luciferase reporter and RNA immunoprecipitation assays. Hypoxia induced the upregulation of circJARID2 expression in H9c2 cells. The hypoxia-induced cell viability inhibition, apoptosis promotion, and inflammatory response were all counterbalanced by knockdown of circJARID2. CircJARID2 interacted with miR-9-5p, and its function in regulating the hypoxia-induced cell injury was also dependent on targeting miR-9-5p. BNIP3 acted as a target gene of miR-9-5p, and circJARID2 had positive effect on BNIP3 expression by binding to miR-9-5p. MiR-9-5p played a protective role for H9c2 cells against the hypoxia-induced injury via targeting BNIP3. CircJARID2 overexpression contributed to the hypoxia-induced H9c2 cell injury by sponging miR-9-5p to upregulate BNIP3 expression, showing a novel molecular network of MI pathomechanism.
Collapse
Affiliation(s)
| | - Bin Li
- Departments of Cardiology; and
| | | | | | - Ping Zhang
- Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Panpan Jiang
- Shenzhen Realomics (Biotech), Co, Ltd, Shenzhen, China ; and
| | - Xu Yang
- Shenzhen Realomics (Biotech), Co, Ltd, Shenzhen, China ; and
| | - Jianhua Sun
- Department of Cardiology, The People's Hospital of Yudu County, Jiangxi, China
| | | | | |
Collapse
|
38
|
Yang G, Xu Q, Wan Y, Zhang L, Wang L, Meng F. Circ-CSPP1 knockdown suppresses hepatocellular carcinoma progression through miR-493-5p releasing-mediated HMGB1 downregulation. Cell Signal 2021; 86:110065. [PMID: 34182091 DOI: 10.1016/j.cellsig.2021.110065] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) accounts for over 80% of primary liver cancers and leads to a high death rate. Research on circular RNAs (circRNAs) suggests that circRNAs are promising biomarkers for cancer treatment. This study aimed to explore the function of a novel circRNA (circ-CSPP1) in HCC. METHODS Circ-CSPP1 was obtained from the microarray data downloaded from the Gene Expression Omnibus (GEO) database. The expression of circ-CSPP1, miR-493-5p and high mobility group box 1 (HMGB1) was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation, colony formation ability, migration and invasion were monitored using cell counting kit-8 (CCK-8) assay, colony formation assay, wound healing assay and transwell assay, respectively. The protein levels of CyclinD1, Vimentin, matrix metallopeptidase 9 (MMP-9) and HMGB1 were detected by western blot. Xenograft models were established to investigate the function of circ-CSPP1 in vivo. The association between miR-493-5p and circ-CSPP1 or HMGB1 was predicted by the online tool starBase and ensured by dual-luciferase reporter assay. RESULTS The expression of circ-CSPP1 and HMGB1 was elevated, while the expression of miR-493-5p was declined in HCC tissues and cells. Circ-CSPP1 knockdown not only depleted HCC cell proliferation, formation, migration and invasion in vitro but also inhibited tumor growth in vivo. MiR-493-5p was a target of circ-CSPP1, and HMGB1 was a target of miR-493-5p. Rescue experiments presented that miR-493-5p deficiency reversed the effects of circ-CSPP1 knockdown, and HMGB1 overexpression reversed the effects of miR-493-5p restoration. Circ-CSPP1 sponged miR-493-5p to regulate HMGB1 expression. CONCLUSION Knockdown of circ-CSPP1 suppressed HCC development both in vitro and in vivo by upregulation of miR-493-5p and downregulation of HMGB1, hinting that circ-CSPP1 participated in HCC pathogenesis.
Collapse
Affiliation(s)
- Ganghua Yang
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Qinhong Xu
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Yong Wan
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Lei Zhang
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Lin Wang
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Fandi Meng
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China.
| |
Collapse
|
39
|
Carvedilol protects against the H2O2-induced cell damages in rat myoblasts by regulating the circ_NFIX/miR-125b-5p/TLR4 signal axis. J Cardiovasc Pharmacol 2021; 78:604-614. [PMID: 34173813 DOI: 10.1097/fjc.0000000000001095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/05/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Circular RNAs (circRNAs) have been involved in the regulation of various kinds of cardiovascular diseases, including acute myocardial infarction (AMI). This study was performed to investigate the molecular mechanism associated with circRNA nuclear factor IX (circ_NFIX) in carvedilol-mediated cardioprotection in H2O2-treated H9c2 cells. Flow cytometry was performed for the analysis of cell cycle and apoptosis. Cell proliferation was evaluated using colony formation assay and 3-(4, 5-dimethylthiazol-2-y1)-2, 5-diphenyl tetrazolium bromide (MTT) assay. Lactate dehydrogenase (LDH) activity was measured via LDH assay. The relative levels of circ_NFIX, microRNA-125b-5p (miR-125b-5p) and toll-like receptor 4 (TLR4) were determined via quantitative real-time polymerase chain reaction (qRT-PCR). Protein levels were examined by western blot. The target interaction was proved via dual-luciferase reporter assay. H2O2-induced cell cycle arrest, proliferation repression, apoptosis and LDH promotion in H9c2 cells were inhibited by carvedilol. Circ_NFIX level was reduced after carvedilol treatment in H2O2-treated H9c2 cells, and circ_NFIX overexpression inhibited the protective effects of carvedilol on H2O2-induced cell damages. Furthermore, circ_NFIX was validated to serve as a sponge of miR-125b-5p and the inhibitory function of circ_NFIX in carvedilol-induced cardioprotection was achieved by sponging miR-125b-5p. Moreover, TLR4 acted as a target gene of miR-125b-5p and miR-125b-5p inhibitor upregulated the TLR4 expression to suppress the protective effects of carvedilol on H2O2-treated H9c2 cells. In addition, circ_NFIX regulated the TLR4 level by exerting the sponge influence on miR-125b-5p. Rat model also indicated that Carv might suppressed the progression of AMI via regulating the levels of circ_NFIX, miR-125b-5p and TLR4. These findings suggested that carvedilol protected H9c2 cells against the H2O2-induced cell dysfunction through depending on the circ_NFIX/miR-125b-5p/TLR4 axis.
Collapse
|
40
|
Liang M, Yao W, Shi B, Zhu X, Cai R, Yu Z, Guo W, Wang H, Dong Z, Lin M, Zhou X, Zheng Y. Circular RNA hsa_circ_0110389 promotes gastric cancer progression through upregulating SORT1 via sponging miR-127-5p and miR-136-5p. Cell Death Dis 2021; 12:639. [PMID: 34162830 PMCID: PMC8222372 DOI: 10.1038/s41419-021-03903-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 02/05/2023]
Abstract
Increasing studies have found that circular RNAs (circRNAs) are aberrantly expressed and play important roles in the occurrence and development of human cancers. However, the function of circRNAs on environmental carcinogen-induced gastric cancer (GC) progression remains poorly elucidated. In the present study, hsa_circ_0110389 was identified as a novel upregulated circRNA in malignant-transformed GC cells through RNA-seq, and subsequent quantitative real-time PCR verified that hsa_circ_0110389 was significantly increased in GC tissues and cells. High hsa_circ_0110389 expression associates with advanced stages of GC and predicts poor prognosis. Knockdown and overexpression assays demonstrated that hsa_circ_0110389 regulates proliferation, migration, and invasion of GC cells in vitro. In addition, hsa_circ_0110389 was identified to sponge both miR-127-5p and miR-136-5p and SORT1 was validated as a direct target of miR-127-5p and miR-136-5p through multiple mechanism assays; moreover, hsa_circ_0110389 sponged miR-127-5p/miR-136-5p to upregulate SORT1 expression and hsa_circ_0110389 promoted GC progression through the miR-127-5p/miR-136-5p-SORT1 pathway. Finally, hsa_circ_0110389 knockdown suppressed GC growth in vivo. Taken together, our findings firstly identify the role of hsa_circ_0110389 in GC progression, which is through miR-127-5p/miR-136-5p-SORT1 pathway, and our study provides novel insight for the identification of diagnostic/prognostic biomarkers and therapeutic targets for GC.
Collapse
Affiliation(s)
- Min Liang
- Department of Oncology, Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510700, Guangzhou, China
- Medical Oncology Department, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Medical University, 510095, Guangzhou, China
| | - Wenxia Yao
- Department of Center Laboratory, Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510700, Guangzhou, China
| | - Boyun Shi
- Department of Oncology, Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510700, Guangzhou, China
| | - Xiongjie Zhu
- Medical Oncology Department, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Medical University, 510095, Guangzhou, China
| | - Rui Cai
- Medical Oncology Department, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Medical University, 510095, Guangzhou, China
| | - Zhongjian Yu
- Medical Oncology Department, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Medical University, 510095, Guangzhou, China
| | - Weihong Guo
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Huaiming Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zhijie Dong
- Department of Center Laboratory, Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510700, Guangzhou, China
| | - Mingzhen Lin
- Department of Center Laboratory, Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510700, Guangzhou, China
| | - Xinke Zhou
- Department of Oncology, Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510700, Guangzhou, China.
| | - Yanfang Zheng
- Medical Oncology Department, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Medical University, 510095, Guangzhou, China.
| |
Collapse
|
41
|
Li Z, Zhang J, Jiang Y, Bao J, Li D. Circular ribonucleic acid nei-like deoxyribonucleic acid glycosylase 3 governs the microribonucleic acid -3150b-3p/laminin subunit gamma 1 network to partially promote the development of hepatocellular carcinoma. Hepatol Res 2021; 51:702-714. [PMID: 33738908 DOI: 10.1111/hepr.13636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022]
Abstract
AIM Hepatocellular carcinoma (HCC) is one of the most common malignant tumors, and its progression is implicated in the dysregulation of circular ribonucleic acids (RNAs). This study aimed to investigate the role of circular RNA nei-like DNA glycosylase 3 (circNEIL3) in HCC. METHODS Real-time quantitative PCR was used for expression analysis of circNEIL3, microRNA-3150b-3p (miR-3150b-3p) and laminin subunit gamma 1 (LAMC1) message RNA. MTT assay, colony formation assay, wound healing assay, transwell assay, and flow cytometry assay were performed for functional analyses on cell proliferation, migration, invasion, apoptosis, and cycle. The expression of marker proteins and LAMC1 protein was quantified by western blot. The interaction between miR-3150b-3p and circNEIL3 or LAMC1 was confirmed by dual-luciferase reporter assay or RNA immunoprecipitation assay. An animal study was performed to confirm the role of circNEIL3 in vivo. RESULTS CircNEIL3 was upregulated in tumor tissues and HCC cell lines. CircNEIL3 knockdown significantly suppressed HCC cell proliferation, migration and invasion and induced cell apoptosis and cell cycle arrest. MiR-3150b-3p was a target of circNEIL3, and its inhibition largely reversed the functional effects of circNEIL3 knockdown on cell behaviors. Moreover, LAMC1 served as a target of miR-3150b-3p, and its expression was elevated in HCC tissues and cells. LAMC1 overexpression recovered HCC cell proliferation, migration and invasion that were blocked by miR-3150b-3p restoration. Additionally, circNEIL3 knockdown inhibited tumor growth in mice. CONCLUSION CircNEIL3 dysregulation was responsible for the partial development of HCC by regulating the miR-3150b-3p/LAMC1 regulatory network.
Collapse
Affiliation(s)
- Zhenjie Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jinping Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanyuan Jiang
- Department of Gastroenterology, Zhengzhou Central Hospital, Zhengzhou, Henan, China
| | - Jie Bao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dongying Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
42
|
Zhang J, Li H, Dong J, Zhang N, Liu Y, Luo X, Chen J, Wang J, Wang A. Omics-Based Identification of Shared and Gender Disparity Routes in Hras12V-Induced Hepatocarcinogenesis: An Important Role for Dlk1-Dio3 Genomic Imprinting Region. Front Genet 2021; 12:620594. [PMID: 34135934 PMCID: PMC8202007 DOI: 10.3389/fgene.2021.620594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
The phenomenon of gender disparity is very profound in hepatocellular carcinoma (HCC). Although previous research has revealed important roles of microRNA (miRNA) in HCC, there are no studies investigating the role of miRNAs in gender disparity observed hepatocarcinogenesis. In the present study, we investigated the global miRNAomics changes related to Ras-induced male-prevalent hepatocarcinogenesis in a Hras12V-transgenic mouse model (Ras-Tg) by next-generation sequencing (NGS). We identified shared by also unique changes in miRNA expression profiles in gender-dependent hepatocarcinogenesis. Two hundred sixty-four differentially expressed miRNAs (DEMIRs) with q value ≤0.05 and fold change ≥2 were identified. A vertical comparison revealed that the lower numbers of DEMIRs in the hepatic tumor (T) compared with the peri-tumor precancerous tissue (P) of Ras-Tg and normal liver tissue of wild-type C57BL/6J mice (W) in males indicated that males are more susceptible to develop HCC. The expression pattern analysis revealed 43 common HCC-related miRNAs and 4 Ras-positive-related miRNAs between males and females. By integrating the mRNA transcriptomic data and using 3-node FFL analysis, a group of significant components commonly contributing to HCC between sexes were filtered out. A horizontal comparison showed that the majority of DEMIRs are located in the Dlk1-Dio3 genomic imprinting region (GIR) and that they are closely related to not only hepatic tumorigenesis but also to gender disparity in hepatocarcinogenesis. This is achieved by regulating multiple metabolic pathways, including retinol, bile acid, and steroid hormones. In conclusion, the identification of shared and gender-dependent DEMIRs in hepatocarcinogenesis provides valuable insights into the mechanisms that contribute to male-biased Ras-induced hepatic carcinogenesis.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Huiling Li
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Jianyi Dong
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Nan Zhang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Yang Liu
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Xiaoqin Luo
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Jun Chen
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Jingyu Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Aiguo Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| |
Collapse
|
43
|
Hussen BM, Honarmand Tamizkar K, Hidayat HJ, Taheri M, Ghafouri-Fard S. The role of circular RNAs in the development of hepatocellular carcinoma. Pathol Res Pract 2021; 223:153495. [PMID: 34051512 DOI: 10.1016/j.prp.2021.153495] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/30/2022]
Abstract
Circular RNAs (circRNAs) are a group of regulatory non-coding transcripts, which partake in the pathobiology of hepatocellular carcinoma (HCC). Numerous micro-array based investigations have discovered aberrant expression of circRNAs in HCC samples in comparison with para-cancerous sections. Furthermore, a number of in vitro and in vivo experimentations have aimed at understanding the molecular pathways of circRNAs contribution in the evolution of HCC. CircRNAs have interplay with a number of transcription factors such as ZEB1 that possibly mediates the effects of these transcripts in the epithelial-mesenchymal transition. Moreover, circRNAs functionally interact with miRNAs. CircRNA_0000502/ miR-124, circ_0001955/ miR-145-5p, circ_0001955/ miR-516a-5p and hsa_circ_0001955/miR-145-5p are examples of such interactions in the context of HCC. CircRNAs not only predict the course of HCC, but also, they can differentiate HCC samples from non-malignant liver tissues. In this review article, we have provided an inclusive summary of researches that quantified circRNAs profile in HCC. We also provide evidence for application of circRNAs as HCC biomarkers.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Kasra Honarmand Tamizkar
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahadddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Zhang Y, Wang Y. Circular RNAs in Hepatocellular Carcinoma: Emerging Functions to Clinical Significances. Front Oncol 2021; 11:667428. [PMID: 34055634 PMCID: PMC8160296 DOI: 10.3389/fonc.2021.667428] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary cancer of the liver and carries high morbidity and mortality. Diagnosing HCC at an early stage is challenging. Therefore, finding new, highly sensitive and specific diagnostic biomarkers for the diagnosis and prognosis of HCC patients is extremely important. Circular RNAs (circRNAs) are a class of non-coding RNAs with covalently closed loop structures. They are characterized by remarkable stability, long half-life, abundance and evolutionary conservation. Recent studies have shown that many circRNAs are expressed aberrantly in HCC tissues and have important regulatory roles during the development and progression of HCC. Hence, circRNAs are promising biomarkers for the diagnosis and prognosis of HCC. This review: (i) summarizes the biogenesis, categories, and functions of circRNAs; (ii) focuses on current progress of dysregulated expression of circRNAs in HCC with regard to regulation of the tumor hallmarks, “stemness” of cancer cells, and immunotherapy; (iii) highlights circRNAs as potential biomarkers and therapeutic targets for HCC; and (iv) discusses some of the challenges, questions and future perspectives of circRNAs research in HCC.
Collapse
Affiliation(s)
- Yucheng Zhang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yali Wang
- Department of Blood Transfusion, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
45
|
Jia YZ, Mei QJ, Zhang Y. MiR-484 participates in non-alcoholic fatty liver injury by targeting SIRT1 to mediate cell apoptosis. Shijie Huaren Xiaohua Zazhi 2021; 29:389-397. [DOI: 10.11569/wcjd.v29.i8.389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) has become a major health threat that is seriously underestimated. Although the pathogenesis of NAFLD is complex, more and more evidence shows that microRNAs (miRNAs) play an important role in regulating the occurrence and development of NAFLD. Whether miR-484 is involved in the occurrence and development of NAFLD remains to be clarified.
AIM To explore the mechanism of miR-484 in the damage of liver steatosis.
METHODS A mouse model of NAFLD was established by feeding mice a high-fat diet, and the expression levels of miR-484 and SIRT1 in liver tissues were measured by RT-qPCR and Western blot. A miR-484 knockout NAFLD mouse model was constructed, the degree of steatosis and apoptosis were detected by oil red O staining, HE staining, and TUNEL staining, and the levels of serum ALT and AST were detected. In addition, a cell model of NAFLD was constructed through free fatty acid exposure. The dual luciferase reporter gene assay was first used to verify the direct targeting relationship between miR-484 and SIRT1, then an SIRT1 overexpression model was constructed by transfection with pc-DNA and pc-DNA SIRT1. Oil red O staining was used to detect lipid accumulation and flow cytometry was used to detect cell apoptosis.
RESULTS In the mouse model of NAFLD, the expression of miR-484 was significantly up-regulated, while the expression of SIRT1 was decreased. The degree of steatosis was reduced and serum ALT and AST levels were significantly reduced in miR-484 knockout mice. In the cell model of NAFLD, miR-484 can directly target SIRT1. In addition, overexpression of SIRT1 significantly decreased the rate of apoptosis and alleviated lipid accumulation in liver cells
CONCLUSION MiR-484 regulates cell apoptosis by targeting SIRT1 and aggravates lipid accumulation in liver cells, which suggests that miR-484 may be a therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Yin-Zhao Jia
- Department of Hepatobiliary Surgery, Wuhan Union Hospital, Wuhan 430022, Hubei Province, China
| | - Qiao-Juan Mei
- Insititute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yong Zhang
- Department of Hepatobiliary Surgery, Wuhan Union Hospital, Wuhan 430022, Hubei Province, China
| |
Collapse
|
46
|
Hsa_circ_0026134 expression promoted TRIM25- and IGF2BP3-mediated hepatocellular carcinoma cell proliferation and invasion via sponging miR-127-5p. Biosci Rep 2021; 40:225757. [PMID: 32648571 PMCID: PMC7364856 DOI: 10.1042/bsr20191418] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence shows that circular RNAs (circRNAs) play a regulatory role in cancer. In the present study, we aimed to investigate the characteristics and effects of hsa_circ_0026134 in hepatocellular carcinoma (HCC). We investigated hsa_circ_0026134 expression in 20 pairs of clinical tissues from HCC patients; expression of hsa_circ_0026134 in different cell lines; effect of hsa_circ_0026134 on proliferation and invasion of HCC cell lines; and the regulatory mechanisms and interactions among hsa_circ_0026134, miR-127-5p, tripartite motif-containing protein 25 (TRIM25) and insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3). hsa_circ_0026134 expression was increased in HCC samples and cell lines. Down-regulation of hsa_circ_0026134 attenuated HCC cell proliferation and metastatic properties. Micro (mi)RNA (miR)-127-5p was sponged by hsa_circ_0026134. Rescue experiments indicated that inhibition of miR-127-5p expression promoted cell proliferation and invasion even after hsa_circ_0026134 silencing. TRIM25 and IGF2BP3 were targets of miR-127-5p. Overexpression of TRIM25 or IGF2BP3 promoted cell proliferation and invasion in cells overexpressing miR-127-5p. Down-regulation of hsa_circ_0026134 suppressed TRIM25- and IGF2BP3-mediated HCC cell proliferation and invasion via promotion of miR-127-5p expression, which have been confirmed by luciferase reporter assay. The present study provides a new treatment target for HCC.
Collapse
|
47
|
Chen F, He L, Qiu L, Zhou Y, Li Z, Chen G, Xin F, Dong X, Xu H, Wang G, Liu J, Cai Z. Circular RNA CircEPB41L2 Functions as Tumor Suppressor in Hepatocellular Carcinoma Through Sponging miR-590-5p. Cancer Manag Res 2021; 13:2969-2981. [PMID: 33833580 PMCID: PMC8021265 DOI: 10.2147/cmar.s291682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/01/2021] [Indexed: 12/24/2022] Open
Abstract
Background Circular RNAs (circRNAs) could interact with miRNAs to regulate gene expression, participating in hepatocellular carcinoma (HCC) initiation and development. This work aimed to determine the potential function and molecular mechanism of circEPB41L2 (hsa_circ_0077837) during HCC progression. Materials and Methods The expression of circEPB41L2 in HCC tissues and HCC cell lines was quantified using real-time quantitative PCR (qRT-PCR). CCK-8 assays and colony formation assays were utilized to detect the proliferation of HCC cells. Wound healing assay and transwell assay were performed to determine the capability of migration and invasion for HCC cells. Western blot was conducted to determine gene expression on protein levels. The effect of circEPB41L2 on HCC in vivo was investigated via xenograft experiment. Interaction between circEPB41L2 and miR-590-5p was predicted through bioinformatics methods and confirmed via luciferase reporter assay. Results Extensive analysis of circRNA profiles in tumor and matched para-tumor tissues collected from 61 HCC patients identified that circEPB41L2 was significantly down-regulated in HCC, which was further confirmed in another HCC group by qRT-PCR analysis. The clinicopathological analysis revealed that down-regulation of circEPB41L2 was negatively associated with tumor size, vascular invasion and alpha-fetoprotein, while positively correlated with HCC prognosis. The biological function experiments showed that overexpression of circEPB41L2 could obviously inhibit the proliferation and metastasis of HCC cells in vitro, while knockdown of circEPB41L2 induced opposite results. Moreover, we also found that circEPB41L2 inhibited HCC migration and invasion though EMT signaling pathway. Similarly, overexpression of circEPB41L2 can also significantly inhibit the proliferation of HCC cells in vivo. Bioinformatic analysis and luciferase reporter assay revealed that circEPB41L2 interacts directly with miR-590-5p and the corresponding biological functions were also verified in miRNA rescue experiments. Conclusion Our results suggest that circEPB41L2 might function as a tumor suppressor during HCC progression by sponging miR-590-5p.
Collapse
Affiliation(s)
- Feng Chen
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Lei He
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350025, People's Republic of China
| | - Liman Qiu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350025, People's Republic of China
| | - Yang Zhou
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350025, People's Republic of China
| | - Zhenli Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350025, People's Republic of China
| | - Geng Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350025, People's Republic of China
| | - Fuli Xin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350025, People's Republic of China
| | - Xiuqing Dong
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350025, People's Republic of China
| | - Haipo Xu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350025, People's Republic of China
| | - Gaoxiong Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362001, People's Republic of China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350025, People's Republic of China
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.,Mengchao Med-X Center, Fuzhou University, Fuzhou, 350025, People's Republic of China
| |
Collapse
|
48
|
Xiong D, He R, Dang Y, Wu H, Feng Z, Chen G. The Latest Overview of circRNA in the Progression, Diagnosis, Prognosis, Treatment, and Drug Resistance of Hepatocellular Carcinoma. Front Oncol 2021; 10:608257. [PMID: 33680930 PMCID: PMC7928415 DOI: 10.3389/fonc.2020.608257] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/18/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the main causes of tumor-related deaths worldwide. Due to the lack of obvious early symptoms and the lack of sensitive screening indicators in the early stage of HCC, the vast majority of patients are diagnosed with advanced or metastatic HCC, resulting in dissatisfactory treatment result. Therefore, it is urgent to determine effective and sensitive diagnostic and prognostic indicators and to determine new therapeutic targets. Circular RNA (circRNA) is a type of non-coding RNA that has been neglected for a long time. In recent years, it has been proved to play an important role in the development of many human diseases. Increasing evidence shows that change in circRNA expression has an extensive effect on the biological behavior of HCC. In this study, we comprehensively tracked the latest progress of circRNA in the pathogenesis of HCC, and reviewed its role as a biomarker for diagnosis and prognosis prediction in patients with HCC. In addition, we also summarized the potential of circRNA as therapeutic target in HCC and its relationship with HCC drug resistance, providing clues for the clinical development of circRNA-based therapeutic strategies.
Collapse
Affiliation(s)
- Dandan Xiong
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rongquan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yiwu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huayu Wu
- Department of Cell Biology & Genetics, School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Zhenbo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
49
|
Nisar S, Bhat AA, Singh M, Karedath T, Rizwan A, Hashem S, Bagga P, Reddy R, Jamal F, Uddin S, Chand G, Bedognetti D, El-Rifai W, Frenneaux MP, Macha MA, Ahmed I, Haris M. Insights Into the Role of CircRNAs: Biogenesis, Characterization, Functional, and Clinical Impact in Human Malignancies. Front Cell Dev Biol 2021; 9:617281. [PMID: 33614648 PMCID: PMC7894079 DOI: 10.3389/fcell.2021.617281] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/04/2021] [Indexed: 01/17/2023] Open
Abstract
Circular RNAs (circRNAs) are an evolutionarily conserved novel class of non-coding endogenous RNAs (ncRNAs) found in the eukaryotic transcriptome, originally believed to be aberrant RNA splicing by-products with decreased functionality. However, recent advances in high-throughput genomic technology have allowed circRNAs to be characterized in detail and revealed their role in controlling various biological and molecular processes, the most essential being gene regulation. Because of the structural stability, high expression, availability of microRNA (miRNA) binding sites and tissue-specific expression, circRNAs have become hot topic of research in RNA biology. Compared to the linear RNA, circRNAs are produced differentially by backsplicing exons or lariat introns from a pre-messenger RNA (mRNA) forming a covalently closed loop structure missing 3′ poly-(A) tail or 5′ cap, rendering them immune to exonuclease-mediated degradation. Emerging research has identified multifaceted roles of circRNAs as miRNA and RNA binding protein (RBP) sponges and transcription, translation, and splicing event regulators. CircRNAs have been involved in many human illnesses, including cancer and neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease, due to their aberrant expression in different pathological conditions. The functional versatility exhibited by circRNAs enables them to serve as potential diagnostic or predictive biomarkers for various diseases. This review discusses the properties, characterization, profiling, and the diverse molecular mechanisms of circRNAs and their use as potential therapeutic targets in different human malignancies.
Collapse
Affiliation(s)
- Sabah Nisar
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Ajaz A Bhat
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Mayank Singh
- Dr. B. R. Ambedkar Institute Rotary Cancer Hospital (BRAIRCH), All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | | | - Arshi Rizwan
- Department of Nephrology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sheema Hashem
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Puneet Bagga
- Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Ravinder Reddy
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Farrukh Jamal
- Dr. Rammanohar Lohia Avadh University, Ayodhya, India
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Gyan Chand
- Department of Endocrine Surgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Davide Bedognetti
- Laboratory of Cancer Immunogenomics, Cancer Research Department, Sidra Medicine, Doha, Qatar.,Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy.,College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | | | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology (IUST), Pulwama, India
| | - Ikhlak Ahmed
- Research Branch, Sidra Medicine, Doha, Qatar.,Research Branch, Sidra Medicine, Doha, Qatar
| | - Mohammad Haris
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar.,Laboratory Animal Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
50
|
Tang Y, Jiang M, Jiang HM, Ye ZJ, Huang YS, Li XS, Qin BY, Zhou RS, Pan HF, Zheng DY. The Roles of circRNAs in Liver Cancer Immunity. Front Oncol 2021; 10:598464. [PMID: 33614486 PMCID: PMC7890029 DOI: 10.3389/fonc.2020.598464] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Circular RNAs (circRNAs) are stable covalently closed non-coding RNAs (ncRNAs). Many studies indicate that circRNAs are involved in the pathological and physiological processes of liver cancer. However, the functions of circRNAs in liver cancer immunity are less known. In this review, we summarized the functions of circRNAs in liver cancer, including proliferative, metastasis and apoptosis, liver cancer stemness, cell cycle, immune evasion, glycolysis, angiogenesis, drug resistance/sensitizer, and senescence. Immune escape is considered to be one of the hallmarks of cancer development, and circRNA participates in the immune escape of liver cancer cells by regulating natural killer (NK) cell function. CircRNAs may provide new ideas for immunotherapy in liver cancer.
Collapse
Affiliation(s)
- Ying Tang
- Department of Oncology, Institute of Tumor, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Oncology, Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Oncology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mei Jiang
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hai-Mei Jiang
- Department of Oncology, Institute of Tumor, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Oncology, Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Oncology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zeng Jie Ye
- Department of Oncology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu-Sheng Huang
- Department of Oncology, Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiu-Shen Li
- Department of Oncology, Institute of Tumor, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Oncology, Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Oncology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bin-Yu Qin
- Department of Oncology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui-Sheng Zhou
- Department of Oncology, Institute of Tumor, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Oncology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hua-Feng Pan
- Department of Oncology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Da-Yong Zheng
- Department of Oncology, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Hepatopancreatobiliary, Cancer Center, Southern Medical University, Guangzhou, China.,Department of Hepatology, TCM-Integrated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|