1
|
Linke JA, Munn LL, Jain RK. Compressive stresses in cancer: characterization and implications for tumour progression and treatment. Nat Rev Cancer 2024; 24:768-791. [PMID: 39390249 DOI: 10.1038/s41568-024-00745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 10/12/2024]
Abstract
Beyond their many well-established biological aberrations, solid tumours create an abnormal physical microenvironment that fuels cancer progression and confers treatment resistance. Mechanical forces impact tumours across a range of biological sizes and timescales, from rapid events at the molecular level involved in their sensing and transmission, to slower and larger-scale events, including clonal selection, epigenetic changes, cell invasion, metastasis and immune response. Owing to challenges with studying these dynamic stimuli in biological systems, the mechanistic understanding of the effects and pathways triggered by abnormally elevated mechanical forces remains elusive, despite clear correlations with cancer pathophysiology, aggressiveness and therapeutic resistance. In this Review, we examine the emerging and diverse roles of physical forces in solid tumours and provide a comprehensive framework for understanding solid stress mechanobiology. We first review the physiological importance of mechanical forces, especially compressive stresses, and discuss their defining characteristics, biological context and relative magnitudes. We then explain how abnormal compressive stresses emerge in tumours and describe the experimental challenges in investigating these mechanically induced processes. Finally, we discuss the clinical translation of mechanotherapeutics that alleviate solid stresses and their potential to synergize with chemotherapy, radiotherapy and immunotherapies.
Collapse
Affiliation(s)
- Julia A Linke
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Rosa L, Cook P, Pfeiffer RM, Kemp TJ, Hildesheim A, Pehlivanoglu B, Adsay V, Bellolio E, Araya JC, Pinto L, Ferreccio C, Aguayo G, Viñuela E, Koshiol J. Non-steroidal anti-inflammatory drug use and inflammatory markers associated with gallbladder dysplasia: A case-control analysis within a series of patients undergoing cholecystectomy. Int J Cancer 2024. [PMID: 39482824 DOI: 10.1002/ijc.35238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 11/03/2024]
Abstract
Inflammation has been associated with the development of gallbladder cancer (GBC). However, little is known about the associations of both, inflammation and the use of non-steroidal anti-inflammatory drugs (NSAIDs), with preneoplastic lesions. We analyzed the association of NSAIDs and gallbladder dysplasia in 82 patients with dysplasia and 1843 patients with gallstones among symptomatic patients from a high-risk population. We also analyzed associations for 33 circulating immune-related proteins in a subsample of all 68 dysplasia cases diagnosed at the time of sample selection and 136 gallstone controls. We calculated age- and sex-adjusted odds ratios (ORs) and 95% confidence intervals (95% CIs). Biliary colic was reported among most cases (97.6%) and controls (83.9%). NSAID use was inversely associated with gallbladder dysplasia (OR: 0.48, 95%CI: 0.26-0.83). Comparing the highest versus lowest category of each immune-related protein, eight proteins were inversely associated with dysplasia with sex- and age-adjusted ORs ranging from 0.30 (95%CI: 0.12-0.77) for IL-33 to 0.76 (95%CI: 0.59-0.99) for MIP-1B. Of those, GRO remained associated with dysplasia (OR: 0.64, 95%CI: 0.45-0.91) and BCA-1 was borderline associated (OR: 0.74, 95%CI: 0.54-1.01) after adjusting the logistic regression model for sex, age, and NSAIDs. In conclusion, NSAID users were less likely to have gallbladder dysplasia, suggesting that NSAIDs might be beneficial for symptomatic gallstones patients. The inverse association between immune-related markers and dysplasia requires additional research, ideally in prospective studies with asymptomatic participants, to understand the role of the inflammatory response in the natural history of GBC and to address the biological effect of NSAIDs.
Collapse
Affiliation(s)
- Lorena Rosa
- Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases, Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paz Cook
- Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases, Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago, Chile
- Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ruth M Pfeiffer
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Troy J Kemp
- Vaccine, Immunity and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Allan Hildesheim
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | | | - Volkan Adsay
- Department of Pathology, Koç University School of Medicine and Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Enrique Bellolio
- Departamento de Anatomía Patológica, Universidad de La Frontera, Temuco, Chile
| | - Juan Carlos Araya
- Departamento de Anatomía Patológica, Universidad de La Frontera, Temuco, Chile
- Departamento de Patología, Hospital Dr. Hernán Henríquez Aravena, Temuco, Chile
| | - Ligia Pinto
- Vaccine, Immunity and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Catterina Ferreccio
- Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases, Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gloria Aguayo
- Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Anatomía Patológica, Hospital Sótero del Río, Santiago, Chile
| | - Eduardo Viñuela
- Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- UDA Hospital Sótero del Río, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jill Koshiol
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| |
Collapse
|
3
|
Canonico B, Carloni S, Montanari M, Ambrogini P, Papa S, Alonso-Alconada D, Balduini W. Melatonin Modulates Cell Cycle Dynamics and Promotes Hippocampal Cell Proliferation After Ischemic Injury in Neonatal Rats. Mol Neurobiol 2024; 61:6910-6919. [PMID: 38358438 PMCID: PMC11339182 DOI: 10.1007/s12035-024-04013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Promoting neural cell proliferation may represent an important strategy for enhancing brain repair after developmental brain injury. The present study aimed to assess the effects of melatonin on cell proliferation after an ischemic injury in the developing hippocampus, focusing on cell cycle dynamics. After in vivo neonatal hypoxia-ischemia (HI), hippocampal cell cycle dynamics were assessed by flow cytometry, together with histological evaluation of dentate gyrus cellularity and proliferation. Melatonin significantly increased the number of proliferating cells in the G2/M phase as well as the proliferating cell nuclear antigen (PCNA) and doublecortin (DCX) labeling reduced by HI. In vivo BrdU labeling revealed a higher BrdU-positivity in the dentate gyrus of ischemic rats treated with melatonin, an effect followed by increased cellularity and preserved hippocampal tissue integrity. These results indicate that the protective effect of melatonin after ischemic injury in neonatal rats may rely on the modulation of cell cycle dynamics of newborn hippocampal cells and increased cell proliferation.
Collapse
Affiliation(s)
- Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via S. Chiara 27, 61029, Urbino, PU, Italy
| | - Silvia Carloni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via S. Chiara 27, 61029, Urbino, PU, Italy
| | - Mariele Montanari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via S. Chiara 27, 61029, Urbino, PU, Italy
| | - Patrizia Ambrogini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via S. Chiara 27, 61029, Urbino, PU, Italy
| | - Stefano Papa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via S. Chiara 27, 61029, Urbino, PU, Italy
| | - Daniel Alonso-Alconada
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Walter Balduini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via S. Chiara 27, 61029, Urbino, PU, Italy.
| |
Collapse
|
4
|
Liu S, Li W, Chen J, Li M, Geng Y, Liu Y, Wu W. The footprint of gut microbiota in gallbladder cancer: a mechanistic review. Front Cell Infect Microbiol 2024; 14:1374238. [PMID: 38774627 PMCID: PMC11106419 DOI: 10.3389/fcimb.2024.1374238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Gallbladder cancer (GBC) is the most common malignant tumor of the biliary system with the worst prognosis. Even after radical surgery, the majority of patients with GBC have difficulty achieving a clinical cure. The risk of tumor recurrence remains more than 65%, and the overall 5-year survival rate is less than 5%. The gut microbiota refers to a variety of microorganisms living in the human intestine, including bacteria, viruses and fungi, which profoundly affect the host state of general health, disease and even cancer. Over the past few decades, substantial evidence has supported that gut microbiota plays a critical role in promoting the progression of GBC. In this review, we summarize the functions, molecular mechanisms and recent advances of the intestinal microbiota in GBC. We focus on the driving role of bacteria in pivotal pathways, such as virulence factors, metabolites derived from intestinal bacteria, chronic inflammatory responses and ecological niche remodeling. Additionally, we emphasize the high level of correlation between viruses and fungi, especially EBV and Candida spp., with GBC. In general, this review not only provides a solid theoretical basis for the close relationship between gut microbiota and GBC but also highlights more potential research directions for further research in the future.
Collapse
Affiliation(s)
- Shujie Liu
- Joint Program of Nanchang University and Queen Mary University of London, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Weijian Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Jun Chen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Maolan Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Yajun Geng
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Wenguang Wu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| |
Collapse
|
5
|
Ju SH, Lim JY, Song M, Kim JM, Kang YE, Yi HS, Joung KH, Lee JH, Kim HJ, Ku BJ. Distinct effects of rosuvastatin and rosuvastatin/ezetimibe on senescence markers of CD8+ T cells in patients with type 2 diabetes mellitus: a randomized controlled trial. Front Endocrinol (Lausanne) 2024; 15:1336357. [PMID: 38586464 PMCID: PMC10996898 DOI: 10.3389/fendo.2024.1336357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/04/2024] [Indexed: 04/09/2024] Open
Abstract
Objectives Chronic low-grade inflammation is widely recognized as a pathophysiological defect contributing to β-cell failure in type 2 diabetes mellitus (T2DM). Statin therapy is known to ameliorate CD8+ T cell senescence, a mediator of chronic inflammation. However, the additional immunomodulatory roles of ezetimibe are not fully understood. Therefore, we investigated the effect of statin or statin/ezetimibe combination treatment on T cell senescence markers. Methods In this two-group parallel and randomized controlled trial, we enrolled 149 patients with T2DM whose low-density lipoprotein cholesterol (LDL-C) was 100 mg/dL or higher. Patients were randomly assigned to either the rosuvastatin group (N=74) or the rosuvastatin/ezetimibe group (N=75). The immunophenotype of peripheral blood mononuclear cells and metabolic profiles were analyzed using samples from baseline and post-12 weeks of medication. Results The fractions of CD8+CD57+ (senescent CD8+ T cells) and CD4+FoxP3+ (Treg) significantly decreased after intervention in the rosuvastatin/ezetimibe group (-4.5 ± 14.1% and -1.2 ± 2.3%, respectively), while these fractions showed minimal change in the rosuvastatin group (2.8 ± 9.4% and 1.4 ± 1.5%, respectively). The degree of LDL-C reduction was correlated with an improvement in HbA1c (R=0.193, p=0.021). Changes in the CD8+CD57+ fraction positively correlated with patient age (R=0.538, p=0.026). Notably, the fraction change in senescent CD8+ T cells showed no significant relationship with changes in either HbA1c (p=0.314) or LDL-C (p=0.592). Finally, the ratio of naïve to memory CD8+ T cells increased in the rosuvastatin/ezetimibe group (p=0.011), but not in the rosuvastatin group (p=0.339). Conclusions We observed a reduction in senescent CD8+ T cells and an increase in the ratio of naive to memory CD8+ T cells with rosuvastatin/ezetimibe treatment. Our results demonstrate the immunomodulatory roles of ezetimibe in combination with statins, independent of improvements in lipid or HbA1c levels.
Collapse
Affiliation(s)
- Sang-Hyeon Ju
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Joung Youl Lim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Minchul Song
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Ji Min Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Sejong Hospital, Sejong, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Yea Eun Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Hyon-Seung Yi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Kyong Hye Joung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Sejong Hospital, Sejong, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Ju Hee Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Hyun Jin Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Bon Jeong Ku
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| |
Collapse
|
6
|
Manzano-Núñez F, Prates Tiago Aguilar L, Sempoux C, Lemaigre FP. Biliary Tract Cancer: Molecular Biology of Precursor Lesions. Semin Liver Dis 2023; 43:472-484. [PMID: 37944999 DOI: 10.1055/a-2207-9834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Biliary tract cancer is a devastating malignancy of the bile ducts and gallbladder with a dismal prognosis. The study of precancerous lesions has received considerable attention and led to a histopathological classification which, in some respects, remains an evolving field. Consequently, increasing efforts have been devoted to characterizing the molecular pathogenesis of the precursor lesions, with the aim of better understanding the mechanisms of tumor progression, and with the ultimate goal of meeting the challenges of early diagnosis and treatment. This review delves into the molecular mechanisms that initiate and promote the development of precursor lesions of intra- and extrahepatic cholangiocarcinoma and of gallbladder carcinoma. It addresses the genomic, epigenomic, and transcriptomic landscape of these precursors and provides an overview of animal and organoid models used to study them. In conclusion, this review summarizes the known molecular features of precancerous lesions in biliary tract cancer and highlights our fragmentary knowledge of the molecular pathogenesis of tumor initiation.
Collapse
Affiliation(s)
| | | | - Christine Sempoux
- Institute of Pathology, Lausanne University Hospital CHUV, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
7
|
Wang G, Zhang H, Zhou Z, Jin W, Zhang X, Ma Z, Wang X. AQP3-mediated activation of the AMPK/SIRT1 signaling pathway curtails gallstone formation in mice by inhibiting inflammatory injury of gallbladder mucosal epithelial cells. Mol Med 2023; 29:116. [PMID: 37641009 PMCID: PMC10463418 DOI: 10.1186/s10020-023-00712-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Inflammatory injury of gallbladder mucosal epithelial cells affects the development of cholelithiasis, and aquaporin 3 (AQP3) is an important regulator of inflammatory response. This study reports a mechanistic insight into AQP3 regulating gallstone formation in cholelithiasis based on high-throughput sequencing. METHODS A mouse model of cholelithiasis was induced using a high-fat diet, and the gallbladder tissues were harvested for high-throughput sequencing to obtain differentially expressed genes. Primary mouse gallbladder mucosal epithelial cells were isolated and induced with Lipopolysaccharides (LPS) to mimic an in vitro inflammatory injury environment. Cell biological phenotypes were detected by TdT-mediated dUTP Nick-End Labeling (TUNEL) assay, flow cytometry, Cell Counting Kit-8 (CCK-8) assay, and Trypan blue staining. In addition, enzyme linked immunosorbent assay (ELISA) determined the production of inflammatory factors in mouse gallbladder mucosa. RESULTS Whole-transcriptome sequencing data analysis identified 489 up-regulated and 1007 down-regulated mRNAs. Bioinformatics analysis revealed that AQP3 was significantly down-regulated in mice with cholelithiasis. AQP3 might also confer an important role in LPS-induced gallbladder mucosal injury. Overexpression of AQP3 activated the AMPK (adenosine monophosphate-activated protein kinase) / SIRT1 (sirtuin-1) signaling pathway to reduce LPS-induced inflammatory injury of the gallbladder mucosa epithelium, thereby ameliorating gallbladder damage and repressing gallstone formation in mice. CONCLUSION Data from our study highlight the inhibitory role of AQP3 in gallbladder damage and gallstone formation in mice by reducing inflammatory injury of gallbladder mucosal epithelial cells, which is achieved through activation of the AMPK/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Ganggang Wang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Hao Zhang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Zhijie Zhou
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Wenzhi Jin
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Xin Zhang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Zenghui Ma
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Xiaoliang Wang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.
| |
Collapse
|
8
|
Abstract
Gallbladder cancer (GBC) is the most common cancer of the biliary tract, characterized by a very poor prognosis when diagnosed at advanced stages owing to its aggressive behaviour and limited therapeutic options. Early detection at a curable stage remains challenging because patients rarely exhibit symptoms; indeed, most GBCs are discovered incidentally following cholecystectomy for symptomatic gallbladder stones. Long-standing chronic inflammation is an important driver of GBC, regardless of the lithiasic or non-lithiasic origin. Advances in omics technologies have provided a deeper understanding of GBC pathogenesis, uncovering mechanisms associated with inflammation-driven tumour initiation and progression. Surgical resection is the only treatment with curative intent for GBC but very few cases are suitable for resection and most adjuvant therapy has a very low response rate. Several unmet clinical needs require to be addressed to improve GBC management, including discovery and validation of reliable biomarkers for screening, therapy selection and prognosis. Standardization of preneoplastic and neoplastic lesion nomenclature, as well as surgical specimen processing and sampling, now provides reproducible and comparable research data that provide a basis for identifying and implementing early detection strategies and improving drug discovery. Advances in the understanding of next-generation sequencing, multidisciplinary care for GBC, neoadjuvant and adjuvant strategies, and novel systemic therapies including chemotherapy and immunotherapies are gradually changing the treatment paradigm and prognosis of this recalcitrant cancer.
Collapse
Affiliation(s)
- Juan C Roa
- Department of Pathology, Millennium Institute on Immunology and Immunotherapy, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Patricia García
- Department of Pathology, Millennium Institute on Immunology and Immunotherapy, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Vinay K Kapoor
- Department of Hepato-pancreato-biliary (HPB) Surgery, Mahatma Gandhi Medical College & Hospital (MGMCH), Jaipur, India
| | - Shishir K Maithel
- Division of Surgical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Milind Javle
- Department of Gastrointestinal Medical Oncology, UT M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jill Koshiol
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
9
|
Gu J, Zhu N, Li HF, Zhang CJ, Gong YZ, Liao DF, Qin L. Ezetimibe and Cancer: Is There a Connection? Front Pharmacol 2022; 13:831657. [PMID: 35924044 PMCID: PMC9340271 DOI: 10.3389/fphar.2022.831657] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
The high level of serum cholesterol caused by the excessive absorption of cholesterol can lead to hypercholesteremia, thus promoting the occurrence and development of cancer. Ezetimibe is a drug that reduces cholesterol absorption and has been widely used for the treatment of patients with high circulating cholesterol levels for many years. Mechanistically, ezetimibe works by binding to NPC1L1, which is a key mediator of cholesterol absorption. Accumulating data from preclinical models have shown that ezetimibe alone could inhibit the development and progression of cancer through a variety of mechanisms, including anti-angiogenesis, stem cell suppression, anti-inflammation, immune enhancement and anti-proliferation. In the past decade, there has been heated discussion on whether ezetimibe combined with statins will increase the risk of cancer. At present, more and more evidence shows that ezetimibe does not increase the risk of cancers, which supports the role of ezetimibe in anti-cancer. In this review, we discussed the latest progress in the anti-cancer properties of ezetimibe and elucidated its underlying molecular mechanisms. Finally, we highlighted the potential of ezetimibe as a therapeutic agent in future cancer treatment and prevention.
Collapse
Affiliation(s)
- Jia Gu
- Laboratory of Stem Cell Regulation With Chinese Medicine and its Application, HunanUniversity of Chinese Medicine, Changsha, China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Hong-Fang Li
- Laboratory of Stem Cell Regulation With Chinese Medicine and its Application, HunanUniversity of Chinese Medicine, Changsha, China
| | - Chan-Juan Zhang
- Laboratory of Stem Cell Regulation With Chinese Medicine and its Application, HunanUniversity of Chinese Medicine, Changsha, China
| | - Yong-Zhen Gong
- Laboratory of Stem Cell Regulation With Chinese Medicine and its Application, HunanUniversity of Chinese Medicine, Changsha, China
| | - Duan-Fang Liao
- Laboratory of Stem Cell Regulation With Chinese Medicine and its Application, HunanUniversity of Chinese Medicine, Changsha, China
| | - Li Qin
- Laboratory of Stem Cell Regulation With Chinese Medicine and its Application, HunanUniversity of Chinese Medicine, Changsha, China
- Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Changsha, China
- Hunan Province Engineering Research Center of Bioactive Substance Discovery of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Li Qin,
| |
Collapse
|
10
|
Environmental and Lifestyle Risk Factors in the Carcinogenesis of Gallbladder Cancer. J Pers Med 2022; 12:jpm12020234. [PMID: 35207722 PMCID: PMC8877116 DOI: 10.3390/jpm12020234] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/08/2021] [Accepted: 12/23/2021] [Indexed: 02/01/2023] Open
Abstract
Gallbladder cancer (GBC) is an aggressive neoplasm that in an early stage is generally asymptomatic and, in most cases, is diagnosed in advanced stages with a very low life expectancy because there is no curative treatment. Therefore, understanding the early carcinogenic mechanisms of this pathology is crucial to proposing preventive strategies for this cancer. The main risk factor is the presence of gallstones, which are associated with some environmental factors such as a sedentary lifestyle and a high-fat diet. Other risk factors such as autoimmune disorders and bacterial, parasitic and fungal infections have also been described. All these factors can generate a long-term inflammatory state characterized by the persistent activation of the immune system, the frequent release of pro-inflammatory cytokines, and the constant production of reactive oxygen species that result in a chronic damage/repair cycle, subsequently inducing the loss of the normal architecture of the gallbladder mucosa that leads to the development of GBC. This review addresses how the different risk factors could promote a chronic inflammatory state essential to the development of gallbladder carcinogenesis, which will make it possible to define some strategies such as anti-inflammatory drugs or public health proposals in the prevention of GBC.
Collapse
|
11
|
Lin Z, Yang S, Zhou Y, Hou Z, Li L, Meng M, Ge C, Zeng B, Lai J, Gao H, Zhao Y, Xie Y, He S, Tang W, Li R, Tan J, Wang W. OLFM4 depletion sensitizes gallbladder cancer cells to cisplatin through the ARL6IP1/caspase-3 axis. Transl Oncol 2022; 16:101331. [PMID: 34974280 PMCID: PMC8728528 DOI: 10.1016/j.tranon.2021.101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/24/2021] [Indexed: 11/25/2022] Open
Abstract
OLFM4 is involved in development of gallbladder cancer. Depletion of OLFM4 sensitizes gallbladder cancer cells to cisplatin by regulating apoptosis. Low expression of OLFM4 in GBC patients indicates longer survival.
Background Gallbladder cancer (GBC) is a highly lethal malignancy that carries an extremely poor prognosis due to its chemoresistant nature. Cisplatin (CDDP) is a first-line chemotherapeutic for GBC; however, patients experienced no benefit when treated with CDDP alone. The underlying mechanisms of CDDP resistance in GBC remain largely unknown. Methods Agilent mRNA microarray analysis was performed between paired GBC and paracarcinoma to explore differentially expressed genes that might underlie drug resistance. Gene Set Enrichment Analysis (GSEA) was employed to identify key genes mediating CDDP resistance in GBC, and immunohistochemistry was performed to validate protein expression and test correlations with clinicopathological features. In vitro and in vivo functional assays were performed to investigate the proteins’ roles in CDDP resistance. Results Olfactomedin 4 (OLFM4) was differentially expressed between GBC and paracarcinoma and had the highest rank metric score in the GSEA. OLFM4 expression was increasingly upregulated from chronic cholecystitis to GBC in clinical tissue samples, and OLFM4 depletion decreased GBC cell proliferation and invasion. Interestingly, downregulation of OLFM4 reduced ARL6IP1 (antiapoptotic factor) expression and sensitized GBC cells to CDDP both in vitro and in vivo. The evidence indicated that CDDP could significantly increase Bax and Bad expression and activate caspase-3 cascade in OLFM4-depleted GBC cells through ARL6IP1. Clinically, lower OLFM4 expression was associated with good prognosis of GBC patients. Conclusions Our results suggest that OLFM4 is an essential gene that contributes to GBC chemoresistance and could serve as a prognostic biomarker for GBC. Importantly, OLFM4 could be a potential chemotherapeutic target.
Collapse
Affiliation(s)
- Zhuying Lin
- Yan'an Hospital Affiliated to Kunming Medical University/Yan'an Hospital of Kunming City, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan 650051, China; Yunnan Cell Biology and Clinical Translational Research Center, Kunming, Yunnan 650051, China; Kunming Key Laboratory of Biotherapy, Kunming, Yunnan 650051, China
| | - Songlin Yang
- Yan'an Hospital Affiliated to Kunming Medical University/Yan'an Hospital of Kunming City, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan 650051, China; Yunnan Cell Biology and Clinical Translational Research Center, Kunming, Yunnan 650051, China; Kunming Key Laboratory of Biotherapy, Kunming, Yunnan 650051, China
| | - Yong Zhou
- Department of Cancer Biotherapy Center, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, China
| | - Zongliu Hou
- Yan'an Hospital Affiliated to Kunming Medical University/Yan'an Hospital of Kunming City, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan 650051, China; Yunnan Cell Biology and Clinical Translational Research Center, Kunming, Yunnan 650051, China; Kunming Key Laboratory of Biotherapy, Kunming, Yunnan 650051, China
| | - Lin Li
- Yan'an Hospital Affiliated to Kunming Medical University/Yan'an Hospital of Kunming City, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan 650051, China; Yunnan Cell Biology and Clinical Translational Research Center, Kunming, Yunnan 650051, China; Kunming Key Laboratory of Biotherapy, Kunming, Yunnan 650051, China
| | - Mingyao Meng
- Yan'an Hospital Affiliated to Kunming Medical University/Yan'an Hospital of Kunming City, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan 650051, China; Yunnan Cell Biology and Clinical Translational Research Center, Kunming, Yunnan 650051, China; Kunming Key Laboratory of Biotherapy, Kunming, Yunnan 650051, China
| | - Chunlei Ge
- Department of Cancer Biotherapy Center, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, China
| | - Baozhen Zeng
- Department of Pathology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, 106, Zhongshan Road II, Guangzhou 510000, China
| | - Jinbao Lai
- Yan'an Hospital Affiliated to Kunming Medical University/Yan'an Hospital of Kunming City, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan 650051, China; Yunnan Cell Biology and Clinical Translational Research Center, Kunming, Yunnan 650051, China
| | - Hui Gao
- Yan'an Hospital Affiliated to Kunming Medical University/Yan'an Hospital of Kunming City, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan 650051, China; Yunnan Cell Biology and Clinical Translational Research Center, Kunming, Yunnan 650051, China; Kunming Key Laboratory of Biotherapy, Kunming, Yunnan 650051, China
| | - Yiyi Zhao
- Yan'an Hospital Affiliated to Kunming Medical University/Yan'an Hospital of Kunming City, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan 650051, China; Yunnan Cell Biology and Clinical Translational Research Center, Kunming, Yunnan 650051, China; Kunming Key Laboratory of Biotherapy, Kunming, Yunnan 650051, China
| | - Yanhua Xie
- Yan'an Hospital Affiliated to Kunming Medical University/Yan'an Hospital of Kunming City, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan 650051, China; Yunnan Cell Biology and Clinical Translational Research Center, Kunming, Yunnan 650051, China; Kunming Key Laboratory of Biotherapy, Kunming, Yunnan 650051, China
| | - Shan He
- Yan'an Hospital Affiliated to Kunming Medical University/Yan'an Hospital of Kunming City, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan 650051, China; Yunnan Cell Biology and Clinical Translational Research Center, Kunming, Yunnan 650051, China; Kunming Key Laboratory of Biotherapy, Kunming, Yunnan 650051, China
| | - Weiwei Tang
- Yan'an Hospital Affiliated to Kunming Medical University/Yan'an Hospital of Kunming City, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan 650051, China; Yunnan Cell Biology and Clinical Translational Research Center, Kunming, Yunnan 650051, China; Kunming Key Laboratory of Biotherapy, Kunming, Yunnan 650051, China
| | - Ruhong Li
- Yan'an Hospital Affiliated to Kunming Medical University/Yan'an Hospital of Kunming City, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan 650051, China; Yunnan Cell Biology and Clinical Translational Research Center, Kunming, Yunnan 650051, China; Kunming Key Laboratory of Biotherapy, Kunming, Yunnan 650051, China.
| | - Jing Tan
- Yan'an Hospital Affiliated to Kunming Medical University/Yan'an Hospital of Kunming City, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan 650051, China; Yunnan Cell Biology and Clinical Translational Research Center, Kunming, Yunnan 650051, China; Kunming Key Laboratory of Biotherapy, Kunming, Yunnan 650051, China.
| | - Wenju Wang
- Yan'an Hospital Affiliated to Kunming Medical University/Yan'an Hospital of Kunming City, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan 650051, China; Yunnan Cell Biology and Clinical Translational Research Center, Kunming, Yunnan 650051, China; Kunming Key Laboratory of Biotherapy, Kunming, Yunnan 650051, China.
| |
Collapse
|