1
|
Zhang L, Qi N, Li Y, Wang X, Zhang L. Immiscible metamorphic water and methane fluids preserved in carbonated eclogite. Commun Chem 2024; 7:267. [PMID: 39548260 PMCID: PMC11568306 DOI: 10.1038/s42004-024-01355-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Subduction zones metamorphic fluids are pivotal in geological events such as volcanic eruptions, seismic activity, mineralization, and the deep carbon cycle. However, the mechanisms governing carbon mobility in subduction zones remain largely unresolved. Here we present the first observations of immiscible H2O-CH4 fluids coexisting in retrograde carbonated eclogite from the Western Tianshan subduction zone, China. We identified two types of fluid inclusions in host ankerite and amphibole, as well as in garnet and omphacite. Type-1 inclusions are water-rich with CH4 vapor, whereas Type-2 are CH4-rich, with minimal or no H2O. The coexistence of these fluid types indicates the presence of immiscible fluid phases under high-pressure conditions (P = 1.3-2.1 GPa). Carbonates in subduction zones can effectively decompose through reactions with silicates, leading to the generation of abiotic CH4. Our findings suggest that substantial amounts of carbon could be transferred from the slab to mantle wedge as immiscible CH4 fluids. This process significantly enhances decarbonation efficiency and may contribute to the formation of natural gas deposits.
Collapse
Affiliation(s)
- Lijuan Zhang
- Key Laboratory of Deep Petroleum Intelligent Exploration and Development, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, School of Earth and Space Sciences, Peking University, Beijing, China
| | - Ning Qi
- Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, School of Earth and Space Sciences, Peking University, Beijing, China
| | - Yuan Li
- Bayerisches Geoinstitut, Universität Bayreuth, Bayreuth, Germany
| | - Xiao Wang
- Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, School of Earth and Space Sciences, Peking University, Beijing, China
| | - Lifei Zhang
- Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, School of Earth and Space Sciences, Peking University, Beijing, China.
| |
Collapse
|
2
|
Li T, Stolte N, Tao R, Sverjensky DA, Daniel I, Pan D. Synthesis and Stability of Biomolecules in C-H-O-N Fluids under Earth's Upper Mantle Conditions. J Am Chem Soc 2024; 146:31240-31250. [PMID: 39485931 DOI: 10.1021/jacs.4c11680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
How life started on Earth is an unsolved mystery. There are various hypotheses for the location ranging from outer space to the seafloor, subseafloor, or potentially deeper. Here, we applied extensive ab initio molecular dynamics simulations to study chemical reactions between NH3, H2O, H2, and CO at pressures (P) and temperatures (T) approximating the conditions of Earth's upper mantle (i.e., 10-13 GPa, 1000-1400 K). Contrary to the previous assumptions that large organic molecules might readily disintegrate in aqueous solutions at extreme P-T conditions, we found that many organic compounds formed without any catalysts and persisted in C-H-O-N fluids under these extreme conditions, including glycine, ribose, urea, and uracil-like molecules. Particularly, our free-energy calculations showed that the C-N bond is thermodynamically stable at 10 GPa and 1400 K. Moreover, while the pyranose (six-membered ring) form of ribose is more stable than the furanose (five-membered ring) form at ambient conditions, we found that the formation of the five-membered-ring form of ribose is thermodynamically more favored at extreme conditions, which is consistent with the exclusive incorporation of β-d-ribofuranose in RNA. We have uncovered a previously unexplored pathway through which the crucial biomolecules could be abiotically synthesized from geofluids in the deep interior of Earth and other planets, and these formed biomolecules could potentially contribute to the early stage of the emergence of life.
Collapse
Affiliation(s)
- Tao Li
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Nore Stolte
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Renbiao Tao
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100193, China
| | - Dimitri A Sverjensky
- Department of Earth and Planetary Sciences, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Isabelle Daniel
- Universite Claude Bernard Lyon1, LGL-TPE, UMR 5276, CNRS, Ens de Lyon, Universite Jean Monnet Saint-Etienne, Villeurbanne 69622, France
| | - Ding Pan
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong 999077, China
- Department of Chemistry, Hong Kong University of Science and Technology, Hong Kong 999077, China
| |
Collapse
|
3
|
Giuntoli F, Menegon L, Siron G, Cognigni F, Leroux H, Compagnoni R, Rossi M, Vitale Brovarone A. Methane-hydrogen-rich fluid migration may trigger seismic failure in subduction zones at forearc depths. Nat Commun 2024; 15:480. [PMID: 38212306 PMCID: PMC10784519 DOI: 10.1038/s41467-023-44641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024] Open
Abstract
Metamorphic fluids, faults, and shear zones are carriers of carbon from the deep Earth to shallower reservoirs. Some of these fluids are reduced and transport energy sources, like H2 and light hydrocarbons. Mechanisms and pathways capable of transporting these deep energy sources towards shallower reservoirs remain unidentified. Here we present geological evidence of failure of mechanically strong rocks due to the accumulation of CH4-H2-rich fluids at deep forearc depths, which ultimately reached supralithostatic pore fluid pressure. These fluids originated from adjacent reduction of carbonates by H2-rich fluids during serpentinization at eclogite-to-blueschist-facies conditions. Thermodynamic modeling predicts that the production and accumulation of CH4-H2-rich aqueous fluids can produce fluid overpressure more easily than carbon-poor and CO2-rich aqueous fluids. This study provides evidence for the migration of deep Earth energy sources along tectonic discontinuities, and suggests causal relationships with brittle failure of hard rock types that may trigger seismic activity at forearc depths.
Collapse
Affiliation(s)
- Francesco Giuntoli
- Department of Biological, Geological, and Environmental Sciences, Università degli Studi di Bologna, Bologna, Italy.
| | - Luca Menegon
- The Njord Centre, Department of Geosciences, University of Oslo, Oslo, Norway
| | - Guillaume Siron
- Department of Biological, Geological, and Environmental Sciences, Università degli Studi di Bologna, Bologna, Italy
| | - Flavio Cognigni
- Department of Basic and Applied Sciences for Engineering (SBAI), Università degli Studi di Roma La Sapienza, Rome, Italy
| | - Hugues Leroux
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207, UMET, Unité Matériaux et Transformations, Lille, France
| | - Roberto Compagnoni
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, Torino, Italy
| | - Marco Rossi
- Department of Basic and Applied Sciences for Engineering (SBAI), Università degli Studi di Roma La Sapienza, Rome, Italy
| | - Alberto Vitale Brovarone
- Department of Biological, Geological, and Environmental Sciences, Università degli Studi di Bologna, Bologna, Italy.
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France.
- Institute of Geosciences and Earth Resources, National Research Council of Italy, Pisa, Italy.
| |
Collapse
|
4
|
Farsang S, Louvel M, Zhao C, Mezouar M, Rosa AD, Widmer RN, Feng X, Liu J, Redfern SAT. Deep carbon cycle constrained by carbonate solubility. Nat Commun 2021; 12:4311. [PMID: 34262043 PMCID: PMC8280166 DOI: 10.1038/s41467-021-24533-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Earth's deep carbon cycle affects atmospheric CO2, climate, and habitability. Owing to the extreme solubility of CaCO3, aqueous fluids released from the subducting slab could extract all carbon from the slab. However, recycling efficiency is estimated at only around 40%. Data from carbonate inclusions, petrology, and Mg isotope systematics indicate Ca2+ in carbonates is replaced by Mg2+ and other cations during subduction. Here we determined the solubility of dolomite [CaMg(CO3)2] and rhodochrosite (MnCO3), and put an upper limit on that of magnesite (MgCO3) under subduction zone conditions. Solubility decreases at least two orders of magnitude as carbonates become Mg-rich. This decreased solubility, coupled with heterogeneity of carbon and water subduction, may explain discrepancies in carbon recycling estimates. Over a range of slab settings, we find aqueous dissolution responsible for mobilizing 10 to 92% of slab carbon. Globally, aqueous fluids mobilise [Formula: see text]% ([Formula: see text] Mt/yr) of subducted carbon from subducting slabs.
Collapse
Affiliation(s)
- Stefan Farsang
- grid.5335.00000000121885934Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ UK
| | - Marion Louvel
- grid.5949.10000 0001 2172 9288Institut für Mineralogie, WWU Münster, Münster, 48149 Germany
| | - Chaoshuai Zhao
- grid.503238.f0000 0004 7423 8214Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing, 100094 China
| | - Mohamed Mezouar
- grid.5398.70000 0004 0641 6373European Synchrotron Radiation Facility, 71 Avenue des Martyrs, Grenoble, 38000 France
| | - Angelika D. Rosa
- grid.5398.70000 0004 0641 6373European Synchrotron Radiation Facility, 71 Avenue des Martyrs, Grenoble, 38000 France
| | - Remo N. Widmer
- grid.7354.50000 0001 2331 3059Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, Thun, 3602 Switzerland
| | - Xiaolei Feng
- grid.5335.00000000121885934Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ UK ,grid.503238.f0000 0004 7423 8214Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing, 100094 China
| | - Jin Liu
- grid.503238.f0000 0004 7423 8214Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing, 100094 China
| | - Simon A. T. Redfern
- grid.59025.3b0000 0001 2224 0361Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
| |
Collapse
|
5
|
Stolte N, Yu J, Chen Z, Sverjensky DA, Pan D. Water-Gas Shift Reaction Produces Formate at Extreme Pressures and Temperatures in Deep Earth Fluids. J Phys Chem Lett 2021; 12:4292-4298. [PMID: 33928781 DOI: 10.1021/acs.jpclett.1c00563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The water-gas shift reaction is one of the most important reactions in industrial hydrogen production and plays a key role in Fischer-Tropsch-type synthesis, which is widely believed to generate hydrocarbons in the deep carbon cycle but is little known at extreme pressure-temperature conditions found in the Earth's upper mantle. Here, we performed extensive ab initio molecular dynamics simulations and free energy calculations to study the water-gas shift reaction. We found the direct formation of formic acid from CO and supercritical water at 10-13 GPa and 1400 K without any catalyst. Contrary to the common assumption that formic acid or formate is an intermediate product, we found that HCOOH is thermodynamically more stable than the products of the water-gas shift reaction above 3 GPa and at 1000-1400 K. Our study suggests that the water-gas shift reaction may not happen in the Earth's upper mantle, and formic acid or formate may be an important carbon carrier in reducing environments, participating in many geochemical processes in deep Earth.
Collapse
Affiliation(s)
- Nore Stolte
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Junting Yu
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zixin Chen
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Dimitri A Sverjensky
- Department of Earth and Planetary Sciences, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Ding Pan
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST Fok Ying Tung Research Institute, No. 2 Huan Shi Da Dao Road, Nansha District, Guangzhou City, 511458, China
| |
Collapse
|
6
|
Subduction hides high-pressure sources of energy that may feed the deep subsurface biosphere. Nat Commun 2020; 11:3880. [PMID: 32759942 PMCID: PMC7406650 DOI: 10.1038/s41467-020-17342-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/25/2020] [Indexed: 11/10/2022] Open
Abstract
Geological sources of H2 and abiotic CH4 have had a critical role in the evolution of our planet and the development of life and sustainability of the deep subsurface biosphere. Yet the origins of these sources are largely unconstrained. Hydration of mantle rocks, or serpentinization, is widely recognized to produce H2 and favour the abiotic genesis of CH4 in shallow settings. However, deeper sources of H2 and abiotic CH4 are missing from current models, which mainly invoke more oxidized fluids at convergent margins. Here we combine data from exhumed subduction zone high-pressure rocks and thermodynamic modelling to show that deep serpentinization (40–80 km) generates significant amounts of H2 and abiotic CH4, as well as H2S and NH3. Our results suggest that subduction, worldwide, hosts large sources of deep H2 and abiotic CH4, potentially providing energy to the overlying subsurface biosphere in the forearc regions of convergent margins. Geological sources of H2 and abiotic CH4 have had a critical role in the evolution of life and sustainability of the deep subsurface biosphere, yet the origins of these sources remain largely unconstrained. Here the authors show that deep serpentinization (40–80 km) during subduction generates significant amounts of H2 and abiotic CH4, potentially providing energy to the overlying subsurface biosphere.
Collapse
|