1
|
Heparanase Modulates Chromatin Accessibility. Cells 2023; 12:cells12060891. [PMID: 36980232 PMCID: PMC10047235 DOI: 10.3390/cells12060891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/04/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Heparanase is the sole endoglucuronidase that degrades heparan sulfate in the cell surface and extracellular matrix (ECM). Several studies have reported the localization of heparanase in the cell nucleus, but the functional role of the nuclear enzyme is still obscure. Subjecting mouse embryonic fibroblasts (MEFs) derived from heparanase knockout (Hpse-KO) mice and applying transposase-accessible chromatin with sequencing (ATAC-seq), we revealed that heparanase is involved in the regulation of chromatin accessibility. Integrating with genome-wide analysis of chromatin states revealed an overall low activity in the enhancer and promoter regions of Hpse-KO MEFs compared with wild-type (WT) MEFs. Western blot analysis of MEFs and tissues derived from Hpse-KO vs. WT mice confirmed reduced expression of H3K27ac (acetylated lysine at N-terminal position 27 of the histone H3 protein). Our results offer a mechanistic explanation for the well-documented attenuation of inflammatory responses and tumor growth in Hpse-KO mice.
Collapse
|
2
|
Koganti R, Suryawanshi R, Shukla D. Heparanase, cell signaling, and viral infections. Cell Mol Life Sci 2020; 77:5059-5077. [PMID: 32462405 PMCID: PMC7252873 DOI: 10.1007/s00018-020-03559-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/17/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022]
Abstract
Heparanase (HPSE) is a multifunctional protein endowed with many non-enzymatic functions and a unique enzymatic activity as an endo-β-D-glucuronidase. The latter allows it to serve as a key modulator of extracellular matrix (ECM) via a well-regulated cleavage of heparan sulfate side chains of proteoglycans at cell surfaces. The cleavage and associated changes at the ECM cause release of multiple signaling molecules with important cellular and pathological functions. New and emerging data suggest that both enzymatic as well as non-enzymatic functions of HPSE are important for health and illnesses including viral infections and virally induced cancers. This review summarizes recent findings on the roles of HPSE in activation, inhibition, or bioavailability of key signaling molecules such as AKT, VEGF, MAPK-ERK, and EGFR, which are known regulators of common viral infections in immune and non-immune cell types. Altogether, our review provides a unique overview of HPSE in cell-survival signaling pathways and how they relate to viral infections.
Collapse
Affiliation(s)
- Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St, Chicago, IL, 60612, USA
| | - Rahul Suryawanshi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St, Chicago, IL, 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St, Chicago, IL, 60612, USA.
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
3
|
Abstract
Heparanase is the only mammalian enzyme that cleaves heparan sulphate, an important component of the extracellular matrix. This leads to the remodelling of the extracellular matrix, whilst liberating growth factors and cytokines bound to heparan sulphate. This in turn promotes both physiological and pathological processes such as angiogenesis, immune cell migration, inflammation, wound healing and metastasis. Furthermore, heparanase exhibits non-enzymatic actions in cell signalling and in regulating gene expression. Cancer is underpinned by key characteristic features that promote malignant growth and disease progression, collectively termed the 'hallmarks of cancer'. Essentially, all cancers examined to date have been reported to overexpress heparanase, leading to enhanced tumour growth and metastasis with concomitant poor patient survival. With its multiple roles within the tumour microenvironment, heparanase has been demonstrated to regulate each of these hallmark features, in turn highlighting the need for heparanase-targeted therapies. However, recent discoveries which demonstrated that heparanase can also regulate vital anti-tumour mechanisms have cast doubt on this approach. This review will explore the myriad ways by which heparanase functions as a key regulator of the hallmarks of cancer and will highlight its role as a major component within the tumour microenvironment. The dual role of heparanase within the tumour microenvironment, however, emphasises the need for further investigation into defining its precise mechanism of action in different cancer settings.
Collapse
Affiliation(s)
- Krishnath M Jayatilleke
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Plenty Road & Kingsbury Drive, Melbourne, VIC, 3086, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Plenty Road & Kingsbury Drive, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
4
|
Min WP, Wei XF. Silencing SIX1 inhibits epithelial mesenchymal transition through regulating TGF-β/Smad2/3 signaling pathway in papillary thyroid carcinoma. Auris Nasus Larynx 2020; 48:487-495. [PMID: 33077306 DOI: 10.1016/j.anl.2020.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To investigate the sineoculis homeobox homolog 1 (SIX1) affect the epithelial mesenchymal transition (EMT) in papillary thyroid carcinoma (PTC) through regulating TGF-β/Smad2/3 signaling pathway. METHODS The SIX1 expression in cytological specimens, tissues or PTC cell lines was detected by qRT-PCR, western blotting or immunohistochemistry. A series of vitro experiments including flow cytometry, CCK-8, wound-healing and Transwell were used to evaluate the biological characteristics in a PTC cell line (NPA cells), which were divided into Blank, Negative control (NC), SIX1, SIX1-siRNA, LY-364947 (TGF-β/Smad2/3 pathway inhibitor) and SIX1 + LY-364947 groups. TGF-β/Smad2/3 pathway and EMT related protein expression were measured by qRT-PCR and western blotting. RESULTS SIX1 mRNA expression was increased in cytological specimens from PTC patients as compared with the non-toxic nodular goitre (NTG) patients. Moreover, compared with adjacent normal tissues, expressions of SIX1, N-cadherin and Vimentin were higher while E-cadherin was lower in PTC tissues; and SIX1 was positively correlated with N-cadherin and Vimentin but was negatively correlated with E-cadherin. Furthermore, the SIX1 expression was associated with histopathology, extrathyroidal extension (ETE), lymph node metastasis (LNM), pT stage, TNM stage, and distant metastasis. In addition, the expressions of TGFβ1, p-SMAD2/3, N-cadherin and Vimentin were downregulated in NPA cells after LY-364947 treatment with upregulated E-cadherin, decreased cell proliferation and metastasis, and enhanced cell apoptosis, which was reversed by SIX1 overexpression. CONCLUSION Silencing SIX1 can inhibit TGF-β/Smad2/3 pathway, thereby suppressing EMT in PTC, which may be a novel avenue for the treatment of PTC.
Collapse
Affiliation(s)
- Wen-Pu Min
- Department of Nuclear Medicine, The First People's Hospital of Jingzhou City, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei Province, China
| | - Xiao-Feng Wei
- Department of Nuclear Medicine, The First People's Hospital of Jingzhou City, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei Province, China.
| |
Collapse
|
5
|
陈 晓, 叶 蕊, 戴 大, 伍 玉, 俞 远, 程 斌. [Heparanase promotes trans-endothelial migration of hepatocarcinoma cells by inducing apoptosis of microvascular endothelial cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1065-1071. [PMID: 32895190 PMCID: PMC7429165 DOI: 10.12122/j.issn.1673-4254.2020.08.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore the effect of heparanase (HPSE) on apoptosis of microvascular endothelial cells (MVECs) and trans-endothelial migration of hepatocellular carcinoma (HCC) cells. METHODS A HCC cell line with high HPSE expression was selected by real-time quantitative PCR (qRT-PCR) and Western blotting and transefected with a lentiviral vector containing an interfering RNA sequence of HPSE. Transwell migration assay was performed to detect the trans-endothelial migration (TEM) rate of the transfected HCC cells across human umbilical vein endothelial cells (HUVECs). In a Transwell indirect co-culture system, the effect of HPSE silencing in the HCC cells was determined on apoptosis of HUVECs in vitro. A nude mouse model of HCC was used to verify the effect of HPSE on apoptosis of MVECs and liver metastasis of the tumor. RESULTS HCCLM3 cell line highly expressing HPSE was selected for the experiment. Transfection of the HCC cells with the lentiviral vector for HPSE interference the HCC cells resulted in significantly lowered TEM rate as compared with the cells transfected with the control vector (P < 0.01). In the indirect co-culture system, the survival rate of HUVECs co-cultured with HCCLM3 cells with HPSE interference was significantly higher and their apoptotic index was significantly lower than those in the control group (P < 0.05). Ultrastructural observation showed no obvious apoptosis of HUVECs co-cultured with HCCLM3 cells with HPSE interference but revealed obvious apoptotic changes in the control group. In the animal experiment, the tumor formation rate in the liver was 100% (6/6) in the control group, significantly higher than that in RNAi group (33.3%, 2/6) (P < 0.05). Under optical microscope, necrosis and apoptosis of the MVECs was detected in the liver of the control mice, while the endothelial cells remained almost intact in RNAi group. CONCLUSIONS HPSE promotes the metastasis of HCC cells by inducing apoptosis of MVECs.
Collapse
Affiliation(s)
- 晓鹏 陈
- />皖南医学院弋矶山医院肝胆一科,安徽 芜湖 241001First Department of Hepatobiliary Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - 蕊 叶
- />皖南医学院弋矶山医院肝胆一科,安徽 芜湖 241001First Department of Hepatobiliary Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - 大飞 戴
- />皖南医学院弋矶山医院肝胆一科,安徽 芜湖 241001First Department of Hepatobiliary Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - 玉海 伍
- />皖南医学院弋矶山医院肝胆一科,安徽 芜湖 241001First Department of Hepatobiliary Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - 远林 俞
- />皖南医学院弋矶山医院肝胆一科,安徽 芜湖 241001First Department of Hepatobiliary Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - 斌 程
- />皖南医学院弋矶山医院肝胆一科,安徽 芜湖 241001First Department of Hepatobiliary Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| |
Collapse
|
6
|
Gulberti S, Mao X, Bui C, Fournel-Gigleux S. The role of heparan sulfate maturation in cancer: A focus on the 3O-sulfation and the enigmatic 3O-sulfotransferases (HS3STs). Semin Cancer Biol 2020; 62:68-85. [DOI: 10.1016/j.semcancer.2019.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 01/05/2023]
|
7
|
Zhu S, Li J, Loka RS, Song Z, Vlodavsky I, Zhang K, Nguyen HM. Modulating Heparanase Activity: Tuning Sulfation Pattern and Glycosidic Linkage of Oligosaccharides. J Med Chem 2020; 63:4227-4255. [PMID: 32216347 DOI: 10.1021/acs.jmedchem.0c00156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Heparanase cleaves polymeric heparan sulfate (HS) molecules into smaller oligosaccharides, allowing for release of angiogenic growth factors promoting tumor development and autoreactive immune cells to reach the insulin-producing β cells. Interaction of heparanase with HS chains is regulated by specific substrate sulfation sequences. We have synthesized 11 trisaccharides that are highly tunable in structure and sulfation pattern, allowing us to determine how heparanase recognizes HS substrate and selects a favorable cleavage site. Our study shows that (1) N-SO3- at +1 subsite and 6-O-SO3- at -2 subsite of trisaccharides are critical for heparanase recognition, (2) addition of 2-O-SO3- at the -1 subsite and of 3-O-SO3- to GlcN unit is not advantageous, and (3) the anomeric configuration (α or β) at the reducing end is crucial in controlling heparanase activity. Our study also illustrates that the α-trisaccharide having N- and 6-O-SO3- at -2 and +1 subsites inhibited heparanase and was resistant toward hydrolysis.
Collapse
Affiliation(s)
- Sanyong Zhu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Jiayi Li
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Ravi S Loka
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Zhenfeng Song
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
8
|
Shang R, Lal N, Puri K, Hussein B, Rodrigues B. Involvement of Heparanase in Endothelial Cell-Cardiomyocyte Crosstalk. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:721-745. [PMID: 32274734 DOI: 10.1007/978-3-030-34521-1_30] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traditionally, the management of diabetes has focused mainly on controlling high blood glucose levels. Unfortunately, despite valiant efforts to normalize this blood glucose, poor medication management predisposes these patients to heart failure. Following diabetes, how the heart utilizes different sources of fuel for energy is key to the development of heart failure. The diabetic heart switches from using both glucose and fats, to predominately using fats as an energy resource for maintaining its activities. This transformation to using fats as an exclusive source of energy is helpful in the initial stages of the disease and is tightly controlled. However, over the progression of diabetes, there is a loss of this controlled supply and use of fats, which ultimately has terrible consequences since the uncontrolled use of fats produces toxic by-products which weaken heart function and cause heart disease. Heparanase is a key player that directs how much fats are provided to the heart and does so in association with several partners like LPL and VEGFs. Together, they regulate the amount of fats supplied, and their subsequent breakdown to provide energy. Following diabetes, there is a disruption in this network resulting in fat oversupply and cell death. Understanding how the heparanase-LPL-VEGFs "ensemble" cooperates, and its dysfunction in the diabetic heart would be useful in restoring metabolic equilibrium and limiting diabetes-related cardiac damage.
Collapse
Affiliation(s)
- Rui Shang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Nathaniel Lal
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Karanjit Puri
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Bahira Hussein
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
9
|
Xie M, Li JP. Heparan sulfate proteoglycan - A common receptor for diverse cytokines. Cell Signal 2018; 54:115-121. [PMID: 30500378 DOI: 10.1016/j.cellsig.2018.11.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 01/04/2023]
Abstract
Heparan sulfate proteoglycans (HSPG) are macromolecular glyco-conjugates expressed ubiquitously on the cell surface and in the extracellular matrix where they interact with a wide range of ligands to regulate many aspects of cellular function. The capacity of the side glycosaminoglycan chain heparan sulfate (HS) being able to interact with diverse protein ligands relies on its complex structure that is generated by a controlled biosynthesis process, involving the actions of glycosyl-transferases, sulfotransferases and the glucuronyl C5-epimerase. It is believed that activities of the modification enzymes control the HS structures that are designed to serve the biological functions in a given cell or biological status. In this review, we briefly discuss recent understandings on the roles of HSPG in cytokine stimulated cellular signaling, focusing on FGF, TGF-β, Wnt, Hh, HGF and VEGF.
Collapse
Affiliation(s)
- Meng Xie
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, SciLifeLab Uppsala, The Biomedical Center, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
10
|
Potential role for Ext1-dependent heparan sulfate in regulating P311 gene expression in A549 carcinoma cells. Biochim Biophys Acta Gen Subj 2018; 1862:1472-1481. [PMID: 29580921 DOI: 10.1016/j.bbagen.2018.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/14/2018] [Accepted: 03/21/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Exostosin-1 (EXT1), a member of the EXT protein family, is indispensable for synthesis of heparan sulfate (HS) chains that bind to and modulate the signaling efficiency of numerous growth factor activities. We have previously shown that Ext1 mutated mouse embryonic fibroblasts produce short sulfated HS chains which dramatically influence tumor cell behavior in a 3-dimensional (3D) heterospheroid system composed of tumor cells and fibroblasts. METHODS In this study, we have used both 2D co-culture and 3D heterospheroid models, consisting of human A549 carcinoma cells co-cultured with wild-type or Ext1-mutated mouse embryonic fibroblasts. RESULTS AND CONCLUSIONS Gene expression profiling of differentially expressed genes in fibroblast/A549 heterospheroids identified P311 as a gene substantially down-regulated in A549 cells co-cultured with Ext1-mutated fibroblasts. In addition, we observed that the Ext1 mutants displayed reduced Tgf-β1 mRNA levels and lower levels of secreted active TGF-β protein. Re-introduction of Ext1 in the Ext1 mutant fibroblasts rescued the levels of Tgf-β1 mRNA, increased the amounts of secreted active TGF-β in these cells, as well as P311 mRNA levels in adjacent A549 cells. Accordingly, small interfering RNAs (siRNAs) against fibroblast Tgf-β1 reduced P311 expression in neighboring A549 tumor cells. Our data raises the possibility that fibroblast Ext1 levels play a role in P311 expression in A549/fibroblast co-culture through TGF-β1. GENERAL SIGNIFICANCE This study considers a possible novel mechanism of Ext1-regulated heparan sulfate structure in modifying tumor-stroma interactions through altering stromal tgf-ß1 expression.
Collapse
|
11
|
Heparan sulfate: Resilience factor and therapeutic target for cocaine abuse. Sci Rep 2017; 7:13931. [PMID: 29066725 PMCID: PMC5654972 DOI: 10.1038/s41598-017-13960-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/03/2017] [Indexed: 12/15/2022] Open
Abstract
Substance abuse is a pressing problem with few therapeutic options. The identification of addiction resilience factors is a potential strategy to identify new mechanisms that can be targeted therapeutically. Heparan sulfate (HS) is a linear sulfated polysaccharide that is a component of the cell surface and extracellular matrix. Heparan sulfate modulates the activity and distribution of a set of negatively charged signaling peptides and proteins — known as the HS interactome — by acting as a co-receptor or alternative receptor for growth factors and other signaling peptides and sequestering and localizing them, among other actions. Here, we show that stimulants like cocaine and methamphetamine greatly increase HS content and sulfation levels in the lateral hypothalamus and that HS contributes to the regulation of cocaine seeking and taking. The ability of the HS-binding neuropeptide glial-cell-line-derived neurotrophic factor (GDNF) to increase cocaine intake was potentiated by a deletion that abolished its HS binding. The delivery of heparanase, the endo-β-D-glucuronidase that degrades HS, accelerated the acquisition of cocaine self-administration and promoted persistent responding during extinction. Altogether, these results indicate that HS is a resilience factor for cocaine abuse and a novel therapeutic target for the treatment of cocaine addiction.
Collapse
|