1
|
Li J, Yu C, Yu K, Chen Z, Xing D, Zha B, Xie W, Ouyang H. SPINT2 is involved in the proliferation, migration and phenotypic switching of aortic smooth muscle cells: Implications for the pathogenesis of thoracic aortic dissection. Exp Ther Med 2023; 26:546. [PMID: 37928510 PMCID: PMC10623238 DOI: 10.3892/etm.2023.12245] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/25/2023] [Indexed: 11/07/2023] Open
Abstract
Thoracic aortic dissection (TAD) is a severe and extremely dangerous cardiovascular disease. Proliferation, migration and phenotypic switching of vascular smooth muscle cells (SMCs) are major pathogenetic mechanisms involved in the development of TAD. The present study was designed to investigate the expression and potential function of serine peptidase inhibitor Kunitz type 2 (SPINT2) in TAD. The gene expression profile data for ascending aorta from patients with TAD were downloaded from the GEO database with the accession number GSE52093. Bioinformatics analysis using GEO2R indicated that the differentially expressed SPINT2 was prominently decreased in TAD. The expression levels of SPINT2 mRNA and protein in aortic dissection specimens and normal aorta tissues were measured using reverse transcription-quantitative PCR and western blotting. SPINT2 expression was downregulated in clinical samples from aortic dissection specimens of patients with TAD compared with the corresponding expression noted in tissues derived from patients without TAD. In vitro, platelet-derived growth factor BB (PDGF-BB) was applied to induce the isolated primary mouse aortic SMC phenotypic modulation (a significant upregulation in the expression levels of synthetic markers), and the SMCs were infected with the adenoviral vector, Ad-SPINT2, to construct SPINT2-overexpressed cell lines. SMC viability was detected by an MTT assay and SMC proliferation was detected via the presence of Ki-67-positive cells (immunofluorescence staining). To explore the effects of SPINT2 on SMC migration, a wound healing assay was conducted. ELISA and western blotting assays were used to measure the content and expression levels of MMP-2 and MMP-9. The expression levels of vimentin, collagen I, α-SMA and SM22α were measured using western blotting. The PDGF-BB-induced proliferation and migration of SMCs were recovered by SPINT2 overexpression. The increase in the expression levels of SPINT2 reduced the expression levels of active matrix metalloproteinases (MMPs), MMP-2 and MMP-9. Overexpression of SPINT2 suppressed SMC switching from a contractile to a synthetic type, as evidenced by decreased vimentin and collagen I expression levels along with increased α-smooth muscle actin and smooth muscle protein 22-α expression levels. Furthermore, activation of ERK was inhibited in SPINT2-overexpressing SMCs. A specific ERK agonist, 12-O-tetradecanoylphorbol-13-acetate, reversed the SPINT2-mediated inhibition of SMC migration and the phenotypic switching. Collectively, the data indicated that SPINT2 was implicated in the proliferation, migration and phenotypic switching of aortic SMCs, suggesting that it may be involved in TAD progression.
Collapse
Affiliation(s)
- Jun Li
- Department of Vascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Changjun Yu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Kangmin Yu
- Department of Vascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Zhiyong Chen
- Department of Vascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Dan Xing
- Department of Medical Record Management, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Binshan Zha
- Department of Vascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Wentao Xie
- Department of Vascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Huan Ouyang
- Department of Vascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
2
|
Gayen P, Jan S, Chowdhury N, Ghosh S, Hembram M, Bagchi A, Sinha Roy R. Engineered Bio-inspired Multifunctional Peptide- and Protein-based Therapeutic Biomolecules for Better Wound Care. Chem Asian J 2021; 16:4018-4036. [PMID: 34643055 DOI: 10.1002/asia.202101022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/06/2021] [Indexed: 11/11/2022]
Abstract
Developing non-immunogenic therapeutic biomolecules for facilitating blood clotting followed by wound healing via therapeutic angiogenesis, still remains a formidable challenge. Excessive blood loss of accident victims and battalions cause a huge number of deaths worldwide. Patients with inherited bleeding disorders face acute complications during injury and post-surgery. Biologically-inspired peptide-based hemostat can act as a potential therapeutic for handling coagulopathy. Additionally, non-healing wounds for patients having ischemic diseases can cause severe clinical complications. Advancement in stabilized growth-factor-based proangiogenic therapy may offer effective possibilities for the treatment of ischemic pathology. This review will discuss nature-inspired biocompatible stabilized peptide- and protein-based molecular medicines to serve unmet medical challenges for handling traumatic coagulopathy and impaired wound healing.
Collapse
Affiliation(s)
- Paramita Gayen
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India
| | - Somnath Jan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India
| | - Nilkanta Chowdhury
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, Nadia, West Bengal, India
| | - Snehasish Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India
| | - Monjuri Hembram
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India
| | - Angshuman Bagchi
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, Nadia, West Bengal, India
| | - Rituparna Sinha Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India.,Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India
| |
Collapse
|
3
|
Thummarati P, Kino-Oka M. Effect of Co-culturing Fibroblasts in Human Skeletal Muscle Cell Sheet on Angiogenic Cytokine Balance and Angiogenesis. Front Bioeng Biotechnol 2020; 8:578140. [PMID: 33072729 PMCID: PMC7542332 DOI: 10.3389/fbioe.2020.578140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/01/2020] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle comprises a heterogeneous population of myoblasts and fibroblasts. Autologous skeletal muscle myoblasts are transplanted to patients with ischemia to promote cardiac regeneration. In damaged hearts, various cytokines secreted from the skeletal muscle myoblasts promote angiogenesis and consequently the recovery of cardiac functions. However, the effect of skeletal muscle fibroblasts co-cultured with skeletal muscle myoblasts on angiogenic cytokine production and angiogenesis has not been fully understood. To investigate these effects, production of vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) was measured using the culture medium of monolayers prepared from various cell densities (mono-culture) and proportions (co-culture) of human skeletal muscle myoblasts (HSMMs) and human skeletal muscle fibroblasts (HSMFs). HSMM and HSMF mono-cultures produced VEGF, whereas HSMF mono-culture produced HGF. The VEGF productivity observed in a monolayer comprising low proportion of HSMFs was two-fold greater than that of HSMM and HSMF mono-cultures. The production of VEGF in HSMMs but not in HSMFs was directly proportional to the cell density. VEGF productivity in non-confluent cells with low cell-to-cell contact was higher than that in confluent cells with high cell-to-cell contact. The dynamic migration of cells in a monolayer was examined to analyze the effect of HSMFs on myoblast-to-myoblast contact. The random and rapid migration of HSMFs affected the directional migration of surrounding HSMMs, which disrupted the myoblast alignment. The effect of heterogeneous populations of skeletal muscle cells on angiogenesis was evaluated using human umbilical vein endothelial cells (HUVECs) incubated with fabricated multilayer HSMM sheets comprising various proportions of HSMFs. Co-culturing HSMFs in HSMM sheet at suitable ratio (30 or 40%) enhances endothelial network formation. These findings indicate the role of HSMFs in maintaining cytokine balance and consequently promoting angiogenesis in the skeletal muscle cell sheets. This approach can be used to improve transplantation efficiency of engineered tissues.
Collapse
Affiliation(s)
- Parichut Thummarati
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| |
Collapse
|
4
|
Li J, Xiang X, Xu H, Shi Y. Cilostazol Promotes Angiogenesis and Increases Cell Proliferation After Myocardial Ischemia-Reperfusion Injury Through a cAMP-Dependent Mechanism. Cardiovasc Eng Technol 2019; 10:638-647. [PMID: 31625080 DOI: 10.1007/s13239-019-00435-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 10/04/2019] [Indexed: 02/08/2023]
Abstract
PURPOSE Previous study indicated the protective role of cilostazol in ischemia-reperfusion (I/R) injury. Here, we aimed to explore the function of cilostazol in myocardial I/R injury and the underlying mechanism. METHODS The myocardial I/R injury rat model was constructed, and the expression levels of vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), basic fibroblast growth factor (bFGF), platelet-derived growth factor receptor b (PDGF-B) and the number of new blood vessels were measured by qRT-PCR and immunohistochemistry. VSMC and HUVEC cells were treated with hypoxia to induce in vivo I/R injury model. The protein expression of AKT, endothelial nitric oxide synthase (eNOS) and apoptosis-related protein levels were detected by western blotting. Besides, the positive staining rate and cell viability were tested by 5-bromo-2-deoxyuridine (Brdu)/4',6-diamidino-2-phenylindole (DAPI) or DAPI/TdT-mediated dUTP Nick-End Labeling (TUNEL) staining and MTT assay. RESULTS Cilostazol promoted angiogenesis by increasing the number of new blood vessels and up-regulating the expression of VEGF, HGF, bFGF and PDGF-B in myocardial I/R-injury rat model. The in vitro experiments showed that cilostazol increased the level of eNOS and AKT, and also enhanced cell proliferation in hypoxia-treated VSMC and HUVEC cells. Furthermore, after 8-Br-cAMP treatment, VEGF, HGF, bFGF, PDGF-B, p-AKT and p-eNOS expression were up-regulated, while cleaved-caspase 3 and cleaved-PARP expression were down-regulated. In addition, the effects of cilostazol on cell viability and apoptosis were aggravated by 8-Br-cAMP and attenuated after KT-5720 treatment. CONCLUSION Cilostazol could promote angiogenesis, increase cell viability and inhibit cell apoptosis, consequently protecting myocardial tissues against I/R-injury through activating cAMP.
Collapse
Affiliation(s)
- Jiangjin Li
- Department of Cardiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, China.
| | - Xiaoli Xiang
- Department of Nephrology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, China
| | - Hai Xu
- Department of Cardiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, China
| | - Yafei Shi
- Department of Cardiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, China
| |
Collapse
|
5
|
HGF/Met Signaling in Cancer Invasion: The Impact on Cytoskeleton Remodeling. Cancers (Basel) 2017; 9:cancers9050044. [PMID: 28475121 PMCID: PMC5447954 DOI: 10.3390/cancers9050044] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/25/2017] [Accepted: 05/02/2017] [Indexed: 12/21/2022] Open
Abstract
The invasion of cancer cells into surrounding tissue and the vasculature is essential for tumor metastasis. Increasing evidence indicates that hepatocyte growth factor (HGF) induces cancer cell migration and invasion. A broad spectrum of mechanisms underlies cancer cell migration and invasion. Cytoskeletal reorganization is of central importance in the development of the phenotype of cancer cells with invasive behavior. Through their roles in cell mechanics, intracellular trafficking, and signaling, cytoskeleton proteins participate in all essential events leading to cell migration. HGF has been involved in cytoskeleton assembly and reorganization, and its role in regulating cytoskeleton dynamics is still expanding. This review summarizes our current understanding of the role of HGF in regulating cytoskeleton remodeling, distribution, and interactions.
Collapse
|
6
|
Qi X, Yuan Y, Xu K, Zhong H, Zhang Z, Zhai H, Guan G, Yu G. (2-Hydroxypropyl)-β-Cyclodextrin Is a New Angiogenic Molecule for Therapeutic Angiogenesis. PLoS One 2015; 10:e0125323. [PMID: 25944736 PMCID: PMC4420769 DOI: 10.1371/journal.pone.0125323] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 03/16/2015] [Indexed: 01/16/2023] Open
Abstract
Background Peripheral artery disease (PAD), which is caused by atherosclerosis, results in progressive narrowing and occlusion of the peripheral arteries and inhibits blood flow to the lower extremities. Therapeutic angiogenesis is a promising strategy for treating ischemia caused by PAD. Nitric oxide (NO) has been shown to be a key mediator of angiogenesis. It has been demonstrated that β-cyclodextrincan stimulate vessel growth in rabbit corneas. In this study, we assessed the mechanism of action and therapeutic potential of a new angiogenic molecule, (2-hydroxypropyl)-β-cyclodextrin (2HP-β-CD). Methods and Results 2HP-β-CD significantly increased vascular endothelial growth factor A (VEGF-A) and platelet-derived growth factor BB (PDGF-BB) peptides in human umbilical vein endothelial cells (HUVECs) and also increased basic fibroblast growth factor (bFGF) peptide in human aortic smooth muscle cells (HASMCs). 2HP-β-CD stimulated both proliferation and migration of HUVECs in an endothelial nitric oxide synthase (eNOS)/NO-dependent manner, whereas NO was found to be involved in proliferation, but not migration, of HASMCs. In a unilateral hindlimb ischemia model in mice, 2HP-β-CD injections not only promoted blood flow recovery and increased microvessel densities in ischemic muscle, but also promoted coverage of the vessels with smooth muscle cells, thus stabilizing the vessels. Administration of 2HP-β-CD increased the expression of several angiogenic factors, including VEGF-A, PDGF-BB and transforming growth factor beta-1 (TGF-β1) in ischemic muscle. Injections of 2HP-β-CD also stimulated protein kinase B and extracellular regulated protein kinases (ERK), leading to an increase in phosphorylation of eNOS in ischemic muscle. Treatment with the NOS inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME), showed that stimulation of blood flow induced by 2HP-β-CD was partially dependent on NO. Conclusions Therapeutic angiogenesis by 2HP-β-CD may be beneficial to patients with PAD.
Collapse
Affiliation(s)
- Xun Qi
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yonghui Yuan
- Hospital infection management office, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Ke Xu
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China
- * E-mail: (KX); (HSZ)
| | - Hongshan Zhong
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China
- * E-mail: (KX); (HSZ)
| | - Zhen Zhang
- Department of ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Huan Zhai
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Gefei Guan
- Department of neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Guibo Yu
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Rocchi L, Caraffi S, Perris R, Mangieri D. The angiogenic asset of soft tissue sarcomas: a new tool to discover new therapeutic targets. Biosci Rep 2014; 34:e00147. [PMID: 25236925 PMCID: PMC4219423 DOI: 10.1042/bsr20140075] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/04/2014] [Accepted: 07/14/2014] [Indexed: 12/18/2022] Open
Abstract
STS (soft tissue sarcomas) are rare malignant tumours deriving from cells of mesenchymal origin and represent only 1% of all malignant neoplasms. It has been extensively demonstrated that angiogenesis has an important role in cancer malignancy. Particularly, a lot of studies demonstrate the importance of angiogenesis in the development of carcinomas, whereas little is known about the role of angiogenesis in sarcomas and especially in STS. This review aims at summarizing the new discoveries about the nature and the importance of angiogenesis in STS and the new possible therapeutic strategies involved. Only a few studies concerning STS focus on tumour neovascularization and proangiogenic factors and look for a correlation with the patients prognosis/survival. These studies demonstrate that intratumoural MVD (microvessels density) may not accurately represent the angiogenic capacity of STS. Nevertheless, this does not exclude the possibility that angiogenesis could be important in STS. The importance of neoangiogenesis in soft tissue tumours is confirmed by the arising number of publications comparing angiogenesis mediators with clinical features of patients with STS. The efficacy of anti-angiogenic therapies in other types of cancer is well documented. The understanding of the involvement of the angiogenic process in STS, together with the necessity to improve the therapy for this often mortal condition, prompted the exploration of anti-tumour compounds targeting this pathway. In conclusion, this review emphasizes the importance to better understand the mechanisms of angiogenesis in STS in order to subsequently design-specific target therapies for this group of poorly responding tumours.
Collapse
Key Words
- angiogenesis factors
- angiogenesis
- soft tissue sarcomas
- target therapy
- csf, colony-stimulating factor
- ec, endothelial cell
- fgf-2, fibroblast growth factor-2
- mfh, malignant fibrous histiocytoma
- mmp, matrix metalloproteinase
- mtor, mammalian target of rapamycin
- mvd, microvessels density
- pdgfrβ, platelet-derived growth factor beta
- plgf, placental growth factor
- sts, soft tissue sarcomas
- tki, tyrosine kinase inhibitor
- timp, tissue inhibitors of metalloproteinases
- upa, urokinase-type plasminogen activator
- vegf, vascular endothelial growth factor
- vegfr, vegf receptor
- vwf, von-willebrand factor
Collapse
Affiliation(s)
- Laura Rocchi
- *Unità Operativa di Anatomia e Istologia Patologica, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci, 14, 43100-Parma, Italy
| | - Stefano Caraffi
- *Unità Operativa di Anatomia e Istologia Patologica, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci, 14, 43100-Parma, Italy
| | - Roberto Perris
- †COMT–Centro di Oncologia Medica e Traslazionale, Università di Parma, Parco Area delle Scienze 11/A 43100-Parma, Italy
| | - Domenica Mangieri
- *Unità Operativa di Anatomia e Istologia Patologica, Azienda Ospedaliero-Universitaria di Parma, Via Gramsci, 14, 43100-Parma, Italy
- †COMT–Centro di Oncologia Medica e Traslazionale, Università di Parma, Parco Area delle Scienze 11/A 43100-Parma, Italy
| |
Collapse
|
8
|
Zhou N, Fu Y, Wang Y, Chen P, Meng H, Guo S, Zhang M, Yang Z, Ge Y. p27 kip1 haplo-insufficiency improves cardiac function in early-stages of myocardial infarction by protecting myocardium and increasing angiogenesis by promoting IKK activation. Sci Rep 2014; 4:5978. [PMID: 25099287 PMCID: PMC4124466 DOI: 10.1038/srep05978] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/11/2014] [Indexed: 11/09/2022] Open
Abstract
p27kip1 (p27) is widely known as a potent cell cycle inhibitor in several organs, especially in the heart. However, its role has not been fully defined during the early phase of myocardial infarction (MI). In this study, we investigated the relationships between p27, vascular endothelial growth factor/hepatocyte growth factor (VEGF/HGF) and NF-κB in post-MI cardiac function repair both in vivo and in the hypoxia/ischemia-induced rat myocardiocyte model. In vivo, haplo-insufficiency of p27 improved cardiac function, diminished the infarct zone, protected myocardiocytes and increased angiogenesis by enhancing the production of VEGF/HGF. In vitro, the presence of conditioned medium from hypoxia/ischemia-induced p27 knockdown myocardiocytes reduced the injury caused by hypoxia/ischemia in myocardiocytes, and this effect was reversed by VEGF/HGF neutralizing antibodies, consistent with the cardioprotection being due to VEGF/HGF secretion. We also observed that p27 bound to IKK and that p27 haplo-insufficiency promoted IKK/p65 activation both in vivo and in vitro, thereby inducing the NF-κB downstream regulator, VEGF/HGF. Furthermore, IKKi and IKK inhibitor negated the effect of VEGF/HGF. Therefore, we conclude that p27 haplo-insufficiency protects against heart injury by VEGF/HGF mediated cardioprotection and increased angiogenesis through promoting IKK activation.
Collapse
Affiliation(s)
- Ningtian Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yuxuan Fu
- Department of Physiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yunle Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Pengsheng Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Haoyu Meng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Shouyu Guo
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Min Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhijian Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yingbin Ge
- Department of Physiology, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
9
|
Yoo SY, Kwon SM. Angiogenesis and its therapeutic opportunities. Mediators Inflamm 2013; 2013:127170. [PMID: 23983401 PMCID: PMC3745966 DOI: 10.1155/2013/127170] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 07/07/2013] [Indexed: 11/18/2022] Open
Abstract
Angiogenesis plays critical roles in human physiology that range from reproduction and fetal growth to wound healing and tissue repair. The sophisticated multistep process is tightly regulated in a spatial and temporal manner by "on-off switch signals" between angiogenic factors, extracellular matrix components, and endothelial cells. Uncontrolled angiogenesis may lead to several angiogenic disorders, including vascular insufficiency (myocardial or critical limb ischemia) and vascular overgrowth (hemangiomas, vascularized tumors, and retinopathies). Thus, numerous therapeutic opportunities can be envisaged through the successful understanding and subsequent manipulation of angiogenesis. Here, we review the clinical implications of angiogenesis and discuss pro- and antiangiogenic agents that offer potential therapy for cancer and other angiogenic diseases.
Collapse
Affiliation(s)
- So Young Yoo
- Laboratory for Vascular Medicine and Stem Cell Biology, Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan 626-870, Republic of Korea
| | - Sang Mo Kwon
- Laboratory for Vascular Medicine and Stem Cell Biology, Convergence Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan 626-870, Republic of Korea
| |
Collapse
|
10
|
Makarevich P, Tsokolaeva Z, Shevelev A, Rybalkin I, Shevchenko E, Beloglazova I, Vlasik T, Tkachuk V, Parfyonova Y. Combined transfer of human VEGF165 and HGF genes renders potent angiogenic effect in ischemic skeletal muscle. PLoS One 2012; 7:e38776. [PMID: 22719942 PMCID: PMC3374822 DOI: 10.1371/journal.pone.0038776] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/11/2012] [Indexed: 12/17/2022] Open
Abstract
Increased interest in development of combined gene therapy emerges from results of recent clinical trials that indicate good safety yet unexpected low efficacy of "single-gene" administration. Multiple studies showed that vascular endothelial growth factor 165 aminoacid form (VEGF165) and hepatocyte growth factor (HGF) can be used for induction of angiogenesis in ischemic myocardium and skeletal muscle. Gene transfer system composed of a novel cytomegalovirus-based (CMV) plasmid vector and codon-optimized human VEGF165 and HGF genes combined with intramuscular low-voltage electroporation was developed and tested in vitro and in vivo. Studies in HEK293T cell culture, murine skeletal muscle explants and ELISA of tissue homogenates showed efficacy of constructed plasmids. Functional activity of angiogenic proteins secreted by HEK293T after transfection by induction of tube formation in human umbilical vein endothelial cell (HUVEC) culture. HUVEC cells were used for in vitro experiments to assay the putative signaling pathways to be responsible for combined administration effect one of which could be the ERK1/2 pathway. In vivo tests of VEGF165 and HGF genes co-transfer were conceived in mouse model of hind limb ischemia. Intramuscular administration of plasmid encoding either VEGF165 or HGF gene resulted in increased perfusion compared to empty vector administration. Mice injected with a mixture of two plasmids (VEGF165+HGF) showed significant increase in perfusion compared to single plasmid injection. These findings were supported by increased CD31+ capillary and SMA+ vessel density in animals that received combined VEGF165 and HGF gene therapy compared to single gene therapy. Results of the study suggest that co-transfer of VEGF and HGF genes renders a robust angiogenic effect in ischemic skeletal muscle and may present interest as a potential therapeutic combination for treatment of ischemic disorders.
Collapse
Affiliation(s)
- Pavel Makarevich
- Institute of Experimental Cardiology, Russian Cardiology Research and Production Complex, Moscow, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Surati M, Patel P, Peterson A, Salgia R. Role of MetMAb (OA-5D5) in c-MET active lung malignancies. Expert Opin Biol Ther 2012; 11:1655-62. [PMID: 22047509 DOI: 10.1517/14712598.2011.626762] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION MetMAb (OA-5D5) is a one-armed monoclonal antibody developed to bind to and inhibit c-MET receptor tyrosine kinase. Though only in early clinical testing, this agent holds great promise in diseases thought to be driven by c-MET activation, as evidenced by the Phase II results in NSCLC where a benefit in overall survival was observed in patients with MET-diagnostic-positive disease. Thus far, both alone and in combination with other targeted agents, this drug has been well tolerated and no new significant safety signals have been identified. AREAS COVERED This review summarizes the structure and function of the c-MET receptor and its ligand hepatic growth factor (HGF), provides an overview of select targeted monotherapies developed to interfere in the MET-HGF signaling pathway, discusses pre-clinical and clinical data surrounding MetMAb, and concludes with an expert opinion regarding this novel agent. EXPERT OPINION MetMAb has been well tolerated and based on Phase II data testing it, in combination with erlotinib in advanced NSCLC, may have a role in improving survival in patients with disease driven by c-MET activation. However, Phase III validation is underway and the results of these studies will help elucidate which patients will benefit most from this novel agent.
Collapse
Affiliation(s)
- Mosmi Surati
- University of Chicago, Pritzker School of Medicine, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
12
|
Angiogenesis and multiple myeloma. CANCER MICROENVIRONMENT 2011; 4:325-37. [PMID: 21735169 DOI: 10.1007/s12307-011-0072-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 06/23/2011] [Indexed: 01/13/2023]
Abstract
The bone marrow microenvironment in multiple myeloma is characterized by an increased microvessel density. The production of pro-angiogenic molecules is increased and the production of angiogenic inhibitors is suppressed, leading to an "angiogenic switch". Here we present an overview of the role of angiogenesis in multiple myeloma, the pro-angiogenic factors produced by myeloma cells and the microenvironment, and the mechanisms involved in the myeloma-induced angiogenic switch. Current data suggest that the increased bone marrow angiogenesis in multiple myeloma is due to the aberrant expression of angiogenic factors by myeloma cells, the subsequent increase in pro-angiogenic activity of normal plasma cells as a result of myeloma cell angiogenic activity, and the increased number of plasma cells overall. Hypoxia also contributes to the angiogenic properties of the myeloma marrow microenvironment. The transcription factor hypoxia-inducible factor-1α is overexpressed by myeloma cells and affects their transcriptional and angiogenic profiles. In addition, potential roles of the tumor suppressor gene inhibitor of growth family member 4 and homeobox B7 have also been recently highlighted as repressors of angiogenesis and pro-angiogenic related genes, respectively. This complex pathogenetic model of myeloma-induced angiogenesis suggests that several pro-angiogenic molecules and related genes in myeloma cells and the microenvironment are potential therapeutic targets.
Collapse
|
13
|
Robinson SD, Reynolds LE, Kostourou V, Reynolds AR, da Silva RG, Tavora B, Baker M, Marshall JF, Hodivala-Dilke KM. Alphav beta3 integrin limits the contribution of neuropilin-1 to vascular endothelial growth factor-induced angiogenesis. J Biol Chem 2009; 284:33966-81. [PMID: 19837659 DOI: 10.1074/jbc.m109.030700] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Both vascular endothelial growth factor receptors (VEGFR) and integrins are major regulators of VEGF-induced angiogenesis. Previous work has shown that beta3 integrin can regulate negatively VEGFR2 expression. Here we show that beta3 integrin can regulate negatively VEGF-mediated angiogenesis by limiting the interaction of the co-receptor NRP1 (neuropilin-1) with VEGFR2. In the presence of alphav beta3 integrin, NRP1 contributed minimally to VEGF-induced angiogenic processes in vivo, ex vivo, and in vitro. Conversely, when beta3 integrin expression is absent or low or its function is blocked with RGD-mimetic inhibitors, VEGF-mediated responses became NRP1-dependent. Indeed, combined inhibition of beta3 integrin and NRP1 decreased VEGF-mediated angiogenic responses further than individual inhibition of these receptors. We also show that alphav beta3 integrin can associate with NRP1 in a VEGF-dependent fashion. Our data suggest that beta3 integrin may, in part, negatively regulate VEGF signaling by sequestering NRP1 and preventing it from interacting with VEGFR2.
Collapse
Affiliation(s)
- Stephen D Robinson
- Adhesion and Angiogenesis Laboratory, Tumour Biology Centre, Institute of Cancer, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Vanheule E, Geerts AM, Van Huysse J, Schelfhout D, Praet M, Van Vlierberghe H, De Vos M, Colle I. An intravital microscopic study of the hepatic microcirculation in cirrhotic mice models: relationship between fibrosis and angiogenesis. Int J Exp Pathol 2009; 89:419-32. [PMID: 19134051 DOI: 10.1111/j.1365-2613.2008.00608.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This intravital fluorescence microscopy (IVFM) study validates cirrhotic mice models and describes the different intrahepatic alterations and the role of angiogenesis in the liver during genesis of cirrhosis. Cirrhosis was induced by subcutaneous injection of carbon tetrachloride (CCl(4)) and by common bile duct ligation (CBDL) in mice. Diameters of sinusoids, portal venules (PV), central venules (CV) and shunts were measured at different time points by IVFM. Thereafter, liver samples were taken for sirius red, CD31, Ki67, vascular endothelial growth factor (VEGF) and alpha-smooth muscle actin (alpha-SMA) evaluation by immunohistochemistry (IHC). In parallel with fibrogenesis, hepatic microcirculation was markedly disturbed in CCl(4) and CBDL mice with a significant decrease in sinusoidal diameter compared to control mice. In CCl(4) mice, CV were enlarged, with marked sinusoidal-free spaces around CV. In contrast, PV were enlarged in CBDL mice and bile lakes were observed. In both mice models, intrahepatic shunts developed gradually after induction. During genesis of cirrhosis using CD31 IHC we observed a progressive increase in the number of blood vessels within the fibrotic septa area and a progressively increase in staining by Ki67, VEGF and alpha-SMA of endothelial cells, hepatocytes and hepatic stellate cells respectively. In vivo study of the hepatic microcirculation demonstrated a totally disturbed intrahepatic architecture, with narrowing of sinusoids in both cirrhotic mice models. The diameters of CV and PV increased and large shunts, bypassing the sinusoids, were seen after both CCl(4) and CBDL induction. Thus present study shows that there is angiogenesis in the liver during cirrhogenesis, and this is probably due partially to an increased production of VEGF.
Collapse
Affiliation(s)
- Eline Vanheule
- Department of Hepatology and Gastroenterology, Ghent University Hospital, Ghent, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Fan S, Meng Q, Laterra JJ, Rosen EM. Role of Src signal transduction pathways in scatter factor-mediated cellular protection. J Biol Chem 2008; 284:7561-77. [PMID: 19047046 DOI: 10.1074/jbc.m807497200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Scatter factor (SF) (hepatocyte growth factor) is a pleiotrophic cytokine that accumulates in tumors, where it may induce invasion, angiogenesis, and chemoresistance. We have studied the mechanisms by which SF and its receptor (c-Met) protect cells against the DNA-damaging agent adriamycin (ADR) as a model for chemoresistance of SF/c-Met-overexpressing tumors. Previous studies identified a phosphatidylinositol 3-kinase/c-Akt/Pak1/NF-kappaB cell survival pathway in DU-145 prostate cancer and Madin-Darby canine kidney epithelial cells. Here we studied Src signaling pathways involved in SF cell protection. Src enhanced basal and SF stimulated NF-kappaB activity and SF protection against ADR, in a manner dependent upon its kinase and Src homology 3 domains; and endogenous Src was required for SF stimulation of NF-kappaB activity and cell protection. The ability of Src to enhance SF stimulation of NF-kappaB activity was due, in part, to its ability to stimulate Akt and IkappaB kinase activity; and Src-mediated stimulation of NF-kappaB was due, in part, to a Rac1/MKK3/6/p38 pathway and was Akt-dependent. SF caused the activation of Src and the Rac1 effector Pak1. Furthermore, SF induced activating phosphorylations of MKK3, MKK6, and p38 within the c-Met signalsome in an Src-dependent manner. The NF-kappaB-inducing kinase was found to act downstream of TAK1 (transforming growth factor-beta-activated kinase 1) as a mediator of SF- and Src-stimulated NF-kappaB activity. Finally, the Src/Rac1/MKK3/6/p38 and Src/TAK1/NF-kappaB-inducing kinase pathways exhibited cross-talk at the level of MKK3. These findings delineate some novel signaling pathways for SF-mediated resistance to ADR.
Collapse
Affiliation(s)
- Saijun Fan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | | | | | | |
Collapse
|
16
|
Li Y, Fan X, Goodwin CR, Laterra J, Xia S. Hepatocyte growth factor enhances death receptor-induced apoptosis by up-regulating DR5. BMC Cancer 2008; 8:325. [PMID: 18992144 PMCID: PMC2590617 DOI: 10.1186/1471-2407-8-325] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 11/07/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hepatocyte growth factor (HGF) and its receptor c-MET are commonly expressed in malignant gliomas and embryonic neuroectodermal tumors including medulloblastoma and appear to play an important role in the growth and dissemination of these malignancies. Dependent on cell context and the involvement of specific downstream effectors, both pro- and anti-apoptotic effects of HGF have been reported. METHODS Human medulloblastoma cells were treated with HGF for 24-72 hours followed by death receptor ligand TRAIL (Tumor necrosis factor-related apoptosis-inducing ligand) for 24 hours. Cell death was measured by MTT and Annexin-V/PI flow cytometric analysis. Changes in expression levels of targets of interest were measured by Northern blot analysis, quantitative reverse transcription-PCR, Western blot analysis as well as immunoprecipitation. RESULTS In this study, we show that HGF promotes medulloblastoma cell death induced by TRAIL. TRAIL alone triggered apoptosis in DAOY cells and death was enhanced by pre-treating the cells with HGF for 24-72 h prior to the addition of TRAIL. HGF (100 ng/ml) enhanced TRAIL (10 ng/ml) induced cell death by 36% (P<0.001). No cell death was associated with HGF alone. Treating cells with PHA-665752, a specific c-Met receptor tyrosine kinase inhibitor, significantly abrogated the enhancement of TRAIL-induced cell death by HGF, indicating that its death promoting effect requires activation of its canonical receptor tyrosine kinase. Cell death induced by TRAIL+HGF was predominately apoptotic involving both extrinsic and intrinsic pathways as evidenced by the increased activation of caspase-3, 8, 9. Promotion of apoptosis by HGF occurred via the increased expression of the death receptor DR5 and enhanced formation of death-inducing signal complexes (DISC). CONCLUSION Taken together, these and previous findings indicate that HGF:c-Met pathway either promotes or inhibits medulloblastoma cell death via pathway and context specific mechanisms.
Collapse
Affiliation(s)
- Yang Li
- Hugo W, Moser Research Institute at Kennedy Krieger, Baltimore, MD, USA.
| | | | | | | | | |
Collapse
|
17
|
Giubellino A, Burke TR, Bottaro DP. Grb2 signaling in cell motility and cancer. Expert Opin Ther Targets 2008; 12:1021-33. [PMID: 18620523 DOI: 10.1517/14728222.12.8.1021] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Metastasis is the primary cause of death in most human cancers, and understanding the molecular mechanisms underpinning this multistep process is fundamental to identifying novel molecular targets and developing more effective therapies. OBJECTIVE/METHODS Here we review the role of growth factor receptor-bound protein 2 (Grb2) in cancer and specifically in metastasis-related processes, and summarize the development of anticancer therapeutics selectively targeting this adapter protein. RESULTS/CONCLUSION Grb2 is a key molecule in intracellular signal transduction, linking activated cell surface receptors to downstream targets by binding to specific phosphotyrosine-containing and proline-rich sequence motifs. Grb2 signaling is critical for cell cycle progression and actin-based cell motility, and, consequently, more complex processes such as epithelial morphogenesis, angiogenesis and vasculogenesis. These functions make Grb2 a therapeutic target for strategies designed to prevent the spread of solid tumors through local invasion and metastasis.
Collapse
Affiliation(s)
- Alessio Giubellino
- National Cancer Institute, Urologic Oncology Branch, CCR, Building 10, 10 Center Drive MSC 1107, Bethesda, MD 20892-1107, USA.
| | | | | |
Collapse
|
18
|
Martens T, Schmidt NO, Eckerich C, Fillbrandt R, Merchant M, Schwall R, Westphal M, Lamszus K. A Novel One-Armed Anti-c-Met Antibody Inhibits Glioblastoma GrowthIn vivo. Clin Cancer Res 2006; 12:6144-52. [PMID: 17062691 DOI: 10.1158/1078-0432.ccr-05-1418] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Expression of the receptor tyrosine kinase c-Met and its ligand scatter factor/hepatocyte growth factor (SF/HGF) are strongly increased in glioblastomas, where they promote tumor proliferation, migration, invasion, and angiogenesis. We used a novel one-armed anti-c-Met antibody to inhibit glioblastoma growth in vivo. EXPERIMENTAL DESIGN U87 glioblastoma cells (c-Met and SF/HGF positive) or G55 glioblastoma cells (c-Met positive and SF/HGF negative) were used to generate intracranial orthotopic xenografts in nude mice. The one-armed 5D5 (OA-5D5) anti-c-Met antibody was infused intratumorally using osmotic minipumps. Following treatment, tumor volumes were measured and tumors were analyzed histologically for extracellular matrix (ECM) components and proteases relevant to tumor invasion. Microarray analyses were done to determine the effect of the antibody on invasion-related genes. RESULTS U87 tumor growth, strongly driven by SF/HGF, was inhibited > 95% with OA-5D5 treatment. In contrast, G55 tumors, which are not SF/HGF driven, did not respond to OA-5D5, suggesting that the antibody can have efficacy in SF/HGF-activated tumors. In OA-5D5-treated U87 tumors, cell proliferation was reduced > 75%, microvessel density was reduced > 90%, and apoptosis was increased > 60%. Furthermore, OA-5D5 treatment decreased tumor cell density > 2-fold, with a consequent increase in ECM deposition and increased immunoreactivity for laminin, fibronectin, and tenascin. Microarray studies showed no increase in these ECM factors, rather down-regulation of urokinase-type plasminogen activator and matrix metalloproteinase 16 in glioblastoma cells treated with OA-5D5. CONCLUSIONS Local treatment with OA-5D5 can almost completely inhibit intracerebral glioblastoma growth when SF/HGF is driving tumor growth. The mechanisms of tumor inhibition include antiproliferative, antiangiogenic, and proapoptotic effects.
Collapse
Affiliation(s)
- Tobias Martens
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Heese O, Disko A, Zirkel D, Westphal M, Lamszus K. Neural stem cell migration toward gliomas in vitro. Neuro Oncol 2005; 7:476-84. [PMID: 16212812 PMCID: PMC1871728 DOI: 10.1215/s1152851704000754] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Various in vivo studies demonstrated a migration tendency of neural stem cells (NSCs) toward gliomas, making these cells a potential carrier for delivery of therapeutic genes to disseminated glioma cells. We analyzed which factors determine NSC migration and invasion in vitro. Conditioned media prepared from 10 different human glioma cell lines, as well as 13 different tumor-associated growth factors, were analyzed for their chemotactic effects on murine C17.2 NSCs. The growth factor receptor status was analyzed by reverse transcriptase-polymerase chain reaction. Invasion of NSCs into multicellular tumor spheroids generated from 10 glioma cell lines was quantified. NSCs displayed a heterogeneous migration pattern toward glioma spheroids as well as toward glioma-cell-conditioned medium. Chemotactic migration was stimulated up to fivefold by conditioned medium as compared to controls. In coculture assays, NSC invasion varied from single cell invasion into glioma spheroids to complete dissemination of NSCs into glioma spheroids of different cell lines. Among 13 different growth factors, scatter factor/hepatocyte growth factor (SF/HGF) was the most powerful chemoattractant for NSCs, inducing a 2.5-fold migration stimulation. An antibody against SF/HGF inhibited migratory stimulation induced by conditioned media. NSC migration can be stimulated by various growth factors, similar to glioma cell migration. The extent to which NSCs infiltrate three-dimensional glioma cell aggregates appears to depend on additional factors, which are likely to include cell-to-cell contacts and interaction with extracellular matrix proteins.
Collapse
Affiliation(s)
- Oliver Heese
- Department of Neurosurgery, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | | | | | | | | |
Collapse
|
20
|
Ren Y, Cao B, Law S, Xie Y, Lee PY, Cheung L, Chen Y, Huang X, Chan HM, Zhao P, Luk J, Vande Woude G, Wong J. Hepatocyte growth factor promotes cancer cell migration and angiogenic factors expression: a prognostic marker of human esophageal squamous cell carcinomas. Clin Cancer Res 2005; 11:6190-7. [PMID: 16144920 DOI: 10.1158/1078-0432.ccr-04-2553] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE Hepatocyte growth factor/scatter factor (HGF/SF) and its receptor, c-Met, play important roles in tumor development and progression. In this study, we measured the serum HGF levels in patients with esophageal squamous cell carcinoma (ESCC) to evaluate its relationships with clinicopathologic features and the role of HGF in ESCC. EXPERIMENTAL DESIGN One hundred and forty-nine patients with ESCC were studied. Pretherapy serum was collected and ELISA was used to detect the concentrations of HGF, vascular endothelial growth factor (VEGF), and interleukin 8 (IL-8). The function of HGF was shown by invasion chamber assay. RESULTS Pretherapy serum HGF was found to be significantly higher in patients with ESCC than in control subjects. The levels of HGF correlated significantly with advanced tumor metastasis stage and survival. Multivariate analyses showed that serum HGF level in cell migration was an independent prognostic factor. Increased HGF serum levels correlated positively with serum levels of VEGF and IL-8. Our results also showed that HGF was overexpressed in ESCC tissues and cell lines. In vitro study showed that HGF could stimulate ESCC cell to express VEGF and IL-8 and markedly enhance invasion and migration of ESCC cells. Furthermore, HGF-induced IL-8 and VEGF expression was dependent on extracellular signal-regulated kinase signaling pathways. The inhibition of extracellular signal-regulated kinase activation reduced HGF-mediated IL-8 and VEGF expression. CONCLUSIONS Our results suggest that serum HGF may be a useful biomarker of tumor progression and a valuable independent prognostic factor in patients with ESCC. HGF may be involved in the progression of ESCC as an autocrine/paracrine factor via enhancing angiogenesis and tumor cell invasion and migration.
Collapse
Affiliation(s)
- Yi Ren
- Department of Surgery, University of Hong Kong Medical Centre, Queen Mary Hospital, Hong Kong, PR China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Worden B, Yang XP, Lee TL, Bagain L, Yeh NT, Cohen JG, Van Waes C, Chen Z. Hepatocyte growth factor/scatter factor differentially regulates expression of proangiogenic factors through Egr-1 in head and neck squamous cell carcinoma. Cancer Res 2005; 65:7071-80. [PMID: 16103054 DOI: 10.1158/0008-5472.can-04-0989] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hepatocyte growth factor/scatter factor (HGF) and the angiogenesis factors platelet-derived growth factors (PDGF), vascular endothelial growth factor (VEGF), and interleukin-8 (IL-8) are found in elevated concentrations in serum or tumor tissue of patients with head and neck squamous cell carcinomas (HNSCC), suggesting these factors may be coregulated. A cDNA microarray analysis for HGF-inducible genes revealed that HGF also modulates PDGFA expression, a gene recently shown to be inducible by the transcription factor, early growth response-1 (Egr-1). In the present study, we investigated the potential role of HGF-induced Egr-1 in expression of PDGF, VEGF, and IL-8. HGF induced expression of all three factors and Egr-1 expression and DNA-binding activity. The analysis of promoter sequences showed putative Egr-1 binding sites in the PDGFA or VEGF but not in the IL-8 promoter, and HGF-induced Egr-1-binding activity was confirmed by chromatin immunoprecipitation (ChIP) assay. The maximal basal and HGF-induced promoter activity for the PDGFA gene existed within -630 bp of the promoter region, and overexpression of Egr-1 significantly increased such activity. Consistent with this, expression of PDGFA and VEGF but not IL-8 showed corresponding differences with Egr-1 expression in HNSCC tumor specimens and were strongly suppressed by transfection of Egr-1-antisense or small interference RNA (siRNA) oligonucleotides. HGF-induced expression of Egr-1, PDGFA, and VEGF was suppressed by pharmacologic and siRNA inhibitors of mitogen-activated protein kinase kinase 1/2 (MEK1/2) and protein kinase C (PKC) pathways. We conclude that the HGF-induced activation of transcription factor Egr-1 by MEK1/2- and PKC-dependent mechanisms differentially contributes to expression of PDGF and VEGF, which are important angiogenesis factors and targets for HNSCC therapy.
Collapse
Affiliation(s)
- Brian Worden
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland 20892-1419, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Gao CF, Xie Q, Su YL, Koeman J, Khoo SK, Gustafson M, Knudsen BS, Hay R, Shinomiya N, Vande Woude GF. Proliferation and invasion: plasticity in tumor cells. Proc Natl Acad Sci U S A 2005; 102:10528-33. [PMID: 16024725 PMCID: PMC1180792 DOI: 10.1073/pnas.0504367102] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Invasive and proliferative phenotypes are fundamental components of malignant disease, yet basic questions persist about whether tumor cells can express both phenotypes simultaneously and, if so, what are their properties. Suitable in vitro models that allow characterization of cells that are purely invasive are limited because proliferation is required for cell maintenance. Here, we describe glioblastoma cells that are highly invasive in response to hepatocyte growth factor/scatter factor (HGF/SF). From this cell population, we selected subclones that were highly proliferative or displayed both invasive and proliferative phenotypes. The biological activities of invasion, migration, urokinase-type plasminogen activation, and branching morphogenesis exclusively partitioned with the highly invasive cells, whereas the highly proliferative subcloned cells uniquely displayed anchorage independent growth in soft agar and were highly tumorigenic as xenografts in immune-compromised mice. In response to HGF/SF, the highly invasive cells signal through the MAPK pathway, whereas the selection of the highly proliferative cells coselected for signaling through Myc. Moreover, in subcloned cells displaying both invasive and proliferative phenotypes, both signaling pathways are activated by HGF/SF. These results show how the mitogen-activated protein kinase and Myc pathways can cooperate to confer both invasive and proliferative phenotypes on tumor cells and provide a system for studying how transitions between invasion and proliferation can contribute to malignant progression.
Collapse
Affiliation(s)
- Chong-Feng Gao
- Laboratory of Molecular Oncology, Van Andel Research Institute, 333 Bostwick Avenue Northeast, Grand Rapids, MI 49503, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Angiogenesis, the development of new blood vessels from the existing vasculature, and haemostasis, the coagulation cascade leading to formation of a clot, are among the most consistent host responses associated with cancer. Importantly, these two pathways interrelate, with blood coagulation and fibrinolysis influencing tumor angiogenesis directly, thereby contributing to tumor growth. Moreover, many endogenous inhibitors of angiogenesis are found within platelets or harboured as cryptic fragments of haemostatic proteins. In this review we outline ways in which angiogenesis is coordinated and regulated by haemostasis in human cancer. Then we detail the experimental and pre-clinical evidence for the ability of many of these endogenous proteins to inhibit tumor angiogenesis and thus their potential to be anti-cancer agents, with particular reference to any clinical trials.
Collapse
Affiliation(s)
- Carolyn A Staton
- Microcirculation Research Group, University of Sheffield Medical School, Sheffield, S10 2RX, UK
| | | |
Collapse
|
24
|
Biswas P, Roy A, Gong R, Yango A, Tolbert E, Centracchio J, Dworkin LD. Hepatocyte growth factor induces an endothelin-mediated decline in glomerular filtration rate. Am J Physiol Renal Physiol 2005; 288:F8-15. [PMID: 15583218 DOI: 10.1152/ajprenal.00435.2003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatocyte growth factor (HGF) is a multifunctional cytokine that plays a crucial role in renal development, injury, and repair. HGF also serves a protective role in chronic renal disease by preventing tissue fibrosis. Endothelin-1 (ET-1), produced primarily by endothelial cells, is a potent vasoconstrictor that also acts as a proinflammatory peptide, promoting vascular injury and renal damage. In addition to mediating a variety of epithelial cell responses, HGF also induces hemodynamic changes that are poorly understood. The aim of the present study was to study the acute and chronic effects of HGF on ET-1 production in the kidney. We hypothesized that hemodynamic changes upon HGF treatment are likely mediated by immediate ET-1 release, whereas protection from renal fibrosis in rats chronically treated with HGF is likely due to suppression of ET-1 production. Acute HGF infusion into rats caused a decline in blood pressure that was enhanced by pretreatment with bosentan (an endothelin A and B receptor antagonist). HGF infusion also resulted in a decline in glomerular filtration rate (GFR) that could be entirely prevented by bosentan, suggesting that HGF acutely increases production and/or release of ET-1, which then mediates the observed decline in GFR. In cultured glomerular endothelial cells, HGF induced ET-1 production in a dose-dependent manner. Moreover, although there was an initial increase in ET-1 production upon HGF treatment, longer administration suppressed ET-1 production. This finding was consistent with the observation in vivo of a decrease in ET-1 production in renal parenchyma of rats chronically treated with HGF. Our data suggest both a hemodynamic and biological role for HGF-mediated ET-1 regulation.
Collapse
Affiliation(s)
- Purba Biswas
- Diivsion of Renal Diseases, Brown University School of Medicine, Rhode Island Hospital, 593 Eddy St., Providence, RI 02903, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Shinomiya N, Gao CF, Xie Q, Gustafson M, Waters DJ, Zhang YW, Vande Woude GF. RNA interference reveals that ligand-independent met activity is required for tumor cell signaling and survival. Cancer Res 2004; 64:7962-70. [PMID: 15520203 DOI: 10.1158/0008-5472.can-04-1043] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hepatocyte growth factor/scatter factor-Met signaling has been implicated in tumor growth, invasion, and metastasis. Suppression of this signaling pathway by targeting the Met protein tyrosine kinase may be an ideal strategy for suppressing malignant tumor growth. Using RNA interference technology and adenovirus vectors carrying small-interfering RNA constructs (Ad Met small-interfering RNA) directed against mouse, canine, and human Met, we can knock down c-met mRNA. We show a dramatic dependence on Met in both ligand-dependent and ligand-independent mouse, canine, and human tumor cell lines. Mouse mammary tumor (DA3) cells and Met-transformed NIH3T3 (M114) cells, as well as both human and canine prostate cancer (PC-3 and TR6LM, human sarcoma (SK-LMS-1), glioblastoma (DBTRG), and gastric cancer (MKN45) cells, all display a dramatic reduction of Met expression after infection with Ad Met small-interfering RNA. In these cells, we observe suppression of tumor cell growth and viability in vitro as well as inhibition of hepatocyte growth factor/scatter factor-mediated scattering and invasion in vitro, whether Met activation was ligand dependent or not. Importantly, Ad Met small-interfering RNA led to apoptotic cell death in many of the tumor cell lines, especially DA3 and MKN45, but did not adversely affect MDCK canine kidney cells. Met small-interfering RNA also abrogated downstream Met signaling to molecules such as Akt and p44/42 mitogen-activated protein kinase. We further show that intratumoral infection with c-met small-interfering RNA adenovirus results in a substantial reduction in tumor growth. Thus, Met small-interfering RNA adenoviruses are reliable tools for studying Met function and raise the possibility of their application for cancer therapy.
Collapse
Affiliation(s)
- Nariyoshi Shinomiya
- Laboratory of Molecular Oncology, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Soriano JV, Liu N, Gao Y, Yao ZJ, Ishibashi T, Underhill C, Burke TR, Bottaro DP. Inhibition of angiogenesis by growth factor receptor bound protein 2-Src homology 2 domain bound antagonists. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.1289.3.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Abstract
Growth factor receptor bound protein 2 (Grb2) is an intracellular adaptor protein that participates in the signal transduction cascades of several angiogenic factors, including hepatocyte growth factor, basic fibroblast growth factor, and vascular endothelial growth factor. We described previously the potent blockade of hepatocyte growth factor–stimulated cell motility, matrix invasion, and epithelial tubulogenesis by synthetic Grb2-Src homology 2 (SH2) domain binding antagonists. Here, we show that these binding antagonists block basic morphogenetic events required for angiogenesis, including hepatocyte growth factor–, vascular endothelial growth factor–, and basic fibroblast growth factor–stimulated endothelial cell proliferation and migration, as well as phorbol 12-myristate 13-acetate–stimulated endothelial cell migration and matrix invasion. The Grb2-SH2 domain binding antagonists also impair angiogenesis in vitro, as shown by the inhibition of cord formation by macrovascular endothelial cells on Matrigel. We further show that a representative compound inhibits angiogenesis in vivo as measured using a chick chorioallantoic membrane assay. These results suggest that Grb2 is an important mediator of key proangiogenic events, with potential application to pathologic conditions where neovascularization contributes to disease progression. In particular, the well-characterized role of Grb2 in signaling cell cycle progression together with our present findings suggests that Grb2-SH2 domain binding antagonists have the potential to act as anticancer drugs that target both tumor and vascular cell compartments.
Collapse
Affiliation(s)
| | - Ningfei Liu
- 4Department of Cell Biology, Georgetown University, Washington, District of Columbia
| | - Yang Gao
- 2Medicinal Chemistry, National Cancer Institute, NIH, Bethesda, Maryland
| | - Zhu-Jun Yao
- 2Medicinal Chemistry, National Cancer Institute, NIH, Bethesda, Maryland
| | - Toshio Ishibashi
- 3Department of Otolaryngology, Social Insurance Central General Hospital, Tokyo, Japan; and
| | - Charles Underhill
- 4Department of Cell Biology, Georgetown University, Washington, District of Columbia
| | - Terrence R. Burke
- 2Medicinal Chemistry, National Cancer Institute, NIH, Bethesda, Maryland
| | | |
Collapse
|
27
|
Gerritsen ME, Tomlinson JE, Zlot C, Ziman M, Hwang S. Using gene expression profiling to identify the molecular basis of the synergistic actions of hepatocyte growth factor and vascular endothelial growth factor in human endothelial cells. Br J Pharmacol 2003; 140:595-610. [PMID: 14504135 PMCID: PMC1574080 DOI: 10.1038/sj.bjp.0705494] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatocyte growth factor (HGF) and vascular endothelial cell growth factor (VEGF) are two potent endothelial mitogens with demonstrated angiogenic activities in animal models of therapeutic angiogenesis. Several recent studies suggest that these growth factors may act synergistically, although the mechanism of this interaction is not understood. Changes in the gene expression profile of human umbilical vein endothelial cells treated with HGF, VEGF or the combination of the two were analyzed with high-density oligonucleotide arrays, representing approximately 22000 genes. Notably, the genes significantly up- and downregulated by VEGF versus HGF exhibited very little overlap, indicating distinct signal transduction pathways. The combination of HGF and VEGF markedly increased the number of significantly up- and downregulated genes. At 4 h, the combination of the two growth factors induced a number of chemokine and cytokines and their receptors (IL-8, IL-6, IL-11, CCR6, CXCR1,CXC1 and IL17RC), numerous genes involved in growth factor signal transduction (egr-1, fosB, grb10, grb14,MAP2K3,MAP3K8, MAPKAP2,MPK3, DUSP4 and DUSP6), as well as a number of other growth factors (PDGFA, BMP2, Hb-EGF, FGF16, heuregulin beta 1, c-kit ligand, angiopoietin 2 and angiopoietin 4 and VEGFC). In addition, the VEGF receptors neuropilin-1 and flt-1 were also upregulated. At 24 h, a clear 'cell cycle' signature is noted, with the upregulated expression of various cell cycle control proteins and gene involved in the regulation of mitosis and mitotic spindle assembly. The receptor for HGF, c-met, is also upregulated. These data are consistent with the hypothesis that the combination of HGF and VEGF results in the cooperative upregulation of a number of different molecular pathways leading to a more robust proliferative response, that is, growth factor(s), receptors, molecules involved in growth factor signal transduction, as well as, at later time points, upregulation of the necessary cellular proteins required for cells to escape cell cycle arrest and enter the cell cycle.
Collapse
Affiliation(s)
- Mary E Gerritsen
- Department of Vascular Biology, Millennium Pharmaceuticals, South San Francisco, CA 94080, USA.
| | | | | | | | | |
Collapse
|
28
|
Makondo K, Kimura K, Kitamura N, Kitamura T, Yamaji D, Jung BD, Saito M. Hepatocyte growth factor activates endothelial nitric oxide synthase by Ca(2+)- and phosphoinositide 3-kinase/Akt-dependent phosphorylation in aortic endothelial cells. Biochem J 2003; 374:63-9. [PMID: 12757411 PMCID: PMC1223578 DOI: 10.1042/bj20030326] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2003] [Revised: 05/19/2003] [Accepted: 05/21/2003] [Indexed: 11/17/2022]
Abstract
Hepatocyte growth factor (HGF) causes endothelium-dependent vasodilation, but its relation to endothelial nitric oxide synthase (eNOS) activity remains to be elucidated. Treatment of bovine aortic endothelial cells with HGF increased eNOS activity within minutes, accompanied by an increase of activity-related site-specific phosphorylation of eNOS. The phosphorylation was completely abolished by pretreatment of the cells with a phosphoinositide 3-kinase (PI3K) inhibitor (wortmannin) and by transfection of dominant-negative Akt, and the enzyme activity was inhibited by wortmannin. In addition, eNOS activity and phosphorylation were abolished by pretreatment of the cells with an intracellular Ca(2+)-chelator, bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis(acetoxymethyl ester) (BAPTA/AM), with a suppression of Akt phosphorylation. These results suggest that HGF stimulates eNOS activity by a PI3K/Akt-dependent phosphorylation in a Ca(2+)-sensitive manner in vascular endothelial cells.
Collapse
Affiliation(s)
- Kennedy Makondo
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Wojtukiewicz MZ, Sierko E, Klement P, Rak J. The hemostatic system and angiogenesis in malignancy. Neoplasia 2001; 3:371-84. [PMID: 11687948 PMCID: PMC1506206 DOI: 10.1038/sj.neo.7900184] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2001] [Accepted: 06/19/2001] [Indexed: 12/27/2022]
Abstract
Coagulopathy and angiogenesis are among the most consistent host responses associated with cancer. These two respective processes, hitherto viewed as distinct, may in fact be functionally inseparable as blood coagulation and fibrinolysis, in their own right, influence tumor angiogenesis and thereby contribute to malignant growth. In addition, tumor angiogenesis appears to be controlled through both standard and non-standard functions of such elements of the hemostatic system as tissue factor, thrombin, fibrin, plasminogen activators, plasminogen, and platelets. "Cryptic" domains can be released from hemostatic proteins through proteolytic cleavage, and act systemically as angiogenesis inhibitors (e.g., angiostatin, antiangiogenic antithrombin III aaATIII). Various components of the hemostatic system either promote or inhibit angiogenesis and likely act by changing the net angiogenic balance. However, their complex influences are far from being fully understood. Targeted pharmacological and/or genetic inhibition of pro-angiogenic activities of the hemostatic system and exploitation of endogenous angiogenesis inhibitors of the angiostatin and aaATIII variety are under study as prospective anti-cancer treatments.
Collapse
Affiliation(s)
| | - Ewa Sierko
- Department of Oncology, Medical Academy, Bialystok, Poland
| | - Petr Klement
- Veterinary Faculty, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
- Department of Medicine, McMaster University, Hamilton Civic Hospitals Research Centre, Hamilton, Ontario, Canada
| | - Janusz Rak
- Department of Medicine, McMaster University, Hamilton Civic Hospitals Research Centre, Hamilton, Ontario, Canada
| |
Collapse
|
30
|
Xin X, Yang S, Ingle G, Zlot C, Rangell L, Kowalski J, Schwall R, Ferrara N, Gerritsen ME. Hepatocyte growth factor enhances vascular endothelial growth factor-induced angiogenesis in vitro and in vivo. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:1111-20. [PMID: 11238059 PMCID: PMC1850376 DOI: 10.1016/s0002-9440(10)64058-8] [Citation(s) in RCA: 292] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vascular endothelial growth factor (VEGF) is an important mediator of angiogenesis in both physiological and pathological processes. Hepatocyte growth factor (HGF) is a mesenchyme-derived mitogen that also stimulates cell migration, and branching and/or tubular morphogenesis of epithelial and endothelial cells. In the present study, we tested the hypothesis that simultaneous administration of HGF and VEGF would synergistically promote new blood vessel formation. HGF acted in concert with VEGF to promote human endothelial cell survival and tubulogenesis in 3-D type I collagen gels, a response that did not occur with either growth factor alone. The synergistic effects of VEGF and HGF on endothelial survival correlated with greatly augmented mRNA levels for the anti-apoptotic genes Bcl-2 and A1. Co-culture experiments with human neonatal dermal fibroblasts and human umbilical vein endothelial cells demonstrated that neonatal dermal fibroblasts, in combination with VEGF, stimulated human umbilical vein endothelial cells tubulogenesis through the paracrine secretion of HGF. Finally, in vivo experiments demonstrated that the combination of HGF and VEGF increased neovascularization in the rat corneal assay greater than either growth factor alone. We suggest that combination therapy using HGF and VEGF co-administration may provide a more effective strategy to achieve therapeutic angiogenesis.
Collapse
Affiliation(s)
- X Xin
- Department of Cardiovascular Research, Genentech Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Genetic instability and an accumulation of genetic and epigenetic changes during tumor progression lead to an increasingly aggressive and treatment-resistant phenotype, and ultimately metastasis. In recent years it has become well established that angiogenesis, the process by which new vasculature is formed from pre-existing vessels, is an essential component to primary tumor growth and distant metastasis. A greater understanding of the complex multitude of factors involved in tumor angiogenesis and metastasis is fundamental to the development of potential therapeutics to treat malignant disease. As highlighted throughout this review, angiogenesis and metastasis share many common cellular and molecular features. We will briefly discuss the pertinent genes involved in the regulation of angiogenesis and metastasis.
Collapse
Affiliation(s)
- C P Webb
- Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| | | |
Collapse
|
32
|
Salbach PB, Brückmann M, Turovets O, Kreuzer J, Kübler W, Walter-Sack I. Heparin-mediated selective release of hepatocyte growth factor in humans. Br J Clin Pharmacol 2000; 50:221-6. [PMID: 10971306 PMCID: PMC2014977 DOI: 10.1111/j.1365-2125.2000.00246.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
AIMS The aim of this investigation was to compare the effects of standard (S) with low molecular weight (LMW) heparin on circulating levels of heparin-binding growth factors (HBGF), known to have angiogenic properties in humans. METHODS In two consecutive trials 18 healthy male volunteers were studied on three separate occasions, following a placebo-controlled crossover design. Subjects were randomised to receive either S-heparin or LMW heparin or placebo. Heparins were administered either by intravenous (i.v.) or subcutaneous (s.c.) injection and saline placebo by i.v. injection. Serum concentrations of hepatocyte growth factor (HGF), vascular endothelial cell growth factor (VEGF) and basic fibroblast growth factor (bFGF) were measured before and up to 24 h after injection. RESULTS Administration of i.v. S-or LMW-heparin (50 IU kg(-1) resulted in rapid, highly significant (47 fold for S, 30.9 fold for LMW) increases in HGF serum values, reaching maxima of 10.51+/-1.65 ng ml(-1) (S) and 8.28+/-1.04 ng ml(-1) (LMW), respectively, 10 min after drug application. S.c. injection of S-heparin or LMW heparin resulted in 4.1 and 5.4 fold increases in HGF serum values, respectively. Both agents showed no effects on circulating VEGF or bFGF levels, independent of the route of administration. CONCLUSIONS Circulating HGF levels were selectively increased in response to pharmacological doses of two, widely used heparin preparations. This may, in part, explain some of the biological effects of heparin separate from its anticoagulant properties. By this mechanism, the systemic administration of heparin may facilitate collateral vessel formation in various clinical settings of tissue ischaemia.
Collapse
Affiliation(s)
- P B Salbach
- University of Heidelberg, Medical School Departments of Internal Medicine III, Bergheimerstrasse 58, D-69115 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
33
|
Oehring RD, Miletic M, Valter MM, Pietsch T, Neumann J, Fimmers R, Schlegel U. Vascular endothelial growth factor (VEGF) in astrocytic gliomas--a prognostic factor? J Neurooncol 2000; 45:117-25. [PMID: 10778727 DOI: 10.1023/a:1006333005563] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Survival in astrocytic gliomas is closely related to WHO tumor grade. Within one tumor grade, especially in grade II and III tumors, the clinical course is variable and can hardly be predicted by histological criteria. Neovascularization is a neuropathological hallmark in high grade gliomas and angiogenic factors may play an important role in malignant tumor progression. Therefore, 162 primary astrocytic gliomas (57 astrocytomas WHO grade II, 27 astrocytomas WHO grade III and 78 glioblastomas WHO grade IV) were investigated immunohistochemically for expression of vascular endothelial growth factor (VEGF), which is considered to represent the main angiogenic factor in astrocytic gliomas. Clinical data known to influence prognosis were documented. VEGF expression was found in 21 of 57 astrocytomas WHO grade II (36.8%), in 18 of 27 astrocytomas WHO grade III (66.7%) and in 50 of 78 glioblastomas (64.1%). A strong correlation between VEGF expression and survival was found within the whole study group, however, within one tumor grade no such correlation was obvious. In a multifactorial analysis VEGF expression was not found to be an independent prognostic factor in astrocytic gliomas.
Collapse
Affiliation(s)
- R D Oehring
- Department of Neurology, University of Bonn, Medical Center, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Otsuka T, Jakubczak J, Vieira W, Bottaro DP, Breckenridge D, Larochelle WJ, Merlino G. Disassociation of met-mediated biological responses in vivo: the natural hepatocyte growth factor/scatter factor splice variant NK2 antagonizes growth but facilitates metastasis. Mol Cell Biol 2000; 20:2055-65. [PMID: 10688652 PMCID: PMC110822 DOI: 10.1128/mcb.20.6.2055-2065.2000] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatocyte growth factor/scatter factor (HGF/SF) stimulates numerous cellular activities capable of contributing to the metastatic phenotype, including growth, motility, invasiveness, and morphogenetic transformation. When inappropriately expressed in vivo, an HGF/SF transgene induces numerous hyperplastic and neoplastic lesions. NK1 and NK2 are natural splice variants of HGF/SF; all interact with a common receptor, Met. Although both agonistic and antagonistic properties have been ascribed to each isoform in vitro, NK1 retains the full spectrum of HGF/SF-like activities when expressed as a transgene in vivo. Here we report that transgenic mice broadly expressing NK2 exhibit none of the phenotypes characteristic of HGF/SF or NK1 transgenic mice. Instead, when coexpressed in NK2-HGF/SF bitransgenic mice, NK2 antagonizes the pathological consequences of HGF/SF and discourages the subcutaneous growth of transplanted Met-containing melanoma cells. Remarkably, the metastatic efficiency of these same melanoma cells is dramatically enhanced in NK2 transgenic host mice relative to wild-type recipients, rivaling levels achieved in HGF/SF and NK1 transgenic hosts. Considered in conjunction with reports that in vitro NK2 induces scatter, but not other activities, these data strongly suggest that cellular motility is a critical determinant of metastasis. Moreover, our results demonstrate how alternatively structured ligands can be exploited in vivo to functionally dissociate Met-mediated activities and their downstream pathways.
Collapse
Affiliation(s)
- T Otsuka
- Laboratories of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|