1
|
Huang HW, Zeng YF, Shivatare VS, Tseng TH, Wong CH. Cell-based glycoengineering for production of homogeneous and specific glycoform-enriched antibodies with improved effector functions. Proc Natl Acad Sci U S A 2025; 122:e2423853122. [PMID: 39969996 PMCID: PMC11874607 DOI: 10.1073/pnas.2423853122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/18/2025] [Indexed: 02/21/2025] Open
Abstract
Glycosylation of humanized antibody at Fc-Asn297 significantly affects the Fc-mediated killing of target cells through effector functions, especially antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cell-mediated phagocytosis (ADCP), and antibody-dependent vaccinal effect (ADVE). Previous studies showed that therapeutic immunoglobulin G (IgG) antibodies with α2,6-sialyl complex type (SCT) glycan attached to Fc-Asn297 exhibited optimal binding to the Fc receptors on effector cells associated with ADCC, ADCP, and ADVE. However, the production of antibodies with homogeneous Fc-SCT glycan requires multiple in vitro enzymatic and purification steps. In this study, we report two cell-based methods to produce Fc-GlcNAc antibody and Fc-SCT-enriched antibodies with improved effector functions. First, we expressed endoglycosidase S2 in Expi293F GnT1- cells to trim all N-glycans to Fc-GlcNAc antibody for in vitro transglycosylation to generate homogeneous antibodies with well-defined Fc glycan. Second, we engineered the glycosylation pathway of HEK293T cells through knock-out of undesired glycosyltransferases and knock-in of desired glycosyltransferases to produce Fc-SCT-enriched antibodies and evaluated their binding to Fc receptors, and we found that the Fc-SCT-enriched antibody is like or better than the homogeneous Fc-SCT antibody in binding to the Fc receptors associated with ADCC, ADCP, and ADVE.
Collapse
Affiliation(s)
- Han-Wen Huang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
| | - Yi-Fang Zeng
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
| | - Vidya S. Shivatare
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
| | - Tzu-Hao Tseng
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
| |
Collapse
|
2
|
Xie Y, Butler M. N-glycomic profiling of capsid proteins from Adeno-Associated Virus serotypes. Glycobiology 2024; 34:cwad074. [PMID: 37774344 PMCID: PMC10950483 DOI: 10.1093/glycob/cwad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/14/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023] Open
Abstract
Adeno-associated virus (AAV) vector has become the leading platform for gene delivery. Each serotype exhibits a different tissue tropism, immunogenicity, and in vivo transduction performance. Therefore, selecting the most suitable AAV serotype is critical for efficient gene delivery to target cells or tissues. Genome divergence among different serotypes is due mainly to the hypervariable regions of the AAV capsid proteins. However, the heterogeneity of capsid glycosylation is largely unexplored. In the present study, the N-glycosylation profiles of capsid proteins of AAV serotypes 1 to 9 have been systemically characterized and compared using a previously developed high-throughput and high-sensitivity N-glycan profiling platform. The results showed that all 9 investigated AAV serotypes were glycosylated, with comparable profiles. The most conspicuous feature was the high abundance mannosylated N-glycans, including FM3, M5, M6, M7, M8, and M9, that dominated the chromatograms within a range of 74 to 83%. Another feature was the relatively lower abundance of fucosylated and sialylated N-glycan structures, in the range of 23%-40% and 10%-17%, respectively. However, the exact N-glycan composition differed. These differences may be utilized to identify potential structural relationships between the 9 AAV serotypes. The current research lays the foundation for gaining better understanding of the importance of N-glycans on the AAV capsid surface that may play a significant role in tissue tropism, interaction with cell surface receptors, cellular uptake, and intracellular processing.
Collapse
Affiliation(s)
- Yongjing Xie
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Michael Butler
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin (UCD), Belfield, Dublin 4, D04 V1W8, Ireland
| |
Collapse
|
3
|
Huang HW, Shivatare VS, Tseng TH, Wong CH. Cell-based production of Fc-GlcNAc and Fc-alpha-2,6 sialyl glycan enriched antibody with improved effector functions through glycosylation pathway engineering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572280. [PMID: 38187613 PMCID: PMC10769250 DOI: 10.1101/2023.12.18.572280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Glycosylation of antibody plays an important role in Fc-mediated killing of tumor cells and virus-infected cells through effector functions such as antibody-dependent cellular cytotoxicity (ADCC), antibody dependent cell-mediated phagocytosis (ADCP) and vaccinal effect. Previous studies showed that therapeutical humanized antibodies with α2-6 sialyl complex type (SCT) glycan attached to Fc-Asn297 exhibited optimal binding to the Fc receptors on effector cells associated with ADCC, ADCP and vaccinal effect. However, the production of antibodies with homogeneous Fc-SCT needs multiple in vitro enzymatic and purification steps. In this study, we report two different approaches to shorten the processes to produce SCT-enriched antibodies. First, we expressed a bacterial endoglycosidase in GNT1-KO EXPI293 cells to trim all N -glycans to mono-GlcNAc glycoforms for in vitro transglycosylation to generate homogeneous SCT antibody. Second, we engineered the glycosylation pathway of HEK293 cells through knockout of the undesired glycosyltransferases and expression of the desired glycosyltransferases to produce SCT enriched antibodies with similar binding affinity to Fc receptors and ADCC activity to homogenous SCT antibody.
Collapse
|
4
|
Chia S, Tay SJ, Song Z, Yang Y, Walsh I, Pang KT. Enhancing pharmacokinetic and pharmacodynamic properties of recombinant therapeutic proteins by manipulation of sialic acid content. Biomed Pharmacother 2023; 163:114757. [PMID: 37087980 DOI: 10.1016/j.biopha.2023.114757] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023] Open
Abstract
The circulatory half-life of recombinant therapeutic proteins is an important pharmacokinetic attribute because it determines the dosing frequency of these drugs, translating directly to treatment cost. Thus, recombinant therapeutic glycoproteins such as monoclonal antibodies have been chemically modified by various means to enhance their circulatory half-life. One approach is to manipulate the N-glycan composition of these agents. Among the many glycan constituents, sialic acid (specifically, N-acetylneuraminic acid) plays a critical role in extending circulatory half-life by masking the terminal galactose that would otherwise be recognised by the hepatic asialoglycoprotein receptor (ASGPR), resulting in clearance of the biotherapeutic from the circulation. This review aims to provide an illustrative overview of various strategies to enhance the pharmacokinetic/pharmacodynamic properties of recombinant therapeutic proteins through manipulation of their sialic acid content.
Collapse
Affiliation(s)
- Sean Chia
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06-01, Centros, 138668, Singapore
| | - Shi Jie Tay
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06-01, Centros, 138668, Singapore
| | - Zhiwei Song
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06-01, Centros, 138668, Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06-01, Centros, 138668, Singapore
| | - Ian Walsh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06-01, Centros, 138668, Singapore.
| | - Kuin Tian Pang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06-01, Centros, 138668, Singapore; School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technology University, 62 Nanyang Drive, N1.2-B3, 637459, Singapore.
| |
Collapse
|
5
|
Chavda VP, Prajapati R, Lathigara D, Nagar B, Kukadiya J, Redwan EM, Uversky VN, Kher MN, Rajvi P. Therapeutic monoclonal antibodies for COVID-19 management: an update. Expert Opin Biol Ther 2022; 22:763-780. [PMID: 35604379 DOI: 10.1080/14712598.2022.2078160] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The first case of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral disease in the world was announced on 31st December 2019 in Wuhan, China. Since then, this virus has affected more than 440 million people, and today the world is facing different mutant strains of the virus, leading to increased morbidity rates, fatality rates, and surfacing re-infections. Various therapies, such as prophylactic treatments, repurposed drug treatments, convalescent plasma, and polyclonal antibody therapy have been developed to help combat the coronavirus disease 2019 (COVID-19). AREA COVERED This review article provides insights into the basic aspects of monoclonal antibodies (mAbs) for the therapy of COVID-19, as well as its advancement in terms of clinical trial and current approval status. EXPERT OPINION Monoclonal antibodies represents the most effective and viable therapy and/or prophylaxis option against COVID-19, and have shown a reduction of the viral load, as well as lowering hospitalizations and death rates. In different countries, various mAbs are undergoing different phases of clinical trials, with a few of them having entered phases III and IV. Due to the soaring number of cases worldwide, the FDA has given emergency approval for the mAb combinations bamlanivimab with etesevimab and casirivimab with imdevimab.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, India
| | - Riddhi Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, India
| | - Disha Lathigara
- Biocharecterization Lab, Intas Pharmaceutical Ltd. (Biopharma Division), Ahmedabad, India
| | - Bhumi Nagar
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad, India
| | - Jay Kukadiya
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad, India
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg EL-Arab, Alexandria, Egypt
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - Mukesh N Kher
- Department of Quality Assurance, L. M. College of Pharmacy, Ahmedabad, India
| | - Patel Rajvi
- Drug Product Development Lab, Intas Pharmaceutical Ltd. (Biopharma Division), Ahmedabad, India
| |
Collapse
|
6
|
Bi M, Bai B, Tian Z. Structure-Specific N-Glycoproteomics Characterization of NIST Monoclonal Antibody Reference Material 8671. J Proteome Res 2022; 21:1276-1284. [PMID: 35349291 DOI: 10.1021/acs.jproteome.2c00027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ming Bi
- School of Chemical Science & Engineering, Tongji University, Shanghai 200092, China
| | - Bing Bai
- Department of Laboratory Medicine, Center of Precision Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Zhixin Tian
- School of Chemical Science & Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
7
|
Dash R, Singh SK, Chirmule N, Rathore AS. Assessment of Functional Characterization and Comparability of Biotherapeutics: a Review. AAPS J 2021; 24:15. [PMID: 34931298 DOI: 10.1208/s12248-021-00671-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022] Open
Abstract
The development of monoclonal antibody (mAb) biosimilars is a complex process. The key to their successful development and commercialization is an in-depth understanding of the key product attributes that impact safety and efficacy and the strategies to control them. Functional assessment of mAb is a crucial part of the comparability of biopharmaceutical drugs. The development of a relevant and robust functional assay requires an interdisciplinary approach and sufficient flexibility to balance regulatory concerns as well as dynamics and variability during the manufacturing process. Although many advanced tools are available to study and compare the potency and bioactivity of the protein, most of these techniques suffer from major shortcomings that limit their routine use. These include the complexity of the task, establishment of the relevance of the chosen method with the mechanism of action (MOA) of the biosimilar, cost and extended time of analysis, and often the ambiguity in interpretation of the resulting data. To overcome or to address these challenges, the use of multiple orthogonal state-of-the-art techniques is a necessary prerequisite.
Collapse
Affiliation(s)
- Rozaleen Dash
- Department of Chemical Engineering, DBT Center of Excellence for Biopharmaceutical Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sumit Kumar Singh
- Department of Chemical Engineering, DBT Center of Excellence for Biopharmaceutical Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.,School of Biochemical Engineering, IIT-BHU, Varanasi, India
| | | | - Anurag S Rathore
- Department of Chemical Engineering, DBT Center of Excellence for Biopharmaceutical Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|