1
|
Miao C, Huang Y, Zhang C, Wang X, Wang B, Zhou X, Song Y, Wu P, Chen ZS, Feng Y. Post-translational modifications in drug resistance. Drug Resist Updat 2025; 78:101173. [PMID: 39612546 DOI: 10.1016/j.drup.2024.101173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/24/2024] [Accepted: 11/16/2024] [Indexed: 12/01/2024]
Abstract
Resistance to antitumor drugs, antimicrobial drugs, and antiviral drugs severely limits treatment effectiveness and cure rate of diseases. Protein post-translational modifications (PTMs) represented by glycosylation, ubiquitination, SUMOylation, acetylation, phosphorylation, palmitoylation, and lactylation are closely related to drug resistance. PTMs are typically achieved by adding sugar chains (glycosylation), small proteins (ubiquitination), lipids (palmitoylation), or functional groups (lactylation) to amino acid residues. These covalent additions are usually the results of signaling cascades and could be reversible, with the triggering mechanisms depending on the type of modifications. PTMs are involved in antitumor drug resistance, not only as inducers of drug resistance but also as targets for reversing drug resistance. Bacteria exhibit multiple PTMs-mediated antimicrobial drug resistance. PTMs allow viral proteins and host cell proteins to form complex interaction networks, inducing complex antiviral drug resistance. This review summarizes the important roles of PTMs in drug resistance, providing new ideas for exploring drug resistance mechanisms, developing new drug targets, and guiding treatment plans.
Collapse
Affiliation(s)
- Chenggui Miao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, China; Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yurong Huang
- Department of Respiratory Medicine, Center of Infectious Diseases and Pathogen Biology, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital, Jilin University, Changchun 130021, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China
| | - Bing Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xinyue Zhou
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yingqiu Song
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Peng Wu
- Department of Anatomy, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Zhe-Sheng Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong.
| |
Collapse
|
2
|
Zeng S, Zeng L, Xie X, Peng L. Palmitoylation-related gene expression and its prognostic value in ovarian cancer: insights into immune infiltration and therapeutic potential. Discov Oncol 2024; 15:802. [PMID: 39692826 DOI: 10.1007/s12672-024-01708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Palmitoylation, a key post-translational modification, plays a significant role in ovarian cancer (OV) progression. However, the impact of palmitoylation-related genes on genomic instability, immune infiltration, and therapeutic response in OV remains poorly understood. This study aimed to investigate these factors to facilitate risk stratification and therapeutic intervention, providing insights into personalized treatment strategies. METHODS Data from TCGA and GEO were utilized to develop a prognostic model based on palmitoylation-related genes. Differential expression, functional enrichment, and immune infiltration analyses were performed. Immune cell composition and pathway activities in different risk groups were assessed using CIBERSORT and ssGSEA algorithms. Immunotherapy response was predicted using TIDE and SubMap, while drug sensitivity differences were evaluated using the GDSC database. RESULTS Univariate, LASSO, and multivariate Cox regression analyses identified palmitoylation-related genes with significant prognostic value. The prognostic model effectively stratified patients into high- and low-risk groups, demonstrating significant survival differences. Immune infiltration analysis revealed distinct immune cell compositions and functions between risk groups. Low-risk patients exhibited higher immune scores and increased expression of immune checkpoints (PD-1, CD274, CTLA4), suggesting greater response to immunotherapy. Drug sensitivity analysis identified compounds with differential efficacy between risk groups, highlighting potential targeted treatment options. CONCLUSION Palmitoylation-related genomic features significantly influence OV progression and the immune landscape, offering potential for improved risk stratification and informing immunotherapy strategies to enhance patient outcomes.
Collapse
Affiliation(s)
- Shaoying Zeng
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Lijian Zeng
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Xiaoying Xie
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Liang Peng
- Department of Gynecology, The Second People's Hospital of Jingdezhen, Jingdezhen, 333000, Jiangxi, China.
| |
Collapse
|
3
|
Wang J, Shen D, Jiang J, Hu L, Fang K, Xie C, Shen N, Zhou Y, Wang Y, Du S, Meng S. Dietary Palmitic Acid Drives a Palmitoyltransferase ZDHHC15-YAP Feedback Loop Promoting Tumor Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409883. [PMID: 39686664 DOI: 10.1002/advs.202409883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Indexed: 12/18/2024]
Abstract
Elevated uptake of saturated fatty acid palmitic acid (PA) is associated with tumor metastasis; however, the precise mechanisms remain partially understood, hindering the development of therapy for PA-driven tumor metastasis. The Hippo-Yes-associated protein (Hippo/YAP) pathway is implicated in cancer progression. Here it is shown that a high-palm oil diet potentiates tumor metastasis in murine xenografts in part through YAP. It is found that the palmitoyltransferase ZDHHC15 is a YAP-regulated gene that forms a feedback loop with YAP. Notably, PA drives the ZDHHC15-YAP feedback loop, thus enforces YAP signaling, and hence promotes tumor metastasis in murine xenografts. In addition, it is shown that ZDHHC15 associates with Kidney and brain protein (KIBRA, also known as WW- and C2 domain-containing protein 1, WWC1), an upstream component of Hippo signaling, and mediates its palmitoylation. KIBRA palmitoylation leads to its degradation and regulates its subcellular localization and activity toward the Hippo/YAP pathway. Moreover, PA enhances KIBRA palmitoylation and degradation. It is further shown that combinatorial targeting of YAP and fatty acid synthesis exhibits augmented effects against metastasis formation in mice fed with a Palm diet. Collectively, these findings uncover a ZDHHC15-YAP feedback loop as a previously unrecognized mechanism underlying PA-promoted tumor metastasis and support targeting YAP and fatty acid synthesis as potential therapeutic targets in PA-driven tumor metastasis.
Collapse
Affiliation(s)
- Jianxin Wang
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian, 116044, China
| | - Dachuan Shen
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Jian Jiang
- Central Hospital of Dalian University of Technology, Department of Spine Surgery, Dalian, 116033, China
| | - Lulu Hu
- Department of Laboratory Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences NO.369, Dengyun Road, Qingdao National High-tech Industrial Development Zone, Qingdao, China
| | - Kun Fang
- Central Laboratory, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China
| | - Chunrui Xie
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian, 116044, China
| | - Ning Shen
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian, 116044, China
| | - Yuzhao Zhou
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian, 116044, China
| | - Yifei Wang
- Department of Obstetrics and Gynecology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Sha Du
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian, 116044, China
| | - Songshu Meng
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian, 116044, China
| |
Collapse
|
4
|
Lai H, Yang Y, Zhang J. Advances in post-translational modifications and recurrent spontaneous abortion. Gene 2024; 927:148700. [PMID: 38880188 DOI: 10.1016/j.gene.2024.148700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/25/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Recurrent spontaneous abortion (RSA) is defined as two or more pregnancy loss, which affects approximately 1-2% of women's fertility. The etiology of RSA has not yet been fully revealed, which poses a great problem for clinical treatment. Post- translational modifications(PTMs) are chemical modifications that play a crucial role in the functional proteome. A considerable number of published studies have shown the relationship between post-translational modifications of various proteins and RSA. The study of PTMs contributes to elucidating the role of modified proteins in the pathogenesis of RSA, as well as the design of more effective diagnostic/prognostic tools and more targeted treatments. Most reviews in the field of RSA have only focused on RNA epigenomics research. The present review reports the latest research developments of PTMs related to RSA, such as glycosylation, phosphorylation, Methylation, Acetylation, Ubiquitination, etc.
Collapse
Affiliation(s)
- Hanhong Lai
- Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Yi Yang
- Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Jun Zhang
- Jinan University, Guangzhou, Guangdong 510632, People's Republic of China.
| |
Collapse
|
5
|
Tang B, Kang W, Dong Q, Qin Z, Duan L, Zhao X, Yuan G, Pan Y. Research progress on S-palmitoylation modification mediated by the ZDHHC family in glioblastoma. Front Cell Dev Biol 2024; 12:1413708. [PMID: 39563863 PMCID: PMC11573772 DOI: 10.3389/fcell.2024.1413708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/18/2024] [Indexed: 11/21/2024] Open
Abstract
S-Palmitoylation has been widely noticed and studied in a variety of diseases. Increasing evidence suggests that S-palmitoylation modification also plays a key role in Glioblastoma (GBM). The zDHHC family, as an important member of S-palmitoyltransferases, has received extensive attention for its function and mechanism in GBM which is one of the most common primary malignant tumors of the brain and has an adverse prognosis. This review focuses on the zDHHC family, essential S-palmitoyltransferases, and their involvement in GBM. By summarizing recent studies on zDHHC molecules in GBM, we highlight their significance in regulating critical processes such as cell proliferation, invasion, and apoptosis. Specifically, members of zDHHC3, zDHHC4, zDHHC5 and others affect key processes such as signal transduction and phenotypic transformation in GBM cells through different pathways, which in turn influence tumorigenesis and progression. This review systematically outlines the mechanism of zDHHC family-mediated S-palmitoylation modification in GBM, emphasizes its importance in the development of this disease, and provides potential targets and strategies for the treatment of GBM. It also offers theoretical foundations and insights for future research and clinical applications.
Collapse
Affiliation(s)
- Beiyan Tang
- The Second Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Wei Kang
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Qiang Dong
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Zhenwei Qin
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Lei Duan
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xianjun Zhao
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Guoqiang Yuan
- Key Laboratory of Neurology of Gansu Province, Lanzhou University, Lanzhou, Gansu, China
- Academician Workstation, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yawen Pan
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University, Lanzhou, Gansu, China
- Academician Workstation, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Zhang Y, Fan S, He L, Li L. The ZDHHC13/ZDHHC17 subfamily: From biological functions to therapeutic targets of diseases. Pharmacol Res 2024; 209:107418. [PMID: 39306022 DOI: 10.1016/j.phrs.2024.107418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/03/2024]
Abstract
The ZDHHC13/ZDHHC17 subfamily belongs to the zinc finger DHHC-domain containing (ZDHHC) family, including ZDHHC13 and ZDHHC17. Recent studies have shown that the ZDHHC13/ZDHHC17 subfamily is involved in various pathological and physiological processes, including S-palmitoylation, Mg2+ transport, and CALCOCO1-mediated Golgiphagy. Moreover, the ZDHHC13/ZDHHC17 subfamily plays a crucial role in the occurrence and development of many diseases, including Huntington disease (HD), osteoporosis, atopic dermatitis, diabetes, and cancer. In the present review, we describe the distribution, structure, and post-translational modifications (PTMs) of the ZDHHC13/ZDHHC17 subfamily. Moreover, we effectively summarize the biological functions and associated diseases of this subfamily. Given the pleiotropy of the ZDHHC13/ZDHHC17 subfamily, it is imperative to conduct further research on its members to comprehend the pertinent pathophysiological mechanisms and to devise tactics for managing and controlling various diseases.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Sisi Fan
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Lu He
- The First Affiliated Hospital, Department of Neurosurgery, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
7
|
Ma Y, Yuan X, Wei A, Li X, Patar A, Su S, Wang S, Ma G, Zhu J, Kong E. Enhancing Gpx1 palmitoylation to inhibit angiogenesis by targeting PPT1. Redox Biol 2024; 77:103376. [PMID: 39423458 PMCID: PMC11532489 DOI: 10.1016/j.redox.2024.103376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/28/2024] [Indexed: 10/21/2024] Open
Abstract
The significance of protein S-palmitoylation in angiogenesis has been largely overlooked, leaving various aspects unexplored. Recent identification of Gpx1 as a palmitoylated protein has generated interest in exploring its potential involvement in novel pathological mechanisms related to angiogenesis. In this study, we demonstrate that Gpx1 undergoes palmitoylation at cysteine-76 and -113, with PPT1 playing a crucial role in modulating the depalmitoylation of Gpx1. Furthermore, we find that PPT1-regulated depalmitoylation negatively impacts Gpx1 protein stability. Interestingly, inhibiting Gpx1 palmitoylation, either through expression of a non-palmitoylated Gpx1 mutant or by expressing PPT1, significantly enhances neovascular angiogenesis. Conversely, in PPT1-deficient mice, angiogenesis is notably attenuated compared to wild-type mice in an Oxygen-Induced Retinopathy (OIR) model, which mimics pathological angiogenesis. Physiologically, under hypoxic conditions, Gpx1 palmitoylation levels are drastically reduced, suggesting that increasing Gpx1 palmitoylation may have beneficial effects. Indeed, enhancing Gpx1 palmitoylation by inhibiting PPT1 with DC661 effectively suppresses retinal angiogenesis in the OIR disease model. Overall, our findings highlight the pivotal role of protein palmitoylation in angiogenesis and propose a novel mechanism whereby the PPT1-Gpx1 axis modulates angiogenesis, thereby providing a potential therapeutic strategy for targeting PPT1 to combat angiogenesis.
Collapse
Affiliation(s)
- Yidan Ma
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, China; Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Xinxin Yuan
- Sanquan College of Xinxiang Medical University, XinXiang 453003, Henan, China
| | - Aodong Wei
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, China
| | - Xiaopeng Li
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, China
| | - Azim Patar
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Shaobo Su
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, China; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Songtao Wang
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453000, China
| | - Gaoen Ma
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, China; The First Affiliated Hospital of Hainan Medical University, Haikou, 571199, China.
| | - Jiangli Zhu
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China; Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Xinxiang Medical University, Xinxiang, 453000, China.
| | - Eryan Kong
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, China; Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Xinxiang Medical University, Xinxiang, 453000, China.
| |
Collapse
|
8
|
Burton JC, Royer F, Grimsey NJ. Spatiotemporal control of kinases and the biomolecular tools to trace activity. J Biol Chem 2024; 300:107846. [PMID: 39362469 PMCID: PMC11550616 DOI: 10.1016/j.jbc.2024.107846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
The delicate balance of cell physiology is implicitly tied to the expression and activation of proteins. Post-translational modifications offer a tool to dynamically switch protein activity on and off to orchestrate a wide range of protein-protein interactions to tune signal transduction during cellular homeostasis and pathological responses. There is a growing acknowledgment that subcellular locations of kinases define the spatial network of potential scaffolds, adaptors, and substrates. These highly ordered and localized biomolecular microdomains confer a spatially distinct bias in the outcomes of kinase activity. Furthermore, they may hold essential clues to the underlying mechanisms that promote disease. Developing tools to dissect the spatiotemporal activation of kinases is critical to reveal these mechanisms and promote the development of spatially targeted kinase inhibitors. Here, we discuss the spatial regulation of kinases, the tools used to detect their activity, and their potential impact on human health.
Collapse
Affiliation(s)
- Jeremy C Burton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA
| | - Fredejah Royer
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA
| | - Neil J Grimsey
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA.
| |
Collapse
|
9
|
Chang Y, Zhu J, Li X, Deng Y, Lai B, Ma Y, Tong J, Liu H, Li J, Yang C, Chen Q, Lu C, Liang Y, Qi S, Wang X, Kong E. Palmitoylation regulates myelination by modulating the ZDHHC3-Cadm4 axis in the central nervous system. Signal Transduct Target Ther 2024; 9:254. [PMID: 39327467 PMCID: PMC11427461 DOI: 10.1038/s41392-024-01971-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 08/10/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
The downregulation of Cadm4 (Cell adhesion molecular 4) is a prominent feature in demyelination diseases, yet, the underlying molecular mechanism remains elusive. Here, we reveal that Cadm4 undergoes specific palmitoylation at cysteine-347 (C347), which is crucial for its stable localization on the plasma membrane (PM). Mutation of C347 to alanine (C347A), blocking palmitoylation, causes Cadm4 internalization from the PM and subsequent degradation. In vivo experiments introducing the C347A mutation (Cadm4-KI) lead to severe myelin abnormalities in the central nervous system (CNS), characterized by loss, demyelination, and hypermyelination. We further identify ZDHHC3 (Zinc finger DHHC-type palmitoyltransferase 3) as the enzyme responsible for catalyzing Cadm4 palmitoylation. Depletion of ZDHHC3 reduces Cadm4 palmitoylation and diminishes its PM localization. Remarkably, genetic deletion of ZDHHC3 results in decreased Cadm4 palmitoylation and defects in CNS myelination, phenocopying the Cadm4-KI mouse model. Consequently, altered Cadm4 palmitoylation impairs neuronal transmission and cognitive behaviors in both Cadm4-KI and ZDHHC3 knockout mice. Importantly, attenuated ZDHHC3-Cadm4 signaling significantly influences neuroinflammation in diverse demyelination diseases. Mechanistically, we demonstrate the predominant expression of Cadm4 in the oligodendrocyte lineage and its potential role in modulating cell differentiation via the WNT-β-Catenin pathway. Together, our findings propose that dysregulated ZDHHC3-Cadm4 signaling contributes to myelin abnormalities, suggesting a common pathological mechanism underlying demyelination diseases associated with neuroinflammation.
Collapse
Affiliation(s)
- Yanli Chang
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Jiangli Zhu
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Urology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, China
| | - Xiaopeng Li
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yi Deng
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Birou Lai
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Yidan Ma
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jia Tong
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Huicong Liu
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Juanjuan Li
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Chenyu Yang
- Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, China
| | - Qiao Chen
- Department of Nutrition, Third Medical Center of PLA General Hospital, Beijing, China
| | - Chengbiao Lu
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Yinming Liang
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Shiqian Qi
- Department of Urology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, China
| | - Xiaoning Wang
- School of Life Sciences, Fudan University, Shanghai, China.
| | - Eryan Kong
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
10
|
Pei S, Piao HL. Exploring Protein S-Palmitoylation: Mechanisms, Detection, and Strategies for Inhibitor Discovery. ACS Chem Biol 2024; 19:1868-1882. [PMID: 39160165 DOI: 10.1021/acschembio.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
S-palmitoylation is a reversible and dynamic process that involves the addition of long-chain fatty acids to proteins. This protein modification regulates various aspects of protein function, including subcellular localization, stability, conformation, and biomolecular interactions. The zinc finger DHHC (ZDHHC) domain-containing protein family is the main group of enzymes responsible for catalyzing protein S-palmitoylation, and 23 members have been identified in mammalian cells. Many proteins that undergo S-palmitoylation have been linked to disease pathogenesis and progression, suggesting that the development of effective inhibitors is a promising therapeutic strategy. Reducing the protein S-palmitoylation level can target either the PATs directly or their substrates. However, there are rare clinically effective S-palmitoylation inhibitors. This review aims to provide an overview of the S-palmitoylation field, including the catalytic mechanism of ZDHHC, S-palmitoylation detection methods, and the functional impact of protein S-palmitoylation. Additionally, this review focuses on current strategies for expanding the chemical toolbox to develop novel and effective inhibitors that can reduce the level of S-palmitoylation of the target protein.
Collapse
Affiliation(s)
- Shaojun Pei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Hai-Long Piao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, 110122 Shenyang, China
| |
Collapse
|
11
|
Huang X, Wang M, Zhang D, Meng J, Liu P. ZDHHC20 Activates AKT Signaling Pathway to Promote Cell Proliferation in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:1763-1775. [PMID: 39309302 PMCID: PMC11416782 DOI: 10.2147/jhc.s457682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/03/2024] [Indexed: 09/25/2024] Open
Abstract
Background Liver cancer is the sixth most common cancer worldwide, and hepatocellular carcinoma (HCC) presents one of the most challenging global health issues. ZDHHC20, a member of the ZDHHC palmitoyltransferase (ZDHHC-PAT) family, is involved in a reversible lipid modification known as palmitoylation, which contributes to the occurrence and progression of various tumors. However, the specific mechanisms underlying the involvement of ZDHHC20 in this process are unclear. Methods The effects of both ZDHHC20 knockdown and overexpression on hepatocellular carcinoma cell proliferation were evaluated using PCR, Western blotting, CCK-8 assay, colony formation assay, cell cycle analysis, apoptosis analysis, and EDU assay. The TCGA-LIHC dataset was analyzed bioinformatically, and the phosphorylation level of PI3K and AKT in SK-Hep1 and Huh7 cells was assessed using Western blotting. Nude mouse subcutaneous xenograft experiments were conducted to evaluate the effects of different treatment conditions on mouse tumor growth. Results ZDHHC20 knockdown inhibited cell proliferation and promoted apoptosis, while overexpression of ZDHHC20 promoted cell proliferation and inhibited apoptosis. Knockdown of ZDHHC20 also decreased phosphorylation of PI3K and AKT in HCC, whereas overexpression of ZDHHC20 increased phosphorylation of PI3K and AKT. The PI3K-AKT pathway inhibitors, LY294002 and MK2206, effectively inhibited the promotional effects of ZDHHC20 on the proliferation and growth of HCC. Conclusion High expression of ZDHHC20 promotes the proliferation and tumor growth of HCC by activating the PI3K-AKT signaling pathway. The PI3K inhibitor LY294002 and the AKT inhibitor MK2206 inhibit the promotional effects of ZDHHC20 on the proliferation of HCC and the growth of tumors.
Collapse
Affiliation(s)
- Xiaoju Huang
- Cancer Center Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, People’s Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Mengmeng Wang
- Cancer Center Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, People’s Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Dan Zhang
- Cancer Center Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, People’s Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Junpeng Meng
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Department of General Surgery, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People’s Republic of China
| | - Pian Liu
- Cancer Center Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, People’s Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| |
Collapse
|
12
|
Zhu J, Cao X, Chen Z, Lai B, Xi L, Zhang J, Zhu S, Qi S, Liang Y, Cao F, Zhou B, Song Y, Jiang S, Wang T, Kang X, Kong E. Inhibiting S-palmitoylation arrests metastasis by relocating Rap2b from plasma membrane in colorectal cancer. Cell Death Dis 2024; 15:675. [PMID: 39277583 PMCID: PMC11401852 DOI: 10.1038/s41419-024-07061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Rap2b, a proto-oncogene upregulated in colorectal cancer (CRC), undergoes protein S-palmitoylation at specific C-terminus sites (C176/C177). These palmitoylation sites are crucial for Rap2b localization on the plasma membrane (PM), as mutation of C176 or C177 results in cytosolic relocation of Rap2b. Our study demonstrates that Rap2b influences cell migration and invasion in CRC cells, independent of proliferation, and this activity relies on its palmitoylation. We identify ABHD17a as the depalmitoylating enzyme for Rap2b, altering PM localization and inhibiting cell migration and invasion. EGFR/PI3K signaling regulates Rap2b palmitoylation, with PI3K phosphorylating ABHD17a to modulate its activity. These findings highlight the potential of targeting Rap2b palmitoylation as an intervention strategy. Blocking the C176/C177 sites using an interacting peptide attenuates Rap2b palmitoylation, disrupting PM localization, and suppressing CRC metastasis. This study offers insights into therapeutic approaches targeting Rap2b palmitoylation for the treatment of metastatic CRC, presenting opportunities to improve patient outcomes.
Collapse
Affiliation(s)
- Jiangli Zhu
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Xize Cao
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Zhenshuai Chen
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
- Lankao County Central Hospital, Lankao, China
| | - Birou Lai
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Lingling Xi
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Jinghang Zhang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Xinxiang Medical University, Xinxiang, China
| | - Shaohui Zhu
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Shiqian Qi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, China
| | - Yinming Liang
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Fei Cao
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Binhui Zhou
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China
| | - Yu Song
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Sheng Jiang
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Tianyu Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Xiaohong Kang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
| | - Eryan Kong
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Xinxiang Medical University, Xinxiang, China.
- Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
13
|
Neagu AN, Josan CL, Jayaweera TM, Morrissiey H, Johnson KR, Darie CC. Bio-Pathological Functions of Posttranslational Modifications of Histological Biomarkers in Breast Cancer. Molecules 2024; 29:4156. [PMID: 39275004 PMCID: PMC11397409 DOI: 10.3390/molecules29174156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Proteins are the most common types of biomarkers used in breast cancer (BC) theranostics and management. By definition, a biomarker must be a relevant, objective, stable, and quantifiable biomolecule or other parameter, but proteins are known to exhibit the most variate and profound structural and functional variation. Thus, the proteome is highly dynamic and permanently reshaped and readapted, according to changing microenvironments, to maintain the local cell and tissue homeostasis. It is known that protein posttranslational modifications (PTMs) can affect all aspects of protein function. In this review, we focused our analysis on the different types of PTMs of histological biomarkers in BC. Thus, we analyzed the most common PTMs, including phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, palmitoylation, myristoylation, and glycosylation/sialylation/fucosylation of transcription factors, proliferation marker Ki-67, plasma membrane proteins, and histone modifications. Most of these PTMs occur in the presence of cellular stress. We emphasized that these PTMs interfere with these biomarkers maintenance, turnover and lifespan, nuclear or subcellular localization, structure and function, stabilization or inactivation, initiation or silencing of genomic and non-genomic pathways, including transcriptional activities or signaling pathways, mitosis, proteostasis, cell-cell and cell-extracellular matrix (ECM) interactions, membrane trafficking, and PPIs. Moreover, PTMs of these biomarkers orchestrate all hallmark pathways that are dysregulated in BC, playing both pro- and/or antitumoral and context-specific roles in DNA damage, repair and genomic stability, inactivation/activation of tumor-suppressor genes and oncogenes, phenotypic plasticity, epigenetic regulation of gene expression and non-mutational reprogramming, proliferative signaling, endocytosis, cell death, dysregulated TME, invasion and metastasis, including epithelial-mesenchymal/mesenchymal-epithelial transition (EMT/MET), and resistance to therapy or reversal of multidrug therapy resistance. PTMs occur in the nucleus but also at the plasma membrane and cytoplasmic level and induce biomarker translocation with opposite effects. Analysis of protein PTMs allows for the discovery and validation of new biomarkers in BC, mainly for early diagnosis, like extracellular vesicle glycosylation, which may be considered as a potential source of circulating cancer biomarkers.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania;
| | - Claudiu-Laurentiu Josan
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania;
| | - Taniya M. Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (H.M.); (K.R.J.)
| | - Hailey Morrissiey
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (H.M.); (K.R.J.)
| | - Kaya R. Johnson
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (H.M.); (K.R.J.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (H.M.); (K.R.J.)
| |
Collapse
|
14
|
Niu X, Liu W, Zhang Y, Liu J, Zhang J, Li B, Qiu Y, Zhao P, Wang Z, Wang Z. Cancer plasticity in therapy resistance: Mechanisms and novel strategies. Drug Resist Updat 2024; 76:101114. [PMID: 38924995 DOI: 10.1016/j.drup.2024.101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Therapy resistance poses a significant obstacle to effective cancer treatment. Recent insights into cell plasticity as a new paradigm for understanding resistance to treatment: as cancer progresses, cancer cells experience phenotypic and molecular alterations, corporately known as cell plasticity. These alterations are caused by microenvironment factors, stochastic genetic and epigenetic changes, and/or selective pressure engendered by treatment, resulting in tumor heterogeneity and therapy resistance. Increasing evidence suggests that cancer cells display remarkable intrinsic plasticity and reversibly adapt to dynamic microenvironment conditions. Dynamic interactions between cell states and with the surrounding microenvironment form a flexible tumor ecosystem, which is able to quickly adapt to external pressure, especially treatment. Here, this review delineates the formation of cancer cell plasticity (CCP) as well as its manipulation of cancer escape from treatment. Furthermore, the intrinsic and extrinsic mechanisms driving CCP that promote the development of therapy resistance is summarized. Novel treatment strategies, e.g., inhibiting or reversing CCP is also proposed. Moreover, the review discusses the multiple lines of ongoing clinical trials globally aimed at ameliorating therapy resistance. Such advances provide directions for the development of new treatment modalities and combination therapies against CCP in the context of therapy resistance.
Collapse
Affiliation(s)
- Xing Niu
- China Medical University, Shenyang, Liaoning 110122, China; Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, 999077, Hong Kong, China
| | - Wenjing Liu
- Medical Oncology Department of Thoracic Cancer (2), Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Yinling Zhang
- Department of Oncology Radiotherapy 1, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong 266042, China
| | - Jing Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jianjun Zhang
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Bo Li
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Yue Qiu
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Peng Zhao
- Department of Medical Imaging, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Zhongmiao Wang
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| | - Zhe Wang
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| |
Collapse
|
15
|
Zhang Q, Du Z, Zhou W, Li W, Yang Q, Yu H, Liu T. ZDHHC1 downregulates LIPG and inhibits colorectal cancer growth via IGF2BP1 Palmitoylation. Cancer Gene Ther 2024; 31:1427-1437. [PMID: 39069526 PMCID: PMC11405259 DOI: 10.1038/s41417-024-00808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
Alteration in lipid metabolism is recognized as a hallmark feature of colorectal cancer (CRC). Protein S-palmitoylation plays a critical role in many different cellular processes including protein-lipid interaction. Zinc Finger DHHC-Type Containing 1 (ZDHHC1, also known as ZNF377) belongs to the palmitoyl-transferase ZDHHC family, and is a potential tumor suppressor. However, our knowledge of the functional roles of ZDHHC1 in CRC is limited. We discovered that ZDHHC1 expression was downregulated in CRC tissues and that low levels of ZDHHC1 were associated with unfavorable prognosis. Functional studies showed that ZDHHC1 inhibited CRC cell proliferation and invasion in vitro and in vivo. We also found that lipase G (LIPG) is negatively regulated by ZDHHC1 and plays a key role in CRC cell growth through lipid storage. Additionally, we demonstrated that ZDHHC1 functions as a IGF2BP1-palmitoylating enzyme that induces S-palmitoylation at IGF2BP1-C337, which results in downregulated LIPG expression via m6A modification. Mechanistic investigations revealed that the ZDHHC1/IGF2BP1/LIPG signaling axis is associated with inhibition of CRC cell growth. Our study uncovers the potential role of ZDHHC1 in CRC, including inhibition of CRC growth by reducing the stability of LIPG mRNA in an m6A dependent-manner by palmitoylation of IGF2BP1.
Collapse
Affiliation(s)
- Qun Zhang
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhouyuan Du
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Zhou
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Li
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qinglin Yang
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Haixin Yu
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Tao Liu
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
16
|
Shan J, Li X, Sun R, Yao Y, Sun Y, Kuang Q, Dai X, Sun Y. Palmitoyltransferase ZDHHC6 promotes colon tumorigenesis by targeting PPARγ-driven lipid biosynthesis via regulating lipidome metabolic reprogramming. J Exp Clin Cancer Res 2024; 43:227. [PMID: 39148124 PMCID: PMC11328492 DOI: 10.1186/s13046-024-03154-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/04/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND The failure of proper recognition of the intricate nature of pathophysiology in colorectal cancer (CRC) has a substantial effect on the progress of developing novel medications and targeted therapy approaches. Imbalances in the processes of lipid oxidation and biosynthesis of fatty acids are significant risk factors for the development of CRC. Therapeutic intervention that specifically targets the peroxisome proliferator-activated receptor gamma (PPARγ) and its downstream response element, in response to lipid metabolism, has been found to promote the growth of tumors and has shown significant clinical advantages in cancer patients. METHODS Clinical CRC samples and extensive in vitro and in vivo experiments were carried out to determine the role of ZDHHC6 and its downstream targets via a series of biochemical assays, molecular analysis approaches and lipid metabolomics assay, etc. RESULTS: To study the effect of ZDHHC6 on the progression of CRC and identify whether ZDHHC6 is a palmitoyltransferase that regulates fatty acid synthesis, which directly palmitoylates and stabilizes PPARγ, and this stabilization in turn activates the ACLY transcription-related metabolic pathway. In this study, we demonstrate that PPARγ undergoes palmitoylation in its DNA binding domain (DBD) section. This lipid-related modification enhances the stability of PPARγ protein by preventing its destabilization. As a result, palmitoylated PPARγ inhibits its degradation induced by the lysosome and facilitates its translocation into the nucleus. In addition, we have identified zinc finger-aspartate-histidine-cysteine 6 (ZDHHC6) as a crucial controller of fatty acid biosynthesis. ZDHHC6 directly interacts with and adds palmitoyl groups to stabilize PPARγ at the Cys-313 site within the DBD domain of PPARγ. Consequently, this palmitoylation leads to an increase in the expression of ATP citrate lyase (ACLY). Furthermore, our findings reveals that ZDHHC6 actively stimulates the production of fatty acids and plays a role in the development of colorectal cancer. However, we have observed a significant reduction in the cancer-causing effects when the expression of ZDHHC6 is inhibited in in vivo trials. Significantly, in CRC, there is a strong positive correlation between the high expression of ZDHHC6 and the expression of PPARγ. Moreover, this high expression of ZDHHC6 is connected with the severity of CRC and is indicative of a poor prognosis. CONCLUSIONS We have discovered a mechanism in which lipid biosynthesis is controlled by ZDHHC6 and includes the signaling of PPARγ-ACLY in the advancement of CRC. This finding provides a justification for targeting lipid synthesis by blocking ZDHHC6 as a potential therapeutic approach.
Collapse
Affiliation(s)
- Junqi Shan
- Department of Surgical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Xinyu Li
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261000, China
| | - Runqi Sun
- School of Clinical Medicine, Jining Medical University, Jining, Shandong, 272000, China
| | - Yao Yao
- Department of Surgical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Yan Sun
- Key Laboratory of Biorheological Science and Technology, Chongqing University, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, 400030, PR China
| | - Qin Kuang
- Key Laboratory of Biorheological Science and Technology, Chongqing University, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, 400030, PR China
| | - Xianling Dai
- Key Laboratory of Biorheological Science and Technology, Chongqing University, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, 400030, PR China
| | - Yanlai Sun
- Department of Surgical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
17
|
Peng F, Lu J, Su K, Liu X, Luo H, He B, Wang C, Zhang X, An F, Lv D, Luo Y, Su Q, Jiang T, Deng Z, He B, Xu L, Guo T, Xiang J, Gu C, Wang L, Xu G, Xu Y, Li M, Kelley KW, Cui B, Liu Q. Oncogenic fatty acid oxidation senses circadian disruption in sleep-deficiency-enhanced tumorigenesis. Cell Metab 2024; 36:1598-1618.e11. [PMID: 38772364 DOI: 10.1016/j.cmet.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/15/2024] [Accepted: 04/25/2024] [Indexed: 05/23/2024]
Abstract
Circadian disruption predicts poor cancer prognosis, yet how circadian disruption is sensed in sleep-deficiency (SD)-enhanced tumorigenesis remains obscure. Here, we show fatty acid oxidation (FAO) as a circadian sensor relaying from clock disruption to oncogenic metabolic signal in SD-enhanced lung tumorigenesis. Both unbiased transcriptomic and metabolomic analyses reveal that FAO senses SD-induced circadian disruption, as illustrated by continuously increased palmitoyl-coenzyme A (PA-CoA) catalyzed by long-chain fatty acyl-CoA synthetase 1 (ACSL1). Mechanistically, SD-dysregulated CLOCK hypertransactivates ACSL1 to produce PA-CoA, which facilitates CLOCK-Cys194 S-palmitoylation in a ZDHHC5-dependent manner. This positive transcription-palmitoylation feedback loop prevents ubiquitin-proteasomal degradation of CLOCK, causing FAO-sensed circadian disruption to maintain SD-enhanced cancer stemness. Intriguingly, timed β-endorphin resets rhythmic Clock and Acsl1 expression to alleviate SD-enhanced tumorigenesis. Sleep quality and serum β-endorphin are negatively associated with both cancer development and CLOCK/ACSL1 expression in patients with cancer, suggesting dawn-supplemented β-endorphin as a potential chronotherapeutic strategy for SD-related cancer.
Collapse
Affiliation(s)
- Fei Peng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Jinxin Lu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Keyu Su
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China; State Key Laboratory of Oncology in South China, Psychobehavioral Cancer Research Center, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xinyu Liu
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, Liaoning, China
| | - Huandong Luo
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Bin He
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Cenxin Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Xiaoyu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Fan An
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Dekang Lv
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Yuanyuan Luo
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China; Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, Liaoning, China
| | - Qitong Su
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Tonghui Jiang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Ziqian Deng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Bin He
- State Key Laboratory of Oncology in South China, Psychobehavioral Cancer Research Center, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Lingzhi Xu
- Department of Oncology, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Tao Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jin Xiang
- State Key Laboratory of Oncology in South China, Psychobehavioral Cancer Research Center, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Chundong Gu
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ling Wang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Guowang Xu
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, Liaoning, China
| | - Ying Xu
- Cambridge-Soochow University Genomic Resource Center, Soochow University, Suzhou, Jiangsu, China
| | - Mindian Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Keith W Kelley
- Department of Pathology, College of Medicine and Department of Animal Sciences, College of ACES, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bai Cui
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China; State Key Laboratory of Oncology in South China, Psychobehavioral Cancer Research Center, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China; State Key Laboratory of Oncology in South China, Psychobehavioral Cancer Research Center, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| |
Collapse
|
18
|
S Mesquita F, Abrami L, Linder ME, Bamji SX, Dickinson BC, van der Goot FG. Mechanisms and functions of protein S-acylation. Nat Rev Mol Cell Biol 2024; 25:488-509. [PMID: 38355760 DOI: 10.1038/s41580-024-00700-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
Over the past two decades, protein S-acylation (often referred to as S-palmitoylation) has emerged as an important regulator of vital signalling pathways. S-Acylation is a reversible post-translational modification that involves the attachment of a fatty acid to a protein. Maintenance of the equilibrium between protein S-acylation and deacylation has demonstrated profound effects on various cellular processes, including innate immunity, inflammation, glucose metabolism and fat metabolism, as well as on brain and heart function. This Review provides an overview of current understanding of S-acylation and deacylation enzymes, their spatiotemporal regulation by sophisticated multilayered mechanisms, and their influence on protein function, cellular processes and physiological pathways. Furthermore, we examine how disruptions in protein S-acylation are associated with a broad spectrum of diseases from cancer to autoinflammatory disorders and neurological conditions.
Collapse
Affiliation(s)
- Francisco S Mesquita
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laurence Abrami
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Maurine E Linder
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | - Shernaz X Bamji
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - F Gisou van der Goot
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
19
|
Speck SL, Wei X, Semenkovich CF. Depalmitoylation and cell physiology: APT1 as a mediator of metabolic signals. Am J Physiol Cell Physiol 2024; 326:C1034-C1041. [PMID: 38344800 PMCID: PMC11193526 DOI: 10.1152/ajpcell.00542.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 03/13/2024]
Abstract
More than half of the global population is obese or overweight, especially in Western countries, and this excess adiposity disrupts normal physiology to cause chronic diseases. Diabetes, an adiposity-associated epidemic disease, affects >500 million people, and cases are projected to exceed 1 billion before 2050. Lipid excess can impact physiology through the posttranslational modification of proteins, including the reversible process of S-palmitoylation. Dynamic palmitoylation cycling requires the S-acylation of proteins by acyltransferases and the depalmitoylation of these proteins mediated in part by acyl-protein thioesterases (APTs) such as APT1. Emerging evidence points to tissue-specific roles for the depalmitoylase APT1 in maintaining homeostasis in the vasculature, pancreatic islets, and liver. These recent findings raise the possibility that APT1 substrates can be therapeutically targeted to treat the complications of metabolic diseases.
Collapse
Affiliation(s)
- Sarah L Speck
- Division of Endocrinology, Metabolism and Lipid Research, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Xiaochao Wei
- Division of Endocrinology, Metabolism and Lipid Research, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism and Lipid Research, Washington University in St. Louis, St. Louis, Missouri, United States
| |
Collapse
|
20
|
Liu L, Wang L, Liu L, Qu X, Zhao W, Ding J, Zhao S, Xu B, Yu H, Liu B, Chai J. Acyltransferase zinc finger DHHC-type containing 2 aggravates gastric carcinoma growth by targeting Nrf2 signaling: A mechanism-based multicombination bionic nano-drug therapy. Redox Biol 2024; 70:103051. [PMID: 38301594 PMCID: PMC10844977 DOI: 10.1016/j.redox.2024.103051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024] Open
Abstract
The significant regulatory role of palmitoylation modification in cancer-related targets has been demonstrated previously. However, the biological functions of Nrf2 in stomach cancer and whether the presence of Nrf2 palmitoylation affects gastric cancer (GC) progression and its treatment have not been reported. Several public datasets were used to look into the possible link between the amount of palmitoylated Nrf2 and the progression and its outcome of GC in patients. The palmitoylated Nrf2 levels in tumoral and peritumoral tissues from GC patients were also evaluated. Both loss-of-function and gain-of-function via transgenic experiments were performed to study the effects of palmitoylated Nrf2 on carcinogenesis and the pharmacological function of 2-bromopalmitate (2-BP) on the suppression of GC progression in vitro and in vitro. We discovered that Nrf2 was palmitoylated in the cytoplasmic domain, and this lipid posttranslational modification causes Nrf2 stabilization by inhibiting ubiquitination, delaying Nrf2 destruction via the proteasome and boosting nuclear translocation. Importantly, we also identify palmitoyltransferase zinc finger DHHC-type palmitoyltransferase 2 (DHHC2) as the primary acetyltransferase required for the palmitoylated Nrf2 and indicate that the suppression of Nrf2 palmitoylation via 2-bromopalmitate (2-BP), or the knockdown of DHHC2, promotes anti-cancer immunity in vitro and in mice model-bearing xenografts. Of note, based on the antineoplastic mechanism of 2-BP, a novel anti-tumor drug delivery system ground 2-BP and oxaliplatin (OXA) dual-loading gold nanorods (GNRs) with tumor cell membrane coating biomimetic nanoparticles (CM@GNRs-BO) was established. In situ photothermal therapy is done using near-infrared (NIR) laser irradiation to help release high-temperature-triggered drugs from the CM@GNRs-BO reservoir when needed. This is done to achieve photothermal/chemical synergistic therapy. Our findings show the influence and linkage of palmitoylated Nrf2 with tumoral and peritumoral tissues in GC patients, the underlying mechanism of palmitoylated Nrf2 in GC progression, and novel possible techniques for addressing Nrf2-associated immune evasion in cancer growth. Furthermore, the bionic nanomedicine developed by us has the characteristics of dual drugs delivery, homologous tumor targeting, and photothermal and chemical synergistic therapy, and is expected to become a potential platform for cancer treatment.
Collapse
Affiliation(s)
- Luguang Liu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Science, Jinan 270000, Shandong, China
| | - Longgang Wang
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Science, Jinan 270000, Shandong, China
| | - Liqing Liu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Science, Jinan 270000, Shandong, China
| | - Xianlin Qu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Science, Jinan 270000, Shandong, China
| | - Weizhu Zhao
- Department of Radiology, Shandong University, Shandong Cancer Hospital and Institute, Jinan 270000, Shandong, China; Department of Oncology, Binzhou People's Hospital Affiliated to Shandong First Medical University, Binzhou 256600, Shandong, China
| | - Jishuang Ding
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Science, Jinan 270000, Shandong, China
| | - Siwei Zhao
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Science, Jinan 270000, Shandong, China
| | - Botao Xu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Science, Jinan 270000, Shandong, China
| | - Hang Yu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Science, Jinan 270000, Shandong, China
| | - Bing Liu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Science, Jinan 270000, Shandong, China
| | - Jie Chai
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Science, Jinan 270000, Shandong, China.
| |
Collapse
|
21
|
Puhl AC, Raman R, Havener TM, Minerali E, Hickey AJ, Ekins S. Identification of New Modulators and Inhibitors of Palmitoyl-Protein Thioesterase 1 for CLN1 Batten Disease and Cancer. ACS OMEGA 2024; 9:11870-11882. [PMID: 38496939 PMCID: PMC10938339 DOI: 10.1021/acsomega.3c09607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
Palmitoyl-protein thioesterase 1 (PPT1) is an understudied enzyme that is gaining attention due to its role in the depalmitoylation of several proteins involved in neurodegenerative diseases and cancer. PPT1 is overexpressed in several cancers, specifically cholangiocarcinoma and esophageal cancers. Inhibitors of PPT1 lead to cell death and have been shown to enhance the killing of tumor cells alongside known chemotherapeutics. PPT1 is hence a viable target for anticancer drug development. Furthermore, mutations in PPT1 cause a lysosomal storage disorder called infantile neuronal ceroid lipofuscinosis (CLN1 disease). Molecules that can inhibit, stabilize, or modulate the activity of this target are needed to address these diseases. We used PPT1 enzymatic assays to identify molecules that were subsequently tested by using differential scanning fluorimetry and microscale thermophoresis. Selected compounds were also tested in neuroblastoma cell lines. The resulting PPT1 screening data was used for building machine learning models to help select additional compounds for testing. We discovered two of the most potent PPT1 inhibitors reported to date, orlistat (IC50 178.8 nM) and palmostatin B (IC50 11.8 nM). When tested in HepG2 cells, it was found that these molecules had decreased activity, indicating that they were likely not penetrating the cells. The combination of in vitro enzymatic and biophysical assays enabled the identification of several molecules that can bind or inhibit PPT1 and may aid in the discovery of modulators or chaperones. The molecules identified could be used as a starting point for further optimization as treatments for other potential therapeutic applications outside CLN1 disease, such as cancer and neurological diseases.
Collapse
Affiliation(s)
- Ana C. Puhl
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Renuka Raman
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Tammy M. Havener
- UNC
Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Eni Minerali
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Anthony J. Hickey
- UNC
Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- RTI
International, Research Triangle
Park, North Carolina 27709, United States
| | - Sean Ekins
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
22
|
Wang Z, Wang Y, Shen N, Liu Y, Xu X, Zhu R, Jiang H, Wu X, Wei Y, Tang J. AMPKα1-mediated ZDHHC8 phosphorylation promotes the palmitoylation of SLC7A11 to facilitate ferroptosis resistance in glioblastoma. Cancer Lett 2024; 584:216619. [PMID: 38211651 DOI: 10.1016/j.canlet.2024.216619] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/13/2024]
Abstract
The cystine/glutamate antiporter SLC7A11, as the key regulator of ferroptosis, functions to transport cystine for glutathione biosynthesis and antioxidant defense. Accumulating evidence has shown that SLC7A11 is overexpressed in multiple human cancers and promotes tumor growth and progression. However, the exact mechanism underlying this key protein remains unclear. In this study, we confirmed that SLC7A11 is S-palmitoylated in glioblastoma, and this modification is required for SLC7A11 protein stability. Moreover, we revealed that ZDHHC8, a member of the protein palmitoyl transferases (PATs), catalyzes S-palmitoylation of SLC7A11 at Cys327, thereby decreasing the ubiquitination level of SLC7A11. Furthermore, AMPKα1 directly phosphorylates ZDHHC8 at S299, strengthening the interaction between ZDHHC8 and SLC7A11, leading to SLC7A11 S-palmitoylation and deubiquitination. Functional investigations showed that ZDHHC8 knockdown impairs glioblastoma (GBM) cell survival via promoting intracellular ferroptosis events, which could be largely rescued by ectopic expression of SLC7A11. Clinically, ZDHHC8 expression positively correlates with SLC7A11 and AMPKα1 expression in clinical glioma specimens. This study underscores that ZDHHC8-mediated SLC7A11 S-palmitoylation is critical for ferroptosis resistance during GBM tumorigenesis, indicating a novel treatment strategy for GBM.
Collapse
Affiliation(s)
- Zhangjie Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Yang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Na Shen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yu Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xinyang Xu
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ruiqiu Zhu
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Hao Jiang
- Department of Urology, The First Affiliated Hospital of Soochow University, No.899 Ping Hai Road, Suzhou 215000, China
| | - Xiaoting Wu
- Department of Intensive Care Unit, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210029, China
| | - Yunfei Wei
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Department of Urology, Traditional Chinese Medicine Hospital of Ili Kazak Autonomous Prefecture, Yining 835000, China.
| | - Jingyuan Tang
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
23
|
Binoy A, Kothari M, Sahadevan R, Poddar S, Kar P, Sadhukhan S. Protein S-palmitoylation is markedly inhibited by 4″-alkyl ether lipophilic derivatives of EGCG, the major green tea polyphenol: In vitro and in silico studies. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184264. [PMID: 38104647 DOI: 10.1016/j.bbamem.2023.184264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/27/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
S-palmitoylation is a dynamic lipid-based protein post-translational modification facilitated by a family of protein acyltransferases (PATs) commonly known as DHHC-PATs or DHHCs. It is the only lipid modification that is reversible, and this very fact uniquely qualifies it for therapeutic interventions through the development of DHHC inhibitors. Herein, we report that 4″-alkyl ether lipophilic derivatives of EGCG can effectively inhibit protein S-palmitoylation in vitro. With the help of metabolic labeling followed by copper(I)-catalyzed azide-alkyne cycloaddition Click reaction, we demonstrate that 4″-C14 EGCG and 4″-C16 EGCG markedly inhibited S-palmitoylation in various mammalian cells including HEK 293T, HeLa, and MCF-7 using both in gel fluorescence as well as confocal microscopy. Further, these EGCG derivatives were able to attenuate the S-palmitoylation to the basal level in DHHC3-overexpressed cells, suggesting that they are plausibly targeting DHHCs. Confocal microscopy data qualitatively reflected spatial and temporal distribution of S-palmitoylated proteins in different sub-cellular compartments and the inhibitory effects of 4″-C14 EGCG and 4″-C16 EGCG were clearly observed in the native cellular environment. Our findings were further substantiated by in silico analysis which revealed promising binding affinity and interactions of 4″-C14 EGCG and 4″-C16 EGCG with key amino acid residues present in the hydrophobic cleft of the DHHC20 enzyme. We also demonstrated the successful inhibition of S-palmitoylation of GAPDH by 4″-C16 EGCG. Taken together, our in vitro and in silico data strongly suggest that 4″-C14 EGCG and 4″-C16 EGCG can act as potent inhibitors for S-palmitoylation and can be employed as a complementary tool to investigate S-palmitoylation.
Collapse
Affiliation(s)
- Anupama Binoy
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678623, India
| | - Manan Kothari
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678623, India
| | - Revathy Sahadevan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678623, India
| | - Sayan Poddar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Madhya Pradesh 453552, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Madhya Pradesh 453552, India
| | - Sushabhan Sadhukhan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678623, India; Physical & Chemical Biology Laboratory, Indian Institute of Technology Palakkad, Kerala 678623, India; Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Kerala 678623, India.
| |
Collapse
|
24
|
Wang Q, Wang J, Yu D, Zhang Q, Hu H, Xu M, Zhang H, Tian S, Zheng G, Lu D, Hu J, Guo M, Cai M, Geng X, Zhang Y, Xia J, Zhang X, Li A, Liu S, Zhang W. Benzosceptrin C induces lysosomal degradation of PD-L1 and promotes antitumor immunity by targeting DHHC3. Cell Rep Med 2024; 5:101357. [PMID: 38237597 PMCID: PMC10897506 DOI: 10.1016/j.xcrm.2023.101357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/09/2023] [Accepted: 12/11/2023] [Indexed: 02/23/2024]
Abstract
Programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) blockade has become a mainstay of cancer immunotherapy. Targeting the PD-1/PD-L1 axis with small molecules is an attractive approach to enhance antitumor immunity. Here, we identified a natural marine product, benzosceptrin C (BC), that enhances the cytotoxicity of T cells to cancer cells by reducing the abundance of PD-L1. Furthermore, BC exerts its antitumor effect in mice bearing MC38 tumors by activating tumor-infiltrating T cell immunity. Mechanistic studies suggest that BC can prevent palmitoylation of PD-L1 by inhibiting DHHC3 enzymatic activity. Subsequently, PD-L1 is transferred from the membrane to the cytoplasm and cannot return to the membrane via recycling endosomes, triggering lysosome-mediated degradation of PD-L1. Moreover, the combination of BC and anti-CTLA4 effectively enhances antitumor T cell immunity. Our findings reveal a previously unrecognized antitumor mechanism of BC and represent an alternative immune checkpoint blockade (ICB) therapeutic strategy to enhance the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Qun Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinxin Wang
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Dianping Yu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongmei Hu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengting Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongwei Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Saisai Tian
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Guangyong Zheng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dong Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiajia Hu
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Mengmeng Guo
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Minchen Cai
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiangxin Geng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanyan Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianhua Xia
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xing Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ang Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Sanhong Liu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Weidong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosafety, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
25
|
Carvalho LAR, Sousa BB, Zaidman D, Kiely-Collins H, Bernardes GJL. Design and Evaluation of PROTACs Targeting Acyl Protein Thioesterase 1. Chembiochem 2024; 25:e202300736. [PMID: 38195841 DOI: 10.1002/cbic.202300736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/22/2023] [Indexed: 01/11/2024]
Abstract
PROTAC linker design remains mostly an empirical task. We employed the PRosettaC computational software in the design of sulfonyl-fluoride-based PROTACs targeting acyl protein thioesterase 1 (APT1). The software efficiently generated ternary complex models from empirically-designed PROTACs and suggested alkyl linkers to be the preferred type of linker to target APT1. Western blotting analysis revealed efficient degradation of APT1 and activity-based protein profiling showed remarkable selectivity of an alkyl linker-based PROTAC amongst serine hydrolases. Collectively, our data suggests that combining PRosettaC and chemoproteomics can effectively assist in triaging PROTACs for synthesis and providing early data on their potency and selectivity.
Collapse
Affiliation(s)
- Luís A R Carvalho
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW
- Instituto de Medicina Molecular João Lobo Antunes, Edifício Egas Moniz, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Bárbara B Sousa
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW
- Instituto de Medicina Molecular João Lobo Antunes, Edifício Egas Moniz, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Daniel Zaidman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW
| | - Hannah Kiely-Collins
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW
| | - Gonçalo J L Bernardes
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW
- Instituto de Medicina Molecular João Lobo Antunes, Edifício Egas Moniz, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| |
Collapse
|
26
|
Chen Y, Li Y, Wu L. Protein S-palmitoylation modification: implications in tumor and tumor immune microenvironment. Front Immunol 2024; 15:1337478. [PMID: 38415253 PMCID: PMC10896991 DOI: 10.3389/fimmu.2024.1337478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
Protein S-palmitoylation is a reversible post-translational lipid modification that involves the addition of a 16-carbon palmitoyl group to a protein cysteine residue via a thioester linkage. This modification plays a crucial role in the regulation protein localization, accumulation, secretion, stability, and function. Dysregulation of protein S-palmitoylation can disrupt cellular pathways and contribute to the development of various diseases, particularly cancers. Aberrant S-palmitoylation has been extensively studied and proven to be involved in tumor initiation and growth, metastasis, and apoptosis. In addition, emerging evidence suggests that protein S-palmitoylation may also have a potential role in immune modulation. Therefore, a comprehensive understanding of the regulatory mechanisms of S-palmitoylation in tumor cells and the tumor immune microenvironment is essential to improve our understanding of this process. In this review, we summarize the recent progress of S-palmitoylation in tumors and the tumor immune microenvironment, focusing on the S-palmitoylation modification of various proteins. Furthermore, we propose new ideas for immunotherapeutic strategies through S-palmitoylation intervention.
Collapse
Affiliation(s)
- Yijiao Chen
- Department of Medical Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Lei Wu
- Department of Medical Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
27
|
Feng R, Cheng D, Chen X, Yang L, Wu H. Identification and validation of palmitoylation metabolism-related signature for liver hepatocellular carcinoma. Biochem Biophys Res Commun 2024; 692:149325. [PMID: 38056161 DOI: 10.1016/j.bbrc.2023.149325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Protein S-palmitoylation is a reversible posttranslational modification widely involved in tumor progression. Nevertheless, the function of palmitoylation metabolism in prognosis and tumor microenvironment characteristics in liver hepatocellular carcinoma (LIHC) patients is not fully understood. METHODS mRNA and clinical data of LIHC patients were obtained from the TCGA and ICGC databases. Consensus clustering was used to construct palmitoylation metabolism-related clusters. Univariate Cox and Lasso regression analyses were employed to establish a palmitoylation metabolism-related signature (PMS). ssGSEA was applied to evaluate the immune cell score in each LIHC sample. Functional enrichments were accessed through GO, KEGG and GSVA. Drug sensitivity data were downloaded from the GDSC database. RESULTS Three palmitoylation metabolism-related clusters with different prognostic and immune infiltration characteristics were constructed in LIHC. We identified PMS with distinct survival, clinical, and tumor immune microenvironment characteristics. The high PMS group had a poorer prognosis, higher infiltration of immunosuppressive cells and higher expression of immune checkpoints. ZDHHC20 exerted a tumor-promoting role in LIHC and was significantly associated with immunosuppressive cells and immunosuppressive checkpoints. Additionally, in HepG-2 and SMCC-7721 cells, si-ZDHHC20 boosted apoptosis but decreased proliferation and migration when compared to si-NC. CONCLUSION Our research revealed that PMS may accurately predict the prognosis and immune characteristics of LIHC patients. ZDHHC20 has significant clinical and immune relevance in LIHC and may contribute to the formulation of new targets for LIHC immunotherapy.
Collapse
Affiliation(s)
- Rui Feng
- Department of Interventional Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310000, China
| | - Dexin Cheng
- Department of Interventional Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310000, China
| | - Xiaochen Chen
- Department of Medical Oncology, Cancer Center, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310000, China
| | - Liu Yang
- Department of Medical Oncology, Cancer Center, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310000, China
| | - Hao Wu
- Department of Vascular Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310000, China.
| |
Collapse
|
28
|
Luo Q, Hu S, Tang Y, Yang D, Chen Q. PPT1 Promotes Growth and Inhibits Ferroptosis of Oral Squamous Cell Carcinoma Cells. Curr Cancer Drug Targets 2024; 24:1047-1060. [PMID: 38299399 DOI: 10.2174/0115680096294098240123104657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is one of the most prevalent cancers with poor prognosis in the head and neck. Elucidating molecular mechanisms underlying OSCC occurrence and development is important for the therapy. Dysregulated palmitoylation-related enzymes have been reported in several cancers but OSCC. OBJECTIVES To explore the role of palmitoyl-protein thioesterase 1 (PPT1) in OSCC. METHODS Differentially expressed genes (DEGs) and related protein-protein interaction networks between normal oral epithelial and OSCC tissues were screened and constructed via different online databases. Tumor samples from 70 OSCC patients were evaluated for the relationship between PPT1 expression level and patients'clinic characteristics. The role of PPT1 in OSCC proliferation and metastasis was studied by functional experiments including MTT, colony formation, EdU incorporation and transwell assays. Lentivirus-based constructs were used to manipulate gene expression. FerroOrange probe and malondialdehyde assay were used to determine ferroptosis. Growth of OSCC cells in vivo was investigated by a xenograft mouse model. RESULTS A total of 555 DEGs were obtained, and topological analysis revealed that PPT1 and GPX4 might play critical roles in OSCC. Increased PPT1 expression was found to be correlated with poor prognosis of OSCC patients. PPT1 effectively promoted the proliferation, migration and invasion while inhibited the ferroptosis of OSCC cells. PPT1 affected the expression of glutathione peroxidase 4 (GPX4). CONCLUSION PPT1 promoted growth and inhibited ferroptosis of OSCC cells. PPT1 might be a potential target for OSCC therapy.
Collapse
Affiliation(s)
- Qingqiong Luo
- Department of Clinical Immunology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
- Department of Laboratory Medicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 200443, Shanghai, China
| | - Sheng Hu
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yijie Tang
- Department of Laboratory Medicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 200443, Shanghai, China
| | - Dandan Yang
- Department of Laboratory Medicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 200443, Shanghai, China
| | - Qilong Chen
- Department of Clinical Immunology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| |
Collapse
|
29
|
Fuller W, Mejías R. Editorial: Protein lipidation in health and disease. Front Physiol 2023; 14:1317031. [PMID: 38028765 PMCID: PMC10643125 DOI: 10.3389/fphys.2023.1317031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- William Fuller
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Rebeca Mejías
- Department of Physiology, School of Biology, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla-IBiS, Hospital Universitario Virgen Del Rocío, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
30
|
Xu C, Xie Y, Xie P, Li J, Tong Z, Yang Y. ZDHHC9: a promising therapeutic target for triple-negative breast cancer through immune modulation and immune checkpoint blockade resistance. Discov Oncol 2023; 14:191. [PMID: 37875591 PMCID: PMC10597932 DOI: 10.1007/s12672-023-00790-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/14/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a subtype of breast cancer with limited treatment options and poor prognosis. This study aimed to identify potential therapeutic targets based on the expression profiles of differentially expressed genes (DEGs) in TNBC. METHODS The Limma package was used to identify DEGs in TCGA and GEO datasets. Immunohistochemical (IHC) analysis and western blotting were used to determine the expression of ZDHHC9 in TNBC tissues. Flow cytometry assay and tissue immunofluorescence analysis were used to detect infiltration of multiple immune cells in tumor tissue at different levels of ZDHHC9 expression. RESULTS ZDHHC9 was identified as a key factor associated with resistance to ICB therapy through weighted gene co-expression network analysis (WGCNA) and single-cell RNA sequencing (scRNA-seq). Subsequently, immunohistochemical (IHC) analysis and western blotting verified that ZDHHC9 expression was elevated in TNBC cancer tissues and that elevated expression of ZDHHC9 was associated with the poor survival of patients with TNBC. Analysis of data from several public datasets revealed that patients with high ZDHHC9 expression had an increased proportion of Ki-67 + breast cancer cells and tended to be basal-like breast cancer. In addition, in vitro and in vivo experiments demonstrated that high expression of ZDHHC9 significantly predicted the efficacy and responsiveness of immunotherapy in TNBC. CONCLUSION These findings suggest that ZDHHC9 is a valuable marker for guiding the classification, diagnosis and prognosis of TNBC and developing specific targeted therapies.
Collapse
Affiliation(s)
- Chao Xu
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, North Huanhu West Road, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Tianjin Cancer Hospital Airport Hospital, Tianjin, 300060, China
| | - Yongjie Xie
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Peng Xie
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jianming Li
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zhongsheng Tong
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, North Huanhu West Road, Tianjin, 300060, China.
| | - Yanfang Yang
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, North Huanhu West Road, Tianjin, 300060, China.
| |
Collapse
|
31
|
Soh PXY, Khatkar MS, Williamson P. Lymphoma in Border Collies: Genome-Wide Association and Pedigree Analysis. Vet Sci 2023; 10:581. [PMID: 37756103 PMCID: PMC10536503 DOI: 10.3390/vetsci10090581] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
There has been considerable interest in studying cancer in dogs and its potential as a model system for humans. One area of research has been the search for genetic risk variants in canine lymphoma, which is amongst the most common canine cancers. Previous studies have focused on a limited number of breeds, but none have included Border Collies. The aims of this study were to identify relationships between Border Collie lymphoma cases through an extensive pedigree investigation and to utilise relationship information to conduct genome-wide association study (GWAS) analyses to identify risk regions associated with lymphoma. The expanded pedigree analysis included 83,000 Border Collies, with 71 identified lymphoma cases. The analysis identified affected close relatives, and a common ancestor was identified for 54 cases. For the genomic study, a GWAS was designed to incorporate lymphoma cases, putative "carriers", and controls. A case-control GWAS was also conducted as a comparison. Both analyses showed significant SNPs in regions on chromosomes 18 and 27. Putative top candidate genes from these regions included DLA-79, WNT10B, LMBR1L, KMT2D, and CCNT1.
Collapse
Affiliation(s)
- Pamela Xing Yi Soh
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia;
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Mehar Singh Khatkar
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia;
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia
| | - Peter Williamson
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia;
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia;
| |
Collapse
|
32
|
Li M, Zhang L, Chen CW. Diverse Roles of Protein Palmitoylation in Cancer Progression, Immunity, Stemness, and Beyond. Cells 2023; 12:2209. [PMID: 37759431 PMCID: PMC10526800 DOI: 10.3390/cells12182209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Protein S-palmitoylation, a type of post-translational modification, refers to the reversible process of attachment of a fatty acyl chain-a 16-carbon palmitate acid-to the specific cysteine residues on target proteins. By adding the lipid chain to proteins, it increases the hydrophobicity of proteins and modulates protein stability, interaction with effector proteins, subcellular localization, and membrane trafficking. Palmitoylation is catalyzed by a group of zinc finger DHHC-containing proteins (ZDHHCs), whereas depalmitoylation is catalyzed by a family of acyl-protein thioesterases. Increasing numbers of oncoproteins and tumor suppressors have been identified to be palmitoylated, and palmitoylation is essential for their functions. Understanding how palmitoylation influences the function of individual proteins, the physiological roles of palmitoylation, and how dysregulated palmitoylation leads to pathological consequences are important drivers of current research in this research field. Further, due to the critical roles in modifying functions of oncoproteins and tumor suppressors, targeting palmitoylation has been used as a candidate therapeutic strategy for cancer treatment. Here, based on recent literatures, we discuss the progress of investigating roles of palmitoylation in regulating cancer progression, immune responses against cancer, and cancer stem cell properties.
Collapse
Affiliation(s)
- Mingli Li
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Leisi Zhang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
33
|
Villanueva CE, Hagenbuch B. Palmitoylation of solute carriers. Biochem Pharmacol 2023; 215:115695. [PMID: 37481134 PMCID: PMC10530500 DOI: 10.1016/j.bcp.2023.115695] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023]
Abstract
Post-translational modifications are an important mechanism in the regulation of protein expression, function, and degradation. Well-known post-translational modifications are phosphorylation, glycosylation, and ubiquitination. However, lipid modifications, including myristoylation, prenylation, and palmitoylation, are poorly studied. Since the early 2000s, researchers have become more interested in lipid modifications, especially palmitoylation. The number of articles in PubMed increased from about 350 between 2000 and 2005 to more than 600 annually during the past ten years. S-palmitoylation, where the 16-carbon saturated (C16:0) palmitic acid is added to free cysteine residues of proteins, is a reversible protein modification that can affect the expression, membrane localization, and function of the modified proteins. Various diseases like Huntington's and Alzheimer's disease have been linked to changes in protein palmitoylation. In humans, the addition of palmitic acid is mediated by 23 palmitoyl acyltransferases, also called DHHC proteins. The modification can be reversed by a few thioesterases or hydrolases. Numerous soluble and membrane-attached proteins are known to be palmitoylated, but among the approximately 400 solute carriers that are classified in 66 families, only 15 found in 8 families have so far been documented to be palmitoylated. Among the best-characterized transporters are the glucose transporters GLUT1 (SLC2A1) and GLUT4 (SLC2A4), the three monoamine transporters norepinephrine transporter (NET; SLC6A2), dopamine transporter (DAT; SLC6A3), and serotonin transporter (SERT; SLC6A4), and the sodium-calcium exchanger NCX1 (SLC8A1). While there is evidence from recent proteomics experiments that numerous solute carriers are palmitoylated, no details beyond the 15 transporters covered in this review are available.
Collapse
Affiliation(s)
- Cecilia E Villanueva
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, United States.
| |
Collapse
|
34
|
Lv D, Cao X, Zhong L, Dong Y, Xu Z, Rong Y, Xu H, Wang Z, Yang H, Yin R, Chen M, Ke C, Hu Z, Deng W, Tang B. Targeting phenylpyruvate restrains excessive NLRP3 inflammasome activation and pathological inflammation in diabetic wound healing. Cell Rep Med 2023; 4:101129. [PMID: 37480849 PMCID: PMC10439185 DOI: 10.1016/j.xcrm.2023.101129] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/30/2023] [Accepted: 06/27/2023] [Indexed: 07/24/2023]
Abstract
Moderate inflammation is essential for standard wound healing. In pathological conditions, such as diabetes, protracted and refractory wounds are associated with excessive inflammation, manifested by persistent proinflammatory macrophage states. However, the mechanisms are still unclear. Herein, we perform a metabolomic profile and find a significant phenylpyruvate accumulation in diabetic foot ulcers. Increased phenylpyruvate impairs wound healing and augments inflammatory responses, whereas reducing phenylpyruvate via dietary phenylalanine restriction relieves uncontrolled inflammation and benefits diabetic wounds. Mechanistically, phenylpyruvate is ingested into macrophages in a scavenger receptor CD36-dependent manner, binds to PPT1, and inhibits depalmitoylase activity, thus increasing palmitoylation of the NLRP3 protein. Increased NLRP3 palmitoylation is found to enhance NLRP3 protein stability, decrease lysosome degradation, and promote NLRP3 inflammasome activation and the release of inflammatory factors, such as interleukin (IL)-1β, finally triggering the proinflammatory macrophage phenotype. Our study suggests a potential strategy of targeting phenylpyruvate to prevent excessive inflammation in diabetic wounds.
Collapse
Affiliation(s)
- Dongming Lv
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xiaoling Cao
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Li Zhong
- Center of Digestive Diseases, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 517108, China
| | - Yunxian Dong
- Department of Plastic Surgery, Guangdong Second Provincial General Hospital, Southern Medical University, Guangzhou, Guangdong 510317, China
| | - Zhongye Xu
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yanchao Rong
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Hailin Xu
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zhiyong Wang
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Hao Yang
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Rong Yin
- Department of Dermatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Miao Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong 510080, China
| | - Chao Ke
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong 510080, China
| | - Zhicheng Hu
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong 510080, China.
| | - Bing Tang
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
35
|
Wang X, Zhang C, Bao N. Molecular mechanism of palmitic acid and its derivatives in tumor progression. Front Oncol 2023; 13:1224125. [PMID: 37637038 PMCID: PMC10447256 DOI: 10.3389/fonc.2023.1224125] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Palmitic acid (PA) is a saturated fatty acid commonly found in coconut oil and palm oil. It serves as an energy source for the body and plays a role in the structure and function of cell membranes. Beyond its industrial applications, PA has gained attention for its potential therapeutic properties. Modern pharmacological studies have demonstrated that PA exhibits anti-inflammatory, antioxidant, and immune-enhancing effects. In recent years, PA has emerged as a promising anti-tumor agent with demonstrated efficacy against various malignancies including gastric cancer, liver cancer, cervical cancer, breast cancer, and colorectal cancer. Its anti-tumor effects encompass inducing apoptosis in tumor cells, inhibiting tumor cell proliferation, suppressing metastasis and invasion, enhancing sensitivity to chemotherapy, and improving immune function. The main anticancer mechanism of palmitic acid (PA) involves the induction of cell apoptosis through the mitochondrial pathway, facilitated by the promotion of intracellular reactive oxygen species (ROS) generation. PA also exhibits interference with the cancer cell cycle, leading to cell cycle arrest predominantly in the G1 phase. Moreover, PA induces programmed cell autophagy death, inhibits cell migration, invasion, and angiogenesis, and synergistically enhances the efficacy of chemotherapy drugs while reducing adverse reactions. PA acts on various intracellular and extracellular targets, modulating tumor cell signaling pathways, including the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), endoplasmic reticulum (ER), B Cell Lymphoma-2 (Bcl-2), P53, and other signaling pathways. Furthermore, derivatives of PA play a significant regulatory role in tumor resistance processes. This paper provides a comprehensive review of recent studies investigating the anti-tumor effects of PA. It summarizes the underlying mechanisms through which PA exerts its anti-tumor effects, aiming to inspire new perspectives for the treatment of malignant tumors in clinical settings and the development of novel anti-cancer drugs.
Collapse
Affiliation(s)
- Xitan Wang
- Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Chaonan Zhang
- Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Weifang Medical University, Weifang, Shandong, China
| | - Na Bao
- Jining First People’s Hospital, Jining, Shandong, China
| |
Collapse
|
36
|
Yang YH, Wen R, Yang N, Zhang TN, Liu CF. Roles of protein post-translational modifications in glucose and lipid metabolism: mechanisms and perspectives. Mol Med 2023; 29:93. [PMID: 37415097 DOI: 10.1186/s10020-023-00684-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023] Open
Abstract
The metabolism of glucose and lipids is essential for energy production in the body, and dysregulation of the metabolic pathways of these molecules is implicated in various acute and chronic diseases, such as type 2 diabetes, Alzheimer's disease, atherosclerosis (AS), obesity, tumor, and sepsis. Post-translational modifications (PTMs) of proteins, which involve the addition or removal of covalent functional groups, play a crucial role in regulating protein structure, localization function, and activity. Common PTMs include phosphorylation, acetylation, ubiquitination, methylation, and glycosylation. Emerging evidence indicates that PTMs are significant in modulating glucose and lipid metabolism by modifying key enzymes or proteins. In this review, we summarize the current understanding of the role and regulatory mechanisms of PTMs in glucose and lipid metabolism, with a focus on their involvement in disease progression associated with aberrant metabolism. Furthermore, we discuss the future prospects of PTMs, highlighting their potential for gaining deeper insights into glucose and lipid metabolism and related diseases.
Collapse
Affiliation(s)
- Yu-Hang Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China
| | - Ri Wen
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China.
| | - Chun-Feng Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China.
| |
Collapse
|
37
|
Wang X, Zhang Y, Wu Y, Cheng H, Wang X. The role of E3 ubiquitin ligases and deubiquitinases in bladder cancer development and immunotherapy. Front Immunol 2023; 14:1202633. [PMID: 37215134 PMCID: PMC10196180 DOI: 10.3389/fimmu.2023.1202633] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Bladder cancer is one of the common malignant urothelial tumors. Post-translational modification (PTMs), including ubiquitination, acetylation, methylation, and phosphorylation, have been revealed to participate in bladder cancer initiation and progression. Ubiquitination is the common PTM, which is conducted by E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme and E3 ubiquitin-protein ligase. E3 ubiquitin ligases play a key role in bladder oncogenesis and progression and drug resistance in bladder cancer. Therefore, in this review, we summarize current knowledge regarding the functions of E3 ubiquitin ligases in bladder cancer development. Moreover, we provide the evidence of E3 ubiquitin ligases in regulation of immunotherapy in bladder cancer. Furthermore, we mention the multiple compounds that target E3 ubiquitin ligases to improve the therapy efficacy of bladder cancer. We hope our review can stimulate researchers and clinicians to investigate whether and how targeting E3 ubiquitin ligases acts a novel strategy for bladder cancer therapy.
Collapse
|
38
|
Novel Insights into the Role of Kras in Myeloid Differentiation: Engaging with Wnt/β-Catenin Signaling. Cells 2023; 12:cells12020322. [PMID: 36672256 PMCID: PMC9857056 DOI: 10.3390/cells12020322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Cells of the HL-60 myeloid leukemia cell line can be differentiated into neutrophil-like cells by treatment with dimethyl sulfoxide (DMSO). The molecular mechanisms involved in this differentiation process, however, remain unclear. This review focuses on the differentiation of HL-60 cells. Although the Ras proteins, a group of small GTP-binding proteins, are ubiquitously expressed and highly homologous, each has specific molecular functions. Kras was shown to be essential for normal mouse development, whereas Hras and Nras are not. Kras knockout mice develop profound hematopoietic defects, indicating that Kras is required for hematopoiesis in adults. The Wnt/β-catenin signaling pathway plays a crucial role in regulating the homeostasis of hematopoietic cells. The protein β-catenin is a key player in the Wnt/β-catenin signaling pathway. A great deal of evidence shows that the Wnt/β-catenin signaling pathway is deregulated in malignant tumors, including hematological malignancies. Wild-type Kras acts as a tumor suppressor during DMSO-induced differentiation of HL-60 cells. Upon DMSO treatment, Kras translocates to the plasma membrane, and its activity is enhanced. Inhibition of Kras attenuates CD11b expression. DMSO also elevates levels of GSK3β phosphorylation, resulting in the release of unphosphorylated β-catenin from the β-catenin destruction complex and its accumulation in the cytoplasm. The accumulated β-catenin subsequently translocates into the nucleus. Inhibition of Kras attenuates Lef/Tcf-sensitive transcription activity. Thus, upon treatment of HL-60 cells with DMSO, wild-type Kras reacts with the Wnt/β-catenin pathway, thereby regulating the granulocytic differentiation of HL-60 cells. Wild-type Kras and the Wnt/β-catenin signaling pathway are activated sequentially, increasing the levels of expression of C/EBPα, C/EBPε, and granulocyte colony-stimulating factor (G-CSF) receptor.
Collapse
|
39
|
Extracellular Vesicles: New Classification and Tumor Immunosuppression. BIOLOGY 2023; 12:biology12010110. [PMID: 36671802 PMCID: PMC9856004 DOI: 10.3390/biology12010110] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived membrane-surrounded vesicles carrying various types of molecules. These EV cargoes are often used as pathophysiological biomarkers and delivered to recipient cells whose fates are often altered in local and distant tissues. Classical EVs are exosomes, microvesicles, and apoptotic bodies, while recent studies discovered autophagic EVs, stressed EVs, and matrix vesicles. Here, we classify classical and new EVs and non-EV nanoparticles. We also review EVs-mediated intercellular communication between cancer cells and various types of tumor-associated cells, such as cancer-associated fibroblasts, adipocytes, blood vessels, lymphatic vessels, and immune cells. Of note, cancer EVs play crucial roles in immunosuppression, immune evasion, and immunotherapy resistance. Thus, cancer EVs change hot tumors into cold ones. Moreover, cancer EVs affect nonimmune cells to promote cellular transformation, including epithelial-to-mesenchymal transition (EMT), chemoresistance, tumor matrix production, destruction of biological barriers, angiogenesis, lymphangiogenesis, and metastatic niche formation.
Collapse
|