1
|
Computational and experimental characterization of the novel ECM glycoprotein SNED1 and prediction of its interactome. Biochem J 2021; 478:1413-1434. [PMID: 33724335 DOI: 10.1042/bcj20200675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 01/03/2023]
Abstract
The extracellular matrix (ECM) is a complex meshwork of proteins and an essential component of multicellular life. We have recently reported the characterization of a novel ECM protein, SNED1, and showed that it promotes breast cancer metastasis and regulates craniofacial development. However, the mechanisms by which it does so remain unknown. ECM proteins exert their functions by binding to cell surface receptors and interacting with other ECM proteins, actions that we can predict using knowledge of protein's sequence, structure, and post-translational modifications. Here, we combined in-silico and in-vitro approaches to characterize the physico-chemical properties of SNED1 and infer its putative functions. To do so, we established a mammalian cell system to produce and purify SNED1 and its N-terminal fragment, which contains a NIDO domain, and demonstrated experimentally SNED1's potential to be glycosylated, phosphorylated, and incorporated into an insoluble ECM. We also determined the secondary and tertiary structures of SNED1 and its N-terminal fragment and obtained a model for its NIDO domain. Using computational predictions, we identified 114 proteins as putative SNED1 interactors, including the ECM protein fibronectin. Pathway analysis of the predicted SNED1 interactome further revealed that it may contribute to signaling through cell surface receptors, such as integrins, and participate in the regulation of ECM organization and developmental processes. Last, using fluorescence microscopy, we showed that SNED1 forms microfibrils within the ECM and partially colocalizes with fibronectin. Altogether, we provide a wealth of information on an understudied yet important ECM protein with the potential to decipher its pathophysiological functions.
Collapse
|
2
|
Abstract
The aim of the present review is to survey the accumulated knowledge on the extracellular matrix (ECM) of tumors referring to its putative utility as therapeutic target. Following the traditional observation on the extensive morphological alteration in the tumor-affected tissue, the well-documented aberrant cellular regulation indicated that ECM components have an active role in tumor progression. However, due to the diverse functions and variable expression of proteoglycans, matrix proteins, and integrins, it is rather difficult to identify a comprehensive therapeutic target among ECM components. At present, the elevated level of heparanase and the prominent expression of αvβ5 integrin are considered as promising therapeutic targets. The inhibition of glycosaminoglycan offers another promising approach in the treatment of those tumors which are stimulated by proteoglycans. It can be ascertained that a selective ECM inhibitor would be a great asset to control metastasis driven by ECM-mediated signaling.
Collapse
Affiliation(s)
- Revekka Harisi
- 1st Institute of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Andras Jeney
- 1st Institute of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
3
|
Root-Bernstein R. Rethinking Molecular Mimicry in Rheumatic Heart Disease and Autoimmune Myocarditis: Laminin, Collagen IV, CAR, and B1AR as Initial Targets of Disease. Front Pediatr 2014; 2:85. [PMID: 25191648 PMCID: PMC4137453 DOI: 10.3389/fped.2014.00085] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/24/2014] [Indexed: 01/05/2023] Open
Abstract
RATIONALE Molecular mimicry theory (MMT) suggests that epitope mimicry between pathogens and human proteins can activate autoimmune disease. Group A streptococci (GAS) mimics human cardiac myosin in rheumatic heart disease (RHD) and coxsackie viruses (CX) mimic actin in autoimmune myocarditis (AM). But myosin and actin are immunologically inaccessible and unlikely initial targets. Extracellular cardiac proteins that mimic GAS and CX would be more likely. OBJECTIVES To determine whether extracellular cardiac proteins such as coxsackie and adenovirus receptor (CAR), beta 1 adrenergic receptor (B1AR), CD55/DAF, laminin, and collagen IV mimic GAS, CX, and/or cardiac myosin or actin. METHODS BLAST 2.0 and LALIGN searches of the UniProt protein database were employed to identify potential molecular mimics. Quantitative enzyme-linked immunosorbent assay was used to measure antibody cross-reactivity. MEASUREMENTS Similarities were considered to be significant if a sequence contained at least 5 identical amino acids in 10. Antibodies were considered to be cross-reactive if the binding constant had a K d less than 10(-9) M. MAIN RESULTS Group A streptococci mimics laminin, CAR, and myosin. CX mimics actin and collagen IV and B1AR. The similarity search results are mirrored by antibody cross-reactivities. Additionally, antibodies against laminin recognize antibodies against collagen IV; antibodies against actin recognize antibodies against myosin, and antibodies against GAS recognize antibodies against CX. Thus, there is both mimicry of extracellular proteins and antigenic complementarity between GAS-CX in RHD/AM. CONCLUSION Rheumatic heart disease/AM may be due to combined infections of GAS with CX localized at cardiomyocytes that may produce a synergistic, hyperinflammatory response that cross-reacts with laminin, collagen IV, CAR, and/or B1AR. Epitope drift shifts the immune response to myosin and actin after cardiomyocytes become damaged.
Collapse
|
4
|
Farach-Carson MC, Warren CR, Harrington DA, Carson DD. Border patrol: insights into the unique role of perlecan/heparan sulfate proteoglycan 2 at cell and tissue borders. Matrix Biol 2013; 34:64-79. [PMID: 24001398 DOI: 10.1016/j.matbio.2013.08.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/16/2013] [Accepted: 08/17/2013] [Indexed: 12/11/2022]
Abstract
The extracellular matrix proteoglycan (ECM) perlecan, also known as heparan sulfate proteoglycan 2 or HSPG2, is one of the largest (>200 nm) and oldest (>550 M years) extracellular matrix molecules. In vertebrates, perlecan's five-domain structure contains numerous independently folding modules with sequence similarities to other ECM proteins, all connected like cars into one long, diverse complex train following a unique N-terminal domain I decorated with three long glycosaminoglycan chains, and an additional glycosaminoglycan attachment site in the C-terminal domain V. In lower invertebrates, perlecan is not typically a proteoglycan, possessing the majority of the core protein modules, but lacking domain I where the attachment sites for glycosaminoglycan chains are located. This suggests that uniting the heparan sulfate binding growth factor functions of domain I and the core protein functions of the rest of the molecule in domains II-V occurred later in evolution for a new functional purpose. In this review, we surveyed several decades of pertinent literature to ask a fundamental question: Why did nature design this protein uniquely as an extraordinarily long multifunctional proteoglycan with a single promoter regulating expression, rather than separating these functions into individual proteins that could be independently regulated? We arrived at the conclusion that the concentration of perlecan at functional borders separating tissues and tissue layers is an ancient key function of the core protein. The addition of the heparan sulfate chains in domain I likely occurred as an additional means of binding the core protein to other ECM proteins in territorial matrices and basement membranes, and as a means to reserve growth factors in an on-site depot to assist with rapid repair of those borders when compromised, such as would occur during wounding. We propose a function for perlecan that extends its role from that of an extracellular scaffold, as we previously suggested, to that of a critical agent for establishing and patrolling tissue borders in complex tissues in metazoans. We also propose that understanding these unique functions of the individual portions of the perlecan molecule can provide new insights and tools for engineering of complex multi-layered tissues including providing the necessary cues for establishing neotissue borders.
Collapse
Affiliation(s)
- Mary C Farach-Carson
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States.
| | - Curtis R Warren
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States
| | - Daniel A Harrington
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States
| | - Daniel D Carson
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States
| |
Collapse
|
5
|
Abstract
Individuals with germline mutations in the tumour suppressor gene CYLD are at high risk of developing disfiguring cutaneous appendageal tumours, the defining tumour being the highly organised cylindroma. Here, we analysed CYLD mutant tumour genomes by array comparative genomic hybridisation (aCGH) and gene expression microarray analysis. CYLD mutant tumours were characterised by an absence of copy number aberrations apart from loss-of-heterozygosity at chromosome 16q, the genomic location of the CYLD gene. Gene expression profiling of CYLD mutant tumours revealed dysregulated tropomyosin kinase (TRK) signalling with overexpression of TRKB and TRKC in tumours when compared to perilesional skin. Immunohistochemical analysis of a tumour microarray demonstrated strong membranous TRKB and TRKC staining in cylindromas, as well as elevated levels of ERK phosphorylation and BCL2 expression. Membranous TRKC overexpression was also observed in 70% of sporadic basal cell carcinomas. RNA interference mediated silencing of TRKB and TRKC, as well as treatment with the small molecule TRK inhibitor lestaurtinib, reduced colony formation and proliferation in three-dimensional primary cell cultures established from CYLD mutant tumours. These results suggest that TRK inhibition could be used as a strategy to treat tumours with loss of functional CYLD.
Collapse
|
6
|
Kanwar YS, Venkatachalam MA. Ultrastructure of Glomerulus and Juxtaglomerular Apparatus. Compr Physiol 2011. [DOI: 10.1002/cphy.cp080101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Genetics coupled to quantitative intact proteomics links heritable aphid and endosymbiont protein expression to circulative polerovirus transmission. J Virol 2010; 85:2148-66. [PMID: 21159868 DOI: 10.1128/jvi.01504-10] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yellow dwarf viruses in the family Luteoviridae, which are the causal agents of yellow dwarf disease in cereal crops, are each transmitted most efficiently by different species of aphids in a circulative manner that requires the virus to interact with a multitude of aphid proteins. Aphid proteins differentially expressed in F2 Schizaphis graminum genotypes segregating for the ability to transmit Cereal yellow dwarf virus-RPV (CYDV-RPV) were identified using two-dimensional difference gel electrophoresis (DIGE) coupled to either matrix-assisted laser desorption ionization-tandem mass spectrometry or online nanoscale liquid chromatography coupled to electrospray tandem mass spectrometry. A total of 50 protein spots, containing aphid proteins and proteins from the aphid's obligate and maternally inherited bacterial endosymbiont, Buchnera, were identified as differentially expressed between transmission-competent and refractive aphids. Surprisingly, in virus transmission-competent F2 genotypes, the isoelectric points of the Buchnera proteins did not match those in the maternal Buchnera proteome as expected, but instead they aligned with the Buchnera proteome of the transmission-competent paternal parent. Among the aphid proteins identified, many were involved in energy metabolism, membrane trafficking, lipid signaling, and the cytoskeleton. At least eight aphid proteins were expressed as heritable, isoelectric point isoform pairs, one derived from each parental lineage. In the F2 genotypes, the expression of aphid protein isoforms derived from the competent parental lineage aligned with the virus transmission phenotype with high precision. Thus, these isoforms are candidate biomarkers for CYDV-RPV transmission in S. graminum. Our combined genetic and DIGE approach also made it possible to predict where several of the proteins may be expressed in refractive aphids with different barriers to transmission. Twelve proteins were predicted to act in the hindgut of the aphid, while six proteins were predicted to be associated with the accessory salivary glands or hemolymph. Knowledge of the proteins that regulate virus transmission and their predicted locations will aid in understanding the biochemical mechanisms regulating circulative virus transmission in aphids, as well as in identifying new targets to block transmission.
Collapse
|
8
|
Hassan SS, Romero R, Tarca AL, Nhan-Chang CL, Vaisbuch E, Erez O, Mittal P, Kusanovic JP, Mazaki-Tovi S, Yeo L, Draghici S, Kim JS, Uldbjerg N, Kim CJ. The transcriptome of cervical ripening in human pregnancy before the onset of labor at term: identification of novel molecular functions involved in this process. J Matern Fetal Neonatal Med 2010; 22:1183-93. [PMID: 19883264 DOI: 10.3109/14767050903353216] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The aim of this study was to identify changes in the cervical transcriptome in the human uterine cervix as a function of ripening before the onset of labor. STUDY DESIGN Human cervical tissue was obtained from women at term not in labor with ripe (n = 11) and unripe (n = 11) cervices and profiled using Affymetrix GeneChip HGU133Plus2.0 arrays. Gene expression was analyzed using a moderated t-test (False Discovery Rate 5%). Gene ontology and pathway analysis were performed. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used for confirmation of selected differentially expressed genes. RESULTS (1) Ninety-one genes were differentially expressed between ripe and unripe groups. (2) Cervical ripening was associated with enrichment of specific biological processes (e.g. cell adhesion, regulation of anatomical structure), pathways and 11 molecular functions (e.g. extracelluar matrix (ECM)-structural constituent, protein binding, glycosaminoglycan binding). (3) qRT-PCR confirmed that 9 of 11 tested differentially expressed genes (determined by microarray) were upregulated in a ripe cervix (e.g. MYOCD, VCAN, THBS1, COL5A1). (4) Twenty-three additional genes related to ECM metabolism and adhesion molecules were differentially regulated (by qRT-PCR) in ripe cervices. CONCLUSION (1) This is the first description of the changes in the human cervical transcriptome with ripening before the onset of labor. (2) Biological processes, pathways and molecular functions were identified with the use of this unbiased approach. (3) In contrast to cervical dilation after term labor, inflammation-related genes did not emerge as differentially regulated with cervical ripening. (4) Myocardin was identified as a novel gene upregulated in human cervical ripening.
Collapse
Affiliation(s)
- Sonia S Hassan
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Women's Hospital, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Martin GR, Kleinman HK, Terranova VP, Ledbetter S, Hassell JR. The regulation of basement membrane formation and cell-matrix interactions by defined supramolecular complexes. CIBA FOUNDATION SYMPOSIUM 2008; 108:197-212. [PMID: 6240392 DOI: 10.1002/9780470720899.ch13] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Several constituents of basement membranes, including type IV collagen, laminin, heparan sulphate proteoglycan and nidogen, form a defined supramolecular complex that is an obligatory intermediate in the formation of this matrix. We have named this defined supramolecular complex the 'basement membrane matrisome'. Matrisome structures composed of other collagens, proteoglycans and glycoproteins may participate in the formation of other extracellular matrices. Cells show specific interactions with components of the extracellular matrix. We discuss studies that indicate that melanoma cells can express receptors for both laminin and fibronectin. However, these receptors are expressed in a reciprocal fashion, depending on the exposure of the cell to these proteins. Binding of either fibronectin or laminin to the cells elicits a distinct phenotype. This represents a mechanism in which cellular activity can be regulated by extracellular matrix factors during development and in repair.
Collapse
|
10
|
Katz SI. The epidermal basement membrane: structure, ontogeny and role in disease. CIBA FOUNDATION SYMPOSIUM 2008; 108:243-59. [PMID: 6394239 DOI: 10.1002/9780470720899.ch15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Since many dermatological diseases affect the epidermal basement membrane zone (BMZ), there has been intense investigation into the role of epidermal BMZ constituents in various skin diseases, particularly subepidermal skin diseases. The epidermal BMZ consists of four major structural components--the basal cell plasma membrane, the lamina lucida, the lamina densa and the sublamina densa zone, which contains anchoring fibrils. The lamina lucida is composed of laminin, bullous pemphigoid antigen (a disease-specific glycoprotein identified by antibodies circulating in patients' sera), and other as yet poorly defined antigens which are identified by in vivo bound and circulating antibodies in the sera of patients with herpes gestationis, scarring pemphigoid and other conditions. The lamina densa consists of type IV collagen and KF-1 antigen (which is non-collagenous and is identified by a skin-specific monoclonal antibody). Knowledge of the structure and chemical composition of the BMZ is critical to an understanding of some of the genetic and immunologically mediated blistering skin diseases.
Collapse
|
11
|
Miles FL, Pruitt FL, van Golen KL, Cooper CR. Stepping out of the flow: capillary extravasation in cancer metastasis. Clin Exp Metastasis 2007; 25:305-24. [PMID: 17906932 DOI: 10.1007/s10585-007-9098-2] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 09/05/2007] [Indexed: 12/21/2022]
Abstract
In order for cancer cells to successfully colonize a metastatic site, they must detach from the primary tumor using extracellular matrix-degrading proteases, intravasate and survive in the circulation, evade the immune response, and extravasate the vasculature to invade the target tissue parenchyma, where metastatic foci are established. Though many of the steps of metastasis are widely studied, the precise cellular interactions and molecular alterations associated with extravasation are unknown, and further study is needed to elucidate the mechanisms inherent to this process. Studies of leukocytes localized to inflamed tissue during the immune response may be used to elucidate the process of cancer extravasation, since leukocyte diapedesis through the vasculature involves critical adhesive interactions with endothelial cells, and both leukocytes and cancer cells express similar surface receptors capable of binding endothelial adhesion molecules. Thus, leukocyte extravasation during the inflammatory response has provided a model for transendothelial migration (TEM) of cancer cells. Leukocyte extravasation is characterized by a process whereby rolling mediated by cytokine-activated endothelial selectins is followed by firmer adhesions with beta1 and beta2 integrin subunits to an activated endothelium and subsequent diapedesis, which most likely involves activation of Rho GTPases, regulators of cytoskeletal rearrangements and motility. It is controversial whether such selectin-mediated rolling is necessary for TEM of cancer cells. However, it has been established that similar stable adhesions between tumor and endothelial cells precede cancer cell transmigration through the endothelium. Additionally, there is support for the preferential attachment of tumor cells to the endothelium and, accordingly, site-specific metastasis of cancer cells. Rho GTPases are critical to TEM of cancer cells as well, and some progress has been made in understanding the specific roles of the Rho GTPase family, though much is still unknown. As the mechanisms of cancer TEM are elucidated, new approaches to study and target metastasis may be utilized and developed.
Collapse
Affiliation(s)
- Fayth L Miles
- Department of Biological Sciences, Center for Translational Cancer Research, University of Delaware, Newark, DE 19716, USA
| | | | | | | |
Collapse
|
12
|
Hoffman S, Crossin KL, Edelman GM. Molecular forms, binding functions, and developmental expression patterns of cytotactin and cytotactin-binding proteoglycan, an interactive pair of extracellular matrix molecules. J Cell Biol 1988; 106:519-32. [PMID: 2448317 PMCID: PMC2114984 DOI: 10.1083/jcb.106.2.519] [Citation(s) in RCA: 226] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cytotactin is an extracellular matrix protein that is found in a restricted distribution and is related to developmental patterning at a number of neural and non-neural sites. It has been shown to bind specifically to other extracellular matrix components including a chondroitin sulfate proteoglycan (cytotactin-binding [CTB] proteoglycan) and fibronectin. Cell binding experiments have revealed that cytotactin interacts with neurons and fibroblasts. When isolated from brain, both cytotactin and CTB proteoglycan contain the HNK-1 carbohydrate epitope. Here, specific antibodies prepared against highly purified cytotactin and CTB proteoglycan were used to correlate the biochemical alterations and modes of binding of these proteins with their differential tissue expression as a function of time and place during chicken embryo development. It was found that, during neural development, both the levels of expression of cytotactin and CTB proteoglycan and of the molecular forms of each molecule varied, following different time courses. In addition, a novel Mr 250,000 form of cytotactin was detected that contained chondroitin sulfate. The intermolecular binding of cytotactin and CTB proteoglycan and the binding of cytotactin to fibroblasts were characterized further and found to be inhibited by EDTA, consistent with a dependence on divalent cations. Unlike the molecules from neural tissue, cytotactin and CTB proteoglycan isolated from non-neural tissues such as fibroblasts lacked the HNK-1 epitope. Nevertheless, the intermolecular and cellular binding activities of cytotactin isolated from fibroblast culture medium were comparable to those of the molecule isolated from brain, suggesting that the HNK-1 epitope is not directly involved in binding. Binding experiments involving enzymatically altered molecules that lack chondroitin sulfate suggested that this glycosaminoglycan is also not directly involved in binding. Although they clearly formed a binding couple, the spatial distributions of cytotactin and CTB proteoglycan in the embryo were not always coincident. They were similar in tissue sections from the cerebellum, gizzard, and vascular smooth muscle. In contrast, CTB proteoglycan was present in cardiac muscle where no cytotactin is present, and it was seen in cartilage throughout development unlike cytotactin, which was present only in immature chondrocytes. Cell culture experiments were consistent with the previous conclusion that cytotactin was specifically synthesized by glia, whereas CTB proteoglycan was specifically synthesized by neurons.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- S Hoffman
- Rockefeller University, New York 10021
| | | | | |
Collapse
|
13
|
Fouser LS, Michael AF. Antigens of the human glomerular basement membrane. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 1987; 9:317-39. [PMID: 3124278 DOI: 10.1007/bf00197212] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- L S Fouser
- Department of Pediatrics, University of Minnesota, Minneapolis 55455
| | | |
Collapse
|
14
|
Hoffman S, Edelman GM. A proteoglycan with HNK-1 antigenic determinants is a neuron-associated ligand for cytotactin. Proc Natl Acad Sci U S A 1987; 84:2523-7. [PMID: 2436234 PMCID: PMC304686 DOI: 10.1073/pnas.84.8.2523] [Citation(s) in RCA: 131] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cytotactin is an extracellular matrix protein that is involved in neuron-glia adhesion and is found in both neural and nonneural sites. It is synthesized by glia but not by neurons. In this study, we have examined the binding of cytotactin to a variety of extracellular matrix components using uniform microscopic beads (Covaspheres) that could be labeled and then linked to purified molecules. Cytotactin-coated beads bound well to neurons, and this binding was strongly inhibited by anti-cytotactin antibodies but not by anti-neural cell adhesion molecule (anti-N-CAM) antibodies. In contrast, the binding of N-CAM-coated beads to neurons was inhibited by anti-N-CAM antibodies and not by anti-cytotactin antibodies. To identify a neuronal ligand for cytotactin, we tested several molecules for their ability to block the binding of cytotactin-coated beads to cells. A proteoglycan-containing fraction that copurified with cytotactin from brain extracts strongly inhibited binding, whereas neither a heparan sulfate proteoglycan from Engelbreth-Holm-Swarm tumor cells nor soluble cytotactin itself had a significant inhibitory effect. The neural proteoglycan also inhibited the binding of cytotactin-coated beads to fibroblasts. Digestion with chondroitinase, heparitinase, and hyaluronidase as well as immunological analyses suggested that the predominant species in the active fraction was a chondroitin sulfate proteoglycan with a Mr280,000 core protein bearing HNK-1 antigenic determinants and also indicated that hyaluronic acid was present in this fraction. In experiments on in vitro synthesis, it was found that the proteoglycan was synthesized in culture by embryonic chicken brain tissue but not by embryonic chicken glial cells. A series of binding experiments was performed on appropriately derivatized beads to confirm that the proteoglycan is a ligand for cytotactin and to check for the possibility that other extracellular matrix proteins might interact with one or the other member of this binding couple. Proteoglycan-coated beads and cytotactin-coated beads coaggregated readily. The aggregation was inhibitable by anti-cytotactin antibodies, soluble cytotactin, or soluble proteoglycan. Addition of laminin inhibited the binding of cytotactin-coated beads to proteoglycan-coated beads or to cells; this is consistent with data indicating that laminin interacts with a component of the proteoglycan-containing fraction. In contrast, fibronectin bound to cytotactin, but it did not bind to proteoglycan or interfere with the binding of cytotactin to proteoglycan. The results of this study are in accord with the idea that the functions of extracellular matrix components during neural and nonneural development may be modulated both by competition for shared cell surface receptors and by a network of molecular interactions among the matrix components themselves.
Collapse
|
15
|
Herken R, Manshausen B, Fussek M, Bonatz G. Methodological dependence in the ultrastructural immunolocalization of laminin in tubular basement membranes of the mouse kidney. HISTOCHEMISTRY 1987; 87:59-64. [PMID: 3301752 DOI: 10.1007/bf00518725] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The ultrastructural localization of the basement membrane glycoprotein laminin was investigated in basement membranes of proximal tubules of the mouse kidney. The localization of laminin was determined using two different immunoperoxidase and one immunogold preembedding technique and one immunogold postembedding technique on unfixed and formaldehyde fixed tissue. Strong differences in the immunolocalization for laminin were found in the lamina densa of the tubular basement membrane using different techniques. After preembedding immunostaining for laminin using IgG--PO as secondary antibody, a positive reaction for the lamina densa was found in the formaldehyde fixed as well as in the unfixed kidney. After preembedding immunostaining for laminin using Protein-A--PO, staining of the 1. densa was seen in the unfixed, but not in the fixed kidney. It was striking that no clear immunoreaction in the 1. densa of the tubular basement membrane was seen in either the fixed or unfixed tissue after preembedding immunostaining for laminin using protein A-gold. With a direct postembedding immunogold technique laminin was localized only in the 1. fibroreticularis and the 1. rara but not in the 1. densa of basement membranes of proximal tubules of the unfixed and the fixed kidney.
Collapse
|
16
|
Abrahamson DR, Perry EW. Evidence for splicing new basement membrane into old during glomerular development in newborn rat kidneys. J Cell Biol 1986; 103:2489-98. [PMID: 3782306 PMCID: PMC2114591 DOI: 10.1083/jcb.103.6.2489] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Tannic acid in glutaraldehyde fixatives greatly enhanced the visualization of two developmentally and morphologically distinct stages in glomerular basement membrane (GBM) formation in newborn rat kidneys. First, in early stage glomeruli, double basement membranes between endothelial cells and podocytes were present and, in certain areas, appeared to be fusing. Second, in maturing stage glomeruli, elaborate loops and outpockets of basement membrane projected into epithelial, but not endothelial, sides of capillary walls. When Lowicryl thin sections from newborn rat kidneys were sequentially labeled with rabbit anti-laminin IgG and anti-rabbit IgG-colloidal gold, gold bound across the full width of all GBMs, including double basement membranes and outpockets. The same distribution was obtained when sections from rats that received intravenous injections of rabbit anti-laminin IgG 1 h before fixation were labeled directly with anti-rabbit IgG-colloidal gold. When kidneys were fixed 4 d after anti-laminin IgG injection, however, loops beneath the podocytes in maturing glomeruli were usually unlabeled and lengths of unlabeled GBM were interspersed with labeled lengths. In additional experiments, rabbit anti-laminin IgG was intravenously injected into newborn rats and, 4-14 d later, rats were re-injected with sheep anti-laminin IgG. Sections were then doubly labeled with anti-rabbit and anti-sheep IgG coupled to 10 and 5 nm colloidal gold, respectively. Sheep IgG occurred alone in outpockets of maturing glomeruli and also in lengths of GBM flanked by lengths containing rabbit IgG. These results indicate that, after fusion of double basement membranes, new segments of GBM appear beneath developing podocytes and are subsequently spliced into existing GBM. This splicing provides the additional GBM necessary for expanding glomerular capillaries.
Collapse
|
17
|
Tomaselli KJ, Reichardt LF, Bixby JL. Distinct molecular interactions mediate neuronal process outgrowth on non-neuronal cell surfaces and extracellular matrices. J Biophys Biochem Cytol 1986; 103:2659-72. [PMID: 3025222 PMCID: PMC2114572 DOI: 10.1083/jcb.103.6.2659] [Citation(s) in RCA: 180] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have compared neurite outgrowth on extracellular matrix (ECM) constituents to outgrowth on glial and muscle cell surfaces. Embryonic chick ciliary ganglion (CG) neurons regenerate neurites rapidly on surfaces coated with laminin (LN), fibronectin (FN), conditioned media (CM) from several non-neuronal cell types that secrete LN, and on intact extracellular matrices. Neurite outgrowth on all of these substrates is blocked by two monoclonal antibodies, CSAT and JG22, that prevent the adhesion of many cells, including neurons, to the ECM constituents LN, FN, and collagen. Neurite outgrowth is inhibited even on mixed LN/poly-D-lysine substrates where neuronal attachment is independent of LN. Therefore, neuronal process outgrowth on extracellular matrices requires the function of neuronal cell surface molecules recognized by these antibodies. The surfaces of cultured astrocytes, Schwann cells, and skeletal myotubes also promote rapid process outgrowth from CG neurons. Neurite outgrowth on these surfaces, though, is not prevented by CSAT or JG22 antibodies. In addition, antibodies to a LN/proteoglycan complex that block neurite outgrowth on several LN-containing CM factors and on an ECM extract failed to inhibit cell surface-stimulated neurite outgrowth. After extraction with a nonionic detergent, Schwann cells and myotubes continue to support rapid neurite outgrowth. However, the activity associated with the detergent insoluble residue is blocked by CSAT and JG22 antibodies. Detergent extraction of astrocytes, in contrast, removes all neurite-promoting activity. These results provide evidence for at least two types of neuronal interactions with cells that promote neurite outgrowth. One involves adhesive proteins present in the ECM and ECM receptors on neurons. The second is mediated through detergent-extractable macromolecules present on non-neuronal cell surfaces and different, uncharacterized receptor(s) on neurons. Schwann cells and skeletal myotubes appear to promote neurite outgrowth by both mechanisms.
Collapse
|
18
|
Abstract
Carbohydrate has been removed from a number of glycoproteins without major effect on the structure or enzyme activity of the protein. Thus carbohydrate has been suggested to underly a non-primary function for proteins, such as in relatively non-specific interactions with other carbohydrates or macromolecules, stabilization of protein conformation, or protection from proteolysis. This non-specific concept is consistent with both the general similarity in carbohydrate structure on very diverse glycoproteins and the frequent structural microheterogeneity of carbohydrate chains at given sites. The concept is supported in a general sense by the viability of cells whose glycosylation processes have been globally disrupted by mutation or pharmacological inhibitors. In contrast to the above observations, other studies have revealed the existence of specific, selective receptors for discrete oligosaccharide structures on glycoproteins which seem to be important for compartmentalization of the glycoprotein, or the positioning of cells on which the glycoprotein is concentrated. Sometimes multivalency in the carbohydrate-receptor interaction is crucial. There are additional possible roles for carbohydrate in the transduction of information upon binding to a receptor. The possibility of specific roles for carbohydrate is supported by the existence of numerous unique carbohydrate structures, many of which have been detected as glycoantigens by monoclonal antibodies, with unique distributions in developing and differentiated cells. This article attempts to summarize and rationalize the contradictory results. It appears that in general carbohydrate does in fact underlie only roles secondary to a protein's primary function. These secondary roles are simple non-specific ones of protection and stabilization, but often also satisfy the more sophisticated needs of spatial position control and compartmentalization in multicellular eukaryotic organisms. It is suggested that there are advantages, evolutionarily speaking, for the shared use of carbohydrate for non-specific roles and for specific roles primarily as luxury functions to be executed during the processes of cell differentiation and morphogenesis.
Collapse
|
19
|
Cytotactin, an extracellular matrix protein of neural and non-neural tissues that mediates glia-neuron interaction. Proc Natl Acad Sci U S A 1985; 82:8075-9. [PMID: 2415980 PMCID: PMC391445 DOI: 10.1073/pnas.82.23.8075] [Citation(s) in RCA: 258] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
An extracellular matrix protein, cytotactin, with widespread tissue distribution has been identified, isolated, and partially characterized. Cytotactin mediates glia-neuron adhesion in vitro, but unlike Ng-CAM, the neuron-glia cell-adhesion molecule, it is absent from neurons. Cytotactin was isolated from 14-day embryonic chicken brains as structurally related polypeptides of Mr 220,000, 200,000, and 190,000. These polypeptides were efficiently extracted in the absence of detergent and appeared to be disulfide-linked into higher polymers. Immunofluorescence staining with specific antibodies indicated that cytotactin is found in extracellular spaces and in basement membranes of a variety of non-neural tissues including smooth muscle, lung, and kidney. In the cerebellum, it appears on glial end-feet, on Bergmann glial fibers, and in extracellular spaces. The molecule is synthesized by glia and cells from smooth muscle, lung, and kidney. It is found at the surface of glia in culture in a cell-associated fibrillar pattern. A survey of the times and sites of its appearance during embryogenesis is consistent with the hypothesis that cytotactin is a cell-substrate adhesion molecule that may mediate cell migration in a site-restricted fashion.
Collapse
|