1
|
Mills M, Davis A, Lancaster E, Choi B, Martin J, Winston R, Lee J. Longitudinal Analysis of Urban Stormwater Microbiome and Resistome from Watersheds with and without Green Infrastructure using Long-Read Sequencing. WATER RESEARCH 2024; 259:121873. [PMID: 38852387 DOI: 10.1016/j.watres.2024.121873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/14/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Since stormwater conveys a variety of contaminants into water bodies, green infrastructure (GI) is increasingly being adopted as an on-site treatment solution in addition to controlling peak flows. The purpose of this study was to identify differences in microbial water quality of stormwater in watersheds retrofitted with GI vs. those without GI. Considering stormwater is recently recognized as a contributor to the antibiotic resistance (AR) threat, another goal of this study was to characterize changes in the microbiome and collection of AR genes (resistome) of urban stormwater with season, rainfall characteristics, and fecal contamination. MinION long-read sequencing was used to analyze stormwater microbiome and resistome from watersheds with and without GI in Columbus, Ohio, United States, over 18 months. We characterized fecal contamination in stormwater via culturing Escherichia coli and with molecular microbial source tracking (MST) to identify sources of fecal contamination. Overall, season and storm event (rainfall) characteristics had the strongest relationships with changes in the stormwater microbiome and resistome. We found no significant differences in microbial water quality or the microbiome of stormwater in watersheds with and without GI implemented. However, there were differences between the communities of microorganisms hosting antibiotic resistance genes (ARGs) in stormwater from watersheds with and without GI, indicating the potential sensitivity of AR bacteria to treatment. Stormwater was contaminated with high concentrations of human-associated fecal bacterial genes, and the ARG host bacterial community had considerable similarities to human feces/wastewater. We also identified 15 potential pathogens hosting ARGs in these stormwater resistome, including vancomycin-resistant Enterococcus faecium (VRE) and multidrug-resistant Pseudomonas aeruginosa. In summary, urban stormwater is highly contaminated and has a great potential to spread AR and microbial hazards to nearby environments. This study presents the most comprehensive analysis of stormwater microbiome and resistome to date, which is crucial to understanding the potential microbial risk from this matrix. This information can be used to guide future public health policy, stormwater reuse programs, and urban runoff treatment initiatives.
Collapse
Affiliation(s)
- Molly Mills
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Angela Davis
- Environmental Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Emma Lancaster
- Environmental Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Boseung Choi
- Division of Big Data Science, Korea University, Sejong, Republic of Korea
| | - Jay Martin
- Environmental Sciences Graduate Program, The Ohio State University, Columbus, OH, USA; Department of Food, Agricultural and Biological Engineering, The Ohio State University, Columbus, OH, USA; Sustainability Institute, The Ohio State University, Columbus, OH, USA
| | - Ryan Winston
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Columbus, OH, USA; Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - Jiyoung Lee
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA; Department of Food Science & Technology, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Zeng J, Xu S, Lin K, Yao S, Yang B, Peng Z, Hao T, Yu X, Zhu T, Jiang F, Sun J. Long-term stable and efficient degradation of ornidazole with minimized by-product formation by a biological sulfidogenic process based on elemental sulfur. WATER RESEARCH 2024; 249:120940. [PMID: 38071904 DOI: 10.1016/j.watres.2023.120940] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Conventional biological treatment processes cannot efficiently and completely degrade nitroimidazole antibiotics, due to the formation of highly antibacterial and carcinogenic nitroreduction by-products. This study investigated the removal of a typical nitroimidazole antibiotic (ornidazole) during wastewater treatment by a biological sulfidogenic process based on elemental sulfur (S0-BSP). Efficient and stable ornidazole degradation and organic carbon mineralization were simultaneously achieved by the S0-BSP in a 798-day bench-scale trial. Over 99.8 % of ornidazole (200‒500 μg/L) was removed with the removal rates of up to 0.59 g/(m3·d). Meanwhile, the efficiencies of organic carbon mineralization and sulfide production were hardly impacted by the dosed ornidazole, and their rates were maintained at 0.15 kg C/(m3·d) and 0.49 kg S/(m3·d), respectively. The genera associated with ornidazole degradation were identified (e.g., Sedimentibacter, Trichococcus, and Longilinea), and their abundances increased significantly. Microbial degradation of ornidazole proceeded by several functional genes, such as dehalogenases, cysteine synthase, and dioxygenases, mainly through dechlorination, denitration, N-heterocyclic ring cleavage, and oxidation. More importantly, the nucleophilic substitution of nitro group mediated by in-situ formed reducing sulfur species (e.g., sulfide, polysulfides, and cysteine hydropolysulfides), instead of nitroreduction, enhanced the complete ornidazole degradation and minimized the formation of carcinogenic and antibacterial nitroreduction by-products. The findings suggest that S0-BSP can be a promising approach to treat wastewater containing multiple contaminants, such as emerging organic pollutants, organic carbon, nitrate, and heavy metals.
Collapse
Affiliation(s)
- Jiajia Zeng
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China; State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Key Laboratory of Emerging Contaminants Detection and Control in Water Environment, Shenzhen Academy of Environmental Sciences, Shenzhen 518001, China
| | - Shuqun Xu
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Keyue Lin
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Si Yao
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Bin Yang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhanhui Peng
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Xiaoyu Yu
- Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China
| | - Tingting Zhu
- State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Key Laboratory of Emerging Contaminants Detection and Control in Water Environment, Shenzhen Academy of Environmental Sciences, Shenzhen 518001, China
| | - Feng Jiang
- School of Environmental Science & Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Jianliang Sun
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
3
|
Wang Z, Li K, Gui X, Li Z. Acidovorax PSJ13, a novel, efficient polyacrylamide-degrading bacterium by cleaving the main carbon chain skeleton without the production of acrylamide. Biodegradation 2023; 34:581-595. [PMID: 37395852 DOI: 10.1007/s10532-023-10036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023]
Abstract
Given the environmental challenge caused by the wide use of polyacrylamide (PAM), an environmental-friendly treatment method is required. This study demonstrates the role of Acidovorax sp. strain PSJ13 isolated from dewatered sludge in efficiently degrading PAM. To be specific, the strain PSJ13 can degrade 51.67% of PAM in 96 h (2.39 mg/(L h)) at 35 °C, pH 7.5 and 5% inoculation amount. Besides, scanning electron microscope, X-ray photoelectron spectroscopy, liquid chromatography-mass spectrometry and high-performance liquid chromatography were employed to analyze samples, and the nitrogen present in the degradation products was investigated. The results showed that the degradation of PAM by PSJ13 started from the side chain and then mainly the -C-C- main chain, which produced no acrylamide monomers. As the first study to report the role of Acidovorax in efficiently degrading PAM, this work may provide a solution for industries that require PAM management.
Collapse
Affiliation(s)
- Zhengjiang Wang
- Chongqing Key Lab of Soil Multi-Scale Interfacial Process, and College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Kaili Li
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4067, Australia
| | - Xuwei Gui
- Chongqing Key Lab of Soil Multi-Scale Interfacial Process, and College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Zhenlun Li
- Chongqing Key Lab of Soil Multi-Scale Interfacial Process, and College of Resources and Environment, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
4
|
Rosalia Rani, Simarani K, Alias Z. Functional Role of Beta Class Glutathione Transferases and Its Biotechnological Potential (Review). BIOL BULL+ 2022. [DOI: 10.1134/s106235902214014x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
5
|
Zhou Z, Jiao C, Liang Y, Du A, Zhang J, Xiong J, Chen G, Zhu H, Lu L. Study on Degradation of 1,2,4-TrCB by Sugarcane Cellulose-TiO2 Carrier in an Intimate Coupling of Photocatalysis and Biodegradation System. Polymers (Basel) 2022; 14:polym14214774. [PMID: 36365767 PMCID: PMC9658834 DOI: 10.3390/polym14214774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
1,2,4 trichlorobenzene (1,2,4-TrCB) is a persistent organic pollutant with chemical stability, biological toxicity, and durability, which has a significant adverse impact on the ecological environment and human health. In order to solve the pollution problem, bagasse cellulose is used as the basic framework and nano TiO2 is used as the photocatalyst to prepare composite carriers with excellent performance. Based on this, an intimate coupling of photocatalysis and biodegradation (ICPB) system combining photocatalysis and microorganisms is constructed. We use the combined technology for the first time to deal with the pollution problem of 1,2,4-TrCB. The biofilm in the composite carrier can decompose the photocatalytic products so that the removal rate of 1,2,4-TrCB is 68.01%, which is 14.81% higher than those of biodegradation or photocatalysis alone, and the mineralization rate is 50.30%, which is 11.50% higher than that of photocatalysis alone. The degradation pathways and mechanisms of 1,2,4-TrCB are explored, which provide a theoretical basis and potential application for the efficient degradation of 1,2,4-TrCB and other refractory organics by the ICPB system.
Collapse
Affiliation(s)
- Zhenqi Zhou
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Chunlin Jiao
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yinna Liang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Ang Du
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jiaming Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jianhua Xiong
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- Correspondence:
| | - Guoning Chen
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning 530007, China
| | - Hongxiang Zhu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
| | - Lihai Lu
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning 530007, China
| |
Collapse
|
6
|
Ullah R, Zhu B, Kakar KU, Nawaz Z, Mushtaq M, Durrani TS, Islam ZU, Nawaz F. Micro-synteny conservation analysis revealed the evolutionary history of bacterial biphenyl degradation pathway. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:494-505. [PMID: 35560986 DOI: 10.1111/1758-2229.13081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Phenolic compounds have been enlisted by the United States Environmental Protection Agency (USEPA) and the European Union (EU) as pollutants of priority concern. The biphenyl degradation pathway plays an essential role in prokaryote polychlorinated biphenyls degradation. Our understanding of prokaryotic pathways and their evolution has dramatically increased in recent years with the advancements in prokaryotic genome sequencing and analysis tools. In this work, we applied bioinformatics tools to study the evolution of the biphenyl degradation pathway focusing on the phylogeny and initiation of four representative species (Burkholderia xenovorans LB400, Polaromonas naphthalenivorans CJ2, Pseudomonas putida F1 and Rhodococcus jostii RHA1). These species contained partial or full concatenated genes from bph gene cluster (i.e. bphRbphA1A2A3A4BCKHJID). The aim was to establish this pathway's origin and development mode in the prokaryotic world. Genomic screening revealed that many bacterial species possess genes for the biphenyl degradation pathway. However, the micro-synteny conservation analysis indicated that massive gene recruitment events might have occurred during the evolution of the biphenyl degradation pathway. Combining with the phylogenetic positions, this work points to the evolutionary process of acquiring the biphenyl degradation pathway by different fragments through horizontal gene transfer in these bacterial groups. This study reports the first-ever evidence of the birth of this pathway in the represented species.
Collapse
Affiliation(s)
- Raqeeb Ullah
- Department of Environmental Science, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, 87300, Pakistan
| | - Bo Zhu
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kaleem U Kakar
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, 87300, Pakistan
| | - Zarqa Nawaz
- Department of Botany, University of Central Punjab, Rawalpindi, Pakistan
| | - Muhammd Mushtaq
- Department of Biotechnology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, 87300, Pakistan
| | - Taimoor Shah Durrani
- Department of Environmental Science, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, 87300, Pakistan
| | - Zia Ul Islam
- Department of Civil and Environmental Engineering, The University of Toledo, Toledo, OH, USA
| | - Faheem Nawaz
- Department of Environmental Science, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, 87300, Pakistan
| |
Collapse
|
7
|
Birch H, Sjøholm KK, Dechesne A, Sparham C, van Egmond R, Mayer P. Biodegradation Kinetics of Fragrances, Plasticizers, UV Filters, and PAHs in a Mixture─Changing Test Concentrations over 5 Orders of Magnitude. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:293-301. [PMID: 34936331 DOI: 10.1021/acs.est.1c05583] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biodegradation of organic chemicals emitted to the environment is carried out by mixed microbial communities growing on multiple natural and xenobiotic substrates at low concentrations. This study aims to (1) perform simulation type biodegradation tests at a wide range of mixture concentrations, (2) determine the concentration effect on the biodegradation kinetics of individual chemicals, and (3) link the mixture concentration and degradation to microbial community dynamics. Two hundred ninety-four parallel test systems were prepared using wastewater treatment plant effluent as inoculum and passive dosing to add a mixture of 19 chemicals at 6 initial concentration levels (ng/L to mg/L). After 1-30 days of incubation at 12 °C, abiotic and biotic test systems were analyzed using arrow solid phase microextraction and GC-MS/MS. Biodegradation kinetics at the highest test concentrations were delayed for several test substances but enhanced for the reference chemical naphthalene. Test concentration thus shifted the order in which chemicals were degraded. 16S rRNA gene amplicon sequencing indicated that the highest test concentration (17 mg C/L added) supported the growth of the genera Acidovorax, Novosphingobium, and Hydrogenophaga, whereas no such effect was observed at lower concentrations. The chemical and microbial results confirm that too high mixture concentrations should be avoided when aiming at determining environmentally relevant biodegradation data.
Collapse
Affiliation(s)
- Heidi Birch
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Karina Knudsmark Sjøholm
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Arnaud Dechesne
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Chris Sparham
- Safety & Environmental Assurance Centre, Unilever, Bedford MK44 1LQ, U.K
| | - Roger van Egmond
- Safety & Environmental Assurance Centre, Unilever, Bedford MK44 1LQ, U.K
| | - Philipp Mayer
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
8
|
Lumio RT, Tan MA, Magpantay HD. Biotechnology-based microbial degradation of plastic additives. 3 Biotech 2021; 11:350. [PMID: 34221820 PMCID: PMC8217394 DOI: 10.1007/s13205-021-02884-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 06/06/2021] [Indexed: 10/21/2022] Open
Abstract
Plastic additives are agents responsible to the flame resistance, durability, microbial resistance, and flexibility of plastic products. High demand for production and use of plastic additives is associated with environmental accumulation and various health hazards. One of the suitable methods of depleting plastic additive in the environment is bioremediation as it offers cost-efficiency, convenience, and sustainability. Microbial activity is one of the effective ways of detoxifying various compounds as microorganisms can adapt in an environment with high prevalence of pollutants. The present review discusses the use and abundance of these plastic additives, their health-related risks, the microorganisms capable of degrading them, the proposed mechanism of biodegradation, and current innovations capable of improving the efficiency of bioremediation.
Collapse
Affiliation(s)
- Rob T. Lumio
- Chemistry Department, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Mario A. Tan
- The Graduate School, University of Santo Tomas, Manila, Philippines
- College of Science and Research Center for the Natural and Applied Sciences, University of Santo, Tomas, Manila, Philippines
| | - Hilbert D. Magpantay
- Chemistry Department, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| |
Collapse
|
9
|
Bagnati R, Terzaghi E, Passoni A, Davoli E, Fattore E, Maspero A, Palmisano G, Zanardini E, Borin S, Di Guardo A. Identification of Sulfonated and Hydroxy-Sulfonated Polychlorinated Biphenyl (PCB) Metabolites in Soil: New Classes of Intermediate Products of PCB Degradation? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10601-10611. [PMID: 31412202 DOI: 10.1021/acs.est.9b03010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In this paper we describe the identification of two classes of contaminants: sulfonated-PCBs and hydroxy-sulfonated-PCBs. This is the first published report of the detection of these chemicals in soil. They were found, along with hydroxy-PCBs, in soil samples coming from a site historically contaminated by the industrial production of PCBs and in background soils. Sulfonated-PCB levels were approximately 0.4-0.8% of the native PCB levels in soils and about twice the levels of hydroxy-sulfonated-PCBs and hydroxy-PCBs. The identification of sulfonated-PCBs was confirmed by the chemical synthesis of reference standards, obtained through the sulfonation of an industrial mixture of PCBs. We then reviewed the literature to investigate for the potential agents responsible for the sulfonation. Furthermore, we predicted their physicochemical properties and indicate that, given the low pKa of sulfonated- and hydroxy-sulfonated-PCBs, they possess negligible volatility, supporting the case for in situ formation from PCBs. This study shows the need of understanding their origin, their role in the degradation path of PCBs, and their fate, as well as their (still unknown) toxicological and ecotoxicological properties.
Collapse
Affiliation(s)
- Renzo Bagnati
- Department of Environmental Health Sciences , Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS , Via Mario Negri 2 , 20156 Milan , Italy
| | - Elisa Terzaghi
- Department of Science and High Technology , University of Insubria , Via Valleggio 11 , 22100 Como , Italy
| | - Alice Passoni
- Department of Environmental Health Sciences , Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS , Via Mario Negri 2 , 20156 Milan , Italy
| | - Enrico Davoli
- Department of Environmental Health Sciences , Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS , Via Mario Negri 2 , 20156 Milan , Italy
| | - Elena Fattore
- Department of Environmental Health Sciences , Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS , Via Mario Negri 2 , 20156 Milan , Italy
| | - Angelo Maspero
- Department of Science and High Technology , University of Insubria , Via Valleggio 11 , 22100 Como , Italy
| | - Giovanni Palmisano
- Department of Science and High Technology , University of Insubria , Via Valleggio 11 , 22100 Como , Italy
| | - Elisabetta Zanardini
- Department of Science and High Technology , University of Insubria , Via Valleggio 11 , 22100 Como , Italy
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences , University of Milan , Via Celoria 2 , 20133 Milan , Italy
| | - Antonio Di Guardo
- Department of Science and High Technology , University of Insubria , Via Valleggio 11 , 22100 Como , Italy
| |
Collapse
|