1
|
Feldman AF, Zhang Z, Yoshida Y, Gentine P, Chatterjee A, Entekhabi D, Joiner J, Poulter B. A multi-satellite framework to rapidly evaluate extreme biosphere cascades: The Western US 2021 drought and heatwave. GLOBAL CHANGE BIOLOGY 2023; 29:3634-3651. [PMID: 37070967 DOI: 10.1111/gcb.16725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/04/2023] [Indexed: 06/06/2023]
Abstract
The increasing frequency and intensity of climate extremes and complex ecosystem responses motivate the need for integrated observational studies at low latency to determine biosphere responses and carbon-climate feedbacks. Here, we develop a satellite-based rapid attribution workflow and demonstrate its use at a 1-2-month latency to attribute drivers of the carbon cycle feedbacks during the 2020-2021 Western US drought and heatwave. In the first half of 2021, concurrent negative photosynthesis anomalies and large positive column CO2 anomalies were detected with satellites. Using a simple atmospheric mass balance approach, we estimate a surface carbon efflux anomaly of 132 TgC in June 2021, a magnitude corroborated independently with a dynamic global vegetation model. Integrated satellite observations of hydrologic processes, representing the soil-plant-atmosphere continuum (SPAC), show that these surface carbon flux anomalies are largely due to substantial reductions in photosynthesis because of a spatially widespread moisture-deficit propagation through the SPAC between 2020 and 2021. A causal model indicates deep soil moisture stores partially drove photosynthesis, maintaining its values in 2020 and driving its declines throughout 2021. The causal model also suggests legacy effects may have amplified photosynthesis deficits in 2021 beyond the direct effects of environmental forcing. The integrated, observation framework presented here provides a valuable first assessment of a biosphere extreme response and an independent testbed for improving drought propagation and mechanisms in models. The rapid identification of extreme carbon anomalies and hotspots can also aid mitigation and adaptation decisions.
Collapse
Affiliation(s)
- Andrew F Feldman
- Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- NASA Postdoctoral Program, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Zhen Zhang
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland, USA
| | - Yasuko Yoshida
- Science Systems and Applications, Inc. (SSAI), Lanham, Maryland, USA
| | - Pierre Gentine
- Department of Earth and Environmental Engineering, Columbia University, New York, New York, USA
| | - Abhishek Chatterjee
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Dara Entekhabi
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Joanna Joiner
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Benjamin Poulter
- Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| |
Collapse
|
2
|
Li X, Hou Y, Chu X, Zhao M, Wei S, Song W, Li P, Wang X, Han G. Ambient precipitation determines the sensitivity of soil respiration to precipitation treatments in a marsh. GLOBAL CHANGE BIOLOGY 2023; 29:2301-2312. [PMID: 36597706 DOI: 10.1111/gcb.16581] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 05/28/2023]
Abstract
The effects in field manipulation experiments are strongly influenced by amplified interannual variation in ambient climate as the experimental duration increases. Soil respiration (SR), as an important part of the carbon cycle in terrestrial ecosystems, is sensitive to climate changes such as temperature and precipitation changes. A growing body of evidence has indicated that ambient climate affects the temperature sensitivity of SR, which benchmarks the strength of terrestrial soil carbon-climate feedbacks. However, whether SR sensitivity to precipitation changes is influenced by ambient climate is still not clear. In addition, the mechanism driving the above phenomenon is still poorly understood. Here, a long-term field manipulation experiment with five precipitation treatments (-60%, -40%, +0%, +40%, and +60% of annual precipitation) was conducted in a marsh in the Yellow River Delta, China, which is sensitive to soil drying-wetting cycle caused by precipitation changes. Results showed that SR increased exponentially along the experimental precipitation gradient each year and the sensitivity of SR (standardized by per 100 mm change in precipitation under precipitation treatments) exhibited significant interannual variation from 2016 to 2021. In addition, temperature, net radiation, and ambient precipitation all exhibited dramatic interannual variability; however, only ambient precipitation had a significant negative correlation with SR sensitivity. Moreover, the sensitivity of SR was significantly positively related to the sensitivity of belowground biomass (BGB) across 6 years. Structural equation modeling and regression analysis also showed that precipitation treatments significantly affected SR and its autotrophic and heterotrophic components by altering BGB. Our study demonstrated that ambient precipitation determines the sensitivity of SR to precipitation treatments in marshes. The findings underscore the importance of ambient climate in regulating ecosystem responses in long-term field manipulation experiments.
Collapse
Affiliation(s)
- Xinge Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, P.R. China
- Shandong Key Laboratory of Coastal Environmental Processes, Yantai, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
- The Yellow River Delta Ecological Research Station of Coastal Wetland, Chinese Academy of Sciences, Yantai, P.R. China
| | - Yalin Hou
- College of Geography and Environmental Science, Henan University, Kaifeng, P.R. China
| | - Xiaojing Chu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, P.R. China
- Shandong Key Laboratory of Coastal Environmental Processes, Yantai, P.R. China
- The Yellow River Delta Ecological Research Station of Coastal Wetland, Chinese Academy of Sciences, Yantai, P.R. China
| | - Mingliang Zhao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, P.R. China
- Shandong Key Laboratory of Coastal Environmental Processes, Yantai, P.R. China
- The Yellow River Delta Ecological Research Station of Coastal Wetland, Chinese Academy of Sciences, Yantai, P.R. China
| | - Siyu Wei
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, P.R. China
- Shandong Key Laboratory of Coastal Environmental Processes, Yantai, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Weimin Song
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, P.R. China
- Shandong Key Laboratory of Coastal Environmental Processes, Yantai, P.R. China
- The Yellow River Delta Ecological Research Station of Coastal Wetland, Chinese Academy of Sciences, Yantai, P.R. China
| | - Peiguang Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, P.R. China
- Shandong Key Laboratory of Coastal Environmental Processes, Yantai, P.R. China
- The Yellow River Delta Ecological Research Station of Coastal Wetland, Chinese Academy of Sciences, Yantai, P.R. China
| | - Xiaojie Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, P.R. China
- Shandong Key Laboratory of Coastal Environmental Processes, Yantai, P.R. China
- The Yellow River Delta Ecological Research Station of Coastal Wetland, Chinese Academy of Sciences, Yantai, P.R. China
| | - Guangxuan Han
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, P.R. China
- Shandong Key Laboratory of Coastal Environmental Processes, Yantai, P.R. China
- The Yellow River Delta Ecological Research Station of Coastal Wetland, Chinese Academy of Sciences, Yantai, P.R. China
| |
Collapse
|
3
|
Dannenberg MP, Yan D, Barnes ML, Smith WK, Johnston MR, Scott RL, Biederman JA, Knowles JF, Wang X, Duman T, Litvak ME, Kimball JS, Williams AP, Zhang Y. Exceptional heat and atmospheric dryness amplified losses of primary production during the 2020 U.S. Southwest hot drought. GLOBAL CHANGE BIOLOGY 2022; 28:4794-4806. [PMID: 35452156 PMCID: PMC9545136 DOI: 10.1111/gcb.16214] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/23/2022] [Indexed: 05/28/2023]
Abstract
Earth's ecosystems are increasingly threatened by "hot drought," which occurs when hot air temperatures coincide with precipitation deficits, intensifying the hydrological, physiological, and ecological effects of drought by enhancing evaporative losses of soil moisture (SM) and increasing plant stress due to higher vapor pressure deficit (VPD). Drought-induced reductions in gross primary production (GPP) exert a major influence on the terrestrial carbon sink, but the extent to which hotter and atmospherically drier conditions will amplify the effects of precipitation deficits on Earth's carbon cycle remains largely unknown. During summer and autumn 2020, the U.S. Southwest experienced one of the most intense hot droughts on record, with record-low precipitation and record-high air temperature and VPD across the region. Here, we use this natural experiment to evaluate the effects of hot drought on GPP and further decompose those negative GPP anomalies into their constituent meteorological and hydrological drivers. We found a 122 Tg C (>25%) reduction in GPP below the 2015-2019 mean, by far the lowest regional GPP over the Soil Moisture Active Passive satellite record. Roughly half of the estimated GPP loss was attributable to low SM (likely a combination of record-low precipitation and warming-enhanced evaporative depletion), but record-breaking VPD amplified the reduction of GPP, contributing roughly 40% of the GPP anomaly. Both air temperature and VPD are very likely to continue increasing over the next century, likely leading to more frequent and intense hot droughts and substantially enhancing drought-induced GPP reductions.
Collapse
Affiliation(s)
- Matthew P. Dannenberg
- Department of Geographical and Sustainability SciencesUniversity of IowaIowa CityIowaUSA
| | - Dong Yan
- Information and Data CenterChina Renewable Energy Engineering InstituteBeijingChina
- School of Natural Resources and the EnvironmentUniversity of ArizonaTucsonArizonaUSA
| | - Mallory L. Barnes
- O'Neill School of Public and Environmental AffairsIndiana UniversityBloomingtonIndianaUSA
| | - William K. Smith
- School of Natural Resources and the EnvironmentUniversity of ArizonaTucsonArizonaUSA
| | - Miriam R. Johnston
- Department of Geographical and Sustainability SciencesUniversity of IowaIowa CityIowaUSA
| | - Russell L. Scott
- Southwest Watershed Research Center, Agricultural Research ServiceU.S. Department of AgricultureTucsonArizonaUSA
| | - Joel A. Biederman
- Southwest Watershed Research Center, Agricultural Research ServiceU.S. Department of AgricultureTucsonArizonaUSA
| | - John F. Knowles
- Department of Earth and Environmental SciencesCalifornia State UniversityChicoCaliforniaUSA
| | - Xian Wang
- School of Natural Resources and the EnvironmentUniversity of ArizonaTucsonArizonaUSA
| | - Tomer Duman
- Department of BiologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Marcy E. Litvak
- Department of BiologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - John S. Kimball
- Numerical Terradynamic Simulation GroupUniversity of MontanaMissoulaMontanaUSA
| | - A. Park Williams
- Department of GeographyUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Yao Zhang
- Sino‐French Institute for Earth System Science, College of Urban and Environmental SciencesPeking UniversityBeijingChina
| |
Collapse
|
4
|
de Souza BC, Carvalho ECD, Oliveira RS, de Araujo FS, de Lima ALA, Rodal MJN. Drought response strategies of deciduous and evergreen woody species in a seasonally dry neotropical forest. Oecologia 2020; 194:221-236. [PMID: 32965523 DOI: 10.1007/s00442-020-04760-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 09/15/2020] [Indexed: 11/30/2022]
Abstract
Deciduous and evergreen trees are usually considered the main coexisting functional groups in seasonally dry tropical forests (SDTF). We compared leaf and stem traits of 22 woody species in the Brazilian Caatinga to investigate whether deciduous (DC) and evergreen (EV) species have divergent water-use strategies. Our hypothesis was that DC trees compensate for their short leaf longevity by being less conservative in water use and showing higher variation in the seasonal water potential after leaf shedding. Evergreen species should exhibit a highly conservative water use strategy, which reduces variations in seasonal water potential and the negative effects of desiccation. Our leaf dynamics results indicate that the crown area of DC trees is more sensitive to air and soil drought, whereas EV trees are only sensitive to soil drought. Deciduous species exhibit differences in a set of leaf traits confirming their acquisitive strategy, which contrasts with evergreen species. However, when stomatal traits are considered, we found that DC and EV have similar stomatal regulation strategies (partially isohydric). We also found divergent physiological strategies within DC. For high wood density DC, the xylem water potential (Ψxylem) continued to drop during the dry season. We also found a negative linear relationship between leaf life span (LL) and the transpiration rate per unit of hydraulic conductivity (Λ), indicating that species with high LL are less vulnerable to hydraulic conductivity loss than early-deciduous species. Collectively, our results indicate divergence in the physiology of deciduous species, which suggests that categorizing species based solely on their leaf phenology may be an oversimplification.
Collapse
Affiliation(s)
- Bruno Cruz de Souza
- Graduate Program in Ecology and Natural Resources, Science Center, Department of Biology, Federal University of Ceará - UFC, Fortaleza, 60440-900, Brazil.
| | - Ellen Cristina Dantas Carvalho
- Graduate Program in Ecology and Natural Resources, Science Center, Department of Biology, Federal University of Ceará - UFC, Fortaleza, 60440-900, Brazil
| | - Rafael S Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, 13083-970, Brazil.
| | | | - André Luiz Alves de Lima
- Federal Rural University of Pernambuco, Campus of Serra Talhada, Serra Talhada, 56909-535, Brazil
| | - Maria Jesus Nogueira Rodal
- Department of Biology, Federal Rural University of Pernambuco, Botany Sector, Recife, 52171-900, Brazil.
| |
Collapse
|
5
|
Nikoukar R, Lawrence DJ, Peplowski PN, Dewey RM, Korth H, Baker DN, McNutt RL. Statistical Study of Mercury's Energetic Electron Events as Observed by the Gamma-Ray and Neutron Spectrometer Instrument Onboard MESSENGER. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2018; 123:4961-4978. [PMID: 30167351 PMCID: PMC6108406 DOI: 10.1029/2018ja025339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/17/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
We present results from a statistical analysis of Mercury's energetic electron (EE) events as observed by the gamma-ray and neutron spectrometer instrument onboard the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. The main objective of this study is to investigate possible anisotropic behavior of EE events using multiple data sets from MESSENGER instruments. We study the data from the neutron spectrometer (NS) and the gamma-ray spectrometer anticoincidence shield (ACS) because they use the same type of borated plastic scintillator and, hence, they have very similar response functions, and their large surface areas make them more sensitive to low-intensity EE events than MESSENGER's particle instrumentation. The combined analysis of NS and ACS data reveals two different classes of energetic electrons: "Standard" events and "ACS-enhanced" events. Standard events, which comprise over 90% of all events, have signal sizes that are the same in both the ACS and NS. They are likely gyrating particles about Mercury's magnetic field following a 90° pitch angle distribution and are located in well-defined latitude and altitude regions within Mercury's magnetosphere. ACS-enhanced events, which comprise less than 10% of all events, have signal sizes in the ACS that are 10 to 100 times larger than those observed by the NS. They follow a beam-like distribution and are observed both inside and outside Mercury's magnetosphere with a wider range of latitudes and altitudes than Standard events. The difference between the Standard and ACS-enhanced event characteristics suggests distinct underyling acceleration mechanisms.
Collapse
Affiliation(s)
- Romina Nikoukar
- Applied Physics LaboratoryJohns Hopkins UniversityLaurelMDUSA
| | | | | | - Ryan M. Dewey
- Department of Climate and Space Sciences and EngineeringUniversity of MichiganAnn ArborMIUSA
| | - Haje Korth
- Applied Physics LaboratoryJohns Hopkins UniversityLaurelMDUSA
| | - Daniel N. Baker
- Laboratory for Atmospheric and Space PhysicsUniversity of ColoradoBoulderCOUSA
| | - Ralph L. McNutt
- Applied Physics LaboratoryJohns Hopkins UniversityLaurelMDUSA
| |
Collapse
|
6
|
Carbon Mass Change and Its Drivers in a Boreal Coniferous Forest in the Qilian Mountains, China from 1964 to 2013. FORESTS 2018. [DOI: 10.3390/f9020057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Korth H, Johnson CL, Philpott L, Tsyganenko NA, Anderson BJ. A Dynamic Model of Mercury's Magnetospheric Magnetic Field. GEOPHYSICAL RESEARCH LETTERS 2017; 44:10147-10154. [PMID: 29263560 PMCID: PMC5726378 DOI: 10.1002/2017gl074699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/29/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
Mercury's solar wind and interplanetary magnetic field environment is highly dynamic, and variations in these external conditions directly control the current systems and magnetic fields inside the planetary magnetosphere. We update our previous static model of Mercury's magnetic field by incorporating variations in the magnetospheric current systems, parameterized as functions of Mercury's heliocentric distance and magnetic activity. The new, dynamic model reproduces the location of the magnetopause current system as a function of systematic pressure variations encountered during Mercury's eccentric orbit, as well as the increase in the cross-tail current intensity with increasing magnetic activity. Despite the enhancements in the external field parameterization, the residuals between the observed and modeled magnetic field inside the magnetosphere indicate that the dynamic model achieves only a modest overall improvement over the previous static model. The spatial distribution of the residuals in the magnetic field components shows substantial improvement of the model accuracy near the dayside magnetopause. Elsewhere, the large-scale distribution of the residuals is similar to those of the static model. This result implies either that magnetic activity varies much faster than can be determined from the spacecraft's passage through the magnetosphere or that the residual fields are due to additional external current systems not represented in the model or both. Birkeland currents flowing along magnetic field lines between the magnetosphere and planetary high-latitude regions have been identified as one such contribution.
Collapse
Affiliation(s)
- Haje Korth
- The Johns Hopkins University Applied Physics LaboratoryLaurelMDUSA
| | - Catherine L. Johnson
- Department of Earth, Ocean and Atmospheric SciencesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Planetary Science InstituteTucsonAZUSA
| | - Lydia Philpott
- Department of Earth, Ocean and Atmospheric SciencesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Nikolai A. Tsyganenko
- Institute and Faculty of PhysicsSaint Petersburg State UniversitySaint PetersburgRussia
| | | |
Collapse
|
8
|
James MK, Bunce EJ, Yeoman TK, Imber SM, Korth H. A statistical survey of ultralow-frequency wave power and polarization in the Hermean magnetosphere. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2016; 121:8755-8772. [PMID: 27840786 PMCID: PMC5089056 DOI: 10.1002/2016ja023103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/11/2016] [Accepted: 09/07/2016] [Indexed: 06/06/2023]
Abstract
We present a statistical survey of ultralow-frequency wave activity within the Hermean magnetosphere using the entire MErcury Surface, Space ENvironment, GEochemistry, and Ranging magnetometer data set. This study is focused upon wave activity with frequencies <0.5 Hz, typically below local ion gyrofrequencies, in order to determine if field line resonances similar to those observed in the terrestrial magnetosphere may be present. Wave activity is mapped to the magnetic equatorial plane of the magnetosphere and to magnetic latitude and local times on Mercury using the KT14 magnetic field model. Wave power mapped to the planetary surface indicates the average location of the polar cap boundary. Compressional wave power is dominant throughout most of the magnetosphere, while azimuthal wave power close to the dayside magnetopause provides evidence that interactions between the magnetosheath and the magnetopause such as the Kelvin-Helmholtz instability may be driving wave activity. Further evidence of this is found in the average wave polarization: left-handed polarized waves dominate the dawnside magnetosphere, while right-handed polarized waves dominate the duskside. A possible field line resonance event is also presented, where a time-of-flight calculation is used to provide an estimated local plasma mass density of ∼240 amu cm-3.
Collapse
Affiliation(s)
- Matthew K. James
- Department of Physics and AstronomyUniversity of LeicesterLeicesterUK
| | - Emma J. Bunce
- Department of Physics and AstronomyUniversity of LeicesterLeicesterUK
| | - Timothy K. Yeoman
- Department of Physics and AstronomyUniversity of LeicesterLeicesterUK
| | - Suzanne M. Imber
- Department of Physics and AstronomyUniversity of LeicesterLeicesterUK
- Department of Atmospheric, Oceanic and Space SciencesUniversity of MichiganAnn ArborMichiganUSA
| | - Haje Korth
- The Johns Hopkins University Applied Physics LaboratoryLaurelMarylandUSA
| |
Collapse
|
9
|
Johnson CL, Phillips RJ, Purucker ME, Anderson BJ, Byrne PK, Denevi BW, Feinberg JM, Hauck SA, Head JW, Korth H, James PB, Mazarico E, Neumann GA, Philpott LC, Siegler MA, Tsyganenko NA, Solomon SC. Planetary science. Low-altitude magnetic field measurements by MESSENGER reveal Mercury's ancient crustal field. Science 2015; 348:892-5. [PMID: 25953822 DOI: 10.1126/science.aaa8720] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 04/28/2015] [Indexed: 11/02/2022]
Abstract
Magnetized rocks can record the history of the magnetic field of a planet, a key constraint for understanding its evolution. From orbital vector magnetic field measurements of Mercury taken by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft at altitudes below 150 kilometers, we have detected remanent magnetization in Mercury's crust. We infer a lower bound on the average age of magnetization of 3.7 to 3.9 billion years. Our findings indicate that a global magnetic field driven by dynamo processes in the fluid outer core operated early in Mercury's history. Ancient field strengths that range from those similar to Mercury's present dipole field to Earth-like values are consistent with the magnetic field observations and with the low iron content of Mercury's crust inferred from MESSENGER elemental composition data.
Collapse
Affiliation(s)
- Catherine L Johnson
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada. Planetary Science Institute, Tucson, AZ 85719, USA.
| | - Roger J Phillips
- Planetary Science Directorate, Southwest Research Institute, Boulder, CO 80302, USA
| | | | - Brian J Anderson
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
| | - Paul K Byrne
- Lunar and Planetary Institute, Houston, TX 77058, USA. Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA
| | - Brett W Denevi
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
| | - Joshua M Feinberg
- Institute for Rock Magnetism, Department of Earth Sciences, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Steven A Hauck
- Department of Earth, Environmental, and Planetary Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - James W Head
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI 02912, USA
| | - Haje Korth
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
| | - Peter B James
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA
| | - Erwan Mazarico
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | | | - Lydia C Philpott
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Matthew A Siegler
- Planetary Science Institute, Tucson, AZ 85719, USA. Department of Earth Sciences, Southern Methodist University, Dallas, TX 75205, USA
| | - Nikolai A Tsyganenko
- Institute and Faculty of Physics, Saint Petersburg State University, Saint Petersburg, Russia
| | - Sean C Solomon
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA. Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA
| |
Collapse
|