1
|
Wang H, Liu C, Jin K, Li X, Zheng J, Wang D. Research advances in signaling pathways related to the malignant progression of HSIL to invasive cervical cancer: A review. Biomed Pharmacother 2024; 180:117483. [PMID: 39353319 DOI: 10.1016/j.biopha.2024.117483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
The progression of high-grade squamous intraepithelial lesion (HSIL) to invasive cervical cancer (ICC) is a complex process involving persistent human papillomavirus (HPV) infection and changes in signal transduction regulation, energy and material metabolism, cell proliferation, autoimmune, and other biological process in vaginal microenvironment and immune microenviroment. Signaling pathways are a series of interacting molecules in cells that regulate various physiological functions of cells, such as growth, differentiation, metabolism, and death. In the progression of HSIL to ICC, abnormal activation or inhibition in signaling pathways plays an essensial role. This review presented some signaling pathways related to the malignant progression of HSIL to ICC, including p53, Rb, PI3K/AKT/mTOR, Wnt/β-catenin, Notch, NF-κB, MAPK, TGF-β, JAK-STAT, Hippo, and Hedgehog. The molecular mechanisms involved in the biological process of pathway regulation were also analyzed, in order to illustrate the molecular pathway of HSIL progression to ICC and provide references for the development of more effective prevention and treatment methods.
Collapse
Affiliation(s)
- Huifang Wang
- Department of Obstetrics and Gynecology, Quanzhou Medical College, Quanzhou, Fujian 362010, China
| | - Chang Liu
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China; Key Clinical Specialty of Liaoning Province, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China; Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Keer Jin
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China; Key Clinical Specialty of Liaoning Province, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Xiang Li
- Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Jiaxin Zheng
- Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Danbo Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China; Key Clinical Specialty of Liaoning Province, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China.
| |
Collapse
|
2
|
Lu Z, Fan P, Huo W, Feng Y, Wang R. Genomic profiles and their relationships with clinical characteristics and immune features in cervical cancer. Transl Oncol 2024; 44:101923. [PMID: 38432114 PMCID: PMC10920960 DOI: 10.1016/j.tranon.2024.101923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/18/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the genomic alteration profiles of cervical cancer patients, examine the correlation between mutation patterns and clinical and immune attributes, and discover novel targets for treatment of individuals with cervical cancer. METHODS We performed targeted next-generation sequencing of tumor tissues and blood samples obtained from 45 cervical cancer patients to analyze somatic alterations, mutation patterns, and HLA alleles comprehensively. Additionally, we used flow cytometry to assess expression levels of immune checkpoint genes. RESULTS Notably, genes such as AR (78%), KMT2D (76%), and NOTCH1 (62%) exhibited higher mutation frequencies. Moreover, the tumor mutation burden (TMB) was significantly greater in HPV-positive cervical cancer patients than in HPV-negative patients (P=0.029). BMI (P=0.047) and mutations in BARD1 (P=0.034), CEP290 (P=4E-04), and SLX4 (P=0.0128) were identified as predictors of shorter overall survival in cervical cancer patients. Furthermore, the present study revealed significant upregulation of PD-1 (P=0.027) and Tim-3 (P=0.048) in the high mutant-allele tumor heterogeneity (MATH) cohort. In the elderly cervical cancer patient population, HLA-A03:01 emerged as a high-risk allele (OR=3.2, P<0.0001); HLA-C07:02 (OR=0.073, P=0.02) and HLA-B*07:02 (OR=0.257, P=0.037) were associated with a reduced risk among patients with low TMB. CONCLUSIONS This study offers insights into the mutation characteristics of cervical cancer patients and identifies potential therapeutic.
Collapse
Affiliation(s)
- Zinan Lu
- Xinjiang Medical University Affiliated Tumor Hospital, Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Urumqi, Xinjiang 830011, China; Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang 830011, China
| | - Peiwen Fan
- Xinjiang Medical University Affiliated Tumor Hospital, Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Urumqi, Xinjiang 830011, China; Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang 830011, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Wen Huo
- Xinjiang Medical University Affiliated Tumor Hospital, Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Urumqi, Xinjiang 830011, China; Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang 830011, China
| | - Yaning Feng
- Xinjiang Medical University Affiliated Tumor Hospital, Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Urumqi, Xinjiang 830011, China; Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang 830011, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Ruozheng Wang
- Xinjiang Medical University Affiliated Tumor Hospital, Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Urumqi, Xinjiang 830011, China; Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang 830011, China; Xinjiang Uygur Autonomous Region Radiotherapy Clinical Research and Training Center, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China.
| |
Collapse
|
3
|
Colonetti T, Rodrigues Uggioni ML, Meller Dos Santos AL, Michels Uggioni N, Uggioni Elibio L, Balbinot EL, Grande AJ, Rosa MI. Self-sampling for HPV testing in cervical cancer screening: A scoping review. Eur J Obstet Gynecol Reprod Biol 2024; 296:20-51. [PMID: 38394715 DOI: 10.1016/j.ejogrb.2024.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Cervical cancer is the third most common gynecological cancer worldwide. Its origin is linked to intraepithelial lesions caused by high-risk Human Papillomavirus (HPV) types, detected in 99.7% of cases. Early screening is essential to prevent cancer development from these lesions. Molecular methods are more specific and offer the possibility of being performed through a self-collected sample by the patient, thus contributing to increasing screening coverage for this pathology. This study aim was to map the medical-scientific literature on existing protocols for self-sampling for HPV testing in cervical cancer screening. A search strategy was developed using the following keywords and their synonyms: "self-sampling," "professional sampling," and "HPV", on the databases: MEDLINE, Cochrane Library, Virtual Health Library - BVS, Scopus, National Institute for Health Research NHS EED, Web of Science, and EMBASE. The search strategy was formulated to identify relevant studies and describe their main characteristics, such as patient acceptance of self-sampling, cost differences between the tests used, and the accuracy of self-sampling compared to the gold standard test. A total of 876 studies were found, and 33 of those studies were included in this review. Out of these, 10 studies were domized clinical trials involving 46,751 patients, and 23 observational studies included 142,795 patients. Regarding acceptance, most studies reported a preference for self-sampling. Sensitivity analyses from various studies also showed that the low cost of self-sampling kits generally increased cost-effectiveness. The study concluded that using HPV testing on self-collected samples is a viable strategy for monitoring women with HPV.
Collapse
Affiliation(s)
- Tamy Colonetti
- Laboratory of Translational Biomedicine, University of Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | | | | | | | - Laura Uggioni Elibio
- Laboratory of Translational Biomedicine, University of Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Eduarda Letícia Balbinot
- Laboratory of Translational Biomedicine, University of Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Antonio José Grande
- Laboratory of Evidence-Based Practice, State University of Mato Grosso do Sul, Av. Dom Antonio Barbosa (MS-080), 4155 - CEP 79115-898, Campo Grande, MS, Brazil
| | - Maria Inês Rosa
- Laboratory of Translational Biomedicine, University of Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
4
|
Vallejo-Ruiz V, Gutiérrez-Xicotencatl L, Medina-Contreras O, Lizano M. Molecular aspects of cervical cancer: a pathogenesis update. Front Oncol 2024; 14:1356581. [PMID: 38567159 PMCID: PMC10985348 DOI: 10.3389/fonc.2024.1356581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Cervical cancer (CC) is a significant health problem, especially in low-income countries. Functional studies on the human papillomavirus have generated essential advances in the knowledge of CC. However, many unanswered questions remain. This mini-review discusses the latest results on CC pathogenesis, HPV oncogenesis, and molecular changes identified through next-generation technologies. Interestingly, the percentage of samples with HPV genome integrations correlates with the degree of the cervical lesions, suggesting a role in the development of CC. Also, new functions have been described for the viral oncoproteins E5, E6, and E7, resulting in the acquisition and maintenance of cancer hallmarks, including proliferation, immune response evasion, apoptosis, and genomic instability. Remarkably, E5 oncoprotein affects signaling pathways involved in the expression of interferon-induced genes and EGFR-induced proliferation, while E6 and E7 oncoproteins regulate the DNA damage repair and cell cycle continuity pathways. Furthermore, next-generation technologies provide vast amounts of information, increasing our knowledge of changes in the genome, transcriptome, proteome, metabolome, and epigenome in CC. These studies have identified novel molecular traits associated with disease susceptibility, degree of progression, treatment response, and survival as potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Verónica Vallejo-Ruiz
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Lourdes Gutiérrez-Xicotencatl
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Oscar Medina-Contreras
- Epidemiology, Endocrinology & Nutrition Research Unit, Mexico Children’s Hospital, Mexico City, Mexico
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Mexico City, Mexico
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
5
|
Endale HT, Mariye YF, Negash HK, Hassen FS, Asrat WB, Mengstie TA, Tesfaye W. MiRNA in cervical cancer: Diagnosis to therapy: Systematic review. Heliyon 2024; 10:e24398. [PMID: 38317930 PMCID: PMC10839805 DOI: 10.1016/j.heliyon.2024.e24398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Cancers are one of the most public health problems worldwide. Among them, cervical cancer (CC) is the fourth most prevalent cancer with 604 000 new cases and 342 000 deaths. Mostly, it is associated with Human papillomavirus (HPV). It has been caused by the aggregation of genetic and epigenetic modifications in cervical epithelial cells. Although genetic mutations are given great attention for the carcinogenesis of CC, epigenetic changes have emerged as a hotspot area for CC biomarkers research with great implications for early diagnosis, prognosis, and treatment response prediction of the disease. Recently, there are several studies focused on miRNAs as biomarkers of cervical cancer. However, the precise function of miRNAs in the development of cervical cancer is not still completely understood, particularly when it comes to unconventional sampling materials like cervical mucus and plasma serum. Hence, this review article will give a summary of the miRNAs profiles that emerge at different stages of cervical cancer progression and their downstream effects on target genes and associated signaling pathways. Finally, these results may provide insight into the use of miRNAs as biomarkers for the prediction or diagnosis of cervical cancer or the development of miRNA-based therapeutics against cervical cancer.
Collapse
Affiliation(s)
- Hiwot Tezera Endale
- Department of Biochemistry, School of Medicine, College of Medicine & Health Sciences, University of Gondar, Ethiopia
| | - Yitbarek Fantahun Mariye
- Department of Obstetrics & Gynecology, School of Medicine, College of Medicine & Health Sciences, Addis Ababa University, Ethiopia
| | - Habtu Kifle Negash
- Department of Human Anatomy, School of Medicine, College of Medicine & Health Sciences, University of Gondar, Ethiopia
| | - Fethiya Seid Hassen
- Department of Biochemistry, School of Medicine, College of Medicine & Health Sciences, University of Gondar, Ethiopia
| | - Wastina Bitewlign Asrat
- Department of Biochemistry, School of Medicine, College of Medicine & Health Sciences, University of Gondar, Ethiopia
| | - Tiget Ayelgn Mengstie
- Department of Biochemistry, School of Medicine, College of Medicine & Health Sciences, University of Gondar, Ethiopia
| | - Winta Tesfaye
- Department of Human Physiology, School of Medicine, College of Medicine & Health Sciences, University of Gondar, Ethiopia
| |
Collapse
|
6
|
Zheng X, Zhao D, Liu Y, Jin Y, Liu T, Li H, Liu D. Regeneration and anti-inflammatory effects of stem cells and their extracellular vesicles in gynecological diseases. Biomed Pharmacother 2023; 168:115739. [PMID: 37862976 DOI: 10.1016/j.biopha.2023.115739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
There are many gynecological diseases, among which breast cancer (BC), cervical cancer (CC), endometriosis (EMs), and polycystic ovary syndrome (PCOS) are common and difficult to cure. Stem cells (SCs) are a focus of regenerative medicine. They are commonly used to treat organ damage and difficult diseases because of their potential for self-renewal and multidirectional differentiation. SCs are also commonly used for difficult-to-treat gynecological diseases because of their strong directional differentiation ability with unlimited possibilities, their tendency to adhere to the diseased tissue site, and their use as carriers for drug delivery. SCs can produce exosomes in a paracrine manner. Exosomes can be produced in large quantities and have the advantage of easy storage. Their safety and efficacy are superior to those of SCs, which have considerable potential in gynecological treatment, such as inhibiting endometrial senescence, promoting vascular reconstruction, and improving anti-inflammatory and immune functions. In this paper, we review the mechanisms of the regenerative and anti-inflammatory capacity of SCs and exosomes in incurable gynecological diseases and the current progress in their application in genetic engineering to provide a foundation for further research.
Collapse
Affiliation(s)
- Xu Zheng
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Dan Zhao
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130000, China
| | - Yang Liu
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130000, China
| | - Ye Jin
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Tianjia Liu
- Changchun University of Chinese Medicine, Changchun 130117, China; Baicheng Medical College, Baicheng 137000, China.
| | - Huijing Li
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Da Liu
- Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
7
|
Li X, Liu H, Zhou X, Zhou Y, Zhang Y, Liou YL, Zeng M, Zhu H. PAX1 hypomethylation as a prognostic biomarker for radioresistance of cervical cancer. Clin Epigenetics 2023; 15:123. [PMID: 37533109 PMCID: PMC10398938 DOI: 10.1186/s13148-023-01538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/22/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND PAX1 gene methylation plays an important role in the development of cervical cancer. However, its prognostic value after radiotherapy for locally advanced cervical cancer is unknown, so this study aimed to investigate the value of PAX1 gene methylation for predicting the sensitivity of radiotherapy for cervical cancer. METHODS We selected 125 patients with primary cervical cancer who underwent concurrent chemo-radiotherapy as the study population, quantitative methylation-specific polymerase chain reaction (QMSP) was used for detecting PAX1 methylation status of cervical exfoliated cells. Logistic regression model was used to analyze the risk factors associated with the short-term efficacy and to establish a prediction model of radiotherapy sensitivity based on PAX1 gene methylation. Cell viability after radiation of Hela and SiHa cells transfected with PAX1 or control vector was evaluated by CCK8. Furthermore, RNA-Seq analyses identified different expressed genes (DEGs) in PAX1 overexpressed SiHa cells. Gene Ontology (GO) and pathway enrichment analysis was carried out to determine the biological function of DEGs. RESULTS PAX1 methylation level was associated with HPV16/18-positive rate. PAX1 hypomethylation was found to be a risk factor for tumor residual after chemo-radiotherapy. A nomogram containing the risk factors for PAX1 methylation status, lymph node metastasis, pathological type and tumor size was further constructed to predict the probability of tumor residual after chemo-radiotherapy (AUC = 0.823, 95% CI 0.736-0.910). High PAX1 protein level was more likely to cause radioresistance in both Hela and SiHa cells. Transcriptomic sequencing of PAX1 overexpressed and control cells identified 615 differentially expressed genes, and GO enrichment analysis suggested that PAX1 may be involved in the regulation of signaling receptor activity and response to viruses. CONCLUSION PAX1 hypomethylation status could be used as a promising biomarker to predict radioresistance in cervical cancer. This further provides a new idea for the individualized treatment strategy of simultaneous radiotherapy for cervical cancer.
Collapse
Affiliation(s)
- Xuanxuan Li
- Department of Oncology, Xiangya Hospital, Central South University, Hunan, 410008, China
| | - Huan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Hunan, 410008, China
| | - Xue Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Hunan, 410008, China
| | - Yangying Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Hunan, 410008, China
| | - Yu Zhang
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Hunan, 410008, China
| | - Yu-Ligh Liou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan, 410008, China
| | - Manting Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Hunan, 410008, China
| | - Hong Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Hunan, 410008, China.
| |
Collapse
|
8
|
Köse B, Laar RVD, Beekhuizen HV, Kemenade FV, Baykal AT, Luider T, Güzel C. Quantitative Proteomic Analysis of MCM3 in ThinPrep Samples of Patients with Cervical Preinvasive Cancer. Int J Mol Sci 2023; 24:10473. [PMID: 37445651 DOI: 10.3390/ijms241310473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Triage methods for cervical cancer detection show moderate accuracy and present considerable false-negative and false-positive result rates. A complementary diagnostic parameter could help improve the accuracy of identifying patients who need treatment. A pilot study was performed using a targeted proteomics approach with opportunistic ThinPrep samples obtained from women collected at the hospital's outpatient clinic to determine the concentration levels of minichromosome maintenance-3 (MCM3) and envoplakin (EVPL) proteins. Forty samples with 'negative for intraepithelial lesion or malignancy' (NILM), 21 samples with 'atypical squamous cells of undetermined significance' (ASC-US), and 33 samples with 'low-grade squamous intraepithelial lesion and worse' (≥LSIL) were analyzed, using cytology and the patients' histology reports. Highly accurate concordance was obtained for gold-standard-confirmed samples, demonstrating that the MCM3/EVPL ratio can discriminate between non-dysplastic and dysplastic samples. On that account, we propose that MCM3 and EVPL are promising candidate protein biomarkers for population-based cervical cancer screening.
Collapse
Affiliation(s)
- Büşra Köse
- Department of Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Türkiye
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Türkiye
- Department of Neurology, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Ralf van de Laar
- Department of Gynecology, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | | | | | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Türkiye
| | - Theo Luider
- Department of Neurology, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Coşkun Güzel
- Department of Neurology, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
9
|
Sammouri J, Wong MC, Lynn EJ, El Alam MB, Lo DK, Lin D, Harris TH, Karpinets TV, Court K, Napravnik TC, Wu X, Zhang J, Klopp AH, Ajami NJ, Colbert LE. Serial Genotyping of the Human Papillomavirus in Cervical Cancer: An Insight Into Virome Dynamics During Chemoradiation Therapy. Int J Radiat Oncol Biol Phys 2023:S0360-3016(23)00163-3. [PMID: 36801350 DOI: 10.1016/j.ijrobp.2023.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023]
Abstract
PURPOSE Human papillomavirus (HPV) is the primary driver of cervical cancer. Although studies in other malignancies correlated peripheral blood DNA clearance with favorable outcomes, research on the prognostic value of HPV clearance in gynecologic cancers using intratumoral HPV is scarce. We aimed to quantify the intratumoral HPV virome in patients undergoing chemoradiation therapy (CRT) and associate this with clinical characteristics and outcomes. METHODS AND MATERIALS This prospective study enrolled 79 patients with stage IB-IVB cervical cancer undergoing definitive CRT. Cervical tumor swabs collected at baseline and week 5 (end of intensity modulated radiation therapy) were sent for shotgun metagenome sequencing and processed via VirMAP, a viral genome sequencing and identification tool for all known HPV types. The data were categorized into HPV groups (16, 18, high risk [HR], and low risk [LR]). We used independent t tests and Wilcoxon signed-rank to compare continuous variables and χ2 and Fisher exact tests to compare categorical variables. Kaplan-Meier survival modeling was performed with log-rank testing. HPV genotyping was verified using quantitative polymerase chain reaction to validate VirMAP results using receiver operating characteristic curve and Cohen's kappa. RESULTS At baseline, 42%, 12%, 25%, and 16% of patients were positive for HPV 16, HPV 18, HPV HR, and HPV LR, respectively, and 8% were HPV negative. HPV type was associated with insurance status and CRT response. Patients with HPV 16+ and other HPV HR+ tumors were significantly more likely to have a complete response to CRT versus patients with HPV 18 and HPV LR/HPV-negative tumors. Overall HPV viral loads predominantly decreased throughout CRT, except for HPV LR viral load. CONCLUSIONS Rarer, less well-studied HPV types in cervical tumors are clinically significant. HPV 18 and HPV LR/negative tumors are associated with poor CRT response. This feasibility study provides a framework for a larger study of intratumoral HPV profiling to predict outcomes in patients with cervical cancer.
Collapse
Affiliation(s)
| | - Matthew C Wong
- Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | | - Tatiana V Karpinets
- Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Xiaogang Wu
- Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jianhua Zhang
- Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Nadim J Ajami
- Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | | |
Collapse
|
10
|
Han X, Du S, Chen X, Min X, Dong Z, Wang Y, Zhu C, Wei F, Gao S, Cai Q. Lactate-mediated Fascin protrusions promote cell adhesion and migration in cervical cancer. Theranostics 2023; 13:2368-2383. [PMID: 37153736 PMCID: PMC10157738 DOI: 10.7150/thno.83938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 05/10/2023] Open
Abstract
Background: Lactate is associated with the poor prognosis of many human malignancies. Cervical cancer, one of main causes of women mortality worldwide, is aggressive and absent of effective pharmacological treatment, and its underlying mechanisms of progression remain elusive. Methods: The regulation of β-catenin to fascin protrusion formation upon acidic lactate (Lactic acid [LA]) stimulation was evaluated through in β-catenin or fascin deficiency cell line models by immunofluorescence assays, and subcellular fractionation. The effect of β-catenin and fascin relocation by LA and its antagonist were evaluated by immunohistochemistry assay in patient tissues and mouse tumor xenograft model. Trypsin digestion, Transwell assay, cell proliferation in vitro was performed to explore the role of LA in the cell growth, adhesion and migration. Results: Low concentration of LA significantly promotes cytoskeleton remodeling via `protrusion formation to increase cell adhesion and migration. Mechanistically, upon LA stimulation, β-catenin diffuses from the cytoplasmic membrane into the nucleus, which in turn induces fascin nuclear-cytoplasm redistribution to the protrusion compartment. Moreover, the antagonist of LA sufficiently blocks the LA-mediated β-catenin nuclear import, fascin nuclear export, and the growth and invasion of cervical cancer cells in vitro and in vivo using a murine xenograft model. Conclusions: This study uncovers β-catenin-fascin axis as a key signal in response to extracellular lactate and indicates that antagonist of LA may serve as a potential clinical intervention for cancer development.
Collapse
Affiliation(s)
- Xiao Han
- Center of Diagnosis and Treatment For Cervical & Uterine Cavity Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, & MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Shujuan Du
- Center of Diagnosis and Treatment For Cervical & Uterine Cavity Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, & MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Xiaoting Chen
- Center of Diagnosis and Treatment For Cervical & Uterine Cavity Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, & MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Xuehua Min
- Center of Diagnosis and Treatment For Cervical & Uterine Cavity Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, & MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Zhongwei Dong
- Center of Diagnosis and Treatment For Cervical & Uterine Cavity Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, & MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Yuyan Wang
- Center of Diagnosis and Treatment For Cervical & Uterine Cavity Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, & MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Caixia Zhu
- Center of Diagnosis and Treatment For Cervical & Uterine Cavity Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, & MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Fang Wei
- ShengYushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- ✉ Corresponding author: (QC); (SG); (FW)
| | - Shujun Gao
- Center of Diagnosis and Treatment For Cervical & Uterine Cavity Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, & MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
- ✉ Corresponding author: (QC); (SG); (FW)
| | - Qiliang Cai
- Center of Diagnosis and Treatment For Cervical & Uterine Cavity Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, & MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
- ✉ Corresponding author: (QC); (SG); (FW)
| |
Collapse
|
11
|
Li M, Zeng J, Chang Y, Lv L, Ye G. CCT3 as a Diagnostic and Prognostic Biomarker in Cervical Cancer. Crit Rev Eukaryot Gene Expr 2023; 33:17-28. [PMID: 37522542 DOI: 10.1615/critreveukaryotgeneexpr.2023048208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The chaperonin-containing TCP1 complex subunit 3 (CCT3) has been reported to be involved in the development and prognosis of many tumors, including cervical cancer (CC). This study aimed to analyze the expression and prognostic value of CCT3 in CC by bioinformatics and retrospective study. CCT3 gene expression profiles and clinical information in CC were downloaded from the cancer genome atlas (TCGA) and gene expression omnibus (GEO) databases. CCT3 expression was verified by quantitative real-time polymerase chain reaction (RT-qPCR), Western blot, and immunohistochemistry (IHC). Logistic regression and chi-square testing were used to analyze the relationship between CCT3 expression and the clinical characteristics of CC. Kaplan-Meier and Cox analyses were used to evaluate whether CCT3 affects the prognosis of CC. Nomogram and calibration curves were used to test the predictive value of CCT3. The expression of CCT3 in CC tissues was significantly upregulated compared with that in adjacent benign tissues, and was related to HPV16/18 infection, grade, and positive lymph nodes. High expression of CCT3 is associated with poor prognosis of CC and can be used as an independent risk factor for CC. The prognostic model based on CCT3 and CC clinical features has good predictive ability. CCT3 is overexpressed in CC, which is related to poor prognosis and expected to become a biomarker for CC.
Collapse
Affiliation(s)
- Man Li
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233030, China
| | - Jianmin Zeng
- Affiliated Hospital of Kunming University of Science and Technology, First People's Hospital of Yunnan Province, Kunming, 650500, China
| | - Yuhuan Chang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233030, China
| | - Lili Lv
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233030, China
| | - Guoliu Ye
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233030, China
| |
Collapse
|
12
|
Duan P, Cheng J, Mao R, Wang R, Jin Y, Li C. Icariin-Mediated miR-875-5p Inhibits Autophagy and Epithelial-Mesenchymal Transition by Regulation of MDM4 in Cervical Cancer. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
MicroRNAs, one type of non-coding RNA, and Icariin have attracted tremendous attention concerning various diseases, especially cancers. Also, the function of Icariin on malignant behaviors by targeting miR-875-5p/MDM4 axis in cervical cancer remains unknown. MiR-875-5p analogs combined
with MDM4 or Icariin were used to explore autophagy and epithelial-mesenchymal transition in cancer cells. Xenograft mice were highlighted to elucidate the influences of Icariin and miR-875-5p in vivo. As a result, miR-875-5p was cut down in cervical cancer cells, which promoted malignant
phenotype, autophagy, and limited apoptosis in cervical cancer cells. Contrarily,miR-875-5p overexpression had a contrary performance in cervical cancer cells. miR-875-5p was validated as a sponge of MDM4. Enhanced expression of MDM4 weakened the performance of miR-875-5p mimic on autophagy
and epithelial-mesenchymal transition. Moreover, Icariin reversed the stimulative action of the inhibitor on autophagy and xenograft tumor growth. Generally, These findings imply that Icariin could be identified as a curative avenue for cervical cancer via miR-875-5p/MDM4 axis.
Collapse
|
13
|
Piña-Sánchez P. Human Papillomavirus: Challenges and Opportunities for the Control of Cervical Cancer. Arch Med Res 2022; 53:753-769. [PMID: 36462952 DOI: 10.1016/j.arcmed.2022.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022]
Abstract
Viruses are the most abundant and genetically diverse entities on the planet, infect all life forms and have evolved with their hosts. To date, 263 viral species have been identified that infect humans, of which only seven are considered type I oncogenic. Human papillomavirus (HPV) is the main virus associated with cancer and is responsible for practically all cases of cervical carcinoma. Screening tests for early detection have been available since the 1960s. Undoubtedly, the entailment between knowledge of HPV biology and the natural history of cervical cancer has contributed to the significant advances that have been made for its prevention since the 21st century, with the development of prophylactic vaccines and improved screening strategies. Therefore, it is possible to eradicate invasive cervical cancer as a worldwide public health problem, as proposed by the WHO with the 90-70-90 initiative based on vaccination coverage, screening, and treatment, respectively. In addition, the emerging knowledge of viral biology generates opportunities that will contribute to strengthening prevention and treatment strategies in HPV-associated neoplasms.
Collapse
Affiliation(s)
- Patricia Piña-Sánchez
- Laboratorio Molecular de Oncología, Unidad de Investigación Oncológica, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México.
| |
Collapse
|
14
|
Vega-Benedetti AF, Loi E, Zavattari P. DNA methylation alterations caused by Leishmania infection may generate a microenvironment prone to tumour development. Front Cell Infect Microbiol 2022; 12:984134. [PMID: 36105147 PMCID: PMC9465093 DOI: 10.3389/fcimb.2022.984134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/10/2022] [Indexed: 01/10/2023] Open
Abstract
DNA methylation is an epigenetic signature consisting of a methyl group at the 5’ cytosine of CpG dinucleotides. Modifications in DNA methylation pattern have been detected in cancer and infectious diseases and may be associated with gene expression changes. In cancer development DNA methylation aberrations are early events whereas in infectious diseases these epigenetic changes may be due to host/pathogen interaction. In particular, in leishmaniasis, a parasitic disease caused by the protozoan Leishmania, DNA methylation alterations have been detected in macrophages upon infection with Leishmania donovani and in skin lesions from patients with cutaneous leishmaniasis. Interestingly, different types of cancers, such as cutaneous malignant lesions, lymphoma and hepatocellular carcinoma, have been diagnosed in patients with a history of leishmaniasis. In fact, it is known that there exists an association between cancer and infectious diseases. Leishmania infection may increase susceptibility to develop cancer, but the mechanisms involved are not entirely clear. Considering these aspects, in this review we discuss the hypothesis that DNA methylation alterations induced by Leishmania may trigger tumorigenesis in long term infection since these epigenetic modifications may enhance and accumulate during chronic leishmaniasis.
Collapse
|
15
|
Holubekova V, Kolkova Z, Kasubova I, Samec M, Mazurakova A, Koklesova L, Kubatka P, Rokos T, Kozubik E, Biringer K, Kudela E. Interaction of cervical microbiome with epigenome of epithelial cells: Significance of inflammation to primary healthcare. Biomol Concepts 2022; 13:61-80. [PMID: 35245973 DOI: 10.1515/bmc-2022-0005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
One pillar of the predictive, preventive, and personalized medicine framework strategies is the female health. The evaluation of women's lifestyle and dietary habits in context with genetic and modifiable risk factors may reflect the prevention of cervical cancer before the occurrence of clinical symptoms and prediction of cervical lesion behavior. The main aim of this review is to analyze publications in the field of precision medicine that allow the use of research knowledge of cervical microbiome, epigenetic modifications, and inflammation in potential application in clinical practice. Personalized approach in evaluating patient's risk of future development of cervical abnormality should consider the biomarkers of the local microenvironment characterized by the microbial composition, epigenetic pattern of cervical epithelium, and presence of chronic inflammation. Novel sequencing techniques enable a more detailed characterization of actual state in cervical epithelium. Better understanding of all changes in multiomics level enables a better assessment of disease prognosis and selects the eligible targeted therapy in personalized medicine. Restoring of healthy vaginal microflora and reversing the outbreak of cervical abnormality can be also achieved by dietary habits as well as uptake of prebiotics, probiotics, synbiotics, microbial transplantation, and others.
Collapse
Affiliation(s)
- Veronika Holubekova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, SK-03601, Slovakia
| | - Zuzana Kolkova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, SK-03601, Slovakia
| | - Ivana Kasubova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, SK-03601, Slovakia
| | - Marek Samec
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, SK-03601, Slovakia
| | - Alena Mazurakova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, SK-03601, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, SK-03601, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, SK-03601, Slovakia
| | - Tomas Rokos
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, SK-03601, Slovakia
| | - Erik Kozubik
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, SK-03601, Slovakia
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, SK-03601, Slovakia
| | - Erik Kudela
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, SK-03601, Slovakia
| |
Collapse
|
16
|
Deng B, Chen X, Xu L, Zheng L, Zhu X, Shi J, Yang L, Wang D, Jiang D. Chordin-like 1 is a novel prognostic biomarker and correlative with immune cell infiltration in lung adenocarcinoma. Aging (Albany NY) 2022; 14:389-409. [PMID: 35021154 PMCID: PMC8791215 DOI: 10.18632/aging.203814] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 12/29/2021] [Indexed: 11/25/2022]
Abstract
Chordin-like 1 (CHRDL1), an inhibitor of bone morphogenetic proteins(BMPs), has been recently reported to participate in the progression of numerous tumors, however, its role in lung adenocarcinoma (LUAD) remains unclear. Our study aimed to demonstrate relationship between CHRDL1 and LUAD based on data from The Cancer Genome Atlas (TCGA). Among them, CHRDL1 expression revealed promising power for distinguishing LUAD tissues form normal sample. Low CHRDL1 was correlated with poor clinicopathologic features, including high T stage (OR=0.45, P<0.001), high N stage (OR=0.57, P<0.003), bad treatment effect (OR=0.64, P=0.047), positive tumor status (OR=0.63, P=0.018), and TP53 mutation (OR=0.49, P<0.001). The survival curve illustrated that low CHRDL1 was significantly correlative with a poor overall survival (HR=0.60, P<0.001). At multivariate Cox regression analysis, CHRDL1 remained independently correlative with overall survival. GSEA identified that the CHRDL1 expression was related to cell cycle and immunoregulation. Immune infiltration analysis suggested that CHRDL1 was significantly correlative with 7 kinds of immune cells. Immunohistochemical validation showed that CHRDL1 was abnormally elevated and negatively correlated with Th2 cells in LUAD tissues. In conclusion, CHRDL1 might become a novel prognostic biomarker and therapy target in LUAD. Moreover, CHRDL1 may improve the effectiveness of immunotherapy by regulating immune infiltration.
Collapse
Affiliation(s)
- Bing Deng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaorui Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lingfang Xu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zheng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoqian Zhu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junwei Shi
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Yang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dian Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Depeng Jiang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
17
|
Bañuelos-Villegas EG, Pérez-yPérez MF, Alvarez-Salas LM. Cervical Cancer, Papillomavirus, and miRNA Dysfunction. Front Mol Biosci 2021; 8:758337. [PMID: 34957212 PMCID: PMC8703027 DOI: 10.3389/fmolb.2021.758337] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/18/2021] [Indexed: 12/21/2022] Open
Abstract
Cervical cancer is the leading cause of death by cancer in women from developing countries. Persistent infection with high-risk human papillomavirus (HPV) types 16 and 18 is a major risk factor for cervical carcinogenesis. Nevertheless, only a few women with morphologic expression of HPV infection progress into invasive disease suggesting the involvement of other factors in cervical carcinogenesis. MicroRNAs (miRNAs) are conserved small non-coding RNAs that negatively regulate gene expression including genes involved in fundamental biological processes and human cancer. Dysregulation of miRNAs has been widely reported in cervical cancer. This work focuses on reviewing the miRNAs affected during the HPV infection process, as well relevant miRNAs that contribute to the development and maintenance of malignant cervical tumor cells. Finally, we recapitulate on miRNAs that may be used to distinguish between healthy individuals from patients with precancerous lesions or cervical tumors.
Collapse
Affiliation(s)
- Evelyn Gabriela Bañuelos-Villegas
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del I.P.N., México City, Mexico
| | - María Fernanda Pérez-yPérez
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del I.P.N., México City, Mexico
| | - Luis Marat Alvarez-Salas
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del I.P.N., México City, Mexico
| |
Collapse
|
18
|
Zhou R, Chen Z, Xiao ZR, Wang SL, Rong C. HPV-Related Promoter Methylation-Based Gene Signature Predicts Clinical Prognosis of Patients With Cervical Cancer. Front Oncol 2021; 11:753102. [PMID: 34745985 PMCID: PMC8566918 DOI: 10.3389/fonc.2021.753102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/06/2021] [Indexed: 01/16/2023] Open
Abstract
Persistent high-risk HPV infection drives tumorigenesis in various human malignancies, including cervical, oropharyngeal, anal, and vulvar carcinomas. Although HPV-related tumors arise in several different sites, they share many common genetic and epigenetic events. Complex and heterogeneous genomic aberrations and mutations induced by high-risk HPV contribute to the initiation and progression of cervical cancer (CC). However, the associations between high-risk HPV infection and DNA methylation have not been clearly investigated. In the present study, HPV-related gene promoter methylation signature was comprehensively analyzed using multiple interactive platforms. CC patients were successfully classified into high-risk and low-risk groups with significant differences in clinical outcomes based on the HPV-related gene promoter methylation signature. Moreover, the protein levels of ALDH1A2 and clinical prognostic value were confirmed in the CC patients cohort. In summary, our study provides compelling evidence that HPV-related gene promoter methylation signature serves as a strong prognostic signature for CC patients. Clinical investigations in large CC patient cohorts are greatly needed to pave the way to implement epigenetic biomarkers into better clinical management.
Collapse
Affiliation(s)
- Ran Zhou
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhuo Chen
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zuo-Run Xiao
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Shou-Li Wang
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Chao Rong
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
19
|
Maria de França G, Andrade ACDM, Felix FA, da Silva WR, Almeida DRDMF, Leite RB, Galvão HC, Miguel MCDC. Survival-related epithelial-mesenchymal transition proteins in oropharyngeal squamous cell carcinoma: A systematic review and meta-analysis. Arch Oral Biol 2021; 131:105267. [PMID: 34592489 DOI: 10.1016/j.archoralbio.2021.105267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To aim of this systematic review was to explore the relationship between Human papillomavirus (HPV) and epithelial-mesenchymal transition (EMT) related to the prognosis of oropharyngeal squamous cell carcinoma (OPSCC). DESIGN For this systematic review, searches were performed in PubMed, Web of Science, Scopus, Science Direct, and Cochrane, and a random-effects model was used for meta-analysis. The presence of EMT was confirmed by the loss of E-cadherin immunoexpression and overexpression of vimentin. RESULTS In summary, EMT-related proteins were expressed regardless of HPV status; however, overall survival was better in HPV-positive OPSCC cases, with a 5.88 times lower death risk compared to HPV-negative patients (OR=0.17; 95%CI=0.10-0.30). Likewise, the maintenance of E-cadherin in OPSCC was associated with an 11.11 times lower risk of death due to the disease (OR=0.09; 95%CI=0.01-0.88). CONCLUSIONS More advanced clinical stages (III/IV) and the presence of lymph node metastases (N1-3) were common in OPSCC but were not significantly associated with HPV status.
Collapse
Affiliation(s)
- Glória Maria de França
- Postgraduate Program in Dental Sciences, Concentration Area in Oral Pathology and Stomatology, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| | - Ana Claudia de Macedo Andrade
- Postgraduate Program in Dental Sciences, Concentration Area in Oral Pathology and Stomatology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Fernanda Aragão Felix
- Postgraduate Program in Dental Sciences, Concentration Area in Experimental Biology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Weslay Rodrigues da Silva
- Postgraduate Program in Dental Sciences, Concentration Area in Oral Pathology and Stomatology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Rafaella Bastos Leite
- Postgraduate Program in Dental Sciences, Concentration Area in Oral Pathology and Stomatology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Hébel Cavalcanti Galvão
- Postgraduate Program in Dental Sciences, Concentration Area in Oral Pathology and Stomatology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Márcia Cristina da Costa Miguel
- Postgraduate Program in Dental Sciences, Concentration Area in Oral Pathology and Stomatology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
20
|
Trivedi P, Patel SK, Bellavia D, Messina E, Palermo R, Ceccarelli S, Marchese C, Anastasiadou E, Minter LM, Felli MP. When Viruses Cross Developmental Pathways. Front Cell Dev Biol 2021; 9:691644. [PMID: 34422814 PMCID: PMC8375270 DOI: 10.3389/fcell.2021.691644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
Aberrant regulation of developmental pathways plays a key role in tumorigenesis. Tumor cells differ from normal cells in their sustained proliferation, replicative immortality, resistance to cell death and growth inhibition, angiogenesis, and metastatic behavior. Often they acquire these features as a consequence of dysregulated Hedgehog, Notch, or WNT signaling pathways. Human tumor viruses affect the cancer cell hallmarks by encoding oncogenic proteins, and/or by modifying the microenvironment, as well as by conveying genomic instability to accelerate cancer development. In addition, viral immune evasion mechanisms may compromise developmental pathways to accelerate tumor growth. Viruses achieve this by influencing both coding and non-coding gene regulatory pathways. Elucidating how oncogenic viruses intersect with and modulate developmental pathways is crucial to understanding viral tumorigenesis. Many currently available antiviral therapies target viral lytic cycle replication but with low efficacy and severe side effects. A greater understanding of the cross-signaling between oncogenic viruses and developmental pathways will improve the efficacy of next-generation inhibitors and pave the way to more targeted antiviral therapies.
Collapse
Affiliation(s)
- Pankaj Trivedi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Diana Bellavia
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Elena Messina
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Eleni Anastasiadou
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Lisa M Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
21
|
Camuzi D, Buexm LA, Lourenço SDQC, Esposti DD, Cuenin C, Lopes MDSA, Manara F, Talukdar FR, Herceg Z, Ribeiro Pinto LF, Soares-Lima SC. HPV Infection Leaves a DNA Methylation Signature in Oropharyngeal Cancer Affecting Both Coding Genes and Transposable Elements. Cancers (Basel) 2021; 13:3621. [PMID: 34298834 PMCID: PMC8306428 DOI: 10.3390/cancers13143621] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/04/2021] [Accepted: 07/12/2021] [Indexed: 12/30/2022] Open
Abstract
HPV oncoproteins can modulate DNMT1 expression and activity, and previous studies have reported both gene-specific and global DNA methylation alterations according to HPV status in head and neck cancer. However, validation of these findings and a more detailed analysis of the transposable elements (TEs) are still missing. Here we performed pyrosequencing to evaluate a 5-CpG methylation signature and Line1 methylation in an oropharyngeal squamous cell carcinoma (OPSCC) cohort. We further evaluated the methylation levels of the TEs, their correlation with gene expression and their impact on overall survival (OS) using the TCGA cohort. In our dataset, the 5-CpG signature distinguished HPV-positive and HPV-negative OPSCC with 66.67% sensitivity and 84.33% specificity. Line1 methylation levels were higher in HPV-positive cases. In the TCGA cohort, Line1, Alu and long terminal repeats (LTRs) showed hypermethylation in a frequency of 60.5%, 58.9% and 92.3%, respectively. ZNF541 and CCNL1 higher expression was observed in HPV-positive OPSCC, correlated with lower methylation levels of promoter-associated Alu and LTR, respectively, and independently associated with better OS. Based on our findings, we may conclude that a 5-CpG methylation signature can discriminate OPSCC according to HPV status with high accuracy and TEs are differentially methylated and may regulate gene expression in HPV-positive OPSCC.
Collapse
Affiliation(s)
- Diego Camuzi
- Molecular Carcinogenesis Program, Brazilian National Cancer Institute, Rio de Janeiro CEP 20231-050, Brazil; (D.C.); (L.A.B.); (M.d.S.A.L.); (L.F.R.P.)
| | - Luisa Aguirre Buexm
- Molecular Carcinogenesis Program, Brazilian National Cancer Institute, Rio de Janeiro CEP 20231-050, Brazil; (D.C.); (L.A.B.); (M.d.S.A.L.); (L.F.R.P.)
| | - Simone de Queiroz Chaves Lourenço
- Department of Pathology, Dental School, Fluminense Federal University, Rua Mario Santos Braga, 30, Centro, Niterói CEP 24040-110, Brazil;
| | - Davide Degli Esposti
- Epigenetics Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, CEDEX 08, 69372 Lyon, France; (D.D.E.); (C.C.); (F.M.); (F.R.T.); (Z.H.)
| | - Cyrille Cuenin
- Epigenetics Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, CEDEX 08, 69372 Lyon, France; (D.D.E.); (C.C.); (F.M.); (F.R.T.); (Z.H.)
| | - Monique de Souza Almeida Lopes
- Molecular Carcinogenesis Program, Brazilian National Cancer Institute, Rio de Janeiro CEP 20231-050, Brazil; (D.C.); (L.A.B.); (M.d.S.A.L.); (L.F.R.P.)
| | - Francesca Manara
- Epigenetics Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, CEDEX 08, 69372 Lyon, France; (D.D.E.); (C.C.); (F.M.); (F.R.T.); (Z.H.)
| | - Fazlur Rahman Talukdar
- Epigenetics Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, CEDEX 08, 69372 Lyon, France; (D.D.E.); (C.C.); (F.M.); (F.R.T.); (Z.H.)
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, CEDEX 08, 69372 Lyon, France; (D.D.E.); (C.C.); (F.M.); (F.R.T.); (Z.H.)
| | - Luis Felipe Ribeiro Pinto
- Molecular Carcinogenesis Program, Brazilian National Cancer Institute, Rio de Janeiro CEP 20231-050, Brazil; (D.C.); (L.A.B.); (M.d.S.A.L.); (L.F.R.P.)
| | - Sheila Coelho Soares-Lima
- Molecular Carcinogenesis Program, Brazilian National Cancer Institute, Rio de Janeiro CEP 20231-050, Brazil; (D.C.); (L.A.B.); (M.d.S.A.L.); (L.F.R.P.)
| |
Collapse
|
22
|
Han Y, Ji L, Guan Y, Ma M, Li P, Xue Y, Zhang Y, Huang W, Gong Y, Jiang L, Wang X, Xie H, Zhou B, Wang J, Wang J, Han J, Deng Y, Yi X, Gao F, Huang J. An epigenomic landscape of cervical intraepithelial neoplasia and cervical cancer using single-base resolution methylome and hydroxymethylome. Clin Transl Med 2021; 11:e498. [PMID: 34323415 PMCID: PMC8288011 DOI: 10.1002/ctm2.498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/22/2021] [Accepted: 06/27/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cervical cancer (CC) is the second leading cause of cancer death among women worldwide. Epigenetic regulation of gene expression through DNA methylation and hydroxymethylation plays a pivotal role during tumorigenesis. In this study, to analyze the epigenomic landscape and identify potential biomarkers for CCs, we selected a series of samples from normal to cervical intra-epithelial neoplasia (CINs) to CCs and performed an integrative analysis of whole-genome bisulfite sequencing (WGBS-seq), oxidative WGBS, RNA-seq, and external histone modifications profiling data. RESULTS In the development and progression of CC, there were genome-wide hypo-methylation and hypo-hydroxymethylation, accompanied by local hyper-methylation and hyper-hydroxymethylation. Hydroxymethylation prefers to distribute in the CpG islands and CpG shores, as displayed a trend of gradual decline from health to CIN2, while a trend of increase from CIN3 to CC. The differentially methylated and hydroxymethylated region-associated genes both enriched in Hippo and other cancer-related signaling pathways that drive cervical carcinogenesis. Furthermore, we identified eight novel differentially methylated/hydroxymethylated-associated genes (DES, MAL, MTIF2, PIP5K1A, RPS6KA6, ANGEL2, MPP, and PAPSS2) significantly correlated with the overall survival of CC. In addition, no any correlation was observed between methylation or hydroxymethylation levels and somatic copy number variations in CINs and CCs. CONCLUSION Our current study systematically delineates the map of methylome and hydroxymethylome from CINs to CC, and some differentially methylated/hydroxymethylated-associated genes can be used as the potential epigenetic biomarkers in CC prognosis.
Collapse
Affiliation(s)
- Yingxin Han
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Centre for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
| | | | - Yanfang Guan
- Department of Computer Science and TechnologySchool of Electronic and Information EngineeringXi'an Jiao Tong UniversityXi'anChina
- GenePlus‐BeijingBeijingChina
| | | | | | - Yinge Xue
- Shanghai FLY Medical LaboratoryShanghaiChina
| | | | - Wanqiu Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Centre for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
| | | | - Li Jiang
- The Department of Obstetrics and GynecologyXinhua Hospital affiliated to Shanghai Jiao Tong UniversityShanghaiChina
| | - Xipeng Wang
- The Department of Obstetrics and GynecologyXinhua Hospital affiliated to Shanghai Jiao Tong UniversityShanghaiChina
| | - Hong Xie
- The Department of Obstetrics and GynecologyShenzhen People's HospitalShenzhenChina
| | - Boping Zhou
- The Department of Obstetrics and GynecologyShenzhen People's HospitalShenzhenChina
| | - Jiayin Wang
- Department of Computer Science and TechnologySchool of Electronic and Information EngineeringXi'an Jiao Tong UniversityXi'anChina
| | - Junwen Wang
- Genome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Jinghua Han
- Genome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Yuliang Deng
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Centre for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xin Yi
- GenePlus‐BeijingBeijingChina
| | - Fei Gao
- Genome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
- Comparative Pediatrics and NutritionDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Jian Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Centre for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
23
|
Identification and Complete Validation of Prognostic Gene Signatures for Human Papillomavirus-Associated Cancers: Integrated Approach Covering Different Anatomical Locations. J Virol 2021; 95:JVI.02354-20. [PMID: 33361419 DOI: 10.1128/jvi.02354-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Human papillomavirus (HPV) infects squamous epithelium and is a major cause of cervical cancer (CC) and a subset of head and neck cancers (HNC). Virus-induced tumorigenesis, molecular alterations, and related prognostic markers are expected to be similar between the two cancers, but they remain poorly understood. We present integrated molecular analysis of HPV-associated tumors from TCGA and GEO databases and identify prognostic biomarkers. Analysis of gene expression profiles identified common upregulated genes and pathways of DNA replication and repair in the HPV-associated tumors. We established 34 prognostic gene signatures with a universal cutoff value in TCGA-CC using Elastic Net Cox regression analysis. We were able to externally validate our results in the TCGA-HNC and several GEO data sets, and demonstrated prognostic power in HPV-associated HNC, but not in HPV-negative cancers. The HPV-related prognostic and predictive indicator did not discriminate other cancers, except bladder urothelial carcinoma. These results identify and completely validate a highly selective prognostic system and its cross-usefulness in HPV-associated cancers, regardless of the tumor's anatomical subsite.IMPORTANCE Persistent infection with high-risk HPV interferes with cell function regulation and causes cell mutations, which accumulate over the long term and eventually develop into cancer. Results of pathway enrichment analysis presumably showed this accumulation of intracellular damage during the chronic HPV-infected state. We used highly advanced statistical methods to identify the most appropriate genes and coefficients and developed the HPV-related prognostic and predictive indicator (HPPI) risk scoring system. We applied the same cutoff value to training and validation sets and demonstrated good prognostic performance in both data sets, and confirmed a consistent trend in external validation. Moreover, HPPI presented significant validation results for bladder cancer suspected to be related to HPV. This suggested that our risk scoring system based on the prognostic gene signature could play an important role in the development of treatment strategies for patients with HPV-related cancer.
Collapse
|
24
|
Reclassification of Kidney Clear Cell Carcinoma Based on Immune Cell Gene-Related DNA CpG Pairs. Biomedicines 2021; 9:biomedicines9020215. [PMID: 33672457 PMCID: PMC7923436 DOI: 10.3390/biomedicines9020215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Background: A new method was developed based on the relative ranking of gene expression level, overcoming the flaw of the batch effect, and having reliable results in various studies. In the current study, we defined the two methylation sites as a pair. The methylation level in a specific sample was subject to pairwise comparison to calculate a score for each CpGs-pair. The score was defined as a CpGs-pair score. If the first immune-related CpG value was higher than the second one in a specific CpGs-pair, the output score of this immune-related CpGs-pair was 1; otherwise, the output score was 0. This study aimed to construct a new classification of Kidney Clear Cell Carcinoma (KIRC) based on DNA CpGs (methylation sites) pairs. Methods: In this study, the biomarkers of 28 kinds of immune infiltration cells and corresponding methylation sites were acquired. The methylation data were compared between KIRC and normal tissue samples, and differentially methylated sites (DMSs) were obtained. Then, DNA CpGs-pairs were obtained according to the pairs of DMSs. In total, 441 DNA CpGs-pairs were utilized to construct a classification using unsupervised clustering analysis. We also analyzed the potential mechanism and therapy of different subtypes, and validated them in a testing set. Results: The classification of KIRC contained three subgroups. The clinicopathological features were different across three subgroups. The distribution of immune cells, immune checkpoints and immune-related mechanisms were significantly different across the three clusters. The mutation and copy number variation (CNV) were also different. The clinicopathological features and potential mechanism in the testing dataset were consistent with those in the training set. Conclusions: Our findings provide a new accurate and stable classification for developing personalized treatments for the new specific subtypes.
Collapse
|
25
|
Yang S, Lin S, Liu K, Liu Y, Xu P, Zheng Y, Deng Y, Zhang D, Zhai Z, Li N, Ren X, Dai Z, Kang H. Identification of an immune-related RNA-binding protein signature to predict survival and targeted therapy responses in liver cancer. Genomics 2021; 113:795-804. [PMID: 33524497 DOI: 10.1016/j.ygeno.2021.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/25/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
RNA-binding proteins (RBPs) play crucial roles in multiple cancers. However, very few RBPs and their association with immune genes have been systematically studied in liver cancer (LC). We aimed to identify an immune-related RBP signature to predict the survival of LC patients. Bioinformatics methods were used to identify differentially expressed, immune-related, and prognostic RBPs and to develop an immune-related RBP signature based on data from the Cancer Genome Atlas (TCGA) cohort. We obtained eight differentially expressed, immune-related, and prognostic RBPs to construct a risk signature. The signature could effectively distinguish between high- and low-risk patients, and its predictive capacity was validated in the International Cancer Genomics Consortium (ICGC) cohort. We speculated that the high-risk group was more sensitive to targeted therapy. The immune-related RBP signature is an independent prognostic biomarker for LC patients and can expand the application of targeted therapy through patient stratification.
Collapse
Affiliation(s)
- Si Yang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shuai Lin
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuanxing Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Peng Xu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Zheng
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yujiao Deng
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Dai Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhen Zhai
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Na Li
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xueting Ren
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Huafeng Kang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
26
|
Olmedo-Nieva L, Muñoz-Bello JO, Manzo-Merino J, Lizano M. New insights in Hippo signalling alteration in human papillomavirus-related cancers. Cell Signal 2020; 76:109815. [PMID: 33148514 DOI: 10.1016/j.cellsig.2020.109815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 02/09/2023]
Abstract
The persistent infection with high-risk human papillomavirus (HPV) is an etiologic factor for the development of different types of cancers, mainly attributed to the continuous expression of E6 and E7 HPV oncoproteins, which regulate several cell signalling pathways including the Hippo pathway. It has been demonstrated that E6 proteins promote the increase of the Hippo elements YAP, TAZ and TEAD, at protein level, as well as their transcriptional targets. Also, E6 and E7 oncoproteins promote nuclear YAP localization and a decrease in YAP negative regulators such as MST1, PTPN14 or SOCS6. Interestingly, Hippo signalling components modulate HPV activity, such as TEAD1 and the transcriptional co-factor VGLL1, induce the activation of HPV early and late promoters, while hyperactivation of YAP in specific cells facilitates virus infection by increasing putative HPV receptors and by evading innate immunity. Additionally, alterations in Hippo signalling elements have been found in HPV-related cancers and particularly, the involvement of HPV oncoproteins on the regulation of some of these Hippo components has been also proposed, although the precise mechanisms remain unclear. The present review addresses the recent findings describing the interplay between HPV and Hippo signalling in HPV-related cancers, a fact that highlights the importance of developing more in-depth studies in this field to establish key therapeutic targets.
Collapse
Affiliation(s)
- Leslie Olmedo-Nieva
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; Programa de Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| | - J Omar Muñoz-Bello
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Sede sur, Mexico City 14330, Mexico
| | - Joaquín Manzo-Merino
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; Cátedras CONACyT-Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico.
| |
Collapse
|
27
|
A Methylation-Based Reclassification of Bladder Cancer Based on Immune Cell Genes. Cancers (Basel) 2020; 12:cancers12103054. [PMID: 33092083 PMCID: PMC7593922 DOI: 10.3390/cancers12103054] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Bladder cancer (BC) development is highly related to immune cell infiltration. In this study, we aimed to construct a new classification of bladder cancer molecular subtypes based on immune-cell-associated CpG(Methylation) sites. The classification was accurate and stable. BC patients were successfully divided into three subtypes based on the immune-cell-associated CpG sites. The clinicopathologic features, distribution of immune cells, level of expression of checkpoints, stromal score, immune score, ESTIMATEScore, tumor purity, APC co_inhibition, APC co_stimulation, HLA, MHC class_I, Type I IFN_respons, Type II IFN response, and DNA stemness score (DNAss) presented significant differences among the three subgroups. The specific genomic alteration was also different across subgroups. High-level immune infiltration showed a correlation with high-level methylation. A lower RNA stemness score (RNAss) was associated with higher immune infiltration. Cluster 2 demonstrated a better response to chemotherapy. The anti-cancer targeted drug therapy results are different among the three subgroups. Abstract Background: Bladder cancer is highly related to immune cell infiltration. This study aimed to develop a new classification of BC molecular subtypes based on immune-cell-associated CpG sites. Methods: The genes of 28 types of immune cells were obtained from previous studies. Then, methylation sites corresponding to immune-cell-associated genes were acquired. Differentially methylated sites (DMSs) were identified between normal samples and bladder cancer samples. Unsupervised clustering analysis of differentially methylated sites was performed to divide the sites into several subtypes. Then, the potential mechanism of different subtypes was explored. Results: Bladder cancer patients were divided into three groups. The cluster 3 subtype had the best prognosis. Cluster 1 had the poorest prognosis. The distribution of immune cells, level of expression of checkpoints, stromal score, immune score, ESTIMATEScore, tumor purity, APC co_inhibition, APC co_stimulation, HLA, MHC class_I, Type I IFN Response, Type II IFN Response, and DNAss presented significant differences among the three subgroups. The distribution of genomic alterations was also different. Conclusions: The proposed classification was accurate and stable. BC patients could be divided into three subtypes based on the immune-cell-associated CpG sites. Specific biological signaling pathways, immune mechanisms, and genomic alterations were varied among the three subgroups. High-level immune infiltration was correlated with high-level methylation. The lower RNAss was associated with higher immune infiltration. The study of the intratumoral immune microenvironment may provide a new perspective for BC therapy.
Collapse
|
28
|
Charles MR, Raza ST, Sharma R, Pratap P, Eba A, Singh M. Association of DNA Repair Genes XRCC1 and APE-1 with the Risk of Cervical Cancer in North Indian population. Asian Pac J Cancer Prev 2020; 21:2061-2065. [PMID: 32711433 PMCID: PMC7573399 DOI: 10.31557/apjcp.2020.21.7.2061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/09/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUNDS Cervical cancer (CC) is one of the leading cause of death in women worldwide, HPV infection is the major risk factor in the disease development, 0and however other risk factor such as chemical carcinogens, genetic susceptibility and altered immune system are also a cause of the disease progression. In the light of the above statement we studied the base excision repair pathway (BER). METHODS We identified and studied the association of Single Nucleotide polymorphisms in the DNA repair genes of XRCC1 (Arg194Trp, Arg399G,) and APE-1Asp/148Glu to the susceptibility of cervical cancer (CC) in North Indian population. In our study of cases (n=102). Controls (n=109) were recruited from among women without cervical abnormalities. Genotypes were determined by PCR-CTPP method, Taking DNA from peripheral blood in a case control study. RESULTS A positive association was observed between the polymorphisms of XRCC1 genes, that is, in codons 194 (P=0.03, odds ratio (OR) =2.39, 95% confidence interval (CI)=5.2-1.1), 280 (P=0.01, OR=4.1, 95% CI=11.5-1.3) and 399 (P=0.01, OR=3.4, 95% CI=8.6-1.3) while APE-1 genotype GG (p=0.03,odds ratio(OR)=0.2,95% confidence interval (CI)=0.97-0.004) we observed a statistically significant protective role in developing cervical cancer. CONCLUSION Our results suggested that, XRCC1 gene is an important candidate gene for susceptibility to cervical cancer. Although the sample size was small, the present study indicate a statistical association between cervical cancer and XRCC1 SNPs. Future studies are needed that may provide a better understanding of the association between gene polymorphism and cervical carcinoma risk. .
Collapse
Affiliation(s)
- Mark Rector Charles
- Department of Biotechnology, Era’s Lucknow Medical College and Hospital, Lucknow, India.
| | - Syed Tasleem Raza
- Department of Biotechnology, Era’s Lucknow Medical College and Hospital, Lucknow, India.
| | - Rolee Sharma
- Department of Bioscience, Integral University Lucknow, Lucknow Uttar Pradesh, India.
| | - Pushpendra Pratap
- Department of Biotechnology, Era’s Lucknow Medical College and Hospital, Lucknow, India.
| | - Ale Eba
- Department of Biotechnology, Era’s Lucknow Medical College and Hospital, Lucknow, India.
| | - Manvendra Singh
- Centre of Bio-Medical Research (CMBRL), Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
| |
Collapse
|
29
|
Bilski K, Dobruch J, Kozikowski M, Skrzypczyk MA, Oszczudłowski M, Ostrowski J. Urobiome in Gender-Related Diversities of Bladder Cancer. Int J Mol Sci 2020; 21:ijms21124488. [PMID: 32599810 PMCID: PMC7349933 DOI: 10.3390/ijms21124488] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/18/2022] Open
Abstract
Bladder cancer (BC) remains the most common malignancy of urinary tract. Sex-related differences in BC epidemiology, diagnosis, therapy, and outcomes have been reported. Throughout the recent years, extensive research has been devoted to genetic and molecular alterations in BC. Apart from the molecular background, another related concept which has been speculated to contribute to gender diversities in BC is the role of urinary pathogens in bladder carcinogenesis. Microbiome studies, fueled by the availability of high-throughput DNA-based techniques, have shown that perturbation in the microbiome is associated with various human diseases. The aim of this review is to comprehensively analyze the current literature according to sex-related differences in the microbiome composition in BC.
Collapse
Affiliation(s)
- Konrad Bilski
- Department of Urology, Centre of Postgraduate Medical Education, Independent Public Hospital of Professor W. Orlowski, 00-416 Warsaw, Poland; (J.D.); (M.K.); (M.A.S.); (M.O.)
- Correspondence:
| | - Jakub Dobruch
- Department of Urology, Centre of Postgraduate Medical Education, Independent Public Hospital of Professor W. Orlowski, 00-416 Warsaw, Poland; (J.D.); (M.K.); (M.A.S.); (M.O.)
| | - Mieszko Kozikowski
- Department of Urology, Centre of Postgraduate Medical Education, Independent Public Hospital of Professor W. Orlowski, 00-416 Warsaw, Poland; (J.D.); (M.K.); (M.A.S.); (M.O.)
| | - Michał A. Skrzypczyk
- Department of Urology, Centre of Postgraduate Medical Education, Independent Public Hospital of Professor W. Orlowski, 00-416 Warsaw, Poland; (J.D.); (M.K.); (M.A.S.); (M.O.)
| | - Maciej Oszczudłowski
- Department of Urology, Centre of Postgraduate Medical Education, Independent Public Hospital of Professor W. Orlowski, 00-416 Warsaw, Poland; (J.D.); (M.K.); (M.A.S.); (M.O.)
| | - Jerzy Ostrowski
- Department of Genetics, Maria Sklodowska-Curie Institute-Oncology Center, 02-781 Warsaw, Poland;
| |
Collapse
|