1
|
Li T, Sun G, Ye H, Song C, Shen Y, Cheng Y, Zou Y, Fang Z, Shi J, Wang K, Dai L, Wang P. ESCCPred: a machine learning model for diagnostic prediction of early esophageal squamous cell carcinoma using autoantibody profiles. Br J Cancer 2024; 131:883-894. [PMID: 38956246 PMCID: PMC11369250 DOI: 10.1038/s41416-024-02781-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a deadly cancer with no clinically ideal biomarkers for early diagnosis. The objective of this study was to develop and validate a user-friendly diagnostic tool for early ESCC detection. METHODS The study encompassed three phases: discovery, verification, and validation, comprising a total of 1309 individuals. Serum autoantibodies were profiled using the HuProtTM human proteome microarray, and autoantibody levels were measured using the enzyme-linked immunosorbent assay (ELISA). Twelve machine learning algorithms were employed to construct diagnostic models, and evaluated using the area under the receiver operating characteristic curve (AUC). The model application was facilitated through R Shiny, providing a graphical interface. RESULTS Thirteen autoantibodies targeting TAAs (CAST, FAM131A, GABPA, HDAC1, HDGFL1, HSF1, ISM2, PTMS, RNF219, SMARCE1, SNAP25, SRPK2, and ZPR1) were identified in the discovery phase. Subsequent verification and validation phases identified five TAAbs (anti-CAST, anti-HDAC1, anti-HSF1, anti-PTMS, and anti-ZPR1) that exhibited significant differences between ESCC and control subjects (P < 0.05). The support vector machine (SVM) model demonstrated robust performance, with AUCs of 0.86 (95% CI: 0.82-0.89) in the training set and 0.83 (95% CI: 0.78-0.88) in the test set. For early-stage ESCC, the SVM model achieved AUCs of 0.83 (95% CI: 0.79-0.88) in the training set and 0.83 (95% CI: 0.77-0.90) in the test set. Notably, promising results were observed for high-grade intraepithelial neoplasia, with an AUC of 0.87 (95% CI: 0.77-0.98). The web-based implementation of the early ESCC diagnostic tool is publicly accessible at https://litdong.shinyapps.io/ESCCPred/ . CONCLUSION This study provides a promising and easy-to-use diagnostic prediction model for early ESCC detection. It holds promise for improving early detection strategies and has potential implications for public health.
Collapse
Affiliation(s)
- Tiandong Li
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan Provinc, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Guiying Sun
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan Provinc, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, China
- Henan Children's Hospital, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, 450018, Henan Province, China
| | - Hua Ye
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan Provinc, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Caijuan Song
- The Institution for Chronic and Noncommunicable Disease Control and Prevention, Zhengzhou Center for Disease Control and Prevention, Zhengzhou, 450052, Henan Provinc, China
| | - Yajing Shen
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan Provinc, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Yifan Cheng
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan Provinc, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Yuanlin Zou
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan Provinc, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Zhaoyang Fang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan Provinc, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Jianxiang Shi
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, China
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Keyan Wang
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, China
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Liping Dai
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, China
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Peng Wang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan Provinc, China.
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, China.
| |
Collapse
|
2
|
Nemr OT, Abdel-wahab MS, Hamza ZS, Ahmed SA, El-Bassuony AA, Abdel-Gawad OF, Mohamed HS. Investigating the Anticancer and Antioxidant Potentials of a Polymer-Grafted Sodium Alginate Composite Embedded with CuO and TiO2 Nanoparticles. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2024; 32:2713-2728. [DOI: 10.1007/s10924-024-03255-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 01/04/2025]
Abstract
AbstractIn this study, we conducted the synthesis of a composite material by grafting an acrylonitrile-co-styrene (AN-co-St) polymer into sodium alginate and incorporating CuO (copper oxide) and TiO2 (titanium dioxide) nanoparticles. The primary objective was to investigate the potential anticancer and antioxidant activities of the composite material. First, CuO and TiO2 nanoparticles were synthesized and characterized for their size, morphology, and surface properties. Subsequently, these nanoparticles were integrated into the sodium alginate matrix, which had been grafted with the AN-co-St polymer, resulting in the formation of the composite material. To confirm successful nanoparticle incorporation and assess the structural integrity of the composite, various techniques such as X-ray diffraction analysis (XRD), scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) were employed. The composite material’s anticancer and antioxidant activities were then evaluated. In vitro cell viability assays using the HepG-2 cell line were performed to assess potential cytotoxic effects, while antioxidant (DPPH) assays were conducted to determine the composite’s ability to scavenge free radicals and protect against oxidative stress. Preliminary results indicate that the composite material demonstrated promising anticancer and antioxidant activities. The presence of CuO and TiO2 nanoparticles within the composite contributed to these effects, as these nanoparticles are known to possess anticancer and antioxidant properties. Furthermore, the grafting of the AN-co-St polymer into sodium alginate enhanced the overall performance and stability of the composite material.
Collapse
|
3
|
Shen Y, Chen J, Wu J, Li T, Yi C, Wang K, Wang P, Sun C, Ye H. Combination of an Autoantibody Panel and Alpha-Fetoprotein for Early Detection of Hepatitis B Virus-Associated Hepatocellular Carcinoma. Cancer Prev Res (Phila) 2024; 17:227-235. [PMID: 38489403 DOI: 10.1158/1940-6207.capr-23-0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/04/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
The purpose of this study was to identify biomarkers associated with hepatitis B virus-associated hepatocellular carcinoma (HBV-HCC) and to develop a new combination with good diagnostic performance. This study was divided into four phases: discovery, verification, validation, and modeling. A total of four candidate tumor-associated autoantibodies (TAAb; anti-ZIC2, anti-PCNA, anti-CDC37L1, and anti-DUSP6) were identified by human proteome microarray (52 samples) and bioinformatics analysis. Subsequently, these candidate TAAbs were further confirmed by indirect ELISA with two testing cohorts (120 samples for verification and 663 samples for validation). The AUC for these four TAAbs to identify patients with HBV-HCC from chronic hepatitis B (CHB) patients ranged from 0.693 to 0.739. Finally, a diagnostic panel with three TAAbs (anti-ZIC2, anti-CDC37L1, and anti-DUSP6) was developed. This panel showed superior diagnostic efficiency in identifying early HBV-HCC compared with alpha-fetoprotein (AFP), with an AUC of 0.834 [95% confidence interval (CI), 0.772-0.897] for this panel and 0.727 (95% CI, 0.642-0.812) for AFP (P = 0.0359). In addition, the AUC for this panel to identify AFP-negative patients with HBV-HCC was 0.796 (95% CI, 0.734-0.858), with a sensitivity of 52.4% and a specificity of 89.0%. Importantly, the panel in combination with AFP significantly increased the positive rate for early HBV-HCC to 84.1% (P = 0.005) and for late HBV-HCC to 96.3% (P < 0.001). Our findings suggest that AFP and the autoantibody panel may be independent but complementary serologic biomarkers for HBV-HCC detection. PREVENTION RELEVANCE We developed a robust diagnostic panel for identifying patients with HBV-HCC from patients with CHB. This autoantibody panel provided superior diagnostic performance for HBV-HCC at an early stage and/or with negative AFP results. Our findings suggest that AFP and the autoantibody panel may be independent but complementary biomarkers for HBV-HCC detection.
Collapse
MESH Headings
- Adult
- Female
- Humans
- Male
- Middle Aged
- alpha-Fetoproteins/analysis
- alpha-Fetoproteins/immunology
- Autoantibodies/blood
- Autoantibodies/immunology
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/immunology
- Carcinoma, Hepatocellular/virology
- Carcinoma, Hepatocellular/diagnosis
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/blood
- Early Detection of Cancer/methods
- Enzyme-Linked Immunosorbent Assay
- Hepatitis B virus/immunology
- Hepatitis B virus/isolation & purification
- Hepatitis B, Chronic/immunology
- Hepatitis B, Chronic/virology
- Hepatitis B, Chronic/complications
- Hepatitis B, Chronic/blood
- Hepatitis B, Chronic/diagnosis
- Liver Neoplasms/virology
- Liver Neoplasms/diagnosis
- Liver Neoplasms/immunology
- Liver Neoplasms/blood
- Aged
Collapse
Affiliation(s)
- Yajing Shen
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- The State Key Laboratory of Esophageal Cancer Prevention & Treatment and The Key Laboratory of Tumor Epidemiology of Henan, Zhengzhou, Henan, China
| | - Jiajun Chen
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jinyu Wu
- Xi'an Center for Disease Control and Prevention, Xi'an, Shaanxi, China
| | - Tiandong Li
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- The State Key Laboratory of Esophageal Cancer Prevention & Treatment and The Key Laboratory of Tumor Epidemiology of Henan, Zhengzhou, Henan, China
| | - Chuncheng Yi
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- The State Key Laboratory of Esophageal Cancer Prevention & Treatment and The Key Laboratory of Tumor Epidemiology of Henan, Zhengzhou, Henan, China
| | - Keyan Wang
- The State Key Laboratory of Esophageal Cancer Prevention & Treatment and The Key Laboratory of Tumor Epidemiology of Henan, Zhengzhou, Henan, China
| | - Peng Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- The State Key Laboratory of Esophageal Cancer Prevention & Treatment and The Key Laboratory of Tumor Epidemiology of Henan, Zhengzhou, Henan, China
| | - Changqing Sun
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- School of Nursing and Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Hua Ye
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- The State Key Laboratory of Esophageal Cancer Prevention & Treatment and The Key Laboratory of Tumor Epidemiology of Henan, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Aggarwal A, Singh TK, Pham M, Godwin M, Chen R, McIntyre TM, Scalise A, Chung MK, Jennings C, Ali M, Park H, Englund K, Khorana AA, Svensson LG, Kapadia S, McCrae KR, Cameron SJ. Dysregulated platelet function in patients with postacute sequelae of COVID-19. Vasc Med 2024; 29:125-134. [PMID: 38334067 PMCID: PMC11164201 DOI: 10.1177/1358863x231224383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
BACKGROUND Postacute sequelae of COVID-19 (PASC), also referred to as "Long COVID", sometimes follows COVID-19, a disease caused by SARS-CoV-2. Although SARS-CoV-2 is well known to promote a prothrombotic state, less is known about the thrombosis risk in PASC. Our objective was to evaluate platelet function and thrombotic potential in patients following recovery from SARS-CoV-2, but with clear symptoms of patients with PASC. METHODS patients with PASC and matched healthy controls were enrolled in the study on average 15 months after documented SARS-CoV-2 infection. Platelet activation was evaluated by light transmission aggregometry (LTA) and flow cytometry in response to platelet surface receptor agonists. Thrombosis in platelet-deplete plasma was evaluated by Factor Xa activity. A microfluidics system assessed thrombosis in whole blood under shear stress conditions. RESULTS A mild increase in platelet aggregation in patients with PASC through the thromboxane receptor was observed, and platelet activation through the glycoprotein VI (GPVI) receptor was decreased in patients with PASC compared to age- and sex-matched healthy controls. Thrombosis under shear conditions as well as Factor Xa activity were reduced in patients with PASC. Plasma from patients with PASC was an extremely potent activator of washed, healthy platelets - a phenomenon not observed when stimulating healthy platelets after incubation with plasma from healthy individuals. CONCLUSIONS patients with PASC show dysregulated responses in platelets and coagulation in plasma, likely caused by a circulating molecule that promotes thrombosis. A hitherto undescribed protective response appears to exist in patients with PASC to counterbalance ongoing thrombosis that is common to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Anu Aggarwal
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Tamanna K Singh
- Section of Vascular Medicine, Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Michael Pham
- Section of Vascular Medicine, Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Matthew Godwin
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Rui Chen
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Thomas M McIntyre
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Alliefair Scalise
- Section of Vascular Medicine, Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Mina K Chung
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
- Section of Vascular Medicine, Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Courtney Jennings
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Mariya Ali
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Hiijun Park
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Kristin Englund
- Department of Infectious Disease, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Alok A Khorana
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Lars G Svensson
- Department of Cardiac Surgery, Heart Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Samir Kapadia
- Section of Vascular Medicine, Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Keith R McCrae
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
- Section of Vascular Medicine, Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Scott J Cameron
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
- Section of Vascular Medicine, Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
5
|
Li T, Wang P, Sun G, Zou Y, Cheng Y, Wang H, Lu Y, Shi J, Wang K, Zhang Q, Ye H. hccTAAb Atlas: An Integrated Knowledge Database for Tumor-Associated Autoantibodies in Hepatocellular Carcinoma. J Proteome Res 2024; 23:728-737. [PMID: 38156953 DOI: 10.1021/acs.jproteome.3c00579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Tumor-associated autoantibodies (TAAbs) have demonstrated potential as biomarkers for cancer detection. However, the understanding of their role in hepatocellular carcinoma (HCC) remains limited. In this study, we aimed to systematically collect and standardize information about these TAAbs and establish a comprehensive database as a platform for in-depth research. A total of 170 TAAbs were identified from published papers retrieved from PubMed, Web of Science, and Embase. Following normative reannotation, these TAAbs were referred to as 162 official symbols. The hccTAAb (tumor-associated autoantibodies in hepatocellular carcinoma) atlas was developed using the R Shiny framework and incorporating literature-based and multiomics data sets. This comprehensive online resource provides key information such as sensitivity, specificity, and additional details such as official symbols, official full names, UniProt, NCBI, HPA, neXtProt, and aliases through hyperlinks. Additionally, hccTAAb offers six analytical modules for visualizing expression profiles, survival analysis, immune infiltration, similarity analysis, DNA methylation, and DNA mutation analysis. Overall, the hccTAAb Atlas provides valuable insights into the mechanisms underlying TAAb and has the potential to enhance the diagnosis and treatment of HCC using autoantibodies. The hccTAAb Atlas is freely accessible at https://nscc.v.zzu.edu.cn/hccTAAb/.
Collapse
Affiliation(s)
- Tiandong Li
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Peng Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Guiying Sun
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Yuanlin Zou
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Yifan Cheng
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Han Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Yin Lu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Jianxiang Shi
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Keyan Wang
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Qiang Zhang
- School of Nursing and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Hua Ye
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
6
|
Aggarwal A, Singh TK, Pham M, Godwin M, Chen R, McIntyre TM, Scalise A, Chung MK, Jennings C, Ali M, Park H, Englund K, Khorana AA, Svensson LG, Kapadia S, McCrae KR, Cameron SJ. Dysregulated Platelet Function in Patients with Post-Acute Sequelae of COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.18.545507. [PMID: 38045316 PMCID: PMC10690211 DOI: 10.1101/2023.06.18.545507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Background Post-acute sequelae of COVID-19 (PASC), also referred as Long-COVID, sometimes follows COVID-19, a disease caused by SARS-CoV-2. While SARS-CoV-2 is well-known to promote a prothrombotic state, less is known about the thrombosis risk in PASC. Aim Our objective was to evaluate the platelet function and thrombotic potential in patients following recovery from SARS-CoV-2 with clear symptoms of PASC. Methods PASC patients and matched healthy controls were enrolled in the study on average 15 months after documented SARS-CoV-2 infection. Platelet activation was evaluated by Light Transmission Aggregometry (LTA) and flow cytometry in response to platelet surface receptor agonists. Thrombosis in platelet-deplete plasma was evaluated by Factor Xa activity. A microfluidics system assessed thrombosis in whole blood under shear stress conditions. Results A mild increase in platelet aggregation in PASC patients through the thromboxane receptor was observed and platelet activation through the glycoprotein VI (GPVI) receptor was decreased in PASC patients compared to age- and sex-matched healthy controls. Thrombosis under shear conditions as well as Factor Xa activity were reduced in PASC patients. Plasma from PASC patients was an extremely potent activator of washed, healthy platelets - a phenomenon not observed when stimulating healthy platelets after incubation with plasma from healthy individuals. Conclusions PASC patients show dysregulated responses in platelets and coagulation in plasma, likely caused by a circulating molecule that promotes thrombosis. A hitherto undescribed protective response appears to exists in PASC patients to counterbalance ongoing thrombosis that is common to SARS-CoV-2 infection.
Collapse
|
7
|
Chen Z, Xing J, Zheng C, Zhu Q, He P, Zhou D, Li X, Li Y, Qi S, Ouyang Q, Zhang B, Xie Y, Ren J, Cao B, Zhu S, Huang J. Identification of novel serum autoantibody biomarkers for early esophageal squamous cell carcinoma and high-grade intraepithelial neoplasia detection. Front Oncol 2023; 13:1161489. [PMID: 37251926 PMCID: PMC10213680 DOI: 10.3389/fonc.2023.1161489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Background Early diagnosis of esophageal squamous cell carcinoma (ESCC) is critical for effective treatment and optimal prognosis; however, less study on serum biomarkers for the early ESCC detection has been reported. The aim of this study was to identify and evaluate several serum autoantibody biomarkers in early ESCC. Methods We initially screened candidate tumor-associated autoantibodies (TAAbs) associated with ESCC by serological proteome analysis (SERPA) combined with nanoliter-liquid chromatography combined with quadrupole time of flight tandem mass spectrometry (nano-LC-Q-TOF-MS/MS), and the TAAbs were further subjected to analysis by Enzyme-linked immunosorbent assay (ELISA) in a clinical cohort (386 participants, including 161 patients with ESCC, 49 patients with high-grade intraepithelial neoplasia [HGIN] and 176 healthy controls [HC]). Receiver operating characteristic (ROC) curve was plotted to evaluate the diagnostic performance. Results The serum levels of CETN2 and POFUT1 autoantibodies which were identified by SERPA were statistically different between ESCC or HGIN patients and HC in ELISA analysis with the area under the curve (AUC) values of 0.709 (95%CI: 0.654-0.764) and 0.741 (95%CI: 0.689-0.793), 0.717 (95%CI: 0.634-0.800) and 0.703 (95%CI: 0.627-0.779) for detection of ESCC and HGIN, respectively. Combining these two markers, the AUCs were 0.781 (95%CI: 0.733-0.829), 0.754 (95%CI: 0.694-0.814) and 0.756 (95%CI: 0.686-0.827) when distinguishing ESCC, early ESCC and HGIN from HC, respectively. Meanwhile, the expression of CETN2 and POFUT1 was found to be correlated with ESCC progression. Conclusions Our data suggest that CETN2 and POFUT1 autoantibodies have potential diagnostic value for ESCC and HGIN, which may provide novel insights for early ESCC and precancerous lesions detection.
Collapse
Affiliation(s)
- Zhibin Chen
- Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jie Xing
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Cuiling Zheng
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qianyu Zhu
- Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Pingping He
- Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Donghu Zhou
- Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaojin Li
- Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yanmeng Li
- Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Saiping Qi
- Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qin Ouyang
- Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bei Zhang
- Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yibin Xie
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiansong Ren
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bangwei Cao
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shengtao Zhu
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jian Huang
- Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|