1
|
Ruddell SA, Mostert D, Sieber SA. Target identification of usnic acid in bacterial and human cells. RSC Chem Biol 2024; 5:617-621. [PMID: 38966671 PMCID: PMC11221533 DOI: 10.1039/d4cb00040d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/07/2024] [Indexed: 07/06/2024] Open
Abstract
Usnic acid is a natural product with versatile biological activities against various organisms. Here, we utilise a chemical proteomic strategy to gain insights into its target scope in bacterial and human cells. First, we excluded DNA binding as a major reason for its antibacterial activity, and second, we commenced with target profiling, which unravelled several metal cofactor-dependent enzymes in both species indicating a polypharmacological mode of action. Interestingly, our synthetic studies revealed a selectivity switch at usnic acid, which maintains antibacterial activity but lacks strong cytotoxic effects.
Collapse
Affiliation(s)
- Stuart A Ruddell
- Center for Functional Protein Assemblies, Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich Ernst-Otto-Fischer-Straße 8 85748 Garching Germany
| | - Dietrich Mostert
- Center for Functional Protein Assemblies, Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich Ernst-Otto-Fischer-Straße 8 85748 Garching Germany
| | - Stephan A Sieber
- Center for Functional Protein Assemblies, Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich Ernst-Otto-Fischer-Straße 8 85748 Garching Germany
| |
Collapse
|
2
|
Kraus JB, Huang ZP, Li YP, Cui LW, Wang SJ, Li JF, Liu F, Wang Y, Strier KB, Xiao W. Variation in monthly and seasonal elevation use impacts behavioral and dietary flexibility in Rhinopithecus bieti. Am J Primatol 2024; 86:e23627. [PMID: 38613565 DOI: 10.1002/ajp.23627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
Black-and-white snub-nosed monkeys (Rhinopithecus bieti) rely on behavioral and dietary flexibility to survive in temperate latitudes at high-elevation habitats characterized by climate and resource seasonality. However, little is known about how elevation influences their behavioral and dietary flexibility at monthly or seasonal scales. We studied an isolated R. bieti population at Mt. Lasha in the Yunling Provincial Nature Reserve, Yunnan, China, between May 2008 and August 2016 to assess the impacts of elevation on feeding behavior and diet. Across our sample, R. bieti occupied elevations between 3031 and 3637 m above mean sea level (amsl), with a 315.1 m amsl range across months and a 247.3 m amsl range across seasons. Contrary to expectations, individuals spent less time feeding when ranging across higher elevations. Lichen consumption correlated with elevation use across months and seasons, with individuals spending more time feeding on this important resource at higher elevations. Leaf consumption only correlated with elevation use during the spring. Our results suggest that R. bieti do not maximize their food intake at higher elevations and that monthly and seasonal changes in lichen and leaf consumption largely explain variation in elevation use. These findings shed light on the responses of R. bieti to environmental change and offer insight into strategies for conserving their habitats in the face of anthropogenic disturbance.
Collapse
Affiliation(s)
- Jacob B Kraus
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Zhi-Pang Huang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forest University, Kunming, Yunnan, China
| | - Yan-Pang Li
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
| | - Liang-Wei Cui
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forest University, Kunming, Yunnan, China
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali, Yunnan, China
| | - Shuang-Jin Wang
- Party School of YuXi committee of C.P.C, Yuxi, Yunnan, China
| | - Jin-Fa Li
- Administration Bureau of Nuozhadu Provincial Nature Reserve, Pu'er, Yunnan, China
| | - Feng Liu
- Xizang Autonomous Region Research Institute of Forestry Inventory and Planning, Lhasa, China
| | - Yun Wang
- Forestry Bureau of Qianxinan Buyei and Miao Autonomous Prefecture, Guizhou, China
| | - Karen B Strier
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali, Yunnan, China
- Department of Anthropology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wen Xiao
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali, Yunnan, China
| |
Collapse
|
3
|
Chen S, Ren Z, Guo L. Hepatotoxicity of usnic acid and underlying mechanisms. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024:1-22. [PMID: 38904414 DOI: 10.1080/26896583.2024.2366737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Since usnic acid was first isolated in 1844 as a prominent secondary lichen metabolite, it has been used for various purposes worldwide. Usnic acid has been claimed to possess numerous therapeutic properties, including antimicrobial, anti-inflammatory, antiviral, anti-proliferative, and antipyretic activities. Approximately two decades ago, crude extracts of usnic acid or pure usnic acid were marketed in the United States as dietary supplements for aiding in weight loss as a "fat-burner" and gained popularity in the bodybuilding community; however, hepatotoxicity was documented for some usnic acid containing products. The US Food and Drug Administration (FDA) received numerous reports of liver toxicity associated with the use of dietary supplements containing usnic acid, leading the FDA to issue a warning letter in 2001 on a product, LipoKinetix. The FDA also sent a recommendation letter to the manufacturer of LipoKinetix, resulting in the withdrawal of LipoKinetix from the market. These events triggered investigations into the hepatotoxicity of usnic acid and its mechanisms. In 2008, we published a review article titled "Usnic Acid and Usnea Barbata Toxicity". This review is an updated version of our previous review article and incorporates additional data published since 2008. The purpose of this review is to provide a comprehensive summary of the understanding of the liver toxicity associated with usnic acid, with a particular focus on the current understanding of the putative mechanisms of usnic acid-related hepatotoxicity.
Collapse
Affiliation(s)
- Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR)/U.S. FDA, Jefferson, Arkansas, USA
| | - Zhen Ren
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR)/U.S. FDA, Jefferson, Arkansas, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR)/U.S. FDA, Jefferson, Arkansas, USA
| |
Collapse
|
4
|
Kornienko TE, Chepanova AA, Zakharenko AL, Filimonov AS, Luzina OA, Dyrkheeva NS, Nikolin VP, Popova NA, Salakhutdinov NF, Lavrik OI. Enhancement of the Antitumor and Antimetastatic Effect of Topotecan and Normalization of Blood Counts in Mice with Lewis Carcinoma by Tdp1 Inhibitors-New Usnic Acid Derivatives. Int J Mol Sci 2024; 25:1210. [PMID: 38279210 PMCID: PMC10816808 DOI: 10.3390/ijms25021210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is an important DNA repair enzyme and one of the causes of tumor resistance to topoisomerase 1 inhibitors such as topotecan. Inhibitors of this Tdp1 in combination with topotecan may improve the effectiveness of therapy. In this work, we synthesized usnic acid derivatives, which are hybrids of its known derivatives: tumor sensitizers to topotecan. New compounds inhibit Tdp1 in the micromolar and submicromolar concentration range; some of them enhance the effect of topotecan on the metabolic activity of cells of various lines according to the MTT test. One of the new compounds (compound 7) not only sensitizes Krebs-2 and Lewis carcinomas of mice to the action of topotecan, but also normalizes the state of the peripheral blood of mice, which is disturbed in the presence of a tumor. Thus, the synthesized substances may be the prototype of a new class of additional therapy for cancer.
Collapse
Affiliation(s)
- Tatyana E. Kornienko
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia; (T.E.K.); (A.A.C.); (N.S.D.); (O.I.L.)
| | - Arina A. Chepanova
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia; (T.E.K.); (A.A.C.); (N.S.D.); (O.I.L.)
| | - Alexandra L. Zakharenko
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia; (T.E.K.); (A.A.C.); (N.S.D.); (O.I.L.)
| | - Aleksandr S. Filimonov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia; (A.S.F.); (O.A.L.); (N.F.S.)
| | - Olga A. Luzina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia; (A.S.F.); (O.A.L.); (N.F.S.)
| | - Nadezhda S. Dyrkheeva
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia; (T.E.K.); (A.A.C.); (N.S.D.); (O.I.L.)
| | - Valeriy P. Nikolin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia; (V.P.N.); (N.A.P.)
| | - Nelly A. Popova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia; (V.P.N.); (N.A.P.)
| | - Nariman F. Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia; (A.S.F.); (O.A.L.); (N.F.S.)
| | - Olga I. Lavrik
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia; (T.E.K.); (A.A.C.); (N.S.D.); (O.I.L.)
| |
Collapse
|
5
|
Vitalievich SI, Mikhailovna RS, Andreevich PI, Vasilievich MV, Vasilievich AK. Do epiphytic lichens negatively impact their hosts through allelopathy? The effect of Evernia esorediosa on growth and biochemical processes of Larix gmelinii. TREE PHYSIOLOGY 2023; 43:2076-2084. [PMID: 37669161 DOI: 10.1093/treephys/tpad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/04/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
The question of the nature of the interaction between epiphytic lichens and their host trees remains highly debated. Some authors showed cases of allelopathy, but this needs further investigation. Our study covers the effects caused by the epiphytic lichen Evernia esorediosa (Müll. Arg.) Du Rietz on growth and biochemical processes in Larix gmelinii (Rupr.) Rupr. ex Kuzen trees in cryolithozone boreal forests. Usnic acid (UA) is shown to migrate from the thalli of E. esorediosa in the bark and phloem of L. gmelinii, from which it is transported to the root system of the tree, and then UA is moved upward through the xylem into tree needles. Accumulation of UA in L. gmelinii needles causes the following effects: inhibition of photosynthesis, cellular respiration and oxidative phosphorylation. These disruptions could reflect on the tree growth processes. The L. gmelinii trees inhabited by the epiphytic lichen E. esorediosa were found to show lower radial and apical growth parameters. Our results show that E. esorediosa exhibits an allelopathic effect toward L. gmelinii through the migration of UA from the lichen thalli to the tissues of the tree, which led to inhibition of energetic processes in cells. This caused the tree growth to slow down and could ultimately lead to its death.
Collapse
Affiliation(s)
- Sleptsov Igor Vitalievich
- Department of Ecological and Medical Biochemistry and Biotechnology, Institute for Biological Problems of Cryolithozone of the Siberian Branch of the RAS - Division of Federal Research Centre "The Yakut Scientific Centre of the Siberian Branch of the Russian Academy of Sciences", 41, Lenina Ave, Yakutsk 677000, Russia
| | - Rozhina Sakhaiana Mikhailovna
- Department of Ecological and Medical Biochemistry and Biotechnology, Institute for Biological Problems of Cryolithozone of the Siberian Branch of the RAS - Division of Federal Research Centre "The Yakut Scientific Centre of the Siberian Branch of the Russian Academy of Sciences", 41, Lenina Ave, Yakutsk 677000, Russia
| | - Prokopiev Ilya Andreevich
- Department of Ecological and Medical Biochemistry and Biotechnology, Institute for Biological Problems of Cryolithozone of the Siberian Branch of the RAS - Division of Federal Research Centre "The Yakut Scientific Centre of the Siberian Branch of the Russian Academy of Sciences", 41, Lenina Ave, Yakutsk 677000, Russia
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 2, Professora Popova Str., Saint Petersburg 197376, Russia
| | - Mikhailov Vladislav Vasilievich
- Department of Ecological and Medical Biochemistry and Biotechnology, Institute for Biological Problems of Cryolithozone of the Siberian Branch of the RAS - Division of Federal Research Centre "The Yakut Scientific Centre of the Siberian Branch of the Russian Academy of Sciences", 41, Lenina Ave, Yakutsk 677000, Russia
| | - Alekseev Kirill Vasilievich
- Department of Ecological and Medical Biochemistry and Biotechnology, Institute for Biological Problems of Cryolithozone of the Siberian Branch of the RAS - Division of Federal Research Centre "The Yakut Scientific Centre of the Siberian Branch of the Russian Academy of Sciences", 41, Lenina Ave, Yakutsk 677000, Russia
| |
Collapse
|
6
|
Wang H, Xuan M, Diao J, Xu N, Li M, Huang C, Wang C. Metabolism and toxicity of usnic acid and barbatic acid based on microsomes, S9 fraction, and 3T3 fibroblasts in vitro combined with a UPLC-Q-TOF-MS method. Front Pharmacol 2023; 14:1207928. [PMID: 37397492 PMCID: PMC10308081 DOI: 10.3389/fphar.2023.1207928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction: Usnic acid (UA) and barbatic acid (BA), two typical dibenzofurans and depsides in lichen, have a wide range of pharmacological activities and hepatotoxicity concerns. This study aimed to clarify the metabolic pathway of UA and BA and illuminate the relationship between metabolism and toxicity. Methods: An UPLC-Q-TOF-MS method was developed for metabolite identification of UA and BA in human liver microsomes (HLMs), rat liver microsomes (RLMs), and S9 fraction (RS9). The key metabolic enzymes responsible for UA and BA were identified by enzyme inhibitors combined with recombinant human cytochrome P450 (CYP450) enzymes. The cytotoxicity and metabolic toxicity mechanism of UA and BA were determined by the combination model of human primary hepatocytes and mouse 3T3 fibroblasts. Results: The hydroxylation, methylation, and glucuronidation reactions were involved in the metabolic profiles of UA and BA in RLMs, HLMs, and RS9. CYP2C9, CYP3A4, CYP2C8, and UGT1A1 are key metabolic enzymes responsible for metabolites of UA and CYP2C8, CYP2C9, CYP2C19, CYP1A1, UGT1A1, UGT1A3, UGT1A7, UGT1A8, UGT1A9, and UGT1A10 for metabolites of BA. UA and BA did not display evident cytotoxicity in human primary hepatocytes at concentrations of 0.01-25 and 0.01-100 µM, respectively, but showed potential cytotoxicity to mouse 3T3 fibroblasts with 50% inhibitory concentration values of 7.40 and 60.2 µM. Discussion: In conclusion, the attenuated cytotoxicity of BA is associated with metabolism, and UGTs may be the key metabolic detoxification enzymes. The cytotoxicity of UA may be associated with chronic toxicity. The present results provide important insights into the understanding of the biotransformation behavior and metabolic detoxification of UA and BA.
Collapse
Affiliation(s)
- Hanxue Wang
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory for TCM Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Xuan
- Department of Pharmacy, Qingdao Eighth People’s Hospital, Qingdao, China
| | - Juanjuan Diao
- Analysis and Testing Center, Xinjiang Medical University (Xuelanshan Campus), Urumqi, China
| | - Nan Xu
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory for TCM Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Manlin Li
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory for TCM Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Changhong Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory for TCM Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Usnic Acid-Mediated Exchange of Protons for Divalent Metal Cations across Lipid Membranes: Relevance to Mitochondrial Uncoupling. Int J Mol Sci 2022; 23:ijms232416203. [PMID: 36555847 PMCID: PMC9783568 DOI: 10.3390/ijms232416203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Usnic acid (UA), a unique lichen metabolite, is a protonophoric uncoupler of oxidative phosphorylation, widely known as a weight-loss dietary supplement. In contrast to conventional proton-shuttling mitochondrial uncouplers, UA was found to carry protons across lipid membranes via the induction of an electrogenic proton exchange for calcium or magnesium cations. Here, we evaluated the ability of various divalent metal cations to stimulate a proton transport through both planar and vesicular bilayer lipid membranes by measuring the transmembrane electrical current and fluorescence-detected pH gradient dissipation in pyranine-loaded liposomes, respectively. Thus, we obtained the following selectivity series of calcium, magnesium, zinc, manganese and copper cations: Zn2+ > Mn2+ > Mg2+ > Ca2+ >> Cu2+. Remarkably, Cu2+ appeared to suppress the UA-mediated proton transport in both lipid membrane systems. The data on the divalent metal cation/proton exchange were supported by circular dichroism spectroscopy of UA in the presence of the corresponding cations.
Collapse
|
8
|
Zunica ERM, Axelrod CL, Kirwan JP. Phytochemical Targeting of Mitochondria for Breast Cancer Chemoprevention, Therapy, and Sensitization. Int J Mol Sci 2022; 23:ijms232214152. [PMID: 36430632 PMCID: PMC9692881 DOI: 10.3390/ijms232214152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
Breast cancer is a common and deadly disease that causes tremendous physical, emotional, and financial burden on patients and society. Early-stage breast cancer and less aggressive subtypes have promising prognosis for patients, but in aggressive subtypes, and as cancers progress, treatment options and responses diminish, dramatically decreasing survival. Plants are nutritionally rich and biologically diverse organisms containing thousands of metabolites, some of which have chemopreventive, therapeutic, and sensitizing properties, providing a rich source for drug discovery. In this study we review the current landscape of breast cancer with a central focus on the potential role of phytochemicals for treatment, management, and disease prevention. We discuss the relevance of phytochemical targeting of mitochondria for improved anti-breast cancer efficacy. We highlight current applications of phytochemicals and derivative structures that display anti-cancer properties and modulate cancer mitochondria, while describing future applicability and identifying areas of promise.
Collapse
|
9
|
Wang H, Xuan M, Huang C, Wang C. Advances in Research on Bioactivity, Toxicity, Metabolism, and Pharmacokinetics of Usnic Acid In Vitro and In Vivo. Molecules 2022; 27:7469. [PMID: 36364296 PMCID: PMC9657990 DOI: 10.3390/molecules27217469] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/12/2023] Open
Abstract
Lichens are among the most widely distributed plants on earth and have the longest growth cycle. Usnic acid is an abundant characteristic secondary metabolite of lichens and the earliest lichen compound used commercially. It has diverse pharmacological activities, such as anti-inflammatory, antibacterial, antiviral, anticancer, antioxidant, and photoprotective effects, and promotes wound healing. It is widely used in dietary supplements, daily chemical products (fodder, dyes, food, perfumery, and cosmetics), and medicine. However, some studies have found that usnic acid can cause allergic dermatitis and drug-induced liver injury. In this paper, the bioactivity, toxicity, in vivo and in vitro metabolism, and pharmacokinetics of usnic acid were summarized. The aims were to develop and utilize usnic acid and provide reference for its future research.
Collapse
Affiliation(s)
- Hanxue Wang
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 230 Baoding Road, Shanghai 200082, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory for TCM Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Min Xuan
- Department of Pharmacy, Qingdao Eighth People’s Hospital, 84 Fengshan Road, Qingdao 266121, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Changhong Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory for TCM Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| |
Collapse
|
10
|
Prokopiev I, Sleptsov I, Filippova G. Effect of several phenolic compounds of lichens on the physiological, cytological, and biochemical characteristics of Allium fistulosum seedlings. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Sepahvand A, Studzińska-Sroka E, Ramak P, Karimian V. Usnea sp.: Antimicrobial potential, bioactive compounds, ethnopharmacological uses and other pharmacological properties; a review article. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113656. [PMID: 33276059 DOI: 10.1016/j.jep.2020.113656] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Usnea sp. is a fruticose thalli lichen with interesting medicinal properties. Since ancient times, Usnea sp. has been used in traditional medicine worldwide to treat various diseases. The broad scientific studies on this lichen have proved its multidirectional biological effect, such as antimicrobial activity, which is attributed to its usnic acid content. PURPOSE The main aim of this review is to provide an up-to-date overview of the antimicrobial activities of Usnea sp., including the traditional and medicinal uses, and a critical evaluation of the presented data. Also, the mechanism of this type of action will be explained. METHODS To prepare this manuscript, the information was extracted from scientific databases (Pubmed, ScienceDirect, Wiley, Springer, and Google Scholar), books, and theses. The available scientific information was critically analysed. RESULTS Analysis of the scientific literature regarding traditional uses and bioactivity research showed that Usnea sp. extracts exhibit high antibacterial activity. The Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, and Mycobacterium tuberculosis) and aquatic oomycetous fungi were the most sensitive Usnea sp. extracts. Moderate activity against Malassezia furfur and dermatophytes was observed, as well. Gram-negative bacteria, yeast, and fungi were more frequently resistant to Usnea sp. extracts (included Escherichia coli, Candida sp., Saccharomyces cerevisiae, and Aspergillus sp.). The antiviral activity of Usnea sp. was limited. CONCLUSION The results show that the use of Usnea sp. in traditional medicine can be scientifically documented. Studies show that usnic acid is the active compound present in Usnea sp. extracts. This compound, which has a high antibacterial and cytotoxic activity, exists in large quantities in low-polarity extracts, and low concentration in these of high-polarity. Usnea sp. extracts contain compounds other than usnic acid as well with biological effects. Usnea barbata is a species that has been employed in modern-day cosmetic and pharmaceutical preparations. The information presented in the review can be considered as a source of knowledge about the Usnea sp. It presents research on biological properties reported for different species of Usnea genus and thus can facilitate their use in medicine.
Collapse
Affiliation(s)
- Asghar Sepahvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | | | - Parvin Ramak
- Research Division of Natural Resources, Lorestan Agricultural and Natural Resources Research and Education Center, AREEO, Khorramabad, Iran.
| | - Vahid Karimian
- Young Researchers and Elite Club, Yasooj Branch, Islamic Azad University, Yasooj, Iran.
| |
Collapse
|
12
|
Therapeutic potential of mitochondrial uncouplers for the treatment of metabolic associated fatty liver disease and NASH. Mol Metab 2021; 46:101178. [PMID: 33545391 PMCID: PMC8085597 DOI: 10.1016/j.molmet.2021.101178] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
Background Mitochondrial uncouplers shuttle protons across the inner mitochondrial membrane via a pathway that is independent of adenosine triphosphate (ATP) synthase, thereby uncoupling nutrient oxidation from ATP production and dissipating the proton gradient as heat. While initial toxicity concerns hindered their therapeutic development in the early 1930s, there has been increased interest in exploring the therapeutic potential of mitochondrial uncouplers for the treatment of metabolic diseases. Scope of review In this review, we cover recent advances in the mechanisms by which mitochondrial uncouplers regulate biological processes and disease, with a particular focus on metabolic associated fatty liver disease (MAFLD), nonalcoholic hepatosteatosis (NASH), insulin resistance, and type 2 diabetes (T2D). We also discuss the challenges that remain to be addressed before synthetic and natural mitochondrial uncouplers can successfully enter the clinic. Major conclusions Rodent and non-human primate studies suggest that a myriad of small molecule mitochondrial uncouplers can safely reverse MAFLD/NASH with a wide therapeutic index. Despite this, further characterization of the tissue- and cell-specific effects of mitochondrial uncouplers is needed. We propose targeting the dosing of mitochondrial uncouplers to specific tissues such as the liver and/or developing molecules with self-limiting properties to induce a subtle and sustained increase in mitochondrial inefficiency, thereby avoiding systemic toxicity concerns.
Collapse
|
13
|
Kwong SP, Wang C. Review: Usnic acid-induced hepatotoxicity and cell death. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103493. [PMID: 32961280 DOI: 10.1016/j.etap.2020.103493] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Increasing prevalence of herbal and dietary supplement-induced hepatotoxicity has been reported worldwide. Usnic acid (UA) is a well-known hepatotoxin derived from lichens. Since 2000, more than 20 incident reports have been received by the US Food and Drug Administration after intake of UA containing dietary supplement resulting in severe complications. Scientists and clinicians have been studying the cause, prevention and treatment of UA-induced hepatotoxicity. It is now known that UA decouples oxidative phosphorylation, induces adenosine triphosphate (ATP) depletion, decreases glutathione (GSH), and induces oxidative stress markedly leading to lipid peroxidation and organelle stress. In addition, experimental rat liver tissues have shown massive vacuolization associated with cellular swellings. Additionally, various signaling pathways, such as c-JNK N-terminal kinase (JNK), store-operated calcium entry, nuclear erythroid 2-related factor 2 (Nrf2), and protein kinase B/mammalian target of rapamycin (Akt/mTOR) pathways are stimulated by UA causing beneficial or harmful effects. Nevertheless, there are controversial issues, such as UA-induced inflammatory or anti-inflammatory responses, cytochrome P450 detoxifying UA into non-toxic or transforming UA into reactive metabolites, and unknown mechanism of the formation of vacuolization and membrane pore. This article focused on the previous and latest comprehensive putative mechanistic findings of UA-induced hepatotoxicity and cell death. New insights on controversial issues and future perspectives are also discussed and summarized.
Collapse
Affiliation(s)
- Sukfan P Kwong
- Institute of Chinese Materia Medica, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
14
|
Cazarin CA, Dalmagro AP, Gonçalves AE, Boeing T, Silva LMD, Corrêa R, Klein-Júnior LC, Pinto BC, Lorenzett TS, Sobrinho TUDC, Fátima ÂD, Lage TCDA, Fernandes SA, Souza MMD. Usnic acid enantiomers restore cognitive deficits and neurochemical alterations induced by Aβ 1-42 in mice. Behav Brain Res 2020; 397:112945. [PMID: 33022354 DOI: 10.1016/j.bbr.2020.112945] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/25/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia with a complex pathophysiology not fully elucidated but with limited pharmacological treatment. The Usnic acid (UA) is a lichen secondary metabolite found in two enantiomeric forms: (R)-(+)-UA or (S)-(-)-UA, with antioxidant and anti-inflammatory potential. Thus, given the role of neuroinflammation and oxidative injury in the AD, this study aimed to investigate experimentally the cognitive enhancing and anti-neuroinflammatory effects of UA enantiomers. First, the interactions of UA on acetylcholinesterase (AChE) was assessed by molecular docking and its inhibitory capability on AChE was assessed in vitro. In vivo trials investigated the effects of UA enantiomers in mice exposed to Aβ1-42 peptide (400 pmol/mice) intracerebroventricularly (i.c.v.). For this, mice were treated orally during 24 days with (R)-(+)-UA or (S)-(-)-UA at 25, 50, or 100 mg/kg, vehicle, or donepezil (2 mg/kg). Animals were submitted to the novel object recognized, Morris water maze, and inhibitory-avoidance task to assess the cognitive deficits. Additionally, UA antioxidant capacity and neuroinflammatory biomarkers were measured at the cortex and hippocampus from mice. Our results indicated that UA enantiomers evoked complex-receptor interaction with AChE like galantamine in silico. Also, UA enantiomers improved the learning and memory of the animals and in parallel decreased the myeloperoxidase activity and the lipid hydroperoxides (LOOH) on the cortex and hippocampus and reduced the IL-1β levels on the hippocampus. In summary, UA restored the cognitive deficits, as well as the signs of LOOH and neuroinflammation induced by Aβ1-42 administration in mice.
Collapse
Affiliation(s)
- Camila Andre Cazarin
- Pharmaceutical Sciences Postgraduate Program, Center of Health Sciences, Universidade do Vale do Itajaí, CEP 88302-202, Itajaí, Santa Catarina, Brazil.
| | - Ana Paula Dalmagro
- Pharmaceutical Sciences Postgraduate Program, Center of Health Sciences, Universidade do Vale do Itajaí, CEP 88302-202, Itajaí, Santa Catarina, Brazil
| | - Ana Elisa Gonçalves
- Pharmaceutical Sciences Postgraduate Program, Center of Health Sciences, Universidade do Vale do Itajaí, CEP 88302-202, Itajaí, Santa Catarina, Brazil
| | - Thaise Boeing
- Pharmaceutical Sciences Postgraduate Program, Center of Health Sciences, Universidade do Vale do Itajaí, CEP 88302-202, Itajaí, Santa Catarina, Brazil
| | - Luísa Mota da Silva
- Pharmaceutical Sciences Postgraduate Program, Center of Health Sciences, Universidade do Vale do Itajaí, CEP 88302-202, Itajaí, Santa Catarina, Brazil
| | - Rogério Corrêa
- Pharmaceutical Sciences Postgraduate Program, Center of Health Sciences, Universidade do Vale do Itajaí, CEP 88302-202, Itajaí, Santa Catarina, Brazil
| | - Luiz Carlos Klein-Júnior
- Pharmaceutical Sciences Postgraduate Program, Center of Health Sciences, Universidade do Vale do Itajaí, CEP 88302-202, Itajaí, Santa Catarina, Brazil
| | - Bernardo Carlesso Pinto
- School of Health Sciences, Universidade do Vale do Itajaí, CEP 88302-202, Itajaí, Santa Catarina, Brazil
| | - Thaís Savoldi Lorenzett
- School of Health Sciences, Universidade do Vale do Itajaí, CEP 88302-202, Itajaí, Santa Catarina, Brazil
| | | | - Ângelo de Fátima
- Department of Chemistry, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | | | - Sergio Antonio Fernandes
- Department of Chemistry, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, Minas Gerais, Brazil
| | - Márcia Maria de Souza
- Pharmaceutical Sciences Postgraduate Program, Center of Health Sciences, Universidade do Vale do Itajaí, CEP 88302-202, Itajaí, Santa Catarina, Brazil
| |
Collapse
|
15
|
Chelombitko MA, Firsov AM, Kotova EA, Rokitskaya TI, Khailova LS, Popova LB, Chernyak BV, Antonenko YN. Usnic acid as calcium ionophore and mast cells stimulator. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183303. [DOI: 10.1016/j.bbamem.2020.183303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/14/2020] [Accepted: 03/31/2020] [Indexed: 01/09/2023]
|
16
|
Cytotoxicity of Potassium Salts of (+)- and (-) Usnic Acid for Paramecium caudatum. Bull Exp Biol Med 2020; 169:110-113. [DOI: 10.1007/s10517-020-04835-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Indexed: 11/27/2022]
|
17
|
Lichen Metabolites: An Overview of Some Secondary Metabolites and Their Biological Potential. REFERENCE SERIES IN PHYTOCHEMISTRY 2020. [DOI: 10.1007/978-3-319-96397-6_57] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
18
|
González-Burgos E, Fernández-Moriano C, Gómez-Serranillos MP. Current knowledge on Parmelia genus: Ecological interest, phytochemistry, biological activities and therapeutic potential. PHYTOCHEMISTRY 2019; 165:112051. [PMID: 31234093 DOI: 10.1016/j.phytochem.2019.112051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
Parmelia Acharius is one of the most representative genera within Parmeliaceae family which is the largest and the most widespread family of lichen-forming fungi. Parmelia lichens present a medium to large foliose thallus and they are distributed from the Artic to the Antartic continents, being more concentrated in temperate regions. According to its current description, the genus encompasses up to 41 different species and it is phylogenetically located within the Parmelioid clade (the largest group in the family). Interestingly, some of its species are among the most common epiphytic lichens in Europe such as Parmelia sulcata Taylor and Parmelia saxatilis (L.) Ach. The present work aims at providing a complete overview of the existing knowledge on the genus, from general concepts such as taxonomy and phylogeny, to their ecological relevance and biological interest for pharmaceutical uses. As reported, Parmelia lichens arise as valuable tools for biomonitoring environmental pollution due to their capacity to bioaccumulate metal elements and its response to acid rain. Moreover, they produce a wide array of specialized products/metabolites including depsides, depsidones, triterpenes and dibenzofurans, which have been suggested to exert promising pharmacological activities, mainly antimicrobial, antioxidant and cytotoxic activities. Herein, we discuss past and recent data regarding to the phytochemical characterization of more than 15 species. Even though the knowledge is still scarce in comparsion to other groups of organisms such as higher plants and other non-lichenized fungi. Reviewed works suggest that Parmelia lichens are worthy of further research for determining their actual possibilities as sources of bioactive compounds with potential therapeutic applications.
Collapse
Affiliation(s)
- Elena González-Burgos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid, Plaza Ramón y Cajal S/n, 28004, Madrid, Spain
| | - Carlos Fernández-Moriano
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid, Plaza Ramón y Cajal S/n, 28004, Madrid, Spain
| | - M Pilar Gómez-Serranillos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid, Plaza Ramón y Cajal S/n, 28004, Madrid, Spain.
| |
Collapse
|
19
|
Correché ER, Enriz RD, Piovano M, Garbarino J, Gómez-Lechón MJ. Cytotoxic and Apoptotic Effects on Hepatocytes of Secondary Metabolites Obtained from Lichens. Altern Lab Anim 2019; 32:605-15. [PMID: 15757498 DOI: 10.1177/026119290403200611] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There are a large number of species of Antarctic lichens, and several studies describing the secondary metabolites present in these lichens, as well as the advances in understanding the chemistry of these metabolites, have been reported. In addition, some derivatives displaying interesting antibacterial effects have been described. The cytotoxic and apoptotic effects of 15 secondary metabolites (depsides, depsidones and usnic acid) obtained from Continental (Chilean) and Antarctic lichens were evaluated in primary cultures of rat hepatocytes. Intracellular lactate dehydrogenase release, caspase 3 activation and DNA fragmentation were measured. In this study, we have evaluated a set of markers associated with pivotal steps in the execution phase of apoptosis, in order to detect compounds with apoptotic effects on hepatocytes before significant necrosis takes place. Flow cytometric analysis of DNA fragmentation revealed an increase in apoptotic nuclei with sub-diploid DNA content after the exposure of hepatocytes to sub-cytotoxic concentrations of the compounds. Among these, salazinic acid, stictic acid and psoromic acid displayed significant apoptotic activities. Divaricatic acid showed only moderate apoptotic effects at sub-cytotoxic concentrations.
Collapse
Affiliation(s)
- Estela Raquel Correché
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco 915, 5700 San Luis, Argentina
| | | | | | | | | |
Collapse
|
20
|
Mechanism of action of an old antibiotic revisited: Role of calcium ions in protonophoric activity of usnic acid. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:310-316. [DOI: 10.1016/j.bbabio.2019.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/24/2018] [Accepted: 01/25/2019] [Indexed: 11/21/2022]
|
21
|
Sahin E, Dabagoglu Psav S, Avan I, Candan M, Sahinturk V, Koparal AT. Vulpinic acid, a lichen metabolite, emerges as a potential drug candidate in the therapy of oxidative stress–related diseases, such as atherosclerosis. Hum Exp Toxicol 2019; 38:675-684. [DOI: 10.1177/0960327119833745] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vulpinic acid, a lichen compound, has been shown to have many beneficial effects and its medicinal value increases day by day. As in atherosclerosis, endothelial damage is the basis of many diseases. The aim of this study is to investigate the effects of vulpinic acid against oxidative stress damage induced by hydrogen peroxide (H2O2) in endothelial cells. In order to find the IC50 of H2O2 and the protective dose of vulpinic acid, methyl thiazolyldiphenyl tetrazolium bromide (MTT) assays were performed. The amount of reactive oxygen species (ROS) induced by H2O2 and the protective effects of vulpinic acid against ROS were examined by fluorometric DCF-DA kit. The effects of H2O2 and vulpinic acid on actin filaments were determined by tetramethyl rhodamine (TRITC)-phalloidin fluorescence staining. Expression of Tie2 proteins was immunocytochemically analyzed in H2O2- and vulpinic acid-treated cells. After 24 h, the IC50 was found to be 215 μM in HUVECs treated with H2O2. The most effective dose of vulpinic acid against H2O2-associated damage was found to be 15 μM. Vulpinic acid pretreatment was shown to reduce H2O2-induced ROS production significantly ( p < 0.05). It was shown that 215 μM of H2O2 caused actin fragmentation, cell shrinkage, and decrease in actin florescence intensity while vulpinic acid protected the cells from these damages. It was found that Tie2 immunoreactivity was decreased in H2O2-treated groups and vulpinic acid pretreatment reduced the expression of this protein. In conclusion, vulpinic acid decreases H2O2-induced oxidative stress and oxidative stress–related damages in HUVECs. It may be drug candidate in the therapy of atherosclerosis.
Collapse
Affiliation(s)
- E Sahin
- Department of Histology and Embryology, School of Medicine, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - S Dabagoglu Psav
- Department of Biology, Faculty of Science, Eskisehir Technical University, Eskişehir, Turkey
| | - I Avan
- Department of Chemistry, Faculty of Science, Eskisehir Technical University, Eskişehir, Turkey
| | - M Candan
- Department of Biology, Faculty of Science, Eskisehir Technical University, Eskişehir, Turkey
| | - V Sahinturk
- Department of Histology and Embryology, School of Medicine, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - AT Koparal
- Department of Biology, Faculty of Science, Eskisehir Technical University, Eskişehir, Turkey
| |
Collapse
|
22
|
Prokopiev I, Filippova G, Filippov E, Voronov I, Sleptsov I, Zhanataev A. Genotoxicity of (+)- and (−)-usnic acid in mice. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 839:36-39. [DOI: 10.1016/j.mrgentox.2019.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 01/03/2023]
|
23
|
Zakharova O, Luzina O, Zakharenko A, Sokolov D, Filimonov A, Dyrkheeva N, Chepanova A, Ilina E, Ilyina A, Klabenkova K, Chelobanov B, Stetsenko D, Zafar A, Eurtivong C, Reynisson J, Volcho K, Salakhutdinov N, Lavrik O. Synthesis and evaluation of aryliden- and hetarylidenfuranone derivatives of usnic acid as highly potent Tdp1 inhibitors. Bioorg Med Chem 2018; 26:4470-4480. [PMID: 30076000 DOI: 10.1016/j.bmc.2018.07.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/19/2018] [Accepted: 07/22/2018] [Indexed: 10/28/2022]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a repair enzyme for stalled DNA-topoisomerase 1 (Top 1) cleavage complexes and other 3'-end DNA lesions. Tdp1 is a promising target for anticancer therapy, since it can repair DNA lesions caused by Top1 inhibitors leading to drug resistance. Hence, Tdp1 inhibition should result in synergistic effect with Top1 inhibitors. Twenty nine derivatives of (+)-usnic acid were tested for in vitro Tdp1 inhibitory activity using a fluorescent-based assay. Excellent activity was obtained, with derivative 6m demonstrating the lowest IC50 value of 25 nM. The established efficacy was verified using a gel-based assay, which gave close results to that of the fluorescent assay. In addition, molecular modeling in the Tdp1 substrate binding pocket suggested plausible binding modes for the active analogues. The synergistic effect of the Tdp1 inhibitors with topotecan, a Top1 poison in clinical use, was tested in two human cell lines, A-549 and HEK-293. Compounds 6k and 6x gave very promising results. In particular, 6x has a low cytotoxicity and an IC50 value of 63 nM, making it a valuable lead compound for the development of potent Tdp1 inhibitors for clinical use.
Collapse
Affiliation(s)
- Olga Zakharova
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | - Olga Luzina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | - Alexandra Zakharenko
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | - Dmitry Sokolov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | - Alexandr Filimonov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation; Novosibirsk State University, Novosibirsk 630090, Russian Federation
| | - Nadezhda Dyrkheeva
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | - Arina Chepanova
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | - Ekaterina Ilina
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | - Anna Ilyina
- Novosibirsk State University, Novosibirsk 630090, Russian Federation
| | | | - Boris Chelobanov
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation; Novosibirsk State University, Novosibirsk 630090, Russian Federation
| | - Dmitry Stetsenko
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | - Ayesha Zafar
- School of Chemical Sciences, University of Auckland, New Zealand
| | | | | | - Konstantin Volcho
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation; Novosibirsk State University, Novosibirsk 630090, Russian Federation
| | - Nariman Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation; Novosibirsk State University, Novosibirsk 630090, Russian Federation
| | - Olga Lavrik
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation; Novosibirsk State University, Novosibirsk 630090, Russian Federation.
| |
Collapse
|
24
|
Zhao Z, Rajagopalan R, Zweifach A. A Novel Multiple-Read Screen for Metabolically Active Compounds Based on a Genetically Encoded FRET Sensor for ATP. SLAS DISCOVERY 2018; 23:907-918. [PMID: 29898642 DOI: 10.1177/2472555218780636] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Both glycolysis and mitochondrial energetics are targets of interest for developing antiproliferative cancer therapeutics. We developed a novel multiple-read assay based on long-term expression in K562 cells of a genetically encoded intramolecular Förster resonance energy transfer sensor for adenosine triphosphate (ATP). The assay, conducted in a fluorescent plate reader, can identify compounds that inhibit oxidative phosphorylation-dependent ATP production, glycolysis, or both after short-term treatment. We screened a National Cancer Institute (NCI) compound library, identifying inhibitors of oxidative phosphorylation-dependent ATP production and glycolysis. Three glycolysis inhibitors blocked hexokinase activity, demonstrating that our assay can serve as the initial step in a workflow to identify compounds that inhibit glycolysis via a defined desired mechanism. Finally, upon reviewing the literature, we found surprisingly little evidence that inhibiting glycolysis with small molecules is antiproliferative. Using NCI data on proliferation of K562 cells, we found that inhibitors of oxidative phosphorylation-dependent ATP production were no more antiproliferative than the overall library, whereas all glycolysis inhibitors were in the top third of most effective antiproliferative compounds. Our results thus present a powerful new way to screen for compounds that affect cellular metabolism and also provide important support for the idea that blocking glycosis is antiproliferative.
Collapse
Affiliation(s)
- Ziyan Zhao
- 1 Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Rahul Rajagopalan
- 1 Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Adam Zweifach
- 1 Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
25
|
Luzina OA, Salakhutdinov NF. Usnic acid and its derivatives for pharmaceutical use: a patent review (2000-2017). Expert Opin Ther Pat 2018; 28:477-491. [PMID: 29718734 DOI: 10.1080/13543776.2018.1472239] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Usnic acid (UA) is a lichen-derived secondary metabolite with a unique dibenzofuran skeleton and is commonly found in lichenized fungi of the genera Usnea and Cladonia. Usnic acid has been incorporated for years in cosmetics, perfumery, and traditional medicines. It has a wide range of bioactivities, including antimicrobial, antiviral, anticancer, anti-inflammatory properties. AREAS COVERED This review covers patents on therapeutic activities of UA and its synthetic derivatives published during the period 2000-2017. EXPERT OPINION UA demonstrates excellent anticancer and antimicrobial properties. However, its application was withdrawn due to acute liver toxicity reported with chronic consumption. The broad spectrum of its biological activity indicates high the variability of UA's binding preferences. The main idea to be addressed in the future should include the synthesis of UA derivatives because these might possess increased bioactivity, bioavailability and decreased toxicity. It is noteworthy that UA derivatives possessed better antibacterial, antitubercular, and anticancer activity than the parent compound . Most importantly, UA and its analogs (to a greater extent than UA) can be useful in cancer drug treatment. They have the potential for joint application with other anticancer drugs in order to overcome drug resistance.
Collapse
Affiliation(s)
- Olga A Luzina
- a Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry , Siberian Branch of the Russian Academy of Sciences , Novosibirsk , Russian Federation
| | - Nariman F Salakhutdinov
- a Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry , Siberian Branch of the Russian Academy of Sciences , Novosibirsk , Russian Federation.,b Novosibirsk State University , Novosibirsk , Russian Federation
| |
Collapse
|
26
|
Prokop’ev IA, Filippov EV, Filippova GV, Zhanataev AK. Pro/Antigenotoxic Activity of Usnic Acid Enantiomers In Vitro. Bull Exp Biol Med 2018; 164:312-315. [DOI: 10.1007/s10517-018-3979-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Indexed: 11/29/2022]
|
27
|
Francolini I, Piozzi A, Donelli G. Usnic Acid: Potential Role in Management of Wound Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1214:31-41. [DOI: 10.1007/5584_2018_260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Childress ES, Alexopoulos SJ, Hoehn KL, Santos WL. Small Molecule Mitochondrial Uncouplers and Their Therapeutic Potential. J Med Chem 2017; 61:4641-4655. [DOI: 10.1021/acs.jmedchem.7b01182] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Elizabeth S. Childress
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Stephanie J. Alexopoulos
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Kyle L. Hoehn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
- Departments of Pharmacology and Medicine, Cardiovascular Research Center, and Emily Couric Clinical Cancer Center, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Webster L. Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
29
|
Wang H, Yang T, Cheng X, Kwong S, Liu C, An R, Li G, Wang X, Wang C. Simultaneous determination of usnic, diffractaic, evernic and barbatic acids in rat plasma by ultra-high-performance liquid chromatography-quadrupole exactive Orbitrap mass spectrometry and its application to pharmacokinetic studies. Biomed Chromatogr 2017; 32. [PMID: 29055065 DOI: 10.1002/bmc.4123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/18/2017] [Accepted: 10/11/2017] [Indexed: 12/27/2022]
Abstract
Usnea longissima Ach. (Usnea) is used in pharmaceuticals, food and cosmetics. Evernic acid (EA), barbatic acid (BA), diffractaic acid (DA) and usnic acid (UA) are the most typical ingredients in U. longissima and exert a wide variety of biological functions. The study aimed to develop a sensitive method for simultaneous analysis of EA, BA, DA and UA in rat plasma and was applied to pharmacokinetic studies after consumption of UA and ethanol extract from U. longissima (UE). The samples were separated on a BEH C18 column by gradient elution with 0.5% formic acid in water and in methanol. The relative molecular masses of analytes were obtained in full-scan range from 50.0 to 750.0 m/z under negative ionization mode by UPLC-Q-Exactive Orbitrap MS. All validation parameters, such as lower limit of quantitation, linearity, specificity, precision, accuracy, extraction recovery, matrix effect and stability, were within acceptable ranges and the method was appropriate for biological specimen analysis. The pharmacokinetic results indicated that the absolute bioavailabilities of UA after oral administration of UA and UE reached 69.2 and 146.9%, respectively. Compared with UA in UE, the relative bioavailability of DA, BA and EA reached 103.7, 10.4 and 0.7% after oral administration of UE.
Collapse
Affiliation(s)
- Hanxue Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai TCM-integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory for TCM Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Yang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuemei Cheng
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory for TCM Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sukfan Kwong
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory for TCM Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenghai Liu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui An
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guowen Li
- Shanghai TCM-integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinhong Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Changhong Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory for TCM Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
30
|
Salla GBF, Bracht L, de Sá-Nakanishi AB, Parizotto AV, Bracht F, Peralta RM, Bracht A. Distribution, lipid-bilayer affinity and kinetics of the metabolic effects of dinoseb in the liver. Toxicol Appl Pharmacol 2017. [PMID: 28624444 DOI: 10.1016/j.taap.2017.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Dinoseb is a highly toxic pesticide of the dinitrophenol group. Its use has been restricted, but it can still be found in soils and waters in addition to being a component of related pesticides that, after ingestion by humans or animals, can originate the compound by enzymatic hydrolysis. As most dinitrophenols, dinoseb uncouples oxidative phosphorylation. In this study, distribution, lipid bilayer affinity and kinetics of the metabolic effects of dinoseb were investigated, using mainly the isolated perfused rat liver, but also isolated mitochondria and molecular dynamics simulations. Dinoseb presented high affinity for the hydrophobic region of the lipid bilayers, with a partition coefficient of 3.75×104 between the hydrophobic and hydrophilic phases. Due to this high affinity for the cellular membranes dinoseb underwent flow-limited distribution in the liver. Transformation was slow but uptake into the liver space was very pronounced. For an extracellular concentration of 10μM, the equilibrium intracellular concentration was equal to 438.7μM. In general dinoseb stimulated catabolism and inhibited anabolism. Half-maximal stimulation of oxygen uptake in the whole liver occurred at concentrations (2.8-5.8μM) at least ten times above those in isolated mitochondria (0.28μM). Gluconeogenesis and ureagenesis were half-maximally inhibited at concentrations between 3.04 and 5.97μM. The ATP levels were diminished, but differently in livers from fed and fasted rats. Dinoseb disrupts metabolism in a complex way at concentrations well above its uncoupling action in isolated mitochondria, but still at concentrations that are low enough to be dangerous to animals and humans even at sub-lethal doses.
Collapse
Affiliation(s)
| | - Lívia Bracht
- Department of Biochemistry, University of Maringá, 87020900 Maringá, Brazil
| | | | | | - Fabrício Bracht
- Department of Biochemistry, University of Maringá, 87020900 Maringá, Brazil
| | | | - Adelar Bracht
- Department of Biochemistry, University of Maringá, 87020900 Maringá, Brazil.
| |
Collapse
|
31
|
Prokopiev IA, Filippov EV, Filippova GV, Gladkina NP. Genotoxicity of usnic-acid enantiomers in vitro in human peripheral-blood lymphocytes. ACTA ACUST UNITED AC 2017. [DOI: 10.1134/s1990519x17020031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Luzina OA, Salakhutdinov NF. Biological activity of usnic acid and its derivatives: Part 2. effects on higher organisms. Molecular and physicochemical aspects. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016. [DOI: 10.1134/s1068162016030109] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
33
|
Si K, Wei L, Yu X, Wu F, Li X, Li C, Cheng Y. Effects of (+)-usnic acid and (+)-usnic acid-liposome on Toxoplasma gondii. Exp Parasitol 2016; 166:68-74. [PMID: 27004468 DOI: 10.1016/j.exppara.2016.03.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/10/2016] [Accepted: 03/18/2016] [Indexed: 10/22/2022]
Abstract
Toxoplasma gondii pathogen is a threat to human health that results in economic burden. Unfortunately, there are very few high-efficiency and low-toxicity drugs for toxoplasmosis in the clinic. (+)-Usnic acid derived from lichen species has been reported to have anti-inflammatory, antibacterial, anti-parasitology, and even anti-cancer activities. Herein, the systematic effect of (+)-usnic acid and (+)-usnic acid-liposome on toxoplasma were studied in vitro and in vivo. The viability of toxoplasma tachyzoite was assayed with trypan blue and Giemsa staining; while the invasive capability of tachyzoite to cardiofibroblasts was detected using Giemsa staining. The survival time of mice and the changes in tachyzoite ultrastructure were studied in vivo. The results showed that (+)-usnic acid inhibited the viability of tachyzoite; pretreatment with (+)-usnic acid significantly decreased the invasion of tachyzoite to cardiofibroblasts in vitro; (+)-usnic acid and (+)-usnic acid-liposome extensively prolonged the survival time of mice about 90.9% and 117%, respectively; and improved the ultrastructural changes of tachyzoite, especially in dense granules, rhoptries, endoplasmic reticulum, mitochondria and other membrane organelles. In summary, these results demonstrate that (+)-usnic acid and (+)-usnic acid-liposome with low toxicity have an inhibitory effect on the viability of toxoplasma tachyzoite, and mainly destructed membrane organelles which are connected with the virulence of toxoplasma. These findings provide the basis for further study and development of usnic acid as a potential agent for treating toxoplasmosis.
Collapse
Affiliation(s)
- Kaiwei Si
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, PR China
| | - Linlin Wei
- Core Research Laboratory, The Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, 157 West Five Road, Xi'an, 710004, PR China
| | - Xiaozhuo Yu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, PR China
| | - Feng Wu
- Center of Teaching Experiment for Postgraduate in Medicine, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, PR China
| | - Xiaoqi Li
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, PR China
| | - Chen Li
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, PR China
| | - Yanbin Cheng
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, PR China.
| |
Collapse
|
34
|
Shrestha G, Thompson A, Robison R, St Clair LL. Letharia vulpina, a vulpinic acid containing lichen, targets cell membrane and cell division processes in methicillin-resistant Staphylococcus aureus. PHARMACEUTICAL BIOLOGY 2015; 54:413-418. [PMID: 25919857 DOI: 10.3109/13880209.2015.1038754] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Antibiotic resistance in humans is a major concern. Drugs that target traditional sites and pathways are becoming obsolete; thus, compounds affecting novel targets are needed. Screening lichen metabolites for antimicrobials has yielded promising antimicrobial compounds, yet their mode of action is poorly understood. Letharia vulpina (L.) Hue (Parmeliaceae) has traditionally been used to poison predators, and treat stomach disorders; more recently L. vulpina extracts have demonstrated promising antimicrobial properties. OBJECTIVE This study investigates the mode of action of L. vulpina acetone extract against a methicillin-resistant Staphylococcus aureus (MRSA). MATERIAL AND METHODS We treated MRSA with L. vulpina extracts at 1×, 5×, and 10 × MIC values (MIC = 31.25 µg/ml) for 24 h and optical density (OD660) was measured over time to determine bacteriolytic activity; counted colony forming units (CFUs) to determine time kill dynamics; the propidium iodide (PI) assay and transmission electron microscopy were used to assess membrane-damage potential, and thin-layer chromatography was used to identify secondary compounds. RESULTS Bacteriolytic assays showed that L. vulpina extracts, containing only vulpinic acid, do not cause cell lysis, even at 10 × MIC values but there was 92% reduction in bacterial CFUs when treated with increased concentrations of lichen extracts over 24 h at 4 h intervals. Our data indicate that the L. vulpina extract compromises membrane integrity of the MRSA isolate and disrupts cell division processes. DISCUSSION AND CONCLUSION Based on this study, detailed examination of acetone extracts of L. vulpina as well as pure extracts of vulpinic acid as potential antibacterial compounds merit further study.
Collapse
Affiliation(s)
- Gajendra Shrestha
- a Department of Biology , Brigham Young University , Provo , UT , USA
- b M. L. Bean Life Science Museum , Brigham Young University , Provo , UT , USA , and
| | - Andrew Thompson
- a Department of Biology , Brigham Young University , Provo , UT , USA
| | - Richard Robison
- c Department of Microbiology and Molecular Biology , Brigham Young University , Provo , UT , USA
| | - Larry L St Clair
- a Department of Biology , Brigham Young University , Provo , UT , USA
- b M. L. Bean Life Science Museum , Brigham Young University , Provo , UT , USA , and
| |
Collapse
|
35
|
Chen S, Zhang Z, Wu Y, Shi Q, Yan H, Mei N, Tolleson WH, Guo L. Endoplasmic Reticulum Stress and Store-Operated Calcium Entry Contribute to Usnic Acid-Induced Toxicity in Hepatic Cells. Toxicol Sci 2015; 146:116-26. [PMID: 25870318 DOI: 10.1093/toxsci/kfv075] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The use of usnic acid as a weight loss agent is a safety concern due to reports of acute liver failure in humans. Previously we demonstrated that usnic acid induces apoptosis and cytotoxicity in hepatic HepG2 cells. We also demonstrated that usnic acid induces autophagy as a survival mechanism against its cytotoxicity. In this study, we investigated and characterized further molecular mechanisms underlying the toxicity of usnic acid in HepG2 cells. We found that usnic acid causes endoplasmic reticulum (ER) stress demonstrated by the increased expression of typical ER stress markers, including CHOP, ATF-4, p-eIF2α, and spliced XBP1. Usnic acid inhibited the secretion of Gaussia luciferase measured by an ER stress reporter assay. An ER stress inhibitor 4-phenylbutyrate attenuated usnic acid-induced apoptosis. Moreover, usnic acid significantly increased the cytosolic free Ca(2+) concentration. Usnic acid increased the expression of calcium release-activated calcium channel protein 1 (CRAM1 or ORAI1) and stromal interaction molecule 1, two key components of store-operated calcium entry (SOCE), which is the major Ca(2+) influx pathway in non-excitable cells, this finding was also confirmed in primary rat hepatocytes. Furthermore, knockdown of ORAI1 prevented ER stress and ATP depletion in response to usnic acid. In contrast, overexpression of ORAI1 increased ER stress and ATP depletion caused by usnic acid. Taken together, our results suggest that usnic acid disturbs calcium homeostasis, induces ER stress, and that usnic acid-induced cellular damage occurs at least partially via activation of the Ca(2+) channel of SOCE.
Collapse
Affiliation(s)
- Si Chen
- *Division of Biochemical Toxicology, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, Tianjin Medical University General Hospital, Tianjin 300052, China and Division of Systems Biology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079
| | - Zhuhong Zhang
- *Division of Biochemical Toxicology, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, Tianjin Medical University General Hospital, Tianjin 300052, China and Division of Systems Biology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079 *Division of Biochemical Toxicology, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, Tianjin Medical University General Hospital, Tianjin 300052, China and Division of Systems Biology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079
| | - Yuanfeng Wu
- *Division of Biochemical Toxicology, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, Tianjin Medical University General Hospital, Tianjin 300052, China and Division of Systems Biology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079
| | - Qiang Shi
- *Division of Biochemical Toxicology, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, Tianjin Medical University General Hospital, Tianjin 300052, China and Division of Systems Biology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079
| | - Hua Yan
- *Division of Biochemical Toxicology, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, Tianjin Medical University General Hospital, Tianjin 300052, China and Division of Systems Biology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079
| | - Nan Mei
- *Division of Biochemical Toxicology, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, Tianjin Medical University General Hospital, Tianjin 300052, China and Division of Systems Biology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079
| | - William H Tolleson
- *Division of Biochemical Toxicology, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, Tianjin Medical University General Hospital, Tianjin 300052, China and Division of Systems Biology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079
| | - Lei Guo
- *Division of Biochemical Toxicology, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, Tianjin Medical University General Hospital, Tianjin 300052, China and Division of Systems Biology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079
| |
Collapse
|
36
|
Ultrastructural analysis of Leishmania infantum chagasi promastigotes forms treated in vitro with usnic acid. ScientificWorldJournal 2015; 2015:617401. [PMID: 25767824 PMCID: PMC4342185 DOI: 10.1155/2015/617401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/12/2015] [Accepted: 01/16/2015] [Indexed: 02/02/2023] Open
Abstract
Leishmaniasis is considered by the World Health Organization as one of the infectious parasitic diseases endemic of great relevance and a global public health problem. Pentavalent antimonials used for treatment of this disease are limited and new phytochemicals emerge as an alternative to existing treatments, due to the low toxicity and cost reduction. Usnic acid is uniquely found in lichens and is especially abundant in genera such as Alectoria, Cladonia, Evernia, Lecanora, Ramalina, and Usnea. Usnic acid has been shown to exhibit antiviral, antiprotozoal, antiproliferative, anti-inflammatory, and analgesic activity. The aim of this study was to evaluate the antileishmanial activity of usnic acid on Leishmania infantum chagasi promastigotes and the occurrence of drug-induced ultrastructural damage in the parasite. Usnic acid was effective against the promastigote forms (IC50 = 18.30 ± 2.00 µg/mL). Structural and ultrastructural aspects of parasite were analyzed. Morphological alterations were observed as blebs in cell membrane and shapes given off, increasing the number of cytoplasmic vacuoles, and cellular and mitochondrial swelling, with loss of cell polarity. We concluded that the usnic acid presented antileishmanial activity against promastigote forms of Leishmania infantum chagasi and structural and ultrastructural analysis reinforces its cytotoxicity. Further, in vitro studies are warranted to further evaluate this potential.
Collapse
|
37
|
Wang L, Zhang J, Cao Z, Wang Y, Gao Q, Zhang J, Wang D. Inhibition of oxidative phosphorylation for enhancing citric acid production by Aspergillus niger. Microb Cell Fact 2015; 14:7. [PMID: 25592678 PMCID: PMC4320542 DOI: 10.1186/s12934-015-0190-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/05/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The spore germination rate and growth characteristics were compared between the citric acid high-yield strain Aspergillus niger CGMCC 5751 and A. niger ATCC 1015 in media containing antimycin A or DNP. We inferred that differences in citric acid yield might be due to differences in energy metabolism between these strains. To explore the impact of energy metabolism on citric acid production, the changes in intracellular ATP, NADH and NADH/NAD+ were measured at various fermentation stages. In addition, the effects of antimycin A or DNP on energy metabolism and citric acid production was investigated by CGMCC 5751. RESULTS By comparing the spore germination rate and the extent of growth on PDA plates containing antimycin A or DNP, CGMCC 5751 was shown to be more sensitive to antimycin A than ATCC 1015. The substrate-level phosphorylation of CGMCC 5751 was greater than that of ATCC 1015 on PDA plates with DNP. DNP at tested concentrations had no apparent effect on the growth of CGMCC 5751. There were no apparent effects on the mycelial morphology, the growth of mycelial pellets or the dry cell mass when 0.2 mg L(-1) antimycin A or 0.1 mg L(-1) DNP was added to medium at the 24-h time point. The concentrations of intracellular ATP, NADH and NADH/NAD+ of CGMCC 5751 were notably lower than those of ATCC 1015 at several fermentation stages. Moreover, at 96 h of fermentation, the citric acid production of CGMCC 5751 reached up to 151.67 g L(-1) and 135.78 g L(-1) by adding 0.2 mg L(-1) antimycin A or 0.1 mg L(-1) DNP, respectively, at the 24-h time point of fermentation. Thus, the citric acid production of CGMCC 5751 was increased by 19.89% and 7.32%, respectively. CONCLUSIONS The concentrations of intracellular ATP, NADH and NADH/NAD+ of the citric acid high-yield strain CGMCC 5751 were notably lower than those of ATCC 1015. The excessive ATP has a strong inhibitory effect on citric acid accumulation by A. niger. Increasing NADH oxidation and appropriately reducing the concentration of intracellular ATP can accelerate glycolysis and the TCA cycle to enhance citric acid yield.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, 300457, P. R. China. .,College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China.
| | - Jianhua Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, 300457, P. R. China. .,College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China.
| | - Zhanglei Cao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, 300457, P. R. China. .,College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China.
| | - Yajun Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, 300457, P. R. China. .,College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China.
| | - Qiang Gao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, 300457, P. R. China. .,College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China. .,Tianjin Key Laboratory of Industrial Microbiology, Tianjin, 300457, P. R. China.
| | - Jian Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, 300457, P. R. China. .,College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China. .,Tianjin Key Laboratory of Industrial Microbiology, Tianjin, 300457, P. R. China.
| | - Depei Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, 300457, P. R. China. .,College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China. .,Tianjin Key Laboratory of Industrial Microbiology, Tianjin, 300457, P. R. China.
| |
Collapse
|
38
|
Chen S, Dobrovolsky VN, Liu F, Wu Y, Zhang Z, Mei N, Guo L. The role of autophagy in usnic acid-induced toxicity in hepatic cells. Toxicol Sci 2014; 142:33-44. [PMID: 25078063 DOI: 10.1093/toxsci/kfu154] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The use of usnic acid and usnic acid-containing products is associated with acute liver failure; however, mechanistic studies of hepatotoxicity caused by usnic acid are limited. In this study, we investigated and characterized the possible mechanisms, especially the role of autophagy in usnic acid's toxicity in human HepG2 cells. Usnic acid caused apoptosis as demonstrated by an increased caspase-3/7 activity and an increased subdiploid nucleus formation. Usnic acid-induced autophagy as demonstrated by the conversion of LC3B-I to LC3B-II, degradation of P62, and an increased number of puncta. Inhibition of autophagy by treating cells with autophagy inhibitors (3-methyladenine or chloroquine) or by small interfering RNA against Atg7 aggravated usnic acid-induced apoptosis and decreased cell viability, indicating that autophagy plays a protective role against usnic acid-induced toxicity. Moreover, usnic acid activated the MAPK signaling pathway. Usnic acid-elicited apoptosis was enhanced and autophagy was decreased when JNK was suppressed by a specific inhibitor. Additionally, inhibition of autophagy decreased the activity of JNK. Taken together, our results suggest that usnic acid perturbs various interrelated signaling pathways and that autophagy induction is a defensive mechanism against usnic acid-induced cytotoxicity.
Collapse
Affiliation(s)
- Si Chen
- Division of Biochemical Toxicology
| | | | - Fang Liu
- Division of Neurotoxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, Arkansas 72079
| | | | | | - Nan Mei
- Division of Genetic and Molecular Toxicology
| | - Lei Guo
- Division of Biochemical Toxicology
| |
Collapse
|
39
|
Moreira CT, Oliveira AL, Comar JF, Peralta RM, Bracht A. Harmful effects of usnic acid on hepatic metabolism. Chem Biol Interact 2013; 203:502-11. [PMID: 23422721 DOI: 10.1016/j.cbi.2013.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/21/2012] [Accepted: 02/04/2013] [Indexed: 11/26/2022]
Abstract
Usnic acid is a naturally occurring dibenzofuran derivative found in several lichen species. The compound has been marketed as an ingredient of food supplements for weight reduction. There is evidence that the compound acts as an uncoupler of mitochondrial oxidative phosphorylation and it is also clear that consumption of the drug can lead to severe hepatotoxicity depending on the doses. Based on these and other ideas the objective of the present work was to investigate the possible effects of usnic acid on liver metabolism. Livers of male Wistar rats were perfused in a non-recirculating system. Usnic acid stimulated oxygen consumption at low concentrations, diminished the cellular ATP levels, increased the cytosolic but diminished the mitochondrial NADH/NAD(+) ratio, strongly inhibited gluconeogenesis from three different substrates (IC(50) between 1.33 and 3.61 μM), stimulated glycolysis, fructolysis, glycogenolysis and ammoniagenesis and inhibited ureogenesis. The (14)CO(2) production from [1-(14)C]octanoate and [1-(14)C]oleate was increased by usnic acid, but ketogenesis from octanoate was diminished and that from oleate was not affected. It may be concluded that the effects of usnic acid up to 2.5 μM reflect predominantly its activity as an uncoupler. At higher concentrations, however, several other effects may become significant, including inhibition of mitochondrial electron flow and inhibition of medium-chain fatty acid oxidation. In metabolic terms, toxicity of usnic acid can be predicted to be especially dangerous in the fasted state due to the combination of several deleterius events such as diminished hepatic glucose and ketone bodies output to the brain and increased ammonia production.
Collapse
Affiliation(s)
- Caroline T Moreira
- Department of Biochemistry, University of Maringá, 87020900 Maringá, Brazil
| | | | | | | | | |
Collapse
|
40
|
Bessadottir M, Egilsson M, Einarsdottir E, Magnusdottir IH, Ogmundsdottir MH, Omarsdottir S, Ogmundsdottir HM. Proton-shuttling lichen compound usnic acid affects mitochondrial and lysosomal function in cancer cells. PLoS One 2012; 7:e51296. [PMID: 23227259 PMCID: PMC3515546 DOI: 10.1371/journal.pone.0051296] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/31/2012] [Indexed: 01/11/2023] Open
Abstract
The lichen compound usnic acid (UA) is a lipophilic weak acid that acts as a proton shuttle and causes loss of mitochondrial inner membrane potential. In the current study we show that UA treatment induced the formation of autophagosomes in human cancer cells, but had minimal effects on normal human fibroblasts. However, autophagic flux was incomplete, degradation of autophagosomal content did not occur and acidification was defective. UA-treated cells showed reduced ATP levels and activation of AMP kinase as well as signs of cellular stress. UA is thus likely to trigger autophagosome formation both by energy depletion and stress conditions. Our findings indicate that the H(+)-shuttling effect of UA operates not only in mitochondria as previously shown, but also in lysosomes, and have implications for therapeutic manipulation of autophagy and pH-determined drug distribution.
Collapse
Affiliation(s)
- Margret Bessadottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
| | - Mar Egilsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Eydis Einarsdottir
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | | |
Collapse
|
41
|
Simple thermodynamic model of unassisted proton shuttle uncoupling and prediction of activity from calculated speciation, lipophilicity, and molecular geometry. J Theor Biol 2012; 303:33-61. [PMID: 22425608 DOI: 10.1016/j.jtbi.2012.02.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 02/21/2012] [Accepted: 02/29/2012] [Indexed: 12/28/2022]
Abstract
A mechanistic model of uncoupling of oxidative phosphorylation by lipophilic weak acids (i.e. proton shuttles) was developed for the purposes of predicting the relative activity of xenobiotics of widely varying structure and of guiding the design of optimized derivatives. The model is based on thermodynamic premises not formulated elsewhere that allow for the calculation of steady-state conditions and of rate of energy dissipation on the basis of acid-dissociation and permeability behavior, the later estimated from partitioning behavior and geometric considerations. Moreover, permeability of either the neutral or of the ionized species is proposed to be effectively enhanced under conditions of asymmetrical molecular distribution. Finally, special considerations were developed to accommodate multi-protic compounds. The comparison of predicted to measured activity for a diverse testset of 48 compounds of natural origin spanning a wide range of activity yielded a Spearman's rho of 0.90. The model was used to tentatively identify several novel proton shuttles, as well as to elucidate core structures particularly conducive to proton shuttle activity from which optimized derivatives can be designed. Principles of design were formulated and examples of derivatives projected to be active at concentrations on the order of 10(-7)M are proposed. Among these are di-protic compounds predicted to shuttle two protons per cycle iteration and proposed to maximally exploit the proton shuttle mechanism. This work promotes the design of highly active, yet easily-metabolized uncouplers for therapeutic applications, namely the indirect activation of AMP-kinase, as well as for various industrial applications where low persistence is desirable.
Collapse
|
42
|
Lu X, Zhao Q, Tian Y, Xiao S, Jin T, Fan X. A metabonomic characterization of (+)-usnic acid-induced liver injury by gas chromatography-mass spectrometry-based metabolic profiling of the plasma and liver in rat. Int J Toxicol 2011; 30:478-91. [PMID: 21878557 DOI: 10.1177/1091581811414436] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Three doses of (+)-usnic acid (100, 200, and 240 mg/kg per d) were administered orally to Wistar rats for 8 days, and metabonomic characterization of (+)-usnic acid-induced liver injury based on gas chromatography-mass spectrometry metabolic profiles was evaluated. Serum biochemical analysis and histopathological examinations were simultaneously performed. The liver/body weight ratio was significantly increased in (+)-usnic acid-treated groups, whereas serum alanine aminotransferase and total bilirubin were significantly elevated. In liver sections of 200 and 240 mg/kg dosage groups, widespread hydropic degeneration of hepatocytes was observed. Clusters in partial least squares discriminant analysis score plots showed control and (+)-usnic acid-treated groups had an obvious separation. (+)-Usnic acid exposure can lead to disturbances in energy metabolism, amino acid metabolism, lipid metabolism, and nucleotide metabolism, which may be attributable to (+)-usnic acid toxicological effects on the liver through oxidative stress. The significant changes in 22 metabolites in liver might be adopted as potential biomarkers.
Collapse
Affiliation(s)
- Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, 866 YuHangTang Road, Hangzhou, 310058 People's Republic of China
| | | | | | | | | | | |
Collapse
|
43
|
Sonko BJ, Schmitt TC, Guo L, Shi Q, Boros LG, Leakey JEA, Beger RD. Assessment of usnic acid toxicity in rat primary hepatocytes using ¹³C isotopomer distribution analysis of lactate, glutamate and glucose. Food Chem Toxicol 2011; 49:2968-74. [PMID: 21802472 DOI: 10.1016/j.fct.2011.07.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 07/07/2011] [Accepted: 07/10/2011] [Indexed: 11/19/2022]
Abstract
The lichen metabolite usnic acid (UA) has been promoted as a dietary supplement for weight loss, although cases of hepatotoxicity have been reported. Here we evaluated UA-associated hepatotoxicity in vitro using isolated rat hepatocytes. We measured cell viability and ATP content to evaluate UA induced cytotoxicity and applied (13)C isotopomer distribution measuring techniques to gain a better understanding of glucose metabolism during cytotoxicity. The cells were exposed to 0, 1, 5 or 10 μM UA concentrations for 2, 6 or 24h. Aliquots of media were collected at the end of these time periods and the (13)C mass isotopomer distribution determined for CO(2), lactate, glucose and glutamate. The 1 μM UA exposure did not appear to cause significant change in cell viability compared to controls. However, the 5 and 10 μM UA concentrations significantly reduced cell viability as exposure time increased. Similar results were obtained for ATP depletion experiments. The 1 and 5 μM UA doses suggest increased oxidative phosphorylation. Conversely, oxidative phosphorylation and gluconeogenesis were dramatically inhibited by 10 μM UA. Augmented oxidative phosphorylation at the lower UA concentrations may be an adaptive response by the cells to compensate for diminished mitochondrial function.
Collapse
Affiliation(s)
- Bakary J Sonko
- Division of Systems Biology, National Center for Toxicological Research, US FDA, Jefferson, AR 72079, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Redox properties and cytoprotective actions of atranorin, a lichen secondary metabolite. Toxicol In Vitro 2010; 25:462-8. [PMID: 21111802 DOI: 10.1016/j.tiv.2010.11.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 11/16/2010] [Accepted: 11/17/2010] [Indexed: 01/12/2023]
Abstract
Atranorin (ATR) is a lichenic secondary metabolite with potential uses in pharmacology. Antinociceptive and antiinflammatory actions have been reported, and the use of atranorin-enriched lichen extracts in folk medicine is widespread. Nonetheless, very few data on ATR biological actions are available. Here, we evaluated free radical scavenging activities and antioxidant potential of ATR using various in vitro assays for scavenging activity against hydroxyl radicals, hydrogen peroxide, superoxide radicals, and nitric oxide. The total reactive antioxidant potential (TRAP) and total antioxidant reactivity (TAR) indexes and in vitro lipoperoxidation were also evaluated. Besides, we determined the cytoprotective effect of ATR on H(2)O(2)-challenged SH-SY5Y cells by the MTT assay. ATR exerts differential effects towards reactive species production, enhancing hydrogen peroxide and nitric oxide production and acting as a superoxide scavenger; no activity toward hydroxyl radical production/scavenging was observed. Besides, TRAP/TAR analysis indicated that atranorin acts as a general antioxidant, although it demonstrated to enhance peroxyl radical-induced lipoperoxidation in vitro. ATR was not cytotoxic, and also protected SH-SY5Y cells against H(2)O(2)-induced cell viability impairment. Our results suggest that ATR has a relevant redox-active action, acting as a pro-oxidant or antioxidant agent depending on the radical. Also, it will exert cytoprotective effects on cells under oxidative stress induced by H(2)O(2).
Collapse
|
45
|
Galasso V. Probing the molecular and electronic structure of the lichen metabolite usnic acid: A DFT study. Chem Phys 2010. [DOI: 10.1016/j.chemphys.2010.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
O'Neill MA, Mayer M, Murray KE, Rolim-Santos HML, Santos-Magalhães NS, Thompson AM, Appleyard VCL. Does usnic acid affect microtubules in human cancer cells? BRAZ J BIOL 2010; 70:659-64. [DOI: 10.1590/s1519-69842010005000013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 04/01/2009] [Indexed: 11/22/2022] Open
Abstract
Usnic acid, a lichen metabolite, is known to exert antimitotic and antiproliferative activities against normal and malignant human cells. Many chemotherapy agents exert their activities by blocking cell cycle progression, inducing cell death through apoptosis. Microtubules, protein structure involved in the segregation of chromosomes during mitosis, serve as chemotherapeutical targets due to their key role in cellular division as well as apoptosis. The aim of this work was to investigate whether usnic acid affects the formation and/or stabilisation of microtubules by visualising microtubules and determining mitotic indices after treatment. The breast cancer cell line MCF7 and the lung cancer cell line H1299 were treated with usnic acid 29 µM for 24 hours and two positive controls: vincristine (which prevents the formation of microtubules) or taxol (which stabilizes microtubules). Treatment of MCF7 and H1299 cells with usnic acid did not result in any morphological changes in microtubules or increase in the mitotic index. These results suggest that the antineoplastic activity of usnic acid is not related to alterations in the formation and/or stabilisation of microtubules.
Collapse
Affiliation(s)
| | - M. Mayer
- Universidade Federal Rural de Pernambuco, Brazil; Laboratório de Imunopatologia Keizo Asami LIKA; Centro de Ciências Biológicas
| | | | - HML. Rolim-Santos
- Laboratório de Imunopatologia Keizo Asami LIKA; Centro de Ciências Biológicas; Universidade Federal do Piauí
| | - NS. Santos-Magalhães
- Laboratório de Imunopatologia Keizo Asami LIKA; Centro de Ciências Biológicas; Universidade Federal de Pernambuco, Brazil
| | | | | |
Collapse
|
47
|
Microbial degradation of usnic acid in the reindeer rumen. Naturwissenschaften 2009; 97:273-8. [DOI: 10.1007/s00114-009-0639-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 11/27/2009] [Accepted: 12/02/2009] [Indexed: 11/25/2022]
|
48
|
Hauck M, Jürgens SR, Huneck S, Leuschner C. High acidity tolerance in lichens with fumarprotocetraric, perlatolic or thamnolic acids is correlated with low pKa1 values of these lichen substances. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:2776-2780. [PMID: 19464777 DOI: 10.1016/j.envpol.2009.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 04/16/2009] [Accepted: 04/20/2009] [Indexed: 05/27/2023]
Abstract
The depsidone fumarprotocetraric acid as well as the depsides perlatolic and thamnolic acids are lichen secondary metabolites. Their first dissociation constants (pK(a1)) in methanol were determined to be 2.7 for perlatolic acid and 2.8 for fumarprotocetraric and thamnolic acids by UV spectroscopy. Lower pK(a1) values are, so far, not known from lichen substances. Several lichens producing at least one of these compounds are known for their outstanding tolerance to acidic air pollution. This is demonstrated by evaluating published pH preferences for central European lichens. The low pK(a1) values suggest that strong dissociation of the studied lichen substances is a prerequisite for the occurrence of lichens with these compounds on very acidic substrata, as protonated lichen substances of different chemical groups, but not their conjugated bases, are known to shuttle protons into the cytoplasm and thereby apparently damage lichens.
Collapse
Affiliation(s)
- Markus Hauck
- Albrecht von Haller Institute of Plant Sciences, Dept. Plant Ecology, University of Göttingen, Untere Karspüle 2, D-37073 Göttingen, Germany.
| | | | | | | |
Collapse
|
49
|
Joseph A, Lee T, Moland CL, Branham WS, Fuscoe JC, Leakey JEA, Allaben WT, Lewis SM, Ali AA, Desai VG. Effect of (+)-usnic acid on mitochondrial functions as measured by mitochondria-specific oligonucleotide microarray in liver of B6C3F1 mice. Mitochondrion 2009; 9:149-58. [PMID: 19460291 DOI: 10.1016/j.mito.2009.02.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 01/09/2009] [Accepted: 02/04/2009] [Indexed: 10/21/2022]
Abstract
Usnic acid is a lichen metabolite used as a weight-loss dietary supplement due to its uncoupling action on mitochondria. However, its use has been associated with severe liver disorders in some individuals. Animal studies conducted thus far evaluated the effects of usnic acid on mitochondria primarily by measuring the rate of oxygen consumption and/or ATP generation. To obtain further insight into usnic acid-mediated effects on mitochondria, we examined the expression levels of 542 genes associated with mitochondrial structure and functions in liver of B6C3F(1) female mice using a mitochondria-specific microarray. Beginning at 8 weeks of age, mice received usnic acid at 0, 60, 180, and 600 ppm in ground, irradiated 5LG6 diet for 14 days. Microarray analysis showed a significant effect of usnic acid on the expression of several genes only at the highest dose of 600 ppm. A prominent finding of the study was a significant induction of genes associated with complexes I through IV of the electron transport chain. Moreover, several genes involved in fatty acid oxidation, the Krebs cycle, apoptosis, and membrane transporters were over-expressed. Usnic acid is a lipophilic weak acid that can diffuse through mitochondrial membranes and cause a proton leak (uncoupling). The up-regulation of complexes I-IV may be a compensatory mechanism to maintain the proton gradient across the mitochondrial inner membrane. In addition, induction of fatty acid oxidation and the Krebs cycle may be an adaptive response to uncoupling of mitochondria.
Collapse
Affiliation(s)
- Ajay Joseph
- University of Abertay Dundee, DD1 1HG Dundee, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lichen Substances Prevent Lichens from Nutrient Deficiency. J Chem Ecol 2009; 35:71-3. [DOI: 10.1007/s10886-008-9584-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 12/05/2008] [Accepted: 12/19/2008] [Indexed: 10/21/2022]
|