1
|
Nerger BA, Siedlik MJ, Nelson CM. Microfabricated tissues for investigating traction forces involved in cell migration and tissue morphogenesis. Cell Mol Life Sci 2017; 74:1819-1834. [PMID: 28008471 PMCID: PMC5391279 DOI: 10.1007/s00018-016-2439-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/02/2016] [Accepted: 12/08/2016] [Indexed: 01/09/2023]
Abstract
Cell-generated forces drive an array of biological processes ranging from wound healing to tumor metastasis. Whereas experimental techniques such as traction force microscopy are capable of quantifying traction forces in multidimensional systems, the physical mechanisms by which these forces induce changes in tissue form remain to be elucidated. Understanding these mechanisms will ultimately require techniques that are capable of quantifying traction forces with high precision and accuracy in vivo or in systems that recapitulate in vivo conditions, such as microfabricated tissues and engineered substrata. To that end, here we review the fundamentals of traction forces, their quantification, and the use of microfabricated tissues designed to study these forces during cell migration and tissue morphogenesis. We emphasize the differences between traction forces in two- and three-dimensional systems, and highlight recently developed techniques for quantifying traction forces.
Collapse
Affiliation(s)
- Bryan A Nerger
- Department of Chemical and Biological Engineering, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ, 08544, USA
| | - Michael J Siedlik
- Department of Chemical and Biological Engineering, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ, 08544, USA
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ, 08544, USA.
- Department of Molecular Biology, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ, 08544, USA.
| |
Collapse
|
2
|
Herant M, Dembo M. An integrative toy model of cell flattening, spreading, and ruffling. Biorheology 2015; 52:405-14. [PMID: 26600264 DOI: 10.3233/bir-14042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The processes of cell spreading and crawling are frequently associated with mysterious waves and ruffling cycles of the leading edge. OBJECTIVE To develop a physical model that can account for these phenomena based on a few simple and plausible rules governing adhesion, contractility, polymerization of cytoskeleton, and membrane tension. METHODS Extension of a continuum mechanical model of phagocytosis [J Cell Sci. (2006);119(Pt 9):1903-13] adding a simple coupling between membrane curvature and cytoskeletal polymerization. RESULTS We show that our generalized model has just the right nonlinearity needed for triggering of stochastic/chaotic cycles of ruffling similar to those that are observed in real cells. CONCLUSIONS The cycles are caused by a branching instability at the leading edge that leads to bifurcations of protrusion into forward moving lamellipodium and upward and rearward folding ruffles. The amplitude of the instability is modulated by the surface tension, with higher tension stabilizing against ruffling (but inhibiting protrusion) and lower tension promoting ruffling and protrusion.
Collapse
Affiliation(s)
- Marc Herant
- Biomedical Engineering Department, Boston University, Boston, MA, USA
| | - Micah Dembo
- Biomedical Engineering Department, Boston University, Boston, MA, USA
| |
Collapse
|
3
|
Integration of actin dynamics and cell adhesion by a three-dimensional, mechanosensitive molecular clutch. Nat Cell Biol 2015; 17:955-63. [PMID: 26121555 DOI: 10.1038/ncb3191] [Citation(s) in RCA: 330] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 05/15/2015] [Indexed: 12/12/2022]
Abstract
During cell migration, the forces generated in the actin cytoskeleton are transmitted across transmembrane receptors to the extracellular matrix or other cells through a series of mechanosensitive, regulable protein-protein interactions termed the molecular clutch. In integrin-based focal adhesions, the proteins forming this linkage are organized into a conserved three-dimensional nano-architecture. Here we discuss how the physical interactions between the actin cytoskeleton and focal-adhesion-associated molecules mediate force transmission from the molecular clutch to the extracellular matrix.
Collapse
|
4
|
Gardel ML, Schneider IC, Aratyn-Schaus Y, Waterman CM. Mechanical integration of actin and adhesion dynamics in cell migration. Annu Rev Cell Dev Biol 2010; 26:315-33. [PMID: 19575647 DOI: 10.1146/annurev.cellbio.011209.122036] [Citation(s) in RCA: 680] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Directed cell migration is a physical process that requires dramatic changes in cell shape and adhesion to the extracellular matrix. For efficient movement, these processes must be spatiotemporally coordinated. To a large degree, the morphological changes and physical forces that occur during migration are generated by a dynamic filamentous actin (F-actin) cytoskeleton. Adhesion is regulated by dynamic assemblies of structural and signaling proteins that couple the F-actin cytoskeleton to the extracellular matrix. Here, we review current knowledge of the dynamic organization of the F-actin cytoskeleton in cell migration and the regulation of focal adhesion assembly and disassembly with an emphasis on how mechanical and biochemical signaling between these two systems regulate the coordination of physical processes in cell migration.
Collapse
Affiliation(s)
- Margaret L Gardel
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
5
|
Vallotton P, Small JV. Shifting views on the leading role of the lamellipodium in cell migration: speckle tracking revisited. J Cell Sci 2009; 122:1955-8. [PMID: 19494123 DOI: 10.1242/jcs.042036] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Pascal Vallotton
- CSIRO Mathematical and Information Sciences, Locked Bag 17, North Ryde, NSW 1670, Australia.
| | | |
Collapse
|
6
|
|
7
|
Miron-Mendoza M, Seemann J, Grinnell F. Collagen fibril flow and tissue translocation coupled to fibroblast migration in 3D collagen matrices. Mol Biol Cell 2008; 19:2051-8. [PMID: 18321993 PMCID: PMC2366841 DOI: 10.1091/mbc.e07-09-0930] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 02/06/2008] [Accepted: 02/19/2008] [Indexed: 11/11/2022] Open
Abstract
In nested collagen matrices, human fibroblasts migrate from cell-containing dermal equivalents into surrounding cell-free outer matrices. Time-lapse microscopy showed that in addition to cell migration, collagen fibril flow occurred in the outer matrix toward the interface with the dermal equivalent. Features of this flow suggested that it depends on the same cell motile machinery that normally results in cell migration. Collagen fibril flow was capable of producing large-scale tissue translocation as shown by closure of a approximately 1-mm gap between paired dermal equivalents in floating, nested collagen matrices. Our findings demonstrate that when fibroblasts interact with collagen matrices, tractional force exerted by the cells can couple to matrix translocation as well as to cell migration.
Collapse
Affiliation(s)
- Miguel Miron-Mendoza
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039
| | - Joachim Seemann
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039
| | - Frederick Grinnell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039
| |
Collapse
|
8
|
Affiliation(s)
- M S Bretscher
- MRC Laboratory of Molecular Biology, Cambridge, England
| |
Collapse
|
9
|
Hall CL, Wang C, Lange LA, Turley EA. Hyaluronan and the hyaluronan receptor RHAMM promote focal adhesion turnover and transient tyrosine kinase activity. J Biophys Biochem Cytol 1994; 126:575-88. [PMID: 7518470 PMCID: PMC2200030 DOI: 10.1083/jcb.126.2.575] [Citation(s) in RCA: 193] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The molecular mechanisms whereby hyaluronan (HA) stimulates cell motility was investigated in a C-H-ras transformed 10T 1/2 fibroblast cell line (C3). A significant (p < 0.001) stimulation of C3 cell motility with HA (10 ng/ml) was accompanied by an increase in protein tyrosine phosphorylation as detected by anti-phosphotyrosine antibodies using immunoblot analysis and immunofluorescence staining of cells. Tyrosine phosphorylation of several proteins was found to be both rapid and transient with phosphorylation occurring within 1 min of HA addition and dissipating below control levels 10-15 min later. These responses were also elicited by an antibody generated against a peptide sequence within the HA receptor RHAMM. Treatment of cells with tyrosine kinase inhibitors (genistein, 10 micrograms/ml or herbimycin A, 0.5 micrograms/ml) or microinjection of anti-phosphotyrosine antibodies inhibited the transient protein tyrosine phosphorylation in response to HA as well as prevented HA stimulation of cell motility. To determine a link between HA-stimulated tyrosine phosphorylation and the resulting cell locomotion, cytoskeletal reorganization was examined in C3 cells plated on fibronectin and treated with HA or anti-RHAMM antibody. These agents caused a rapid assembly and disassembly of focal adhesions as revealed by immunofluorescent localization of vinculin. The time course with which HA and antibody induced focal adhesion turnover exactly paralleled the induction of transient protein tyrosine phosphorylation. In addition, phosphotyrosine staining colocalized with vinculin within structures in the lamellapodia of these cells. Notably, the focal adhesion kinase, pp125FAK, was rapidly phosphorylated and dephosphorylated after HA stimulation. These results suggest that HA stimulates locomotion via a rapid and transient protein tyrosine kinase signaling event mediated by RHAMM. They also provide a possible molecular basis for focal adhesion turnover, a process that is critical for cell locomotion.
Collapse
Affiliation(s)
- C L Hall
- Department of Pediatrics, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|
10
|
Joseph JP, Miller MH, Hitchings RA. Wound healing as a barrier to successful filtration surgery. Eye (Lond) 1988; 2 Suppl:S113-23. [PMID: 3076141 DOI: 10.1038/eye.1988.138] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Trabeculectomy fails to control the intra-ocular pressure adequately in a proportion of patients. Approaches to solving this problem have involved modifications of surgery, histological studies of tissue from failed and functioning blebs, animal studies, and in vitro investigations of some of the basic processes of wound healing. This paper reviews the current state of investigations in these disciplines with particular reference to wound healing in this specialised site.
Collapse
|
11
|
Tilney LG, Inoué S. Acrosomal reaction of the Thyone sperm. III. The relationship between actin assembly and water influx during the extension of the acrosomal process. J Cell Biol 1985; 100:1273-83. [PMID: 3920226 PMCID: PMC2113773 DOI: 10.1083/jcb.100.4.1273] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In an attempt to investigate the role of water influx in the extension of the acrosomal process of Thyone sperm, we induced the acrosomal reaction in sea water whose osmolarity varied from 50 to 150% of that of sea water. (a) Video sequences of the elongation of the acrosomal processes were made; plots of the length of the acrosomal process as a function of (time)1/2 produced a straight line except at the beginning of elongation and at the end in both hypotonic and hypertonic sea water (up to 1.33 times the osmolarity of sea water), although the rate of elongation was fastest in hypotonic sea water and was progressively slower as the tonicity was raised. (b) Close examination of the video sequences revealed that regardless of the tonicity of the sea water, the morphology of the acrosomal processes were similar. (c) From thin sections of fixed sperm, the amount of actin polymerization that takes place is roughly coupled to the length of the acrosomal process formed so that sperm with short processes only polymerize a portion of the actin that must be present in those sperm. From these facts we conclude that the influx of water and the release of actin monomers from their storage form in the profilactin (so that these monomers can polymerize) are coupled. The exact role of water influx, why it occurs, and whether it could contribute to the extension of the acrosomal process by a hydrostatic pressure mechanism is discussed.
Collapse
|
12
|
Bereiter-Hahn J. Architecture of tissue cells. The structural basis which determines shape and locomotion of cells. Acta Biotheor 1985; 34:139-48. [PMID: 3933229 DOI: 10.1007/bf00046779] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Shape and locomotion of tissue cells depend on the interaction of elements of the cytoskeleton, adhesion to the substrate and an intracellular hydrostatic pressure. The existence of this pressure becomes obvious from increase in cell volume on cessation of contractile forces and from observations with ultrasound acoustic microscopy. Wherever such an internal pressure is established, it is involved in generation of shape and driving force of cell locomotion. Therefore each hypothesis on cell shape and locomotion must consider this property of a living cell. Apparently different types of locomotion depend on differences in substrate adhesion and/or cytoskeleton organization.
Collapse
|
13
|
Aguas AP, Pinto da Silva P. High density of transmembrane glycoproteins on the flagellar surface of boar sperm cells. J Cell Biol 1984; 99:655-60. [PMID: 6746741 PMCID: PMC2113257 DOI: 10.1083/jcb.99.2.655] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Membrane halves of boar sperm flagella were produced by freeze-fracture and labeled in situ with concanavalin A and wheat germ agglutinin; the lectins were visualized with protein-gold complexes. Concanavalin A and wheat germ agglutinin binding sites partition with both protoplasmic and exoplasmic halves of the membrane. A high density of lectin marking was found on protoplasmic membrane halves; we conclude that the label corresponds to transmembrane glycoproteins that, on freeze-fracture, are dragged across the outer (exoplasmic) half of the phospholipid bilayer. Our demonstration of numerous transmembrane proteins in sperm flagella offers the structural setting for previous models on flagellar surface motility that postulate accessibility of motile membrane components to the submembranous cytoskeleton.
Collapse
|
14
|
Koppel DE, Sheetz MP. A localized pattern photobleaching method for the concurrent analysis of rapid and slow diffusion processes. Biophys J 1983; 43:175-81. [PMID: 6616006 PMCID: PMC1329247 DOI: 10.1016/s0006-3495(83)84338-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A scanning pattern photobleaching method for the analysis of lateral transport is described and discussed. Fluorescence bleaching with a localized pattern allows for the concurrent analysis of motions over two very different characteristic distances: xi 0(-1), the repeat distance of the pattern, and W, the linear dimension of the illuminated region. The former motion is deduced from the decay of the modulation amplitude (of period xi 0(-1) of fluorescence scans with the attenuated pattern, the latter from the recovery of the average fluorescence intensity. Such analysis should prove useful for the study of samples with a wide range of diffusion coefficients, and for the separation of effects arising from lateral diffusion and association dynamics. Theoretical analyses are presented for three related problems: (a) the effect of pattern localization on the decay of the modulation amplitude, (b) the effect of the pattern modulation on the recovery of the average local fluorescence intensity, and (c) the effect of a limited diffusion space (with linear dimensions of only a few pattern periods) on the decay of the modulation amplitude.
Collapse
|
15
|
Abstract
We have cultured the murine cell lines 3T3-L1 and SV-T2 using as a substrate the layer of denatured protein that forms at the phase boundary between culture medium and fluorocarbon fluids. The growth patterns observed on these interfaces differ from those seen on conventional solid substrates. Depending on the cell strain and the composition of the fluorocarbon fluid, cells will tend to clump into isolated aggregates or form nearly confluent cell monolayers containing "lake-like" openings. We demonstrate that these growth patterns can be attributed to the ability of cultured cells to stress and break the protein monolayer on which they grow.
Collapse
|
16
|
Messelt EB. Ultrastructural studies on apical blebs of striated ducts in the rat submandibular gland. Acta Odontol Scand 1982; 40:103-11. [PMID: 6954827 DOI: 10.3109/00016358209041122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Apical blebs of rat submandibular gland striated ducts were studied by electron microscopy. The glands were stimulated by starvation of the animals for 24 h whereafter they were fed 15 min before death and tissue removal. After stimulation most striated duct cells developed apical blebs, with various shapes and usually without granules and vesicles. A semi-separating filamentous structure separates the cell from the content of the bleb. Apparently only the vesicular and granular content can pass through this structure and enter the bleb. Following the appearance of small ruptures in the bleb membrane, the bleb is discarded into the lumen of the duct where it disintegrates. Typical wall-like protrusions on the luminal surface of the duct cell, are probably, rudiments of the ruptured bleb membrane. It is suggested that the apical blebs are manifestations of apocrine secretion.
Collapse
|
17
|
Abstract
Time-lapsed films of particle motion on the leading lamella of chick heart fibroblasts and mouse peritoneal macrophages were analyzed. The particles were composed of powdered glass or powdered aminated polystyrene and were 0.5-1.0 micrometer in radius. Particle motions were described by steps in position from one frame to the time-lapse movies to the next. The statistics of the step-size distribution of the particles were consistent with a particle in Brownian motion subject to a constant force. From the Brownian movement, we have calculated the two-dimensional diffusion coefficient of different particles. These vary by more than an order of magnitude (10(-11)-10(-10) cm2/s) even for particles composed of the same material and located very close to each other on the surface of the cell. This variation was not correlated with particle size but is interpretable as a result of different numbers of adhesive bonds holding the particles to the cells. The constant component of particle movement can be interpreted as a result of a constant force acting on each particle (0.1-1.0 x 10(-8) dyn). Variations in the fractional coefficient for particles close to each other on the cell surface do not yield corresponding differences in velocity, suggesting that the frictional coefficient and the driving force vary together. This is consistent with the hypothesis that the particles are carried by flow of the membrane as a whole or by flow of some submembrane material. The utility of our methods for monitoring cell motile behavior in biologically interesting situations, such as a chemotactic gradient, is discussed.
Collapse
|
18
|
Abstract
Retraction of the taut, trailing portion of a moving chick heart fibroblast in vitro is an abrupt dynamic process. Upon retraction, the fibroblast tail always ruptures, leaving a small amount of itself attached to the substratum by focal contacts. Time-lapse cinemicrography shows that retraction produces a sudden, massive movement of both surface and cytoplasmic material toward a cluster of focal contacts near the main body of the cell. The appearance of folds on the upper cell surface at this time and the absence of endocytotic vesicles are consistent with this forward movement. Retraction of the trailing edge, either occurring naturally or produced artificially with a microneedle, consists of an initial fast component followed and overlapped by a slow component. Upon artificial detachment in the presence of iodoacetate, dinitrophenol, and sodium fluoride, and at 4 degrees C, the slow component is strongly inhibited and the fast one only slightly inhibited. Moreover of the bundles of microfilaments oriented parallel to the long axis of the tail seen in TEM. Most of the birefringence is lost during the fast phase and the rest during the slow phase of retraction. Concurrently, the bundles of microfilaments disappear during the fast phase of retraction and are replaced by a microfilament meshwork. All of these results are consistent with the hypothesis that the initial fast component of retraction is a passive elastic recoil, associated with the oriented bundles of microfilaments, and that the slow component of retraction is an active contraction, associated with a meshwork of microfilaments.
Collapse
|
19
|
Abstract
Experiments have explored the possible relationships between the flagellar surface motility of chlamydomonas, visualized as translocation of polystyrene beads by paralyzed (pf) mutants (Bloodgood, 1977, J. Cell Biol. 15:983-989), and the capacity of gametic flagella to participate in the mating reaction. While vegetative and gametic flagella bind beads with equal efficiencies and are capable of transporting them along entire flagellar lengths, beads on vegetative flagella are primarily associated with the proximal half of the flagella whereas those of gametic flagella exhibit no such preference. This difference may relate to the "tipping" response of gametes during sexual flagellar agglutination (Goodenough and Jurivich, 1978, J. Cell Biol. 79:680-693). Colchicine, vinblastine, chymotrypsin, cytochalasins B and D, and anti-beta-tubulin antiserum are all able to inhibit the binding of beads to the flagellar suface. Trysin digestion and an antiserum directed against whole chlamydomonas flagella have no effect on the ability of flagella to bind beads, but the beads remain immobile. These results suggest that at least two flagellar activities participate in surface motility: (a) bead binding, which may involve a tubulin-like component at the flagellar surface; and (b) bead translocation, which may depend on a second component (e.g. an ATPase) of the flagellar surface. Surface motility is shown to be distinct from gametic adhesiveness per se, but it may participate in concentrating dispersed agglutinins, in driving them toward the flagellar tips, and/or in generating a signal-to-fuse from the flagellar tips to the cell body. Directly supporting these concepts is the observation that bound beads remain immobilized at the flagellar tips during the "tip-locking" stage of pf x pf matings, and the observation that bound ligands such as antibody fail to be tipped by trypsinized flagella.
Collapse
|
20
|
Bloodgood RA. Motility occurring in association with the surface of the Chlamydomonas flagellum. J Biophys Biochem Cytol 1977; 75:983-9. [PMID: 925091 PMCID: PMC2111578 DOI: 10.1083/jcb.75.3.983] [Citation(s) in RCA: 117] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chlamydomonas flagella exhibit a previously undescribed form of motility. This is the rapid, bidirectional, saltatory movement of marker particles occurring in association with the extracellular surface of the flagellum.
Collapse
|
21
|
Boyde A, Bailey A. Observations on the marginal ruffles of an established fibroblast-like cell line. Cell Tissue Res 1977; 179:225-34. [PMID: 870210 DOI: 10.1007/bf00219798] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
LW13K2 cells, a clone of a spontaneously in vitro transformed derivative of embryonic Lewis rat fibroblastic cells, were studied by phase contrast cine-light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The ruffles found at the advancing edge of cells grown on glass substrates in vitro form and recede in a period of less than one min if they do not make an attachment of the substrate. If they fail to make an attachment they may form pinocytotic channels near the leading edge as described by Price (1972) and/or collapse, generally backwards, towards the cell body. The "spines" which appear to reinforce the membranous ruffles are the last structures to disappear, and accumulate in an irregular array behind the ruffling edge; this area is behind that in which pinocytosis occurs. In comparison with the sparse numbers of ribosomes found in the trailing edge, they are present in notable concentrations near the leading, ruffling edge of the cell. No membrane vesicles have been found in or near the ruffling edges at the ruffle-spine concentration zone.
Collapse
|
22
|
Zeligs JD, Wollman SH. Ultrastructure of blebbing and phagocytosis of blebs by hyperplastic thyroid epithelial cells in vivo. J Cell Biol 1977; 72:584-94. [PMID: 838768 PMCID: PMC2111018 DOI: 10.1083/jcb.72.3.584] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In addition to pseudopods, somewhat pleomorphic blebs were consistently found protruding from the apical surfaces of hyperplastic rat thyroid epithelial cells into the follicular lumens in vivo. Many blebs were knobby, roughly hemispherical protrusions, with a diameter of 2-3 mum. Such blebs had a densely packed microfilamentous core and contained numerous apparent ribosomes. They were morphologically similar to blebs that have been observed in a variety of cultured cells. Other blebs were larger, more elongate, and less knobby, but had a similar ultrastructural organization. Blebs of all sizes appeared to be phagocytosed on some occasions by nearby epithelial cells. The phagocytic process involved partial engulfment of the bleb by a typical epithelial pseudopod, followed by an apparent pinching-off process, presumably resulting in the separation of the bleb from its cells or origin. The pinching-off process was associated with a band of approx. 6-nm diameter microfilaments that developed within the pseudopod cytoplasm surrounding the base of the bleb and is postulated to function as a contractile ring. The finding of blebbing is an intact tissue in vivo indicates that this phenomenon is not restricted to cultured cells, and thus tends to extend the significance of in vitro observations of the process. In relation to their occurrence in the hyperplastic thyroid gland in vivo, possible interconversions are considered between different types of blebs, and between blebs and pseudopods.
Collapse
|
23
|
Abstract
A method is described for studying by scanning electron microscopy (SEM) all the surfaces of fully differentiated cells from intact tissues. Thus, cell faces normally hidden from view are exposed and made available for SEM examination. This is achieved by fixing the tissue in OSO4 and then soaking it in a 1% solution (in water) of boric acid. After different periods of time, varied according to particular tissue, slight mechanical pressure will cause the fixed tissue to dissociate into its component cells. These are then made to adhere to a substrate and are taken through critical point drying, etc., for examination. Observations are reported on the topography of whole hepatocytes, adsorptive cells of the intestinal epithelium, proximal tubule cells of the rat kidney, mammary tumor cells of the mouse, and rat sarcoma cells. Several other tissues are reported to dissociate when similarly treated, but for each the procedure must be slightly modified.
Collapse
|