1
|
Suzuki K, Yokoi A, Matsuzaki J, Yoshida K, Yamamoto Y, Kato T, Ishikawa M, Ochiya T, Kajiyama H. Circulating serum miRNAs predict response to platinum chemotherapy in high-grade serous ovarian cancer. Cancer Med 2024; 13:e70251. [PMID: 39587714 PMCID: PMC11588858 DOI: 10.1002/cam4.70251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Platinum chemotherapy is the cornerstone of treatment for high-grade serous ovarian cancer (HGSOC); however, validated biomarkers that can accurately predict platinum response are lacking. Based on their roles in the underlying pathophysiology, circulating microRNAs are potential, noninvasive biomarkers in cancer. In the present study, we aimed to evaluate the circulating miRNA profiles of patients with HGSOC and to assess their potential utility as biomarkers to predict platinum response. METHODS Pretreatment serum samples collected from patients who received platinum chemotherapy for Stage III-IV HGSOC between 2008 and 2016 were analyzed using miRNA microarray. LASSO logistic regression analysis was used to construct predictive models for treatment-free interval of platinum (TFIp). RESULTS The median follow-up was 54.6 (range, 3.5-144.1) months. The comprehensive analysis of 2588 miRNAs was performed in serum samples of 153 eligible patients, and predictive models were constructed using a combination of circulating miRNAs with an area under the receiver operating characteristic curve of 0.944 for TFIp >1 month, 0.637 for TFIp ≥6 months, 0.705 for TFIp ≥12 months, and 0.938 for TFIp ≥36 months. Each predictive model provided a significant TFIp classification (p = 0.001 in TFIp >1 month, p = 0.013 in TFIp ≥6 months, p < 0.001 in TFIp ≥12 months, and p < 0.001 in TFIp ≥36 months). CONCLUSION Circulating miRNA profiles has potential utility in predicting platinum response in patients with HGSOC and can aid clinicians in choosing appropriate treatment strategies.
Collapse
Affiliation(s)
- Kazuhiro Suzuki
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Akira Yokoi
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaJapan
- Institute for Advanced ResearchNagoya UniversityNagoyaJapan
| | - Juntaro Matsuzaki
- Division of PharmacotherapeuticsKeio University Faculty of PharmacyTokyoJapan
| | - Kosuke Yoshida
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaJapan
- Institute for Advanced ResearchNagoya UniversityNagoyaJapan
| | - Yusuke Yamamoto
- Laboratory of Integrative OncologyNational Cancer Center Research InstituteTokyoJapan
| | - Tomoyasu Kato
- Department of GynecologyNational Cancer Center HospitalTokyoJapan
| | - Mitsuya Ishikawa
- Department of GynecologyNational Cancer Center HospitalTokyoJapan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical ScienceTokyo Medical UniversityTokyoJapan
| | - Hiroaki Kajiyama
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
2
|
Sikder S, Bhattacharya A, Agrawal A, Sethi G, Kundu TK. Micro-RNAs in breast cancer progression and metastasis: A chromatin and metabolic perspective. Heliyon 2024; 10:e38193. [PMID: 39386816 PMCID: PMC11462366 DOI: 10.1016/j.heliyon.2024.e38193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Breast cancer is a highly complex disease with multiple subtypes. While many of the breast cancer cases are sporadic some can be familial or hereditary. Genomic integrity is closely monitored by several mechanisms, such as DNA damage machinery and mitotic checkpoints. Any defect in the key genes involved in the regulation of these mechanisms often results in genomic instability, predisposing the cells to malignancy. This results in altered expression of many coding and noncoding genes. The noncoding RNAs especially the long noncoding RNA (lncRNAs) and microRNA (miRNAs) act as key regulators of cancer gene networks. Some miRNAs repress the expression of the heterochromatin-associated proteins, inducing the formation of open chromatin, and promoting the expression of genes required for oncogenesis. Additionally, specific miRNAs may also favour cancer progression and metastasis by regulating the expression of genes that support the metabolic microenvironment essential for cancer cell growth and proliferation. Understanding how these noncoding RNAs contribute to breast cancer development opens potential avenues for therapeutic intervention, targeting their dysregulated activity.
Collapse
Affiliation(s)
- Sweta Sikder
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Aditya Bhattacharya
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Aayushi Agrawal
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, UP, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, 117600, Singapore
| | - Tapas K. Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| |
Collapse
|
3
|
Barrera-Vázquez OS, Escobar-Ramírez JL, Magos-Guerrero GA. Network Pharmacology Approaches Used to Identify Therapeutic Molecules for Chronic Venous Disease Based on Potential miRNA Biomarkers. J Xenobiot 2024; 14:1519-1540. [PMID: 39449424 PMCID: PMC11503387 DOI: 10.3390/jox14040083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Chronic venous disease (CVD) is a prevalent condition in adults, significantly affecting the global elderly population, with a higher incidence in women than in men. The modulation of gene expression through microRNA (miRNA) partly regulated the development of cardiovascular disease (CVD). Previous research identified a functional analysis of seven genes (CDS2, HDAC5, PPP6R2, PRRC2B, TBC1D22A, WNK1, and PABPC3) as targets of miRNAs related to CVD. In this context, miRNAs emerge as essential candidates for CVD diagnosis, representing novel molecular and biological knowledge. This work aims to identify, by network analysis, the miRNAs involved in CVD as potential biomarkers, either by interacting with small molecules such as toxins and pollutants or by searching for new drugs. Our study shows an updated landscape of the signaling pathways involving miRNAs in CVD pathology. This latest research includes data found through experimental tests and uses predictions to propose both miRNAs and genes as potential biomarkers to develop diagnostic and therapeutic methods for the early detection of CVD in the clinical setting. In addition, our pharmacological network analysis has, for the first time, shown how to use these potential biomarkers to find small molecules that may regulate them. Between the small molecules in this research, toxins, pollutants, and drugs showed outstanding interactions with these miRNAs. One of them, hesperidin, a widely prescribed drug for treating CVD and modulating the gene expression associated with CVD, was used as a reference for searching for new molecules that may interact with miRNAs involved in CVD. Among the drugs that exhibit the same miRNA expression profile as hesperidin, potential candidates include desoximetasone, curcumin, flurandrenolide, trifluridine, fludrocortisone, diflorasone, gemcitabine, floxuridine, and reversine. Further investigation of these drugs is essential to improve the treatment of cardiovascular disease. Additionally, supporting the clinical use of miRNAs as biomarkers for diagnosing and predicting CVD is crucial.
Collapse
Affiliation(s)
| | | | - Gil Alfonso Magos-Guerrero
- Department of Pharmacology, Faculty of Medicine, University National Autonomous of Mexico (UNAM), Mexico City 04510, Mexico; (O.S.B.-V.); (J.L.E.-R.)
| |
Collapse
|
4
|
Ramakrishnan K, Vishwakarma R, Dev RR, Raju R, Rehman N. Etiologically Significant microRNAs in Hepatitis B Virus-Induced Hepatocellular Carcinoma. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:280-290. [PMID: 38818956 DOI: 10.1089/omi.2024.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Hepatitis B virus (HBV) infection has been causally linked to hepatocellular carcinoma (HCC) in more than 50% cases. MicroRNAs (miRNAs) play cross-cutting mechanistic roles in the complex interplay between viral pathogenesis, host survival, and clinical outcomes. The present study set out to identify etiologically significant human miRNAs associated with HBV infection in liver-related pathologies leading to HCC. In diverse tissue types, we assembled 573 miRNAs differentially expressed in HBV-associated liver pathologies, HBV infection, fibrosis, cirrhosis, acute on chronic liver failure, and HCC. Importantly, 43 human differentially expressed miRNAs (hDEmiRs) were regulated in serum/plasma and liver tissue of patients with HBV-positive conditions. However, only two hDEmiRs, hsa-miR-21-5p and hsa-miR-143-3p, were regulated across all disease conditions. To shortlist the functional miRNAs in HBV-induced HCC pathogenesis, a reverse bioinformatics analysis was performed using eight GEO datasets and the TCGA database containing the list of differentially regulated mRNAs in HCC. A comparative study using these data with the identified targets of hDEmiRs, a set of unidirectionally regulated hDEmiRs with the potential to modulate mRNAs in HCC, were found. Moreover, our study identified five miRNAs; hsa-miR-98-5p, hsa-miR-193b-3p, hsa-miR-142-5p, hsa-miR-522-5p, and hsa-miR-370-3p targeting PIGC, KNTC1, CSTF2, SLC41A2, and RAB17, respectively, in HCC. These hDEmiRs and their targets could be pivotal in HBV infection and subsequent liver pathologies modulating HCC clinical progression. HBV infection is the largest contributor to HCC, and the present study comprises the first of its kind compendium of hDEmiRs related to HBV-related pathologies.
Collapse
Affiliation(s)
| | - Riya Vishwakarma
- Centre for Integrative Omics Data Science, Yenepoya, Mangalore, India
| | - Radul R Dev
- Centre for Integrative Omics Data Science, Yenepoya, Mangalore, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science, Yenepoya, Mangalore, India
| | - Niyas Rehman
- Centre for Integrative Omics Data Science, Yenepoya, Mangalore, India
| |
Collapse
|
5
|
Liu H, Yu M, Zhou S, Wang Y, Xia Z, Wang Z, Song B, An M, Wu Y. Unveiling novel anti-viral mechanisms of ε-poly-l-lysine on tobacco mosaic virus-infected Nicotiana tabacum through microRNA and transcriptome sequencing. Int J Biol Macromol 2024; 268:131628. [PMID: 38631577 DOI: 10.1016/j.ijbiomac.2024.131628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/30/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
MicroRNAs (miRNAs) play important roles in plant defense against various pathogens. ε-poly-l-lysine (ε-PL), a natural anti-microbial peptide produced by microorganisms, effectively suppresses tobacco mosaic virus (TMV) infection. To investigate the anti-viral mechanism of ε-PL, the expression profiles of miRNAs in TMV-infected Nicotiana tabacum after ε-PL treatment were analyzed. The results showed that the expression levels of 328 miRNAs were significantly altered by ε-PL. Degradome sequencing was used to identify their target genes. Integrative analysis of miRNAs target genes and gene-enriched GO/KEGG pathways indicated that ε-PL regulates the expression of miRNAs involved in critical pathways of plant hormone signal transduction, host defense response, and plant pathogen interaction. Subsequently, virus induced gene silencing combined with the short tandem targets mimic technology was used to analyze the function of these miRNAs and their target genes. The results indicated that silencing miR319 and miR164 reduced TMV accumulation in N. benthamiana, indicating the essential roles of these miRNAs and their target genes during ε-PL-mediated anti-viral responses. Collectively, this study reveals that microbial source metabolites can inhibit plant viruses by regulating crucial host miRNAs and further elucidate anti-viral mechanisms of ε-PL.
Collapse
Affiliation(s)
- He Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Miao Yu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Shidong Zhou
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Yan Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Zihao Xia
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Zhiping Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Mengnan An
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| |
Collapse
|
6
|
Tripathi S, Mathaiyan J, Kayal S, Nachiappa Ganesh R. The Role of Circulating MicroRNAs in the Prediction of Response to Neoadjuvant Chemotherapy in Locally Advanced Breast Cancer in the Indian Population. Cureus 2024; 16:e59553. [PMID: 38832155 PMCID: PMC11144582 DOI: 10.7759/cureus.59553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 06/05/2024] Open
Abstract
INTRODUCTION MicroRNAs (miRNAs) are known to play an important role in cancer cell proliferation, susceptibility of cancer cells to chemotherapy, and patient survival. Identifying miRNAs that can predict response to chemotherapy in locally advanced breast cancer (LABC), the most common variant, can help to choose appropriate drug regimens to suit the epigenetic profile of individual patients. OBJECTIVE To investigate the expression of the differentially expressed miRNAs identified by next-generation sequencing from a pilot study involving cases and controls, in peripheral blood mononuclear cells (PBMC) of patients with LABC during the course of neoadjuvant chemotherapy (NAC) and determine their role in response to chemotherapy. METHODS This study included 30 newly diagnosed LABC patients. Peripheral blood from every participant was collected before the start of chemotherapy, at the end of the third cycle, and at the end of the seventh cycle of NAC. Based on the results of a pilot study in a similar population with suitable controls, four differentially expressed miRNAs namely miR-24-2, miR-192-5p, miR-3609, and miR-664b-3p were considered to be validated in this study. The expression of these four miRNAs was examined by qRT-PCR, and their association with response to chemotherapy was analyzed. RESULT A significant change in the expression of miR-192-5p was found in responders (p = 0.001) over a period of seven cycles and the difference between the expression of miR-24-2 from baseline to the seventh cycle of NAC was higher in responders while compared to the non-responders (p < 0.05). CONCLUSION miR-192-5p and miR-24-2 were identified as predictive biomarkers for response to NAC in south Indian patients with LABC.
Collapse
Affiliation(s)
- Shyam Tripathi
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND
| | - Jayanthi Mathaiyan
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND
| | - Smita Kayal
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND
| | - Rajesh Nachiappa Ganesh
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND
| |
Collapse
|
7
|
Chakraborty S, Paul U, Banerjee S, Saha D, Banerjee S. An integrated approach to understand the regulatory role of miR-27 family in breast cancer metastasis. Biosystems 2024; 238:105200. [PMID: 38565418 DOI: 10.1016/j.biosystems.2024.105200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/09/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
One of the prime reasons of increasing breast cancer mortality is metastasizing cancer cells. Owing to the side effects of clinically available drugs to treat breast cancer metastasis, it is of utmost importance to understand the underlying biogenesis of breast cancer tumorigenesis. In-silico identification of potential RNAs might help in utilizing the miR-27 family as a therapeutic target in breast cancer. The experimentally verified common interacting mRNAs for miR27 family are retrieved from three publicly available databases- TargetScan, miRDB and miRTarBase. Finally on comparing the common genes with HCMDB and GEPIA data, four breast cancer-associated differentially expressed metastatic mRNAs (GATA3, ENAH, ITGA2 and SEMA4D) are obtained. Corresponding to the miR27 family and associated mRNAs, interacting drugs are retrieved from Sm2mir and CTDbase, respectively. The interaction network-based approach was utilized to obtain the hub RNAs and triad modules by employing the 'Cytohubba' and 'MClique' plugins, respectively in Cytoscape. Further, sample-, subclass- and promoter methylation-based expression analyses reveals GATA3 and ENAH to be the most significant mRNAs in breast cancer metastasis having >10% genetic alteration in both METABRIC Vs TCGA datasets as per their oncoprint analysis via cBioPortal. Additionally, survival analysis in Oncolnc reveals SEMA4D as survival biomarker. Interactions among the miR27 family, their target mRNAs and drugs interacting with miRNAs and mRNAs can be extensively explored in both in-vivo and in-vitro setups to assess their therapeutic potential in the diminution of breast cancer.
Collapse
Affiliation(s)
- Sohini Chakraborty
- School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamilnadu, 632014, India
| | - Utpalendu Paul
- School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamilnadu, 632014, India
| | - Subhadeep Banerjee
- School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamilnadu, 632014, India
| | - Debanjan Saha
- School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamilnadu, 632014, India
| | - Satarupa Banerjee
- School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamilnadu, 632014, India.
| |
Collapse
|
8
|
Jayashree P, Kalpita M, Judith T, Singh AS, Ashwin K. Role of MicroRNA in Hypoxic Tumours and their Potential as Biomarkers for Early Detection of Cancer. Curr Mol Med 2024; 24:525-536. [PMID: 38310548 DOI: 10.2174/0115665240268661231128094831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 02/06/2024]
Abstract
Hypoxia is a pathophysiological condition characterized by oxygen deficiency in tissues, which negatively affects normal biological functions. It is a typical microenvironment character of almost all solid tumours. Noncoding RNA are small functional RNA molecules that regulate gene expression at chromatin and posttranscriptional levels. Micro-RNAs (miRNAs) are a type of noncoding RNA and are ~12-22 nucleotides long that are crucial in regulating gene expression by partnering with the mRNAs of protein-coding genes. It is widely reported that miRs play an important role in various key processes and pathways during tumour formation, as well as advancement in hypoxic tumors by influencing the HIF pathway. The role of miRNAs in hypoxic tumours, namely in pancreatic, kidney, breast, lung and colorectal, are described. These miRNAs have immense potential as diagnostic and prognostic biomarkers for early cancer detection.
Collapse
Affiliation(s)
- Pawar Jayashree
- Department of Biotechnology and Microbiology, VPM's B. N. Bandodkar College of Science, Mumbai University, Mumbai, Maharashtra, India
| | - Mulye Kalpita
- Department of Biotechnology and Microbiology, VPM's B. N. Bandodkar College of Science, Mumbai University, Mumbai, Maharashtra, India
| | - Talker Judith
- Department of Biotechnology and Microbiology, VPM's B. N. Bandodkar College of Science, Mumbai University, Mumbai, Maharashtra, India
| | - Ahirwar Sonu Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, (M.P.), India
| | - Kotnis Ashwin
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, (M.P.), India
| |
Collapse
|
9
|
Toader C, Dobrin N, Tataru CI, Covache-Busuioc RA, Bratu BG, Glavan LA, Costin HP, Corlatescu AD, Dumitrascu DI, Ciurea AV. From Genes to Therapy: Pituitary Adenomas in the Era of Precision Medicine. Biomedicines 2023; 12:23. [PMID: 38275385 PMCID: PMC10813694 DOI: 10.3390/biomedicines12010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
This review presents a comprehensive analysis of pituitary adenomas, a type of brain tumor with diverse behaviors and complexities. We cover various treatment approaches, including surgery, radiotherapy, chemotherapy, and their integration with newer treatments. Key to the discussion is the role of biomarkers in oncology for risk assessment, diagnosis, prognosis, and the monitoring of pituitary adenomas. We highlight advances in genomic, epigenomic, and transcriptomic analyses and their contributions to understanding the pathogenesis and molecular pathology of these tumors. Special attention is given to the molecular mechanisms, including the impact of epigenetic factors like histone modifications, DNA methylation, and transcriptomic changes on different subtypes of pituitary adenomas. The importance of the tumor immune microenvironment in tumor behavior and treatment response is thoroughly analyzed. We highlight potential breakthroughs and innovations for a more effective management and treatment of pituitary adenomas, while shedding light on the ongoing need for research and development in this field to translate scientific knowledge into clinical advancements, aiming to improve patient outcomes.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (D.-I.D.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Nicolaie Dobrin
- Neurosurgical Clinic, “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iași, Romania
| | - Catalina-Ioana Tataru
- Department of Ophthalmology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Ophthalmology, Clinical Hospital of Ophthalmological Emergencies, 010464 Bucharest, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (D.-I.D.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (D.-I.D.); (A.V.C.)
| | - Luca Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (D.-I.D.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (D.-I.D.); (A.V.C.)
| | - Antonio Daniel Corlatescu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (D.-I.D.); (A.V.C.)
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (D.-I.D.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (B.-G.B.); (L.A.G.); (H.P.C.); (D.-I.D.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
10
|
Nguyen TTA, Demeestere I. A Journey to Reach the Ovary Using Next-Generation Technologies. Int J Mol Sci 2023; 24:16593. [PMID: 38068916 PMCID: PMC10705884 DOI: 10.3390/ijms242316593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Although effective in terms of the chances of future live birth, the current methods for fertility preservation, such as oocyte, embryo, or ovarian tissue cryopreservation, cannot be offered to all cancer patients in all clinical contexts. Expanding options for fertility preservation is crucial to addressing the need to encompass all situations. One emerging strategy is pharmacoprotection, a non-invasive approach that has the potential to fill existing gaps in fertility preservation. In addition to the identification of the most effective therapeutic agents, the potential for off-target effects remains one of the main limitations of this strategy for clinical application, particularly when healthy ovarian tissue is targeted. This review focuses on the advances in pharmacoprotective approaches and the challenge of targeting the ovaries to deliver these agents. The unique properties of gold nanoparticles (AuNPs) make them an attractive candidate for this purpose. We discuss how AuNPs meet many of the requirements for an ideal drug delivery system, as well as the existing limitations that have hindered the progression of AuNP research into more clinical trials. Additionally, the review highlights microRNA (miRNA) therapy as a next-generation approach to address the issues of fertility preservation and discusses the obstacles that currently impede its clinical availability.
Collapse
Affiliation(s)
| | - Isabelle Demeestere
- Research Laboratory on Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium;
| |
Collapse
|
11
|
Singh S, Saini H, Sharma A, Gupta S, Huddar VG, Tripathi R. Breast cancer: miRNAs monitoring chemoresistance and systemic therapy. Front Oncol 2023; 13:1155254. [PMID: 37397377 PMCID: PMC10312137 DOI: 10.3389/fonc.2023.1155254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
With a high mortality rate that accounts for millions of cancer-related deaths each year, breast cancer is the second most common malignancy in women. Chemotherapy has significant potential in the prevention and spreading of breast cancer; however, drug resistance often hinders therapy in breast cancer patients. The identification and the use of novel molecular biomarkers, which can predict response to chemotherapy, might lead to tailoring breast cancer treatment. In this context, accumulating research has reported microRNAs (miRNAs) as potential biomarkers for early cancer detection, and are conducive to designing a more specific treatment plan by helping analyze drug resistance and sensitivity in breast cancer treatment. In this review, miRNAs are discussed in two alternative ways-as tumor suppressors to be used in miRNA replacement therapy to reduce oncogenesis and as oncomirs to lessen the translation of the target miRNA. Different miRNAs like miR-638, miR-17, miR-20b, miR-342, miR-484, miR-21, miR-24, miR-27, miR-23 and miR-200 are involved in the regulation of chemoresistance through diverse genetic targets. For instance, tumor-suppressing miRNAs like miR-342, miR-16, miR-214, and miR-128 and tumor-promoting miRNAs like miR101 and miR-106-25 cluster regulate the cell cycle, apoptosis, epithelial to mesenchymal transition and other pathways to impart breast cancer drug resistance. Hence, in this review, we have discussed the significance of miRNA biomarkers that could assist in providing novel therapeutic targets to overcome potential chemotherapy resistance to systemic therapy and further facilitate the design of tailored therapy for enhanced efficacy against breast cancer.
Collapse
Affiliation(s)
- Shivam Singh
- Department of Radiation Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Heena Saini
- Integrated translational Molecular Biology laboratory, Department of Rog Nidan and Vikriti vigyan (Pathology), All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Ashok Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Subhash Gupta
- Department of Radiation Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - V. G. Huddar
- Department of Kaya Chikitsa (Internal Medicine), All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Richa Tripathi
- Integrated translational Molecular Biology laboratory, Department of Rog Nidan and Vikriti vigyan (Pathology), All India Institute of Ayurveda (AIIA), New Delhi, India
| |
Collapse
|
12
|
Szczepanek J, Skorupa M, Jarkiewicz-Tretyn J, Cybulski C, Tretyn A. Harnessing Epigenetics for Breast Cancer Therapy: The Role of DNA Methylation, Histone Modifications, and MicroRNA. Int J Mol Sci 2023; 24:ijms24087235. [PMID: 37108398 PMCID: PMC10138995 DOI: 10.3390/ijms24087235] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Breast cancer exhibits various epigenetic abnormalities that regulate gene expression and contribute to tumor characteristics. Epigenetic alterations play a significant role in cancer development and progression, and epigenetic-targeting drugs such as DNA methyltransferase inhibitors, histone-modifying enzymes, and mRNA regulators (such as miRNA mimics and antagomiRs) can reverse these alterations. Therefore, these epigenetic-targeting drugs are promising candidates for cancer treatment. However, there is currently no effective epi-drug monotherapy for breast cancer. Combining epigenetic drugs with conventional therapies has yielded positive outcomes and may be a promising strategy for breast cancer therapy. DNA methyltransferase inhibitors, such as azacitidine, and histone deacetylase inhibitors, such as vorinostat, have been used in combination with chemotherapy to treat breast cancer. miRNA regulators, such as miRNA mimics and antagomiRs, can alter the expression of specific genes involved in cancer development. miRNA mimics, such as miR-34, have been used to inhibit tumor growth, while antagomiRs, such as anti-miR-10b, have been used to inhibit metastasis. The development of epi-drugs that target specific epigenetic changes may lead to more effective monotherapy options in the future.
Collapse
Affiliation(s)
- Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Monika Skorupa
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Torun, Poland
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland
| | | | - Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Andrzej Tretyn
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Torun, Poland
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland
| |
Collapse
|
13
|
Gahlawat AW, Witte T, Sinn P, Schott S. Circulating cf-miRNA as a more appropriate surrogate liquid biopsy marker than cfDNA for ovarian cancer. Sci Rep 2023; 13:5503. [PMID: 37015943 PMCID: PMC10073086 DOI: 10.1038/s41598-023-32243-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/24/2023] [Indexed: 04/06/2023] Open
Abstract
Ovarian cancer (OC) is an aggressive disease, primarily diagnosed in late stages with only 20% of patients surviving more than 5 years. Liquid biopsy markers have great potential to improve current diagnostic and prognostic methods. Here, we compared miRNAs and DNA methylation in matched plasma, whole blood and tissues as a surrogate marker for OC. We found that while both cfDNA and cf-miRNAs levels were upregulated in OC compared to patients with benign lesions or healthy controls, only cf-miRNA levels were an independent prognosticator of survival. Following on our previous work, we found members of the miR-200 family, miR-200c and miR-141 to be upregulated in both plasma and matched tissues of OC patients which correlated with adverse clinical features. We could also show that the upregulation of miR-200c and -141 correlated with promoter DNA hypomethylation in tissues, but not in plasma or matched whole blood samples. As cf-miRNAs are more easily obtained and very stable in blood, we conclude that they might serve as a more appropriate surrogate liquid biopsy marker than cfDNA for OC.
Collapse
Affiliation(s)
- Aoife Ward Gahlawat
- Department of Gynaecology and Obstetrics, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), University Hospital of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Tania Witte
- Department of Gynaecology and Obstetrics, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Peter Sinn
- Department of Pathology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Sarah Schott
- Department of Gynaecology and Obstetrics, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| |
Collapse
|
14
|
Lombardi P, Aimar G, Peraldo-Neia C, Bonzano A, Depetris I, Fenocchio E, Filippi R, Quarà V, Milanesio M, Cavalloni G, Gammaitoni L, Basiricò M, Cagnazzo C, Ostano P, Chiorino G, Aglietta M, Leone F. Fluoropyrimidine‑induced cardiotoxicity in colorectal cancer patients: a prospective observational trial (CHECKPOINT). Oncol Rep 2022; 49:31. [PMID: 36562382 PMCID: PMC9827273 DOI: 10.3892/or.2022.8468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Fluoropyrimidines (FP) are the backbone chemotherapy in colorectal cancer (CRC) treatment; however, their use is associated with cardiotoxicity, which is underreported. In the present study, it was aimed to prospectively determine the incidence rates and related risk factors of FP‑induced cardiotoxicity (FIC) in CRC patients and at identifying predictive biomarkers. A total of 129 consecutive previously untreated CRC patients underwent active cardiological monitoring, including 5‑items simplified questionnaire on symptoms, electrocardiogram (ECG) and plasma sample collection during FP chemotherapy. FIC was defined as the presence of ECG alterations and/or the arising of at least one symptom of chest pain, dyspnoea, palpitations or syncope. The primary objective was the evaluation of FIC incidence. Secondary objectives were the correlation of FIC with well‑known cardiological risk factors and the identification of circulating biomarkers (serum levels of troponin I, pro hormone BNP; miRNA analysis) as predictors of FIC. A total of 20 out of 129 (15.5%) patients experienced FIC. The most common symptoms were dyspnoea (60%) and chest pain (40%), while only 15% of patients presented ECG alterations, including one acute myocardial infarction. Retreatment with FP was attempted in 90% of patients with a favourable outcome. Despite 48% of patients having cardiological comorbidities, an increased FIC was not observed in this subgroup. Only the subgroup of females with the habit of alcohol consumption showed an increased risk of FIC. None of the circulating biomarkers evaluated demonstrated a clinical utility as FIC predictors. FIC can be an unexpected, life‑threatening adverse event that can limit the subsequent treatment choices in patients with CRC. In this prospective study, well‑known cardiological comorbidities were not related to higher FIC risk and circulating biomarkers predictive of toxicity could not be found. With careful monitoring, mainly based on symptoms, almost all patients completed the FP treatment.
Collapse
Affiliation(s)
- Pasquale Lombardi
- Department of Oncology, University of Turin, I-10124 Torino, Italy,Phase 1 Unit, Agostino Gemelli Foundation University Hospital IRCCS, I-00168 Roma, Italy
| | - Giacomo Aimar
- Department of Oncology, University of Turin, I-10124 Torino, Italy,Department of Oncology, S. Croce and Carle Hospital, I-12100 Cuneo, Italy
| | | | | | - Ilaria Depetris
- Division of Medical Oncology 1, AOU City of Health and Science of Turin, I-12126 Turin, Italy
| | - Elisabetta Fenocchio
- Department of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, I-10060 Candiolo, Italy
| | - Roberto Filippi
- Department of Oncology, University of Turin, I-10124 Torino, Italy,Division of Medical Oncology 1, AOU City of Health and Science of Turin, I-12126 Turin, Italy
| | - Virginia Quarà
- Department of Oncology, University of Turin, I-10124 Torino, Italy,Department of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, I-10060 Candiolo, Italy
| | | | - Giuliana Cavalloni
- Department of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, I-10060 Candiolo, Italy
| | | | - Marco Basiricò
- Department of Public Health and Pediatric Sciences, AOU City of Health and Science of Turin, Regina Margherita Hospital, I-10126 Torino, Italy
| | - Celeste Cagnazzo
- Department of Public Health and Pediatric Sciences, AOU City of Health and Science of Turin, Regina Margherita Hospital, I-10126 Torino, Italy
| | - Paola Ostano
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, I-13900 Biella, Italy
| | - Giovanna Chiorino
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, I-13900 Biella, Italy
| | - Massimo Aglietta
- Department of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, I-10060 Candiolo, Italy
| | - Francesco Leone
- Department of Medical Oncology, Infermi Hospital of Biella, Ponderano, I-13875 Biella, Italy,Correspondence to: Dr Francesco Leone, Department of Medical Oncology, Infermi Hospital of Biella, 2 Via dei Ponderanesi, Ponderano, I-13875 Biella, Italy, E-mail:
| |
Collapse
|
15
|
Downregulation of hsa-miR-4328 and target gene prediction in Acute Promyelocytic Leukemia. REV ROMANA MED LAB 2022. [DOI: 10.2478/rrlm-2022-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Introduction: Acute promyelocytic leukemia (APL) is defined by the PML-RARA fusion gene. APL treatment can have significant side effects, therefore the development of optimal therapeutic options is crucial. Although the study of miRNAs is still in its infancy, it has been shown that these molecules are involved in the pathogenesis of neoplasms by modulating the expression of target genes. miRNAs can be considered possible biomarkers in APL and can be used as therapeutic targets or as markers for the therapeutic response.
Objectives: The purpose of this study was to determine whether differentially expressed putative miRNAs that have RARA as a target gene could be considered reliable biomarkers for APL.
Methods: Using bioinformatics tools, a panel of 6 miRNAs with possible tropism for the RARA gene was selected from miRDB. We evaluated their expression levels in samples from patients with APL (n=20) or from healthy subjects without mutations in genes associated with leukemia or myeloproliferative diseases (n=21).
Results: All 6 putative miRNAs were identified using electrophoresis (hsamir-4299, hsa-mir-4328, hsa-mir-7851-3p, hsa-mir-6827-5p, hsa-mir-6867-5p, hsa-mir-939-5p). Of the six miRNAs, hsa-mir-4328 is deeply downregulated in subjects diagnosed with APL compared to healthy subjects, whereas hsa-mir-4299 and hsa-mir-7851-3p show small differences in expression between the two study groups, but without statistical significance. Our results suggest that hsa-mir-4328 may have a role in the pathogenesis of APL and may represent a new biomarker for this type of leukemia. Key Words: miRNA, APL, leukemia, bioinformatics.
Collapse
|
16
|
miRNAs as therapeutic predictors and prognostic biomarkers of neoadjuvant chemotherapy in breast cancer: a systematic review and meta-analysis. Breast Cancer Res Treat 2022; 194:483-505. [PMID: 35727379 DOI: 10.1007/s10549-022-06642-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 05/30/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE Accumulating evidence has shown that microRNAs (miRNAs) are promising biomarkers of neoadjuvant chemotherapy (NAC) response in breast cancer (BC). However, their predictive roles remain controversial. Thus, this systematic review and meta-analysis aimed to describe the role of miRNA expression in NAC response and prognosis in BC to increase statistical power and improve translation. METHODS A systematic review of electronic databases for relevant studies was conducted following PRISMA guidelines. Data were extracted, collated, and combined by odds ratio (OR) and hazard ratio (HR) with 95% confidence intervals (CIs) to estimate the strength of the associations. RESULTS Of the 560 articles screened, 59 studies were included in our systematic review, and 5 studies were included in the subsequent meta-analysis. Sixty of 123 miRNAs were found to be related with NAC response and an elevated baseline miR-7 level in tissues was associated with a higher pathological complete response rate (OR 5.63; 95% CI 2.15-14.79; P = 0.0004). The prognostic value of 39 miRNAs was also studied. Of them, 26 miRNAs were found to be associated with survival. Pooled HRs indicated that patients with increased levels of serum miR-21 from baseline to the end of the second NAC cycle and from baseline to the end of NAC had a worse disease-free survival than those with decreased levels. CONCLUSION Our results highlight that a large number of miRNAs have possible associations with NAC response and prognosis in BC patients. Further well-designed studies are needed to elucidate the molecular mechanisms underlying these associations.
Collapse
|
17
|
Yang Y, Wang D, Tao K, Wang G. Circular RNA circLRCH3 Inhibits Proliferation, Migration, and Invasion of Colorectal Cancer Cells Through miRNA-223/LPP Axis. Onco Targets Ther 2022; 15:541-554. [PMID: 35611368 PMCID: PMC9124491 DOI: 10.2147/ott.s366605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/08/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose Colorectal cancer (CRC) is one of the most common carcinomas worldwide with a high mortality rate. Numerous studies suggest that circular RNA (circRNA) plays a crucial role in the progression of various carcinomas, including CRC. The present work focused on exploring the role and underlying molecular mechanism of action of the circRNA circLRCH3 in CRC. Methods Real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was conducted to detect expression levels of circLRCH3, miR-233, and lipoma preferred partner (LPP). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to measure the proliferation of CRC cells and the transwell assay was used to evaluate cell migration and invasion capacity. A flow cytometry assay was used to analyze the effect of circLRCH3 on the distribution of the cell cycle and apoptosis of CRC cells. The expression of LPP was analyzed using Western blotting or an RT-qPCR assay. The relationship between miR-223 and circLRCH3, and that between miR-223 and LPP, was predicted and examined using bioinformatics analysis and luciferase reporter gene experiments. A xenograft tumor formation assay was also performed. Results We found that the expression level of circLRCH3 was downregulated in CRC cells and negatively correlated with miR-223. The overexpression of circLRCH3 or silencing of miR-223 inhibited the growth, invasion, and migration of CRC cells, but promoted their apoptosis. In contrast, overexpression of miR-223 and depletion of LPP severally abrogated the tumor suppressive roles of circLRCH3 and miR-223 knockdown in CRC cells in vitro. The xenograft experiments in nude mice also proved the antitumor effect of circLRCH3. Conclusion These results suggested that the circLRCH3/miR-223/LPP axis likely plays a critical role in CRC.
Collapse
Affiliation(s)
- Yiming Yang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, People’s Republic of China
| | - Di Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, People’s Republic of China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, People’s Republic of China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, People’s Republic of China
- Correspondence: Guobin Wang, Email
| |
Collapse
|
18
|
Small non-coding RNA profiling in breast cancer: plasma U6 snRNA, miR-451a and miR-548b-5p as novel diagnostic and prognostic biomarkers. Mol Biol Rep 2022; 49:1955-1971. [PMID: 34993725 DOI: 10.1007/s11033-021-07010-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Breast cancer is a leading cause of cancer-related death in women. Most cases are invasive ductal carcinomas of no special type (NST breast carcinomas). METHODS AND RESULTS In this prospective, multicentric biomarker discovery study, we analyzed the expression of small non-coding RNAs (mainly microRNAs) in plasma by qPCR and evaluated their association with NST breast cancer. Large-scale expression profiling and subsequent validations have been performed in patient and control groups and compared with clinicopathological data. Small nuclear U6 snRNA, miR-548b-5p and miR-451a have been identified as candidate biomarkers. U6 snRNA was remarkably overexpressed in all the validations, miR-548b-5p levels were generally elevated and miR-451a expression was mostly downregulated in breast cancer groups. Combined U6 snRNA/miR-548b-5p signature demonstrated the best diagnostic performance based on the ROC curve analysis with AUC of 0.813, sensitivity 73.1% and specificity 82.6%. There was a trend towards increased expression of both miR-548b-5p and U6 snRNA in more advanced stages. Further, increased miR-548b-5p levels have been partially associated with higher grades, multifocality, Ki-67 positivity, and luminal B rather than luminal A samples. On the other hand, an association has been observed between high miR-451a expression and progesterone receptor positivity, lower grade, unifocal samples, Ki-67-negativity, luminal A rather than luminal B samples as well as improved progression-free survival and overall survival. CONCLUSIONS Our results indicated that U6 snRNA and miR-548b-5p may have pro-oncogenic functions, while miR-451a may act as tumor suppressor in breast cancer.
Collapse
|
19
|
Lang CCJ, Lloyd M, Alyacoubi S, Rahman S, Pickering O, Underwood T, Breininger SP. The Use of miRNAs in Predicting Response to Neoadjuvant Therapy in Oesophageal Cancer. Cancers (Basel) 2022; 14:1171. [PMID: 35267476 PMCID: PMC8909542 DOI: 10.3390/cancers14051171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Oesophageal cancer (OC) is the ninth most common cancer worldwide. Patients receive neoadjuvant therapy (NAT) as standard of care, but less than 20% of patients with oesophageal adenocarcinoma (OAC) or a third of oesophageal squamous cell carcinoma (OSCC) patients, obtain a clinically meaningful response. Developing a method of determining a patient's response to NAT before treatment will allow rational treatment decisions to be made, thus improving patient outcome and quality of life. (1) Background: To determine the use and accuracy of microRNAs as biomarkers of response to NAT in patients with OAC or OSCC. (2) Methods: MEDLINE, EMBASE, Web of Science and the Cochrane library were searched to identify studies investigating microRNAs in treatment naïve biopsies to predict response to NAT in OC patients. (3) Results: A panel of 20 microRNAs were identified as predictors of good or poor response to NAT, from 15 studies. Specifically, miR-99b, miR-451 and miR-505 showed the strongest ability to predict response in OAC patients along with miR-193b in OSCC patients. (4) Conclusions: MicroRNAs are valuable biomarkers of response to NAT in OC. Research is needed to understand the effects different types of chemotherapy and chemoradiotherapy have on the predictive value of microRNAs; studies also require greater standardization in how response is defined.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stella P. Breininger
- Cancer Research UK Center, Faculty of Medicine, School of Cancer Science, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK; (C.C.J.L.); (M.L.); (S.A.); (S.R.); (O.P.); (T.U.)
| |
Collapse
|
20
|
Chen HY, Lu J, Wang ZK, Yang J, Ling X, Zhu P, Zheng SY. Hsa-miR-199a-5p Protect Cell Injury in Hypoxia Induces Myocardial Cells Via Targeting HIF1α. Mol Biotechnol 2021; 64:482-492. [PMID: 34843094 DOI: 10.1007/s12033-021-00423-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/28/2021] [Indexed: 11/29/2022]
Abstract
Myocardial infarction (MI) is one of the most common global diseases. Recently, microRNA 199a-5p (miR-199a-5p) has been recognized as a vital regulator in several human diseases. Nevertheless, the function of miR-199a-5p and the associated downstream molecular mechanisms in myocardial injury remain undescribed. Here, we assessed the relative expression of miR-199a-5p in an oxidative stress injury model of human myocardial cells. The effects of miR-199a-5p on myocardial cell viability were determined by cell counting kit-8 (CCK-8), terminal deoxynucleotidyl transferase UTP nick end labeling (TUNEL), flow cytometry, and western blot assays. Online bioinformatic analysis was used to predict the aim of miR-199a-5p in cardiomyocyte injury, which was confirmed by dual-luciferase reporter assays. miR-199a-5p increased the growth rate of cardiomyocytes after treatment with a hypoxic environment. miR-199a-5p acted as an inhibitor directly targeted hypoxia-inducible factor-1 (HIF1α) expression, which was higher in the cardiomyocyte injury model than that in healthy myocardial cells. Upregulated HIF1α expression abolished miR-199a-5p-induced cell proliferation in the cardiomyocyte hypoxia model. Our results suggest that miR-199a-5p is a potential prognostic biomarker in myocardial damage.
Collapse
Affiliation(s)
- Hui-Yong Chen
- Department of Cardiothoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China.,Department of Thoracic Surgery, Yuebei People's Hospital, Shantou University, Shaoguan, People's Republic of China
| | - Jun Lu
- Department of Cardiothoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China
| | - Zheng-Kang Wang
- Department of Cardiothoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China
| | - Jie Yang
- Department of Cardiothoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China
| | - Xiao Ling
- Department of Cardiothoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China
| | - Peng Zhu
- Department of Cardiothoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China. .,Department of Cardiothoracic Surgery, Nanfang hospital, Southern Medical University, 1838 Guangzhou Avenue North, Baiyun, Guangzhou, Guangdong, 510280, People's Republic of China.
| | - Shao-Yi Zheng
- Department of Cardiothoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China. .,Department of Cardiothoracic Surgery, Nanfang hospital, Southern Medical University, 1838 Guangzhou Avenue North, Baiyun, Guangzhou, Guangdong, 510280, People's Republic of China.
| |
Collapse
|
21
|
Baxter DE, Allinson LM, Al Amri WS, Poulter JA, Pramanik A, Thorne JL, Verghese ET, Hughes TA. MiR-195 and Its Target SEMA6D Regulate Chemoresponse in Breast Cancer. Cancers (Basel) 2021; 13:cancers13235979. [PMID: 34885090 PMCID: PMC8656586 DOI: 10.3390/cancers13235979] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND poor prognosis primary breast cancers are typically treated with cytotoxic chemotherapy. However, recurrences remain relatively common even after this aggressive therapy. Comparison of matched tumours pre- and post-chemotherapy can allow identification of molecular characteristics of therapy resistance and thereby potentially aid discovery of novel predictive markers or targets for chemosensitisation. Through this comparison, we aimed to identify microRNAs associated with chemoresistance, define microRNA target genes, and assess targets as predictors of chemotherapy response. METHODS cancer cells were laser microdissected from matched breast cancer tissues pre- and post-chemotherapy from estrogen receptor positive/HER2 negative breast cancers showing partial responses to epirubicin/cyclophosphamide chemotherapy (n = 5). MicroRNA expression was profiled using qPCR arrays. MicroRNA/mRNA expression was manipulated in estrogen receptor positive/HER2 negative breast cancer cell lines (MCF7 and MDA-MB-175 cells) with mimics, inhibitors or siRNAs, and chemoresponse was assessed using MTT and colony forming survival assays. MicroRNA targets were identified by RNA-sequencing of microRNA mimic pull-downs, and comparison of these with mRNAs containing predicted microRNA binding sites. Survival correlations were tested using the METABRIC expression dataset (n = 1979). RESULTS miR-195 and miR-26b were consistently up-regulated after therapy, and changes in their expression in cell lines caused significant differences in chemotherapy sensitivity, in accordance with up-regulation driving resistance. SEMA6D was defined and confirmed as a target of the microRNAs. Reduced SEMA6D expression was significantly associated with chemoresistance, in accordance with SEMA6D being a down-stream effector of the microRNAs. Finally, low SEMA6D expression in breast cancers was significantly associated with poor survival after chemotherapy, but not after other therapies. CONCLUSIONS microRNAs and their targets influence chemoresponse, allowing the identification of SEMA6D as a predictive marker for chemotherapy response that could be used to direct therapy or as a target in chemosensitisation strategies.
Collapse
Affiliation(s)
- Diana E. Baxter
- School of Medicine, University of Leeds, Leeds LS9 7TF, UK; (D.E.B.); (J.A.P.); (A.P.)
- Cancer Research UK Manchester Institute, University of Manchester, Manchester SK10 4TG, UK
| | - Lisa M. Allinson
- Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4AD, UK;
| | - Waleed S. Al Amri
- Department of Histopathology and Cytopathology, The Royal Hospital, Muscat, Oman;
| | - James A. Poulter
- School of Medicine, University of Leeds, Leeds LS9 7TF, UK; (D.E.B.); (J.A.P.); (A.P.)
| | - Arindam Pramanik
- School of Medicine, University of Leeds, Leeds LS9 7TF, UK; (D.E.B.); (J.A.P.); (A.P.)
| | - James L. Thorne
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK;
| | - Eldo T. Verghese
- Department of Histopathology, St. James’s University Hospital, Leeds LS9 7JX, UK;
| | - Thomas A. Hughes
- School of Medicine, University of Leeds, Leeds LS9 7TF, UK; (D.E.B.); (J.A.P.); (A.P.)
- Correspondence:
| |
Collapse
|
22
|
Davey MG, Lowery AJ, Miller N, Kerin MJ. MicroRNA Expression Profiles and Breast Cancer Chemotherapy. Int J Mol Sci 2021; 22:10812. [PMID: 34639152 PMCID: PMC8509379 DOI: 10.3390/ijms221910812] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the most common malignancy diagnosed in women. Traditionally, radical surgical resection was the cornerstone of breast cancer management, with limited exceptions. In recent times, our enhanced appreciation of the biomolecular characteristics of breast cancer has transformed the treatment paradigm to include prescription of chemotherapeutical agents, radiotherapies, targeted therapies, as well as more refined surgical approaches. While treatments with such modalities have enhanced clinico-oncological outcomes for breast cancer patients, the efforts of oncological and translational research have concentrated on the identification of novel biomarkers which may successfully inform prognosis and response to therapies, improve current therapeutic strategies, and enhance prognostication. Mi(cro)RNAs are small, non-coding molecules which are known to play regulatory roles in governing gene expression and cellular activity. Measurement of miRNA expression profiles have been illustrated to inform the response to therapies, such as conventional chemotherapy, and are currently undergoing assessment as means of enhancing treatment strategies with these cytotoxic agents. Herein, this review outlines how chemotherapy prescription has revolutionised breast cancer treatment and illustrates the novel role of miRNAs as biomarkers capable of enhancing current therapeutic strategies using chemotherapy in patients being treated with curative intent for breast cancer.
Collapse
Affiliation(s)
- Matthew G. Davey
- Department of Surgery, The Lambe Institute for Translational Research, National University of Ireland, Galway, H91 YR71 Galway, Ireland; (A.J.L.); (N.M.); (M.J.K.)
| | | | | | | |
Collapse
|
23
|
Mebed R, Ali YB, Shehata N, El-Guendy N, Gamal N, Zekri AR, Sabet S. Combining Bevacizumab with knocked-down β-catenin reduces VEGF-A and Slug mRNA in HepG2 but not in Caco-2 cell lines. Curr Mol Med 2021; 22:374-383. [PMID: 34429048 DOI: 10.2174/1573405617666210824120618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Bevacizumab (Bev) resistance is hypothesized to be overcome by combination with inhibitors of other signalling pathways. OBJECTIVE We aimed to study the effect of combining Bev with knocked down β-catenin (Bev-β-cat-siRNA) on the expression of VEGF-A, Slug, NFКB and its two target genes c-Flip and FasR in HepG2. Expression of VEGF-A and Slug was also studied in Caco-2 cells. METHODS Cultured cells were divided into six groups 1) cells treated with Bev only 2) cells treated with β-catenin-siRNA 3) cells treated with Bev-β-cat-siRNA 4) cells treated with negative control 5) cells treated with Bev-negative control and untreated cells. Expressions were assessed using qPCR and western blotting. RESULTS Bev-β-cat-siRNA significantly reduced the mRNA level of VEGF-A, which was initially increased in response to Bev alone in HepG2 but not in Caco-2. Additionally, Bev-β-cat-siRNA significantly decreased Slug mRNA level compared to Bev only treated HepG2 cells. In contrast, VEGF-A and Slug mRNA levels in Bev only group were remarkably lower than Bev-β-cat-siRNA in Caco-2 cells. Distinct β-catenin and Slug protein expressions were noticed in HepG2 and Caco-2 cells. On the other hand, Bev-β-cat-siRNA remarkably reduced the level of NFКB, FasR and c-Flip compared to Bev only treated HepG2 cells although the difference was not statistically significant. CONCLUSION We conclude that, combining Bevacizumab with knocked down β-catenin reduce the expression of VEGF-A and Slug in HepG2 but not in Caco-2 cells.
Collapse
Affiliation(s)
- Reem Mebed
- Chemical control unit, National Organization for Research and Control of Biologicals, Cairo. Egypt
| | - Yasser Bm Ali
- Molecular Biology unit, Genetic Engineering and Biotechnology Research Institute, University of Sadat City. Egypt
| | - Nahla Shehata
- Lot release unit, National Organization for Research and Control of Biologicals, Cairo. Egypt
| | - Nadia El-Guendy
- Department of Cancer Biology, National Institute of Cancer, Cairo University. Egypt
| | - Nahla Gamal
- Department of Applied Research, Research & Development Sector, VACSERA, Cairo. Egypt
| | - Abdel-Rahman Zekri
- Department of Cancer Biology, National Institute of Cancer, Cairo University. Egypt
| | - Salwa Sabet
- Department of Zoology, Faculty of Science, Cairo University. Egypt
| |
Collapse
|
24
|
Li R, Hou S, Zou M, Ye K, Xiang L. miR-543 impairs cell proliferation, migration, and invasion in breast cancer by suppressing VCAN. Biochem Biophys Res Commun 2021; 570:191-198. [PMID: 34293593 DOI: 10.1016/j.bbrc.2021.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/23/2021] [Accepted: 07/03/2021] [Indexed: 12/12/2022]
Abstract
Breast cancer (BC) continues to plague millions of people worldwide. MicroRNAs have been observed to be closely associated with many cancers and may serve as promising biomarkers for the diagnosis of BC. BC tissue samples were collected from 26 patients, and qRT-PCR and western blotting were performed to evaluate the levels of miR-543 and VCAN. The action of miR-543 and VCAN was determined using CCK-8, BrdU, wound healing, and transwell invasion assays. Luciferase and RNA pull-down assays were used to assess whether miR-543 bound to VCAN. We found that miR-543 inhibited BC cell viability, proliferation, migration, and invasion by repressing the expression of VCAN. VCAN was upregulated in BC tissues and exerted beneficial effects on the development process of BC. Our results highlighted that the miR-543/VCAN axis is a promising diagnostic and prognostic biomarker in clinical applications.
Collapse
Affiliation(s)
- Rong Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Jianghan University, Wuhan, 430000, Hubei, China.
| | - Sihao Hou
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Jianghan University, Wuhan, 430000, Hubei, China
| | - Ming Zou
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Jianghan University, Wuhan, 430000, Hubei, China
| | - Kunqi Ye
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Jianghan University, Wuhan, 430000, Hubei, China
| | - Li Xiang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Jianghan University, Wuhan, 430000, Hubei, China
| |
Collapse
|
25
|
Petrović N, Nakashidze I, Nedeljković M. Breast Cancer Response to Therapy: Can microRNAs Lead the Way? J Mammary Gland Biol Neoplasia 2021; 26:157-178. [PMID: 33479880 DOI: 10.1007/s10911-021-09478-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/17/2021] [Indexed: 12/23/2022] Open
Abstract
Breast cancer (BC) is a leading cause of death among women with malignant diseases. The selection of adequate therapies for highly invasive and metastatic BCs still represents a major challenge. Novel combinatorial therapeutic approaches are urgently required to enhance the efficiency of BC treatment. Recently, microRNAs (miRNAs) emerged as key regulators of the complex mechanisms that govern BC therapeutic resistance and susceptibility. In the present review we aim to critically examine how miRNAs influence BC response to therapies, or how to use miRNAs as a basis for new therapeutic approaches. We summarized recent findings in this rapidly evolving field, emphasizing the challenges still ahead for the successful implementation of miRNAs into BC treatment while providing insights for future BC management.The goal of this review was to propose miRNAs, that might simultaneously improve the efficacy of all four therapies that are the backbone of current BC management (radio-, chemo-, targeted, and hormone therapy). Among the described miRNAs, miR-21 and miR-16 emerged as the most promising, closely followed by miR-205, miR-451, miR-182, and miRNAs from the let-7 family. miR-21 inhibition might be the best choice for future improvement of invasive BC treatment.New therapeutic strategies of miRNA-based agents alongside current standard treatment modalities could greatly benefit BC patients. This review represents a guideline on how to navigate this elaborate puzzle.
Collapse
Affiliation(s)
- Nina Petrović
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environment, "VINČA" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11001, Belgrade, Serbia.
- Department for Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia.
| | - Irina Nakashidze
- Department of Biology, Natural Science and Health Care, Batumi Shota Rustaveli State University, Ninoshvili str. 35, 6010, Batumi, Georgia
| | - Milica Nedeljković
- Department for Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia
| |
Collapse
|
26
|
Soheilifar MH, Masoudi-Khoram N, Madadi S, Nobari S, Maadi H, Keshmiri Neghab H, Amini R, Pishnamazi M. Angioregulatory microRNAs in breast cancer: Molecular mechanistic basis and implications for therapeutic strategies. J Adv Res 2021; 37:235-253. [PMID: 35499045 PMCID: PMC9039675 DOI: 10.1016/j.jare.2021.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/13/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer-associated angiogenesis is a fundamental process in tumor growth and metastasis. Angioregulatory miRNA–target gene interaction is not only involved in sprouting vessels of breast tumors but also, trans-differentiation of breast cancer cells to endothelial cells in a process termed vasculogenic mimicry. Successful targeting of tumor angiogenesis is still a missing link in the treatment of Breast cancer (BC) due to the low effectiveness of anti-angiogenic therapies in this cancer. Response to anti-angiogenic therapeutics are controlled by a miRNAs, so the identification of interaction networks of miRNAs–targets can be applicable in determining anti-angiogeneic therapy and new biomarkers in BC. Angioregulatory miRNAs in breast cancer cells and their microenvironment have therapeutic potential in cancer treatment.
Background Cancer-associated angiogenesis is a fundamental process in tumor growth and metastasis. A variety of signaling regulators and pathways contribute to establish neovascularization, among them as small endogenous non-coding RNAs, microRNAs (miRNAs) play prominent dual regulatory function in breast cancer (BC) angiogenesis. Aim of Review This review aims at describing the current state-of-the-art in BC angiogenesis-mediated by angioregulatory miRNAs, and an overview of miRNAs dysregulation association with the anti-angiogenic response in addition to potential clinical application of miRNAs-based therapeutics. Key Scientific Concepts of Review Angioregulatory miRNA–target gene interaction is not only involved in sprouting vessels of breast tumors but also, trans-differentiation of BC cells to endothelial cells (ECs) in a process termed vasculogenic mimicry. Using canonical and non-canonical angiogenesis pathways, the tumor cell employs the oncogenic characteristics such as miRNAs dysregulation to increase survival, proliferation, oxygen and nutrient supply, and treatment resistance. Angioregulatory miRNAs in BC cells and their microenvironment have therapeutic potential in cancer treatment. Although, miRNAs dysregulation can serve as tumor biomarker nevertheless, due to the association of miRNAs dysregulation with anti-angiogenic resistant phenotype, clinical benefits of anti-angiogenic therapy might be challenging in BC. Hence, unveiling the molecular mechanism underlying angioregulatory miRNAs sparked a booming interest in finding new treatment strategies such as miRNA-based therapies in BC.
Collapse
Affiliation(s)
- Mohammad Hasan Soheilifar
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Corresponding authorsat: Yara Institute, Academic Center for Education, Culture and Research (ACECR), Enghelab St, Tehran 1315795613, Iran (Mohammad Hasan Soheilifar). University of Limerick, Limerick V94 T9PX, Ireland (Mahboubeh Pishnamazi).
| | - Nastaran Masoudi-Khoram
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Soheil Madadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sima Nobari
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Maadi
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Hoda Keshmiri Neghab
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahboubeh Pishnamazi
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
- Corresponding authorsat: Yara Institute, Academic Center for Education, Culture and Research (ACECR), Enghelab St, Tehran 1315795613, Iran (Mohammad Hasan Soheilifar). University of Limerick, Limerick V94 T9PX, Ireland (Mahboubeh Pishnamazi).
| |
Collapse
|
27
|
Cao W, Zeng Z, He Z, Lei S. Hypoxic pancreatic stellate cell-derived exosomal mirnas promote proliferation and invasion of pancreatic cancer through the PTEN/AKT pathway. Aging (Albany NY) 2021; 13:7120-7132. [PMID: 33653966 PMCID: PMC7993707 DOI: 10.18632/aging.202569] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
Pancreatic stellate cells (PSCs) are important components of the tumor microenvironment in pancreatic cancer (PC) and contribute to its development and metastasis through mechanisms that remain incompletely characterized. Tumor hypoxia affects the function and behavior of PC and stromal cells, and can alter exosomal content to modify cell-cell communication. The present study explored the effects of exosomal miRNAs produced by hypoxia-preconditioned PSCs on the growth and metastatic potential of PC cells. Subcutaneous xenografts and liver metastasis mouse models revealed increased tumorigenic potential upon co-implantation of PC cells and PSCs as compared to PC cells alone. Screening miRNA profiles of mouse plasma exosomes and cultured PSCs, followed by miRNA overexpression and inhibition assays, enabled us to identify miR-4465 and miR-616-3p as prominent hypoxia-induced, PSC-derived, exosomal miRNAs promoting PC cell proliferation, migration, and invasion. Proteomics analysis of PC cells incubated with exosomes derived from hypoxic PSCs showed significant downregulation of PTEN. Dual-luciferase reporter assays and western blotting showed that both miR-4465 and miR-616-3p target PTEN and activate AKT signaling in PC cells. We conclude that hypoxia upregulates miR-4465 and miR-616-3p expression in PSC-derived exosomes. Following exosome uptake, these miRNAs promote PC progression and metastasis by suppressing the PTEN/AKT pathway.
Collapse
Affiliation(s)
- Wenpeng Cao
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang 550009, Guizhou, China
| | - Zhirui Zeng
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang 550009, Guizhou, China
| | - Zhiwei He
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550009, Guizhou, China
| | - Shan Lei
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang 550009, Guizhou, China
| |
Collapse
|
28
|
Angiogenesis regulation by microRNAs and long non-coding RNAs in human breast cancer. Pathol Res Pract 2021; 219:153326. [PMID: 33601152 DOI: 10.1016/j.prp.2020.153326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are capable of regulating gene expression post-transcriptionally. Since the past decade, a number of in vitro, in vivo, and clinical studies reported the roles of these non-coding RNAs (ncRNAs) in regulating angiogenesis, an important cancer hallmark that is associated with metastases and poor prognosis. The specific roles of various miRNAs and lncRNAs in regulating angiogenesis in breast cancer, with particular focus on the downstream targets and signalling pathways regulated by these ncRNAs will be discussed in this review. In light of the recent trend in exploiting ncRNAs as cancer therapeutics, the potential use of miRNAs and lncRNAs as biomarkers and novel therapeutic agent against angiogenesis was also discussed.
Collapse
|
29
|
Regulatory Interplay between miR-181a-5p and Estrogen Receptor Signaling Cascade in Breast Cancer. Cancers (Basel) 2021; 13:cancers13030543. [PMID: 33535487 PMCID: PMC7867078 DOI: 10.3390/cancers13030543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Despite huge efforts in breast cancer care programs, patient’s survival rates greatly vary. Differences in response to therapy still represent the major challenge for clinicians and biologists. Define new anticancer mechanisms and innovative predictors for resistance could be a valid strategy to permanently defeat breast cancer. Here we propose the epigenetic based reprogramming of breast cancer, which leverages on the crosstalk between miR-181a-5p and Estrogen Receptor α. This simultaneously approach allows to induce miR-181a-5p and reduce the receptor expression, blocking the estrogen-dependent proliferative pathway underlying breast cancer progression. Since the epigenetic approach insists on transcriptional regulation, it is mostly independent of the acquired resistance mechanisms typically induced by prolonged endocrine therapy and therefore can be used as a sensitizer, neoadjuvant, or in combination with the standard in care treatments against breast cancer. Abstract The efficacy and side effects of endocrine therapy in breast cancer (BC) depend largely on estrogen receptor alpha (ERα) expression, the specific drug administered, and treatment scheduling. Although the benefits of endocrine therapy outweigh any adverse effects in the initial stages of BC, later- or advanced-stage tumors acquire resistance to treatments. The mechanisms underlying tumor resistance to therapy are still not well understood, posing a major challenge for BC patient care. Epigenetic regulation and miRNA expression may be involved in the switch from a treatment-sensitive to a treatment-resistant state and could provide a valid therapeutic strategy for ERα negative BC. Here, a hybrid lysine-specific histone demethylase inhibitor, MC3324, displaying selective estrogen receptor down-regulator-like activities in BC, was used to highlight the interplay between epigenetic and ERα signaling. MC3324 anticancer action is mediated by microRNA (miRNA) expression regulation, indicating an innovative function for this molecule. Integrated analysis suggests a crosstalk between estrogen signaling, ERα interactors, miRNAs, and their putative targets. Specifically, miR-181a-5p expression is regulated by MC3324 and has an impact on cellular levels of ERα. A comparison of breast tumor versus healthy mammary tissues confirmed the important role of miR-181a-5p in ERα regulation and points to its putative predictive function in BC therapy.
Collapse
|
30
|
Qattan A. Novel miRNA Targets and Therapies in the Triple-Negative Breast Cancer Microenvironment: An Emerging Hope for a Challenging Disease. Int J Mol Sci 2020; 21:ijms21238905. [PMID: 33255471 PMCID: PMC7727826 DOI: 10.3390/ijms21238905] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
Treatment of triple-negative breast cancer (TNBC) remains challenging because of the heterogeneity of the disease and lack of single targetable driving mutations. TNBC does not rely on estrogen, progesterone or epidermal growth factor receptors and is associated with aggressive disease progression and poor prognosis. TNBC is also characterized by resistance to chemotherapeutics, and response to immunotherapies is limited despite promising results in a subset of TNBC patients. MicroRNAs (miRNAs) have emerged as significant drivers of tumorigenesis and tumor progression in triple-negative breast cancer (TNBC) and present unique opportunities to target various components of the TNBC microenvironment for improved efficacy against this difficult to treat cancer. Effects of miRNAs on multiple targets may improve response rates in the context of this genetically and biologically heterogeneous disease. In this review, we offer a comprehensive view of miRNA regulation in TNBC, treatment challenges presented by TNBC in the context of the tumor microenvironment and stem cell subpopulations, and current and emerging miRNA-based therapeutic strategies targeting various components of the TNBC microenvironment. In addition, we offer insight into novel targets that have potential for treating TNBC through multiple mechanisms in the tumor microenvironment simultaneously and those that may be synergistic with standard chemotherapies.
Collapse
Affiliation(s)
- Amal Qattan
- Breast Cancer Research Unit, Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; or
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences (SMHS), George Washington University, Washington, DC 20073, USA
| |
Collapse
|
31
|
Expression level of VLDL receptor and VLDL-c levels in the malignant and benign breast tumors: The correlation with miRNA-4465 and miRNA-1297. Mol Cell Probes 2020; 53:101624. [DOI: 10.1016/j.mcp.2020.101624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 01/07/2023]
|
32
|
Applying Serum Proteins and MicroRNA as Novel Biomarkers for Early-Stage Cervical Cancer Detection. Sci Rep 2020; 10:9033. [PMID: 32493989 PMCID: PMC7271168 DOI: 10.1038/s41598-020-65850-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 04/27/2020] [Indexed: 01/23/2023] Open
Abstract
Recently, we have been seeing emerging applications of non-invasive approaches using serum biomarkers including miRNA and proteins in detection of multiple cancers. Currently, majority of these methods only use solitary type of biomarkers, which often lead to non-satisfactory sensitivity and specificity in clinical applications. To this end, we established a unique biomarker panel in this study, which determined both squamous cell carcinoma antigen (SCC Ag) degree and miRNA-29a, miRNA-25, miRNA-486-5p levels in blood for detection of early-stage cervical cancer. We designed our study with two phases: a biomarker discovery phase, followed by an independent validation phase. In total of 140 early-stage cervical cancer patients (i.e., AJCC stage I and II) and 140 healthy controls recruited in the biomarker discovery phase, we achieved sensitivity of 88.6% and specificity of 92.9%. To further assess the predictive power of our panel, we used it to an independent patient cohort that consisted of 60 early-stage cervical cancer individuals as well as 60 healthy controls, and successfully achieved both high sensitivity (80.0%) and high specificity (96.7%). Our study indicated combining analyses of multiple serum biomarkers could improve the accuracy of non-invasive detection of early-stage cervical cancer, and potentially serve as a new liquid biopsy approach for detecting early-stage cervical cancer.
Collapse
|
33
|
Donzelli S, Farneti A, Marucci L, Ganci F, Sacconi A, Strano S, Sanguineti G, Blandino G. Non-coding RNAs as Putative Biomarkers of Cancer-Associated Cachexia. Front Cell Dev Biol 2020; 8:257. [PMID: 32373612 PMCID: PMC7187787 DOI: 10.3389/fcell.2020.00257] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/27/2020] [Indexed: 01/06/2023] Open
Abstract
Cachexia is a complex metabolic syndrome that determines a severe body weight loss characterized by a marked reduction in muscle mass. About 80% of patients with advanced cancer develop cachexia due to both the tumor itself and cancer treatment (radiotherapy and/or chemotherapy), which is associated to a worse prognosis. Despite its clinical relevance, this syndrome is still under-diagnosed and it lacks effective treatments. Radio-chemotherapy treatment is essential in patients with advanced head and neck cancers (HNSCC). Although this treatment has improved patients' life expectancy, it has also dramatically increased their need for assistance and support. The management of adverse symptoms, including cachexia, is of great importance in order to avoid delays in therapy, reduction of dosages and hospitalizations. MicroRNAs (miRNAs) are small non-coding RNA molecules, which have emerged as powerful biomarkers in stratifying human cancers. Due to their high stability in body fluids, miRNAs might be excellent non-invasive biomarkers for the early detection and follow-up of cancer patients. Here, we will summarize the current knowledge and debate the strong need to identify circulating biomarkers for the early diagnosis of cachexia. We will propose circulating non-coding RNAs as biomarkers for detecting early cachexia and implementing specific treatment. We will also discuss the potential use of circulating miRNAs as biomarkers of cachexia in HNSCC patients' blood samples collected before and after radio-chemotherapy treatment. Our intent is to pave the way to the identification of specific circulating miRNAs associated to cachexia occurrence and to the design of specific interventions aimed at improving the quality of life of cancer patients.
Collapse
Affiliation(s)
- Sara Donzelli
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Alessia Farneti
- Radiotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Marucci
- Radiotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Federica Ganci
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Sacconi
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sabrina Strano
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giuseppe Sanguineti
- Radiotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
34
|
Wang Z, Li TE, Chen M, Pan JJ, Shen KW. miR-106b-5p contributes to the lung metastasis of breast cancer via targeting CNN1 and regulating Rho/ROCK1 pathway. Aging (Albany NY) 2020; 12:1867-1887. [PMID: 31986487 PMCID: PMC7053600 DOI: 10.18632/aging.102719] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/02/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Breast cancer has been the second most prevalent and fatal malignancy due to its frequent metastasis to other organs. We aim to study the effects of a key miRNA-mRNA signaling in breast cancer. RESULTS CNN1 was identified as the key gene in breast cancer by the bioinformatics analysis, and the downregulation of CNN1 in breast cancer tissues and cell lines was observed. Upregulating CNN1 inhibited cell survival, migration, invasion, and adhesion, but enhanced cell apoptosis. miR-106b-5p not only bound to CNN1 mRNA 3'UTR, but also promoted lung metastasis in vivo. Besides, the miR-106b-5p mimic enhanced breast cancer canceration by targeting CNN1 and activating Rho/ROCK1 signaling pathway. CONCLUSION Overall, our results proved that miR-106b-5p promoted the metastasis of breast cancer by suppressing CNN1 and activating Rho/ROCK1 pathway. METHODS Bioinformatics analysis was performed to select the key gene in breast cancer. The overexpression and knockdown of Calponin 1 (CNN1) in breast cancer cell lines were performed to conduct cell viability, migrating, invasion, proliferation, adhesion, and apoptosis experiments. To identify the role of miR-106b-5p and Rho/ROCK1 in CNN1-induced breast cancer, a dual-luciferase assay, tumor lung metastasis assay, transcript half-life assay, and Rho/ROCK1 inhibition assay were performed.
Collapse
Affiliation(s)
- Zheng Wang
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tian-En Li
- Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Mo Chen
- Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jun-Jie Pan
- Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Kun-Wei Shen
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
35
|
Forthun RB, Hovland R, Schuster C, Puntervoll H, Brodal HP, Namløs HM, Aasheim LB, Meza-Zepeda LA, Gjertsen BT, Knappskog S, Straume O. ctDNA detected by ddPCR reveals changes in tumour load in metastatic malignant melanoma treated with bevacizumab. Sci Rep 2019; 9:17471. [PMID: 31767937 PMCID: PMC6877652 DOI: 10.1038/s41598-019-53917-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 11/05/2019] [Indexed: 12/26/2022] Open
Abstract
Bevacizumab is included in an increasing number of clinical trials. To find biomarkers to predict and monitor treatment response, cancer and angiogenesis relevant mutations in tumour and circulating tumour DNA (ctDNA) were investigated in 26 metastatic melanoma patients treated with bevacizumab. Patients with >1% BRAF/NRAS ctDNA at treatment start had significantly decreased progression free survival (PFS) and overall survival (OS) (PFS: p = 0.019, median 54 vs 774 days, OS: p = 0.026, median 209 vs 1064 days). Patients with >1% BRAF/NRAS ctDNA during treatment showed similar results (PFS: p = 0.002, OS: p = 0.003). ≤1% BRAF/NRAS ctDNA and normal lactate dehydrogenase (LDH) levels both significantly predicted increased response to treatment, but BRAF/NRAS ctDNA was better at predicting response compared to LDH at treatment start (OR 16.94, p = 0.032 vs OR 4.57, p = 0.190), and at predicting PFS (HR 6.76, p = 0.002) and OS (HR 6.78, p = 0.002) during therapy. ctDNA BRAF p.V600D/E/K and NRAS p.G12V/p.Q61K/L/R were better biomarkers for response prediction than TERT promoter mutations (OR 1.50, p = 0.657). Next generation sequencing showed that all patients with ≥2 mutations in angiogenesis-relevant genes had progressive disease, but did not reveal other biomarkers identifying responders. To conclude, ctDNA and LDH are useful biomarkers for both monitoring and predicting response to bevacizumab.
Collapse
Affiliation(s)
- Rakel Brendsdal Forthun
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| | - Randi Hovland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
- Department of Biosciences, University of Bergen, Bergen, Norway
| | - Cornelia Schuster
- Centre of Cancer Biomarkers, CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Hanne Puntervoll
- Centre of Cancer Biomarkers, CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Hans Petter Brodal
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| | - Heidi Maria Namløs
- Department of Tumour Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Lars Birger Aasheim
- Norwegian Cancer Genomics Consortium, Institute for Cancer Research, The Norwegian Radium Hospital/Oslo University Hospital, Oslo, Norway
| | - Leonardo A Meza-Zepeda
- Department of Tumour Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Norwegian Cancer Genomics Consortium, Institute for Cancer Research, The Norwegian Radium Hospital/Oslo University Hospital, Oslo, Norway
- Genomics Core Facility, Department of Core Facilities, Oslo University Hospital, Oslo, Norway
| | - Bjørn Tore Gjertsen
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
- Centre of Cancer Biomarkers, CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Stian Knappskog
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center for Genome Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Oddbjørn Straume
- Centre of Cancer Biomarkers, CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway.
- Department of Oncology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|