1
|
Fink CA, Buchele C, Baumann L, Liermann J, Hoegen P, Ristau J, Regnery S, Sandrini E, König L, Rippke C, Bonekamp D, Schlemmer HP, Debus J, Koerber SA, Klüter S, Hörner-Rieber J. Dosimetric benefit of online treatment plan adaptation in stereotactic ultrahypofractionated MR-guided radiotherapy for localized prostate cancer. Front Oncol 2024; 14:1308406. [PMID: 38425342 PMCID: PMC10902126 DOI: 10.3389/fonc.2024.1308406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Background Apart from superior soft tissue contrast, MR-guided stereotactic body radiation therapy (SBRT) offers the chance for daily online plan adaptation. This study reports on the comparison of dose parameters before and after online plan adaptation in MR-guided SBRT of localized prostate cancer. Materials and methods 32 consecutive patients treated with ultrahypofractionated SBRT for localized prostate cancer within the prospective SMILE trial underwent a planning process for MR-guided radiotherapy with 37.5 Gy applied in 5 fractions. A base plan, derived from MRI simulation at an MRIdian Linac, was registered to daily MRI scans (predicted plan). Following target and OAR recontouring, the plan was reoptimized based on the daily anatomy (adapted plan). CTV and PTV coverage and doses at OAR were compared between predicted and adapted plans using linear mixed regression models. Results In 152 out of 160 fractions (95%), an adapted radiation plan was delivered. Mean CTV and PTV coverage increased by 1.4% and 4.5% after adaptation. 18% vs. 95% of the plans had a PTV coverage ≥95% before and after online adaptation, respectively. 78% vs. 100% of the plans had a CTV coverage ≥98% before and after online adaptation, respectively. The D0.2cc for both bladder and rectum were <38.5 Gy in 93% vs. 100% before and after online adaptation. The constraint at the urethra with a dose of <37.5 Gy was achieved in 59% vs. 93% before and after online adaptation. Conclusion Online adaptive plan adaptation improves target volume coverage and reduces doses to OAR in MR-guided SBRT of localized prostate cancer. Online plan adaptation could potentially further reduce acute and long-term side effects and improve local failure rates in MR-guided SBRT of localized prostate cancer.
Collapse
Affiliation(s)
- Christoph A. Fink
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Carolin Buchele
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Lukas Baumann
- Institute of Medical Biometry (IMBI), University of Heidelberg, Heidelberg, Germany
| | - Jakob Liermann
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Philipp Hoegen
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jonas Ristau
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Elisabetta Sandrini
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Carolin Rippke
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - David Bonekamp
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Side Heidelberg, Heidelberg, Germany
| | | | - Juergen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Side Heidelberg, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan A. Koerber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Radiation Oncology, Barmherzige Brueder Hospital Regensburg, Regensburg, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
2
|
Molière S, Hamzaoui D, Granger B, Montagne S, Allera A, Ezziane M, Luzurier A, Quint R, Kalai M, Ayache N, Delingette H, Renard-Penna R. Reference standard for the evaluation of automatic segmentation algorithms: Quantification of inter observer variability of manual delineation of prostate contour on MRI. Diagn Interv Imaging 2024; 105:65-73. [PMID: 37822196 DOI: 10.1016/j.diii.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE The purpose of this study was to investigate the relationship between inter-reader variability in manual prostate contour segmentation on magnetic resonance imaging (MRI) examinations and determine the optimal number of readers required to establish a reliable reference standard. MATERIALS AND METHODS Seven radiologists with various experiences independently performed manual segmentation of the prostate contour (whole-gland [WG] and transition zone [TZ]) on 40 prostate MRI examinations obtained in 40 patients. Inter-reader variability in prostate contour delineations was estimated using standard metrics (Dice similarity coefficient [DSC], Hausdorff distance and volume-based metrics). The impact of the number of readers (from two to seven) on segmentation variability was assessed using pairwise metrics (consistency) and metrics with respect to a reference segmentation (conformity), obtained either with majority voting or simultaneous truth and performance level estimation (STAPLE) algorithm. RESULTS The average segmentation DSC for two readers in pairwise comparison was 0.919 for WG and 0.876 for TZ. Variability decreased with the number of readers: the interquartile ranges of the DSC were 0.076 (WG) / 0.021 (TZ) for configurations with two readers, 0.005 (WG) / 0.012 (TZ) for configurations with three readers, and 0.002 (WG) / 0.0037 (TZ) for configurations with six readers. The interquartile range decreased slightly faster between two and three readers than between three and six readers. When using consensus methods, variability often reached its minimum with three readers (with STAPLE, DSC = 0.96 [range: 0.945-0.971] for WG and DSC = 0.94 [range: 0.912-0.957] for TZ, and interquartile range was minimal for configurations with three readers. CONCLUSION The number of readers affects the inter-reader variability, in terms of inter-reader consistency and conformity to a reference. Variability is minimal for three readers, or three readers represent a tipping point in the variability evolution, with both pairwise-based metrics or metrics with respect to a reference. Accordingly, three readers may represent an optimal number to determine references for artificial intelligence applications.
Collapse
Affiliation(s)
- Sébastien Molière
- Department of Radiology, Hôpitaux Universitaire de Strasbourg, Hôpital de Hautepierre, 67200, Strasbourg, France; Breast and Thyroid Imaging Unit, Institut de Cancérologie Strasbourg Europe, 67200, Strasbourg, France; IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400, Illkirch, France.
| | - Dimitri Hamzaoui
- Inria, Epione Team, Sophia Antipolis, Université Côte d'Azur, 06902, Nice, France
| | - Benjamin Granger
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, IPLESP, AP-HP, Hôpital Pitié Salpêtrière, Département de Santé Publique, 75013, Paris, France
| | - Sarah Montagne
- Department of Radiology, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, 75020, Paris, France; Department of Radiology, Hôpital Pitié-Salpétrière, Assistance Publique-Hôpitaux de Paris, 75013, Paris, France; GRC N° 5, Oncotype-Uro, Sorbonne Université, 75020, Paris, France
| | - Alexandre Allera
- Department of Radiology, Hôpital Pitié-Salpétrière, Assistance Publique-Hôpitaux de Paris, 75013, Paris, France
| | - Malek Ezziane
- Department of Radiology, Hôpital Pitié-Salpétrière, Assistance Publique-Hôpitaux de Paris, 75013, Paris, France
| | - Anna Luzurier
- Department of Radiology, Hôpital Pitié-Salpétrière, Assistance Publique-Hôpitaux de Paris, 75013, Paris, France
| | - Raphaelle Quint
- Department of Radiology, Hôpital Pitié-Salpétrière, Assistance Publique-Hôpitaux de Paris, 75013, Paris, France
| | - Mehdi Kalai
- Department of Radiology, Hôpital Pitié-Salpétrière, Assistance Publique-Hôpitaux de Paris, 75013, Paris, France
| | - Nicholas Ayache
- Department of Radiology, Hôpitaux Universitaire de Strasbourg, Hôpital de Hautepierre, 67200, Strasbourg, France
| | - Hervé Delingette
- Department of Radiology, Hôpitaux Universitaire de Strasbourg, Hôpital de Hautepierre, 67200, Strasbourg, France
| | - Raphaële Renard-Penna
- Department of Radiology, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, 75020, Paris, France; Department of Radiology, Hôpital Pitié-Salpétrière, Assistance Publique-Hôpitaux de Paris, 75013, Paris, France; GRC N° 5, Oncotype-Uro, Sorbonne Université, 75020, Paris, France
| |
Collapse
|
3
|
Kim J, Sung J, Lee SJ, Cho KS, Chung BH, Yang D, Kim J, Kim JW. Optimal planning target margin for prostate radiotherapy based on interfractional and intrafractional variability assessment during 1.5T MRI-guided radiotherapy. Front Oncol 2023; 13:1337626. [PMID: 38173837 PMCID: PMC10761547 DOI: 10.3389/fonc.2023.1337626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction We analyzed daily pre-treatment- (PRE) and real-time motion monitoring- (MM) MRI scans of patients receiving definitive prostate radiotherapy (RT) with 1.5 T MRI guidance to assess interfractional and intrafractional variability of the prostate and suggest optimal planning target volume (PTV) margin. Materials and methods Rigid registration between PRE-MRI and planning CT images based on the pelvic bone and prostate anatomy were performed. Interfractional setup margin (SM) and interobserver variability (IO) were assessed by comparing the centroid values of prostate contours delineated on PRE-MRIs. MM-MRIs were used for internal margin (IM) assessment, and PTV margin was calculated using the van Herk formula. Results We delineated 400 prostate contours on PRE-MRI images. SM was 0.57 ± 0.42, 2.45 ± 1.98, and 2.28 ± 2.08 mm in the left-right (LR), anterior-posterior (AP), and superior-inferior (SI) directions, respectively, after bone localization and 0.76 ± 0.57, 1.89 ± 1.60, and 2.02 ± 1.79 mm in the LR, AP, and SI directions, respectively, after prostate localization. IO was 1.06 ± 0.58, 2.32 ± 1.08, and 3.30 ± 1.85 mm in the LR, AP, and SI directions, respectively, after bone localization and 1.11 ± 0.55, 2.13 ± 1.07, and 3.53 ± 1.65 mm in the LR, AP, and SI directions, respectively, after prostate localization. Average IM was 2.12 ± 0.86, 2.24 ± 1.07, and 2.84 ± 0.88 mm in the LR, AP, and SI directions, respectively. Calculated PTV margin was 2.21, 5.16, and 5.40 mm in the LR, AP, and SI directions, respectively. Conclusions Movements in the SI direction were the largest source of variability in definitive prostate RT, and interobserver variability was a non-negligible source of margin. The optimal PTV margin should also consider the internal margin.
Collapse
Affiliation(s)
- Jina Kim
- Department of Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jiwon Sung
- Department of Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seo Jin Lee
- Department of Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kang Su Cho
- Department of Urology, Prostate Cancer Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byung Ha Chung
- Department of Urology, Prostate Cancer Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dongjoon Yang
- Department of Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jihun Kim
- Department of Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun Won Kim
- Department of Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Zhong J, Kobus M, Maitre P, Datta A, Eccles C, Dubec M, McHugh D, Buckley D, Scarsbrook A, Hoskin P, Henry A, Choudhury A. MRI-guided Pelvic Radiation Therapy: A Primer for Radiologists. Radiographics 2023; 43:e230052. [PMID: 37796729 DOI: 10.1148/rg.230052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Radiation therapy (RT) is a core pillar of oncologic treatment, and half of all patients with cancer receive this therapy as a curative or palliative treatment. The recent integration of MRI into the RT workflow has led to the advent of MRI-guided RT (MRIgRT). Using MRI rather than CT has clear advantages for guiding RT to pelvic tumors, including superior soft-tissue contrast, improved organ motion visualization, and the potential to image tumor phenotypic characteristics to identify the most aggressive or treatment-resistant areas, which can be targeted with a more focal higher radiation dose. Radiologists should be familiar with the potential uses of MRI in planning pelvic RT; the various RT techniques used, such as brachytherapy and external beam RT; and the impact of MRIgRT on treatment paradigms. Current clinical experience with and the evidence base for MRIgRT in the settings of prostate, cervical, and bladder cancer are discussed, and examples of treated cases are illustrated. In addition, the benefits of MRIgRT, such as real-time online adaptation of RT (during treatment) and interfraction and/or intrafraction adaptation to organ motion, as well as how MRIgRT can decrease toxic effects and improve oncologic outcomes, are highlighted. MRIgRT is particularly beneficial for treating mobile pelvic structures, and real-time adaptive RT for tumors can be achieved by using advanced MRI-guided linear accelerator systems to spare organs at risk. Future opportunities for development of biologically driven adapted RT with use of functional MRI sequences and radiogenomic approaches also are outlined. ©RSNA, 2023 Quiz questions for this article are available in the supplemental material.
Collapse
Affiliation(s)
- Jim Zhong
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Marta Kobus
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Priyamvada Maitre
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Anubhav Datta
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Cynthia Eccles
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Michael Dubec
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Damien McHugh
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - David Buckley
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Andrew Scarsbrook
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Peter Hoskin
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Ann Henry
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Ananya Choudhury
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| |
Collapse
|
5
|
Dassen MG, Janssen T, Kusters M, Pos F, Kerkmeijer LGW, van der Heide UA, van der Bijl E. Comparing adaptation strategies in MRI-guided online adaptive radiotherapy for prostate cancer: Implications for treatment margins. Radiother Oncol 2023; 186:109761. [PMID: 37348607 DOI: 10.1016/j.radonc.2023.109761] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/26/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
PURPOSE To quantify the difference in accuracy of adapt-to-position (ATP), adapt-to-rotation (ATR) and adapt-to-shape (ATS) workflows used in MRI-guided online adaptive radiotherapy for prostate carcinoma (PCa) by evaluating the margins required to accommodate intra-fraction motion of the clinical target volumes for prostate (CTVpros), prostate including seminal vesicles (CTVpros + sv) and gross tumor volume (GTV). MATERIALS AND METHODS Clinical delineations of the CTVpros, CTVpros + sv and GTV of 24 patients with intermediate- and high-risk PCa, treated using ATS on a 1.5 T MR-Linac, were used for analysis. Delineations were available pre- and during beam-on. To simulate ATP and ATR workflows, we automatically generated the structures associated with these workflows using rigid transformations from the planning-MRI to the daily online MRIs. Clinical GTVs were analyzed as ATR GTVs and only ATP GTVs were simulated. Planning target volumes (PTVs) were generated with isotropic margins ranging 0.0-5.0 mm. The volumetric overlap was calculated between these PTVs and their corresponding clinical delineation on the MRI acquired during beam-on and averaged over all treatment fractions. RESULTS The PTV margin required to cover > 95% of the CTVpros was equal (2.5 mm) for all workflows. For the CTVpros + sv, this margin increased to 5.0, 4.0 and 3.5 mm in the ATP, ATR and ATS workflow, respectively. GTV coverage improved from ATP to ATR for margins up to 4.0 mm. CONCLUSION ATP, ATR and ATS workflows ensure equal coverage of the CTVpros for the current clinical margins. For the CTVpros + sv, ATS showed optimal performance. GTV coverage improves by additional adaptations to prostate rotations.
Collapse
Affiliation(s)
- Mathijs G Dassen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Tomas Janssen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Martijn Kusters
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Floris Pos
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Linda G W Kerkmeijer
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Uulke A van der Heide
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Erik van der Bijl
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
6
|
Chuong MD, Palm RF, Tjong MC, Hyer DE, Kishan AU. Advances in MRI-Guided Radiation Therapy. Surg Oncol Clin N Am 2023; 32:599-615. [PMID: 37182995 DOI: 10.1016/j.soc.2023.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Image guidance for radiation therapy (RT) has evolved over the last few decades and now is routinely performed using cone-beam computerized tomography (CBCT). Conventional linear accelerators (LINACs) that use CBCT have limited soft tissue contrast, are not able to image the patient's internal anatomy during treatment delivery, and most are not capable of online adaptive replanning. RT delivery systems that use MRI have become available within the last several years and address many of the imaging limitations of conventional LINACs. Herein, the authors review the technical characteristics and advantages of MRI-guided RT as well as emerging clinical outcomes.
Collapse
Affiliation(s)
- Michael D Chuong
- Department of Radiation Oncology, Miami Cancer Institute, 8900 North Kendall Drive, Miami, FL 33176, USA.
| | - Russell F Palm
- Department of Radiation Oncology, Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Michael C Tjong
- Department of Radiation Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Daniel E Hyer
- Department of Radiation Oncology, University of Iowa, 200 Hawkins Dr, Iowa City, IA 52242, USA
| | - Amar U Kishan
- Department of Radiation Oncology, University of California Los Angeles, 1338 S Hope Street, Los Angeles, CA 90015, USA
| |
Collapse
|
7
|
Guzene L, Beddok A, Nioche C, Modzelewski R, Loiseau C, Salleron J, Thariat J. Assessing Interobserver Variability in the Delineation of Structures in Radiation Oncology: A Systematic Review. Int J Radiat Oncol Biol Phys 2023; 115:1047-1060. [PMID: 36423741 DOI: 10.1016/j.ijrobp.2022.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022]
Abstract
PURPOSE The delineation of target volumes and organs at risk is the main source of uncertainty in radiation therapy. Numerous interobserver variability (IOV) studies have been conducted, often with unclear methodology and nonstandardized reporting. We aimed to identify the parameters chosen in conducting delineation IOV studies and assess their performances and limits. METHODS AND MATERIALS We conducted a systematic literature review to highlight major points of heterogeneity and missing data in IOV studies published between 2018 and 2021. For the main used metrics, we did in silico analyses to assess their limits in specific clinical situations. RESULTS All disease sites were represented in the 66 studies examined. Organs at risk were studied independently of tumor site in 29% of reviewed IOV studies. In 65% of studies, statistical analyses were performed. No gold standard (GS; ie, reference) was defined in 36% of studies. A single expert was considered as the GS in 21% of studies, without testing intraobserver variability. All studies reported both absolute and relative indices, including the Dice similarity coefficient (DSC) in 68% and the Hausdorff distance (HD) in 42%. Limitations were shown in silico for small structures when using the DSC and dependence on irregular shapes when using the HD. Variations in DSC values were large between studies, and their thresholds were inconsistent. Most studies (51%) included 1 to 10 cases. The median number of observers or experts was 7 (range, 2-35). The intraclass correlation coefficient was reported in only 9% of cases. Investigating the feasibility of studying IOV in delineation, a minimum of 8 observers with 3 cases, or 11 observers with 2 cases, was required to demonstrate moderate reproducibility. CONCLUSIONS Implementation of future IOV studies would benefit from a more standardized methodology: clear definitions of the gold standard and metrics and a justification of the tradeoffs made in the choice of the number of observers and number of delineated cases should be provided.
Collapse
Affiliation(s)
- Leslie Guzene
- Department of Radiation Oncology, University Hospital of Amiens, Amiens, France
| | - Arnaud Beddok
- Department of Radiation Oncology, Institut Curie, Paris/Saint-Cloud/Orsay, France; Laboratory of Translational Imaging in Oncology (LITO), InsermUMR, Institut Curie, Orsay, France
| | - Christophe Nioche
- Laboratory of Translational Imaging in Oncology (LITO), InsermUMR, Institut Curie, Orsay, France
| | - Romain Modzelewski
- LITIS - EA4108-Quantif, Normastic, University of Rouen, and Nuclear Medicine Department, Henri Becquerel Center, Rouen, France
| | - Cedric Loiseau
- Department of Radiation Oncology, Centre François Baclesse; ARCHADE Research Community Caen, France; Département de Biostatistiques, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France
| | - Julia Salleron
- Département de Biostatistiques, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France
| | - Juliette Thariat
- Department of Radiation Oncology, Centre François Baclesse; ARCHADE Research Community Caen, France; Laboratoire de Physique Corpusculaire, Caen, France; Unicaen-Université de Normandie, Caen, France.
| |
Collapse
|
8
|
1.5T MR-Guided Daily-Adaptive SBRT for Prostate Cancer: Preliminary Report of Toxicity and Quality of Life of the First 100 Patients. J Pers Med 2022; 12:jpm12121982. [PMID: 36556203 PMCID: PMC9785799 DOI: 10.3390/jpm12121982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose: The present study reports the preliminary outcomes in terms of adverse events and quality of life in the first 100 patients treated with 1.5T MR-guided daily-adaptive stereotactic body radiotherapy for prostate cancer. Methods: From October 2019 to December 2020, 100 patients, enrolled in a prospective study, received MR-guided SBRT for prostate cancer. Rectal spacer insertion was optional and administered in 37 patients. In total, 32 patients received androgen deprivation therapy in accordance with international guidelines. A prospective collection of data regarding toxicity and quality of life was performed. Results: The median age was 71 years (range, 52-84). The median total dose delivered was 35 Gy (35-36.25 Gy) in five sessions, either on alternate days (n = 25) or consecutive days (n = 75). For acute toxicity, we recorded: seven cases of acute G2 urinary pain and four cases of G2 gastrointestinal events. The median follow-up was 12 months (3-20), recording three late G2 urinary events and one G3 case, consisting of a patient who required a TURP 8 months after the treatment. For gastrointestinal toxicity, we observed 3 G ≥ 2 GI events, including one patient who received argon laser therapy for radiation-induced proctitis. Up to the last follow-up, all patients are alive and with no evidence of biochemical relapse, except for an M1 low-volume patient in distant progression two months after radiotherapy. QoL evaluation reported a substantial resolution of any discomfort within the second follow-up after radiotherapy, with the only exception being sexual items. Notably, after one year, global health items were improved compared to the baseline assessment. Conclusions: This study reports very promising outcomes in terms of adverse events and QoL, supporting the role of 1.5T MR-guided SBRT for prostate cancer. To date, this series is one of the first and largest available in the literature. Long-term results are warranted.
Collapse
|
9
|
Sritharan K, Dunlop A, Mohajer J, Adair-Smith G, Barnes H, Brand D, Greenlay E, Hijab A, Oelfke U, Pathmanathan A, Mitchell A, Murray J, Nill S, Parker C, Sundahl N, Tree AC. Dosimetric comparison of automatically propagated prostate contours with manually drawn contours in MRI-guided radiotherapy: A step towards a contouring free workflow? Clin Transl Radiat Oncol 2022; 37:25-32. [PMID: 36052018 PMCID: PMC9424262 DOI: 10.1016/j.ctro.2022.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 10/31/2022] Open
Abstract
Background The prostate demonstrates inter- and intra- fractional changes and thus adaptive radiotherapy would be required to ensure optimal coverage. Daily adaptive radiotherapy for MRI-guided radiotherapy can be both time and resource intensive when structure delineation is completed manually. Contours can be auto-generated on the MR-Linac via a deformable image registration (DIR) based mapping process from the reference image. This study evaluates the performance of automatically generated target structure contours against manually delineated contours by radiation oncologists for prostate radiotherapy on the Elekta Unity MR-Linac. Methods Plans were generated from prostate contours propagated by DIR and rigid image registration (RIR) for forty fractions from ten patients. A two-dose level SIB (simultaneous integrated boost) IMRT plan is used to treat localised prostate cancer; 6000 cGy to the prostate and 4860 cGy to the seminal vesicles. The dose coverage of the PTV 6000 and PTV 4860 created from the manually drawn target structures was evaluated with each plan. If the dose objectives were met, the plan was considered successful in covering the gold standard (clinician-delineated) volume. Results The mandatory PTV 6000 dose objective (D98% > 5580 cGy) was met in 81 % of DIR plans and 45 % of RIR plans. The SV were mapped by DIR only and for all the plans, the PTV 4860 dose objective met the optimal target (D98% > 4617 cGy). The plans created by RIR led to under-coverage of the clinician-delineated prostate, predominantly at the apex or the bladder-prostate interface. Conclusion Plans created from DIR propagation of prostate contours outperform those created from RIR propagation. In approximately 1 in 5 DIR plans, dosimetric coverage of the gold standard PTV was not clinically acceptable. Thus, at our institution, we use a combination of DIR propagation of contours alongside manual editing of contours where deemed necessary for online treatments.
Collapse
Affiliation(s)
- Kobika Sritharan
- The Royal Marsden NHS Foundation Trust, United Kingdom
- The Institute of Cancer Research, United Kingdom
| | - Alex Dunlop
- The Joint Department of Physics, the Royal Marsden Hospital and the Institute of Cancer Research, United Kingdom
| | - Jonathan Mohajer
- The Joint Department of Physics, the Royal Marsden Hospital and the Institute of Cancer Research, United Kingdom
| | | | - Helen Barnes
- The Royal Marsden NHS Foundation Trust, United Kingdom
| | | | | | - Adham Hijab
- The Royal Marsden NHS Foundation Trust, United Kingdom
- The Institute of Cancer Research, United Kingdom
| | - Uwe Oelfke
- The Joint Department of Physics, the Royal Marsden Hospital and the Institute of Cancer Research, United Kingdom
| | - Angela Pathmanathan
- The Royal Marsden NHS Foundation Trust, United Kingdom
- The Institute of Cancer Research, United Kingdom
| | - Adam Mitchell
- The Joint Department of Physics, the Royal Marsden Hospital and the Institute of Cancer Research, United Kingdom
| | - Julia Murray
- The Royal Marsden NHS Foundation Trust, United Kingdom
- The Institute of Cancer Research, United Kingdom
| | - Simeon Nill
- The Joint Department of Physics, the Royal Marsden Hospital and the Institute of Cancer Research, United Kingdom
| | - Chris Parker
- The Royal Marsden NHS Foundation Trust, United Kingdom
- The Institute of Cancer Research, United Kingdom
| | - Nora Sundahl
- The Royal Marsden NHS Foundation Trust, United Kingdom
- The Institute of Cancer Research, United Kingdom
| | - Alison C. Tree
- The Royal Marsden NHS Foundation Trust, United Kingdom
- The Institute of Cancer Research, United Kingdom
| |
Collapse
|
10
|
Alexander SE, McNair HA, Oelfke U, Huddart R, Murray J, Pathmanathan A, Patel P, Sritharan K, van As N, Tree AC. Prostate Volume Changes during Extreme and Moderately Hypofractionated Magnetic Resonance Image-guided Radiotherapy. Clin Oncol (R Coll Radiol) 2022; 34:e383-e391. [PMID: 35469741 DOI: 10.1016/j.clon.2022.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/04/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022]
Abstract
AIMS Prostate morphological changes during external beam radiotherapy are poorly understood. Excellent soft-tissue visualisation offered by magnetic resonance image-guided radiotherapy (MRIgRT) provides an opportunity to better understand such changes. The aim of this study was to quantify prostate volume and dimension changes occurring during extreme and moderately hypofractionated schedules. MATERIALS AND METHODS Forty prostate cancer patients treated on the Unity 1.5 Tesla magnetic resonance linear accelerator (MRL) were retrospectively reviewed. The cohort comprised patients treated with 36.25 Gy in five fractions (n = 20) and 60 Gy in 20 fractions (n = 20). The volume of the delineated prostates on reference planning computed tomography (fused with MRI) and daily T2-weighted 2-min session images acquired on Unity were charted. Forty planning computed tomography and 500 MRL prostate volumes were evaluated. The mean absolute and relative change in prostate volume during radiotherapy was compared using a paired t-test (P value <0.01 considered significant to control for multiple comparisons). The maximum dimension of the delineated prostate was measured in three isocentric planes. RESULTS Significant prostate volume changes, relative to MRL imaging fraction 1 (MRL#1), were seen at all time points for the five-fraction group. The peak mean relative volume increase was 21% (P < 0.001), occurring at MRL#3 and MRL#4 after 14.5 and 21.75 Gy, respectively. Prostate expansion was greatest in the superior-inferior direction; the peak mean maximal extension was 5.9 mm. The maximal extension in the left-right and anterior-posterior directions measured 1.1 and 2.2 mm, respectively. For the 20-fraction group, prostate volume increased relative to MRL#1, for all treatment time points. The mean relative volume increase was 11% (P < 0.001) at MRL#5 after 12 Gy, it then fluctuated between 8 and 13%. From MRL#5 to MRL#20, the volume increase was significant (P < 0.01) for 12 of 16 time points calculated. The peak mean maximal extension in the superior-inferior direction was 3.1 mm. The maximal extension in the left-right and anterior-posterior directions measured 1.7 and 3.7 mm, respectively. CONCLUSION Significant prostate volume and dimension changes occur during extreme and moderately hypofractionated radiotherapy. The extent of change was greater during extreme hypofractionation. MRIgRT offers the opportunity to reveal, quantify and correct for this deformation.
Collapse
Affiliation(s)
- S E Alexander
- The Royal Marsden NHS Foundation Trust, Sutton, UK; The Institute of Cancer Research, London, UK.
| | - H A McNair
- The Royal Marsden NHS Foundation Trust, Sutton, UK; The Institute of Cancer Research, London, UK
| | - U Oelfke
- The Joint Department of Physics, The Royal Marsden Hospital and the Institute of Cancer Research, London, UK
| | - R Huddart
- The Royal Marsden NHS Foundation Trust, Sutton, UK; The Institute of Cancer Research, London, UK
| | - J Murray
- The Royal Marsden NHS Foundation Trust, Sutton, UK; The Institute of Cancer Research, London, UK
| | - A Pathmanathan
- The Royal Marsden NHS Foundation Trust, Sutton, UK; The Institute of Cancer Research, London, UK
| | - P Patel
- The Royal Marsden NHS Foundation Trust, Sutton, UK; The Institute of Cancer Research, London, UK
| | - K Sritharan
- The Royal Marsden NHS Foundation Trust, Sutton, UK; The Institute of Cancer Research, London, UK
| | - N van As
- The Royal Marsden NHS Foundation Trust, Sutton, UK; The Institute of Cancer Research, London, UK
| | - A C Tree
- The Royal Marsden NHS Foundation Trust, Sutton, UK; The Institute of Cancer Research, London, UK
| |
Collapse
|
11
|
Pham J, Savjani RR, Yoon SM, Yang T, Gao Y, Cao M, Hu P, Sheng K, Low DA, Steinberg M, Kishan A, Yang Y. Urethral Interfractional Geometric and Dosimetric Variations of Prostate Cancer Patients: A Study Using an Onboard MRI. Front Oncol 2022; 12:916254. [PMID: 35912253 PMCID: PMC9334678 DOI: 10.3389/fonc.2022.916254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/14/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose For a cohort of prostate cancer patients treated on an MR-guided radiotherapy (MRgRT) system, we retrospectively analyzed urethral interfractional geometric and dosimetric variations based on onboard MRIs acquired at different timepoints and evaluated onboard prostatic urethra visualization for urethra-focused online adaptive RT. Methods Twenty-six prostate cancer patients were prospectively scanned on a 0.35-T MRgRT system using an optimized T2-weighted HASTE sequence at simulation and final fraction. Two radiation oncologists (RO1 and RO2) contoured the urethras on all HASTE images. The simulation and final fraction HASTE images were rigidly registered, and urethral interobserver and interfractional geometric variation was evaluated using the 95th percentile Hausdorff distance (HD95), mean distance to agreement (MDA), center-of-mass shift (COMS), and DICE coefficient. For dosimetric analysis, simulation and final fraction HASTE images were registered to the 3D bSSFP planning MRI and 3D bSSFP final setup MRI, respectively. Both ROs’ urethra contours were transferred from HASTE images for initial treatment plan optimization and final fraction dose estimation separately. Stereotactic body radiotherapy (SBRT) plans, 40 Gy in 5 fractions, were optimized to meet clinical constraints, including urethral V42Gy ≤0.03 cc, on the planning MRI. The initial plan was then forward calculated on the final setup MRI to estimate urethral dose on the final fraction and evaluate urethral dosimetric impact due to anatomy change. Results The average interobserver HD95, MDA, COMS, and DICE were 2.85 ± 1.34 mm, 1.02 ± 0.36 mm, 3.16 ± 1.61 mm, and 0.58 ± 0.15, respectively. The average interfractional HD95, MDA, COMS, and DICE were 3.26 ± 1.54 mm, 1.29 ± 0.54 mm, 3.34 ± 2.01 mm, and 0.49 ± 0.18, respectively. All patient simulation MRgRT plans met all clinical constraints. For RO1 and RO2, 23/26 (88%) and 21/26 (81%) patients’ final fraction estimated urethral dose did not meet the planned constraint. The average urethral V42Gy change was 0.48 ± 0.58 cc. Conclusion Urethral interfractional motion and anatomic change can result in daily treatment violating urethral constraints. Onboard MRI with good visualization of the prostatic urethra can be a valuable tool to help better protect the urethra through patient setup or online adaptive RT.
Collapse
Affiliation(s)
- Jonathan Pham
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ricky R. Savjani
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Stephanie M. Yoon
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Tiffany Yang
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yu Gao
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Minsong Cao
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Peng Hu
- Department of Radiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ke Sheng
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel A. Low
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Michael Steinberg
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Amar U. Kishan
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yingli Yang
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Yingli Yang,
| |
Collapse
|
12
|
Sritharan K, Tree A. MR-guided radiotherapy for prostate cancer: state of the art and future perspectives. Br J Radiol 2022; 95:20210800. [PMID: 35073158 PMCID: PMC8978250 DOI: 10.1259/bjr.20210800] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/16/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022] Open
Abstract
Advances in radiotherapy technology have increased precision of treatment delivery and in some tumour types, improved cure rates and decreased side effects. A new generation of radiotherapy machines, hybrids of an MRI scanner and a linear accelerator, has the potential to further transform the practice of radiation therapy in some cancers. Facilitating superior image quality and the ability to change the dose distribution online on a daily basis (termed "daily adaptive replanning"), MRI-guided radiotherapy machines allow for new possibilities including increasing dose, for hard to treat cancers, and more selective sparing of healthy tissues, where toxicity reduction is the key priority.These machines have already been used to treat most types of cancer, although experience is still in its infancy. This review summarises the potential and current evidence for MRI-guided radiotherapy, with a predominant focus on prostate cancer. Current advantages and disadvantages are discussed including a realistic appraisal of the likely potential to improve patient outcomes. In addition, horizon scanning for near-term possibilities for research and development will hopefully delineate the potential role for this technology over the next decade.
Collapse
|
13
|
Yuan J, Poon DMC, Lo G, Wong OL, Cheung KY, Yu SK. A narrative review of MRI acquisition for MR-guided-radiotherapy in prostate cancer. Quant Imaging Med Surg 2022; 12:1585-1607. [PMID: 35111651 PMCID: PMC8739116 DOI: 10.21037/qims-21-697] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/20/2021] [Indexed: 08/24/2023]
Abstract
Magnetic resonance guided radiotherapy (MRgRT), enabled by the clinical introduction of the integrated MRI and linear accelerator (MR-LINAC), is a novel technique for prostate cancer (PCa) treatment, promising to further improve clinical outcome and reduce toxicity. The role of prostate MRI has been greatly expanded from the traditional PCa diagnosis to also PCa screening, treatment and surveillance. Diagnostic prostate MRI has been relatively familiar in the community, particularly with the development of Prostate Imaging - Reporting and Data System (PI-RADS). But, on the other hand, the use of MRI in the emerging clinical practice of PCa MRgRT, which is substantially different from that in PCa diagnosis, has been so far sparsely presented in the medical literature. This review attempts to give a comprehensive overview of MRI acquisition techniques currently used in the clinical workflows of PCa MRgRT, from treatment planning to online treatment guidance, in order to promote MRI practice and research for PCa MRgRT. In particular, the major differences in the MRI acquisition of PCa MRgRT from that of diagnostic prostate MRI are demonstrated and explained. Limitations in the current MRI acquisition for PCa MRgRT are analyzed. The future developments of MRI in the PCa MRgRT are also discussed.
Collapse
Affiliation(s)
- Jing Yuan
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | - Darren M. C. Poon
- Comprehensive Oncology Centre, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | - Gladys Lo
- Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | - Oi Lei Wong
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | - Kin Yin Cheung
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | - Siu Ki Yu
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Hong Kong, China
| |
Collapse
|
14
|
Wong OL, Poon DM, Kam MK, Lo GG, Fung WW, Man SY, Xue C, Yu SK, Cheung KY, Yuan J. 3D‐T2W‐TSE radiotherapy treatment planning MRI using compressed sensing acceleration for prostate cancer: Image quality and delineation value. Asia Pac J Clin Oncol 2022; 18:e369-e377. [DOI: 10.1111/ajco.13752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/13/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Oi Lei Wong
- Research Department Hong Kong Sanatorium and Hospital Hong Kong Hong Kong SAR
| | - Darren M.C. Poon
- Comprehensive Oncology Centre Hong Kong Sanatorium and Hospital Hong Kong Hong Kong SAR
| | - Miachael K.M. Kam
- Comprehensive Oncology Centre Hong Kong Sanatorium and Hospital Hong Kong Hong Kong SAR
| | - Gladys G. Lo
- Department of Diagnostic and Interventional Radiology Hong Kong Sanatorium and Hospital Hong Kong Hong Kong SAR
| | - Winky W.K. Fung
- Department of Radiotherapy Hong Kong Sanatorium and Hospital Hong Kong Hong Kong SAR
| | - Shei Yee Man
- Department of Radiotherapy Hong Kong Sanatorium and Hospital Hong Kong Hong Kong SAR
| | - Cindy Xue
- Research Department Hong Kong Sanatorium and Hospital Hong Kong Hong Kong SAR
| | - Siu Ki Yu
- Medical Physics Department Hong Kong Sanatorium and Hospital Hong Kong Hong Kong SAR
| | - Kin Yin Cheung
- Medical Physics Department Hong Kong Sanatorium and Hospital Hong Kong Hong Kong SAR
| | - Jing Yuan
- Research Department Hong Kong Sanatorium and Hospital Hong Kong Hong Kong SAR
| |
Collapse
|
15
|
van Luijtelaar A, Fütterer JJ, Bomers JG. Minimally invasive magnetic resonance image-guided prostate interventions. Br J Radiol 2021; 95:20210698. [PMID: 34723623 PMCID: PMC8978246 DOI: 10.1259/bjr.20210698] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Whole gland prostate cancer treatment, i.e. radical prostatectomy or radiation therapy, is highly effective but also comes with a significant impact on quality of life and possible overtreatment in males with low to intermediate risk disease. Minimal-invasive treatment strategies are emerging techniques. Different sources of energy are used to aim for targeted treatment in order to reduce treatment-related complications and morbidity. Imaging plays an important role in targeting and monitoring of treatment approaches preserving parts of the prostatic tissue. Multiparametric magnetic resonance imaging (mpMRI) is widely used during image-guided interventions due to the multiplanar and real-time anatomical imaging while providing an improved treatment accuracy. This review evaluates the available image-guided prostate cancer treatment options using MRI or magnetic resonance imaging/transrectal ultrasound (MRI/TRUS)-fusion guided imaging. The discussed minimal invasive image-guided prostate interventions may be considered as safe and feasible partial gland ablation in patients with (recurrent) prostate cancer. However, most studies focusing on minimally invasive prostate cancer treatments only report early stages of research and subsequent high-level evidence is still needed. Ensuring a safe and appropriate utilization in patients that will benefit the most, and applied by physicians with relevant training, has become the main challenge in minimally invasive prostate cancer treatments.
Collapse
Affiliation(s)
- Annemarijke van Luijtelaar
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jurgen J Fütterer
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joyce Gr Bomers
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Szalkowski G, Nie D, Zhu T, Yap PT, Lian J. Synthetic digital reconstructed radiographs for MR-only robotic stereotactic radiation therapy: A proof of concept. Comput Biol Med 2021; 138:104917. [PMID: 34688037 DOI: 10.1016/j.compbiomed.2021.104917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/16/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE To create synthetic CTs and digital reconstructed radiographs (DRRs) from MR images that allow for fiducial visualization and accurate dose calculation for MR-only radiosurgery. METHODS We developed a machine learning model to create synthetic CTs from pelvic MRs for prostate treatments. This model has been previously proven to generate synthetic CTs with accuracy on par or better than alternate methods, such as atlas-based registration. Our dataset consisted of 11 paired CT and conventional MR (T2) images used for previous CyberKnife (Accuray, Inc) radiotherapy treatments. The MR images were pre-processed to mimic the appearance of fiducial-enhancing images. Two models were trained for each parameter case, using a sub-set of the available image pairs, with the remaining images set aside for testing and validation of the model to identify the optimal patch size and number of image pairs used for training. Four models were then trained using the identified parameters and used to generate synthetic CTs, which in turn were used to generate DRRs at angles 45° and 315°, as would be used for a CyberKnife treatment. The synthetic CTs and DRRs were compared visually and using the mean squared error and peak signal-to-noise ratio against the ground-truth images to evaluate their similarity. RESULTS The synthetic CTs, as well as the DRRs generated from them, gave similar visualization of the fiducial markers in the prostate as the true counterparts. There was no significant difference found for the fiducial localization for the CTs and DRRs. Across the 8 DRRs analyzed, the mean MSE between the normalized true and synthetic DRRs was 0.66 ± 0.42% and the mean PSNR for this region was 22.9 ± 3.7 dB. For the full CTs, the mean MAE was 72.9 ± 88.1 HU and the mean PSNR was 31.2 ± 2.2 dB. CONCLUSIONS Our machine learning-based method provides a proof of concept of a way to generate synthetic CTs and DRRs for accurate dose calculation and fiducial localization for use in radiation treatment of the prostate.
Collapse
Affiliation(s)
- Gregory Szalkowski
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC, USA
| | - Dong Nie
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Tong Zhu
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC, USA
| | - Pew-Thian Yap
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA.
| | - Jun Lian
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
17
|
Sandoval ML, Youssef I, Latifi K, Grass GD, Torres-Roca J, Rosenberg S, Yamoah K, Johnstone PA. Non-Adaptive MR-Guided Radiotherapy for Prostate SBRT: Less Time, Equal Results. J Clin Med 2021; 10:3396. [PMID: 34362179 PMCID: PMC8347281 DOI: 10.3390/jcm10153396] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The use of stereotactic body radiation therapy (SBRT) is widely utilized for treatment of localized prostate cancer. Magnetic-resonance-guided radiotherapy (MRgRT) was introduced in 2014 and has recently been implemented in SBRT for prostate cancer as it provides an opportunity for smaller margins and adaptive daily planning. Currently, the only publications of MRgRT for prostate SBRT describe European clinical experiences which utilized adaptive planning. However, adaptive planning adds significantly to the time required for daily treatment. OBJECTIVES Since prostate SBRT has demonstrated acceptable toxicity for several years, we did not consider daily adaptation critical to the process of prostate SBRT. After Institutional Review Board approval, we analyzed and now report our experience using MRgRT without adaptation. METHODS Between 25 September 2019 and 21 December 2020, 35 consecutive patients were treated with MRgRT prostate SBRT at our center. Patients treated with MRgRT included favorable intermediate risk (43%) and unfavorable intermediate risk (54%), and only one patient had low-risk prostate cancer. Nine patients (25%) received adjuvant leuprolide for a median of 4.5 months (range 4-6 m). Our clinical pathway allows for a maximum prostate gland volume of 60 cc; median prostate volume of this cohort was 35.0 cc (range 17-58.4 cc). Median pre-treatment PSA was 6.30 (range 2.55-16.77). Each patient was treated with 36.25 Gy delivered in five fractions over 2 weeks with urethral sparing to a maximal dose of 35 Gy. Target volumes included the prostate gland and proximal seminal vesicles with a 3 mm margin. RESULTS Median follow-up as of 26 May 2021 was 11.97 months (range 4.37-19.80). First follow-up data are available for all patients, with a median of 1.10 month from completion of treatment (0.63-3.40). The median PSA at first visit was 2.75 (range 0.02-9.00) with a median AUA symptom score of 9 (range 1-24). Second follow-up data are available for 34 patients at a median of 4.45 months (range 2.57-8.90). At second follow-up, the median PSA was 1.60 (range 0.02-5.40) with a median AUA symptom score of 6 (range 1-33). Seventeen patients had third follow-up data with a median of 9.77 months (range 4.70-12.33) after SBRT. The median PSA was 1.13 (range 0.02-4.73) with an AUA score of 9 (2-22) at the third follow-up. We observed a statistically significant decrease in PSA between pre-treatment and at first follow-up (p < 0.005). The most common toxicity was grade 2 urethritis, managed in all cases by tamsulosin. One patient developed grade 2 tenesmus relieved by topical steroids. No cases of grade ≥ 3 toxicity were seen in our patient population. CONCLUSIONS By avoiding the extra time required for plan adaptation, MRgRT without daily adaptation allows for successful prostate SBRT with manageable toxicity. We continue to reserve our limited adaptive treatment slots for preoperative pancreatic and ultra-central lung SBRT patients, which require time-intensive respiratory gating and adaptive planning.
Collapse
Affiliation(s)
- Maria L. Sandoval
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (M.L.S.); (K.L.); (G.D.G.); (J.T.-R.); (S.R.); (K.Y.)
| | - Irini Youssef
- Department of Radiation Oncology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA;
| | - Kujtim Latifi
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (M.L.S.); (K.L.); (G.D.G.); (J.T.-R.); (S.R.); (K.Y.)
| | - G. Daniel Grass
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (M.L.S.); (K.L.); (G.D.G.); (J.T.-R.); (S.R.); (K.Y.)
| | - Javier Torres-Roca
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (M.L.S.); (K.L.); (G.D.G.); (J.T.-R.); (S.R.); (K.Y.)
| | - Stephen Rosenberg
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (M.L.S.); (K.L.); (G.D.G.); (J.T.-R.); (S.R.); (K.Y.)
| | - Kosj Yamoah
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (M.L.S.); (K.L.); (G.D.G.); (J.T.-R.); (S.R.); (K.Y.)
| | - Peter A. Johnstone
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (M.L.S.); (K.L.); (G.D.G.); (J.T.-R.); (S.R.); (K.Y.)
| |
Collapse
|
18
|
Wegener D, Zips D, Gani C, Boeke S, Nikolaou K, Othman AE, Almansour H, Paulsen F, Müller AC. [Primary treatment of prostate cancer using 1.5 T MR-linear accelerator]. Radiologe 2021; 61:839-845. [PMID: 34297139 PMCID: PMC8410708 DOI: 10.1007/s00117-021-00882-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 11/26/2022]
Abstract
Hintergrund Der potenzielle Nutzen des verbesserten Weichteilkontrastes von MR-Sequenzen gegenüber der Computertomographie (CT) für die Radiotherapie des Prostatakarzinoms ist bekannt und führt zu konsistenteren und kleineren Zielvolumina sowie verbesserter Risikoorganschonung. Hybridgeräte aus Magnetresonanztomographie (MRT) und Linearbeschleuniger (MR-Linac) stellen eine neue vielversprechende Erweiterung der radioonkologischen Therapieoptionen dar. Material und Methoden Dieser Artikel gibt eine Übersicht über bisherige Erfahrungen, Indikationen, Vorteile und Herausforderungen für die Radiotherapie des primären Prostatakarzinoms mit dem 1,5-T-MR-Linac. Ergebnisse Alle strahlentherapeutischen Therapieindikationen für das primäre Prostatakarzinom können mit dem 1,5-T-MR-Linac abgedeckt werden. Die potenziellen Vorteile umfassen die tägliche MR-basierte Lagekontrolle in Bestrahlungsposition und die Möglichkeit der täglichen Echtzeitanpassung des Bestrahlungsplans an die aktuelle Anatomie der Beckenorgane (adaptive Strahlentherapie). Zusätzlich werden am 1,5-T-MR-Linac funktionelle MRT-Sequenzen für individuelles Response-Assessment für die Therapieanpassung untersucht. Dadurch soll das therapeutische Fenster weiter optimiert werden. Herausforderungen stellen u. a. die technische Komplexität und die Dauer der Behandlungssitzung dar. Schlussfolgerung Der 1,5-T-MR-Linac erweitert das radioonkologische Spektrum in der Therapie des Prostatakarzinoms und bietet Vorteile durch tagesaktuelle MRT-basierte Zielvolumendefinition und Planadaptation. Weitere klinische Untersuchungen sind notwendig, um die Patienten zu identifizieren, die von der Behandlung am MR-Linac gegenüber anderen strahlentherapeutischen Methoden besonders profitieren.
Collapse
Affiliation(s)
- Daniel Wegener
- Universitätsklinik für Radioonkologie, Universitätsklinikum Tübingen, Eberhard Karls Universität Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland.
| | - Daniel Zips
- Universitätsklinik für Radioonkologie, Universitätsklinikum Tübingen, Eberhard Karls Universität Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland
| | - Cihan Gani
- Universitätsklinik für Radioonkologie, Universitätsklinikum Tübingen, Eberhard Karls Universität Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland
| | - Simon Boeke
- Universitätsklinik für Radioonkologie, Universitätsklinikum Tübingen, Eberhard Karls Universität Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland
| | - Konstantin Nikolaou
- Universitätsklinik für Radiologie, Eberhard Karls Universität Tübingen, Tübingen, Deutschland
| | - Ahmed E Othman
- Universitätsklinik für Radiologie, Eberhard Karls Universität Tübingen, Tübingen, Deutschland
- Universitätsklink für Neuroradiologie, Johannes Gutenberg-Universität Mainz, Mainz, Deutschland
| | - Haidara Almansour
- Universitätsklinik für Radiologie, Eberhard Karls Universität Tübingen, Tübingen, Deutschland
| | - Frank Paulsen
- Universitätsklinik für Radioonkologie, Universitätsklinikum Tübingen, Eberhard Karls Universität Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland
| | | |
Collapse
|
19
|
Kong V, Hansen VN, Hafeez S. Image-guided Adaptive Radiotherapy for Bladder Cancer. Clin Oncol (R Coll Radiol) 2021; 33:350-368. [PMID: 33972024 DOI: 10.1016/j.clon.2021.03.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022]
Abstract
Technological advancement has facilitated patient-specific radiotherapy in bladder cancer. This has been made possible by developments in image-guided radiotherapy (IGRT). Particularly transformative has been the integration of volumetric imaging into the workflow. The ability to visualise the bladder target using cone beam computed tomography and magnetic resonance imaging initially assisted with determining the magnitude of inter- and intra-fraction target change. It has led to greater confidence in ascertaining true anatomy at each fraction. The increased certainty of dose delivered to the bladder has permitted the safe reduction of planning target volume margins. IGRT has therefore improved target coverage with a reduction in integral dose to the surrounding tissue. Use of IGRT to feed back into plan and dose delivery optimisation according to the anatomy of the day has enabled adaptive radiotherapy bladder solutions. Here we undertake a review of the stepwise developments underpinning IGRT and adaptive radiotherapy strategies for external beam bladder cancer radiotherapy. We present the evidence in accordance with the framework for systematic clinical evaluation of technical innovations in radiation oncology (R-IDEAL).
Collapse
Affiliation(s)
- V Kong
- Radiation Medicine, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - V N Hansen
- Laboratory of Radiation Physics, Odense University Hospital, Odense, Denmark
| | - S Hafeez
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK; Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, London, UK.
| |
Collapse
|
20
|
Ueda Y, Wakayama T. [6. Basic Knowledge for Radiation Treatment Planning]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2021; 77:506-514. [PMID: 34011794 DOI: 10.6009/jjrt.2021_jsrt_77.5.506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yoshihiro Ueda
- Department of Radiation Oncology, Osaka International Center Institute
| | - Tsukasa Wakayama
- Department of Radiological Technology, Hyogo College of Medicine
| |
Collapse
|
21
|
Ma TM, Lamb JM, Casado M, Wang X, Basehart TV, Yang Y, Low D, Sheng K, Agazaryan N, Nickols NG, Cao M, Steinberg ML, Kishan AU. Magnetic resonance imaging-guided stereotactic body radiotherapy for prostate cancer (mirage): a phase iii randomized trial. BMC Cancer 2021; 21:538. [PMID: 33975579 PMCID: PMC8114498 DOI: 10.1186/s12885-021-08281-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 05/02/2021] [Indexed: 02/07/2023] Open
Abstract
Background Stereotactic body radiotherapy (SBRT) is becoming increasingly used in treating localized prostate cancer (PCa), with evidence showing similar toxicity and efficacy profiles when compared with longer courses of definitive radiation. Magnetic resonance imaging (MRI)-guided radiotherapy has multiple potential advantages over standard computed tomography (CT)-guided radiotherapy, including enhanced prostate visualization (abrogating the need for fiducials and MRI fusion), enhanced identification of the urethra, the ability to track the prostate in real-time, and the capacity to perform online adaptive planning. However, it is unknown whether these potential advantages translate into improved outcomes. This phase III randomized superiority trial is designed to prospectively evaluate whether toxicity is lower after MRI-guided versus CT-guided SBRT. Methods Three hundred men with localized PCa will be randomized in a 1:1 ratio to SBRT using CT or MRI guidance. Randomization will be stratified by baseline International Prostate Symptom Score (IPSS) (≤15 or > 15) and prostate gland volume (≤50 cc or > 50 cc). Five fractions of 8 Gy will be delivered to the prostate over the course of fourteen days, with or without hormonal therapy and elective nodal radiotherapy (to a dose of 5 Gy per fraction) as per the investigator’s discretion. The primary endpoint is the incidence of physician-reported acute grade ≥ 2 genitourinary (GU) toxicity (during the first 90 days after SBRT), as assessed by the CTCAE version 4.03 scale. Secondary clinical endpoints include incidence of acute grade ≥ 2 gastrointestinal (GI) toxicity, 5-year cumulative incidences of physician-reported late grade ≥ 2 GU and GI toxicity, temporal changes in patient-reported quality of life (QOL) outcomes, 5-year biochemical recurrence-free survival and the proportion of fractions of MRI-guided SBRT in which online adaptive radiotherapy is used. Discussion The MIRAGE trial is the first randomized trial comparing MRI-guided with standard CT-guided SBRT for localized PCa. The primary hypothesis is that MRI-guided SBRT will lead to an improvement in the cumulative incidence of acute grade ≥ 2 GU toxicity when compared to CT-guided SBRT. The pragmatic superiority design focused on an acute toxicity endpoint will allow an early comparison of the two technologies. Trial registration Clinicaltrials.gov identifier: NCT04384770. Date of registration: May 12, 2020. https://clinicaltrials.gov/ct2/show/NCT04384770 Protocol version Version 2.1, Aug 28, 2020. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08281-x.
Collapse
Affiliation(s)
- Ting Martin Ma
- Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza Driveway, Suite # B265, Medical Plaza Driveway, Los Angeles, CA, 90095, USA
| | - James M Lamb
- Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza Driveway, Suite # B265, Medical Plaza Driveway, Los Angeles, CA, 90095, USA
| | - Maria Casado
- Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza Driveway, Suite # B265, Medical Plaza Driveway, Los Angeles, CA, 90095, USA
| | - Xiaoyan Wang
- Department of Medicine Statistics Core, University of California Los Angeles, 200 Medical Plaza Driveway, Suite # B265, Medical Plaza Driveway, Los Angeles, CA, 90095, USA
| | - T Vincent Basehart
- Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza Driveway, Suite # B265, Medical Plaza Driveway, Los Angeles, CA, 90095, USA
| | - Yingli Yang
- Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza Driveway, Suite # B265, Medical Plaza Driveway, Los Angeles, CA, 90095, USA
| | - Daniel Low
- Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza Driveway, Suite # B265, Medical Plaza Driveway, Los Angeles, CA, 90095, USA
| | - Ke Sheng
- Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza Driveway, Suite # B265, Medical Plaza Driveway, Los Angeles, CA, 90095, USA
| | - Nzhde Agazaryan
- Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza Driveway, Suite # B265, Medical Plaza Driveway, Los Angeles, CA, 90095, USA
| | - Nicholas G Nickols
- Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza Driveway, Suite # B265, Medical Plaza Driveway, Los Angeles, CA, 90095, USA
| | - Minsong Cao
- Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza Driveway, Suite # B265, Medical Plaza Driveway, Los Angeles, CA, 90095, USA
| | - Michael L Steinberg
- Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza Driveway, Suite # B265, Medical Plaza Driveway, Los Angeles, CA, 90095, USA
| | - Amar U Kishan
- Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza Driveway, Suite # B265, Medical Plaza Driveway, Los Angeles, CA, 90095, USA. .,Department of Urology, University of California Los Angeles, 200 Medical Plaza Driveway, Suite # B265, Medical Plaza Driveway, Los Angeles, CA, 90095, USA.
| |
Collapse
|
22
|
Hijab A, Tocco B, Hanson I, Meijer H, Nyborg CJ, Bertelsen AS, Smeenk RJ, Smith G, Michalski J, Baumann BC, Hafeez S. MR-Guided Adaptive Radiotherapy for Bladder Cancer. Front Oncol 2021; 11:637591. [PMID: 33718230 PMCID: PMC7947660 DOI: 10.3389/fonc.2021.637591] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy has an important role in the curative and palliative treatment settings for bladder cancer. As a target for radiotherapy the bladder presents a number of technical challenges. These include poor tumor visualization and the variability in bladder size and position both between and during treatment delivery. Evidence favors the use of magnetic resonance imaging (MRI) as an important means of tumor visualization and local staging. The availability of hybrid systems incorporating both MRI scanning capabilities with the linear accelerator (MR-Linac) offers opportunity for in-room and real-time MRI scanning with ability of plan adaption at each fraction while the patient is on the treatment couch. This has a number of potential advantages for bladder cancer patients. In this article, we examine the technical challenges of bladder radiotherapy and explore how magnetic resonance (MR) guided radiotherapy (MRgRT) could be leveraged with the aim of improving bladder cancer patient outcomes. However, before routine clinical implementation robust evidence base to establish whether MRgRT translates into improved patient outcomes should be ascertained.
Collapse
Affiliation(s)
- Adham Hijab
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom.,Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Boris Tocco
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom.,Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Ian Hanson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom.,Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Hanneke Meijer
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | | | - Robert Jan Smeenk
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gillian Smith
- Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Jeff Michalski
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Brian C Baumann
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Shaista Hafeez
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom.,Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
23
|
Speight R, Dubec M, Eccles CL, George B, Henry A, Herbert T, Johnstone RI, Liney GP, McCallum H, Schmidt MA. IPEM topical report: guidance on the use of MRI for external beam radiotherapy treatment planning . Phys Med Biol 2021; 66:055025. [PMID: 33450742 DOI: 10.1088/1361-6560/abdc30] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022]
Abstract
This document gives guidance for multidisciplinary teams within institutions setting up and using an MRI-guided radiotherapy (RT) treatment planning service. It has been written by a multidisciplinary working group from the Institute of Physics and Engineering in Medicine (IPEM). Guidance has come from the experience of the institutions represented in the IPEM working group, in consultation with other institutions, and where appropriate references are given for any relevant legislation, other guidance documentation and information in the literature. Guidance is only given for MRI acquired for external beam RT treatment planning in a CT-based workflow, i.e. when MRI is acquired and registered to CT with the purpose of aiding delineation of target or organ at risk volumes. MRI use for treatment response assessment, MRI-only RT and other RT treatment types such as brachytherapy and gamma radiosurgery are not considered within the scope of this document. The aim was to produce guidance that will be useful for institutions who are setting up and using a dedicated MR scanner for RT (referred to as an MR-sim) and those who will have limited time on an MR scanner potentially managed outside of the RT department, often by radiology. Although not specifically covered in this document, there is an increase in the use of hybrid MRI-linac systems worldwide and brief comments are included to highlight any crossover with the early implementation of this technology. In this document, advice is given on introducing a RT workload onto a non-RT-dedicated MR scanner, as well as planning for installation of an MR scanner dedicated for RT. Next, practical guidance is given on the following, in the context of RT planning: training and education for all staff working in and around an MR scanner; RT patient set-up on an MR scanner; MRI sequence optimisation for RT purposes; commissioning and quality assurance (QA) to be performed on an MR scanner; and MRI to CT registration, including commissioning and QA.
Collapse
Affiliation(s)
- Richard Speight
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Michael Dubec
- The Christie NHS Foundation Trust and the University of Manchester, Manchester, United Kingdom
| | - Cynthia L Eccles
- The Christie NHS Foundation Trust and the University of Manchester, Manchester, United Kingdom
| | - Ben George
- University of Oxford and GenesisCare, Oxford, United Kingdom
| | - Ann Henry
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust and University of Leeds, Leeds, United Kingdom
| | - Trina Herbert
- Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | - Gary P Liney
- Ingham Institute for Applied Medical Research and Liverpool Cancer Therapy Centre, Liverpool, Sydney, NSW 2170, Australia
| | - Hazel McCallum
- Translational and Clinical Research Institute, Newcastle University and Northern Centre for Cancer Care, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Maria A Schmidt
- Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
24
|
Yang J, Vedam S, Lee B, Castillo P, Sobremonte A, Hughes N, Mohammedsaid M, Wang J, Choi S. Online adaptive planning for prostate stereotactic body radiotherapy using a 1.5 Tesla magnetic resonance imaging-guided linear accelerator. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2020; 17:20-24. [PMID: 33898773 PMCID: PMC8057955 DOI: 10.1016/j.phro.2020.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/19/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
Recent advances in integrating 1.5 Tesla magnetic resonance (MR) imaging with a linear accelerator (MR-Linac) allow MR-guided stereotactic body radiotherapy (SBRT) for prostate cancer. Choosing an optimal strategy for daily online plan adaptation is particularly important for MR-guided radiotherapy. We analyzed deformable dose accumulation on scans from four patients and found that daily anatomy changes had little impact on the delivered dose, with the dose to the prostate within 0.5% and dose to the rectum/bladder mostly less than 0.5 Gy. These findings could help in the choice of an optimal strategy for online plan adaptation for MR-guided prostate SBRT.
Collapse
Affiliation(s)
- Jinzhong Yang
- Department of Radiation Physics, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Sastry Vedam
- Department of Radiation Physics, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Belinda Lee
- Department of Radiation Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Pamela Castillo
- Department of Radiation Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Angela Sobremonte
- Department of Radiation Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Neil Hughes
- Department of Radiation Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Mustefa Mohammedsaid
- Department of Radiation Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Jihong Wang
- Department of Radiation Physics, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Seungtaek Choi
- Department of Radiation Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| |
Collapse
|
25
|
Tocco BR, Kishan AU, Ma TM, Kerkmeijer LGW, Tree AC. MR-Guided Radiotherapy for Prostate Cancer. Front Oncol 2020; 10:616291. [PMID: 33363041 PMCID: PMC7757637 DOI: 10.3389/fonc.2020.616291] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/09/2020] [Indexed: 01/08/2023] Open
Abstract
External beam radiotherapy remains the primary treatment modality for localized prostate cancer. The radiobiology of prostate carcinoma lends itself to hypofractionation, with recent studies showing good outcomes with shorter treatment schedules. However, the ability to accurately deliver hypofractionated treatment is limited by current image-guided techniques. Magnetic resonance imaging is the main diagnostic tool for localized prostate cancer and its use in the therapeutic setting offers anatomical information to improve organ delineation. MR-guided radiotherapy, with daily re-planning, has shown early promise in the accurate delivery of radiotherapy. In this article, we discuss the shortcomings of current image-guidance strategies and the potential benefits and limitations of MR-guided treatment for prostate cancer. We also recount present experiences of MR-linac workflow and the opportunities afforded by this technology.
Collapse
Affiliation(s)
- Boris R. Tocco
- Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Amar U. Kishan
- University of California, Los Angeles, Los Angeles, CA, United States
| | - Ting Martin Ma
- University of California, Los Angeles, Los Angeles, CA, United States
| | | | - Alison C. Tree
- Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, London, United Kingdom
- Department of Radiotherapy and Imaging, Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
26
|
Gustafsson CJ, Swärd J, Adalbjörnsson SI, Jakobsson A, Olsson LE. Development and evaluation of a deep learning based artificial intelligence for automatic identification of gold fiducial markers in an MRI-only prostate radiotherapy workflow. Phys Med Biol 2020; 65:225011. [PMID: 33179610 DOI: 10.1088/1361-6560/abb0f9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Identification of prostate gold fiducial markers in magnetic resonance imaging (MRI) images is challenging when CT images are not available, due to misclassifications from intra-prostatic calcifications. It is also a time consuming task and automated identification methods have been suggested as an improvement for both objectives. Multi-echo gradient echo (MEGRE) images have been utilized for manual fiducial identification with 100% detection accuracy. The aim is therefore to develop an automatic deep learning based method for fiducial identification in MRI images intended for MRI-only prostate radiotherapy. MEGRE images from 326 prostate cancer patients with fiducials were acquired on a 3T MRI, post-processed with N4 bias correction, and the fiducial center of mass (CoM) was identified. A 9 mm radius sphere was created around the CoM as ground truth. A deep learning HighRes3DNet model for semantic segmentation was trained using image augmentation. The model was applied to 39 MRI-only patients and 3D probability maps for fiducial location and segmentation were produced and spatially smoothed. In each of the three largest probability peaks, a 9 mm radius sphere was defined. Detection sensitivity and geometric accuracy was assessed. To raise awareness of potential false findings a 'BeAware' score was developed, calculated from the total number and quality of the probability peaks. All datasets, annotations and source code used were made publicly available. The detection sensitivity for all fiducials were 97.4%. Thirty-six out of thirty-nine patients had all fiducial markers correctly identified. All three failed patients generated a user notification using the BeAware score. The mean absolute difference between the detected fiducial and ground truth CoM was 0.7 ± 0.9 [0 3.1] mm. A deep learning method for automatic fiducial identification in MRI images was developed and evaluated with state-of-the-art results. The BeAware score has the potential to notify the user regarding patients where the proposed method is uncertain.
Collapse
Affiliation(s)
- Christian Jamtheim Gustafsson
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden. Department of Translational Sciences, Medical Radiation Physics, Lund University, Malmö, Sweden
| | | | | | | | | |
Collapse
|
27
|
Dunlop A, Mitchell A, Tree A, Barnes H, Bower L, Chick J, Goodwin E, Herbert T, Lawes R, McNair H, McQuaid D, Mohajer J, Nilawar R, Pathmanathan A, Smith G, Hanson I, Nill S, Oelfke U. Daily adaptive radiotherapy for patients with prostate cancer using a high field MR-linac: Initial clinical experiences and assessment of delivered doses compared to a C-arm linac. Clin Transl Radiat Oncol 2020; 23:35-42. [PMID: 32395640 PMCID: PMC7210377 DOI: 10.1016/j.ctro.2020.04.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/19/2020] [Accepted: 04/26/2020] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION MR-guided adapted radiotherapy (MRgART) using a high field MR-linac has recently become available. We report the estimated delivered fractional dose of the first five prostate cancer patients treated at our centre using MRgART and compare this to C-Arm linac daily Image Guided Radiotherapy (IGRT). METHODS Patients were treated using adapted treatment plans shaped to their daily anatomy. The treatments were recalculated on an MR image acquired immediately prior to treatment delivery in order to estimate the delivered fractional dose. C-arm linac non-adapted VMAT treatment plans were recalculated on the same MR images to estimate the fractional dose that would have been delivered using conventional radiotherapy techniques using a daily IGRT protocol. RESULTS 95% and 93% of mandatory target coverage objectives and organ at risk dose constraints were achieved by MRgART and C-arm linac delivered dose estimates, respectively. Both delivery techniques were estimated to have achieved 98% of mandatory Organ At Risk (OAR) dose constraints whereas for the target clinical goals, 86% and 80% were achieved by MRgART and C-arm linac delivered dose estimates. CONCLUSIONS Prostate MRgART can be delivered using the a high field MR-linac. Radiotherapy performed on a C-arm linac offers a good solution for prostate cancer patients who present with favourable anatomy at the time of reference imaging and demonstrate stable anatomy throughout the course of their treatment. For patients with critical OARs abutting target volumes on their reference image we have demonstrated the potential for a target dose coverage improvement for MRgART compared to C-arm linac treatment.
Collapse
Affiliation(s)
- Alex Dunlop
- The Joint Department of Physics, the Royal Marsden Hospital and the Institute of Cancer Research, United Kingdom
| | - Adam Mitchell
- The Joint Department of Physics, the Royal Marsden Hospital and the Institute of Cancer Research, United Kingdom
| | - Alison Tree
- The Royal Marsden NHS Foundation Trust and the Institute of Cancer Research, United Kingdom
| | - Helen Barnes
- The Royal Marsden NHS Foundation Trust, United Kingdom
| | - Lorna Bower
- The Royal Marsden NHS Foundation Trust and the Institute of Cancer Research, United Kingdom
| | - Joan Chick
- The Joint Department of Physics, the Royal Marsden Hospital and the Institute of Cancer Research, United Kingdom
| | - Edmund Goodwin
- The Joint Department of Physics, the Royal Marsden Hospital and the Institute of Cancer Research, United Kingdom
| | - Trina Herbert
- The Royal Marsden NHS Foundation Trust, United Kingdom
| | - Rebekah Lawes
- The Royal Marsden NHS Foundation Trust, United Kingdom
| | - Helen McNair
- The Royal Marsden NHS Foundation Trust and the Institute of Cancer Research, United Kingdom
| | - Dualta McQuaid
- The Joint Department of Physics, the Royal Marsden Hospital and the Institute of Cancer Research, United Kingdom
| | - Jonathan Mohajer
- The Joint Department of Physics, the Royal Marsden Hospital and the Institute of Cancer Research, United Kingdom
| | - Rahul Nilawar
- The Joint Department of Physics, the Royal Marsden Hospital and the Institute of Cancer Research, United Kingdom
| | | | - Gillian Smith
- The Royal Marsden NHS Foundation Trust, United Kingdom
| | - Ian Hanson
- The Joint Department of Physics, the Royal Marsden Hospital and the Institute of Cancer Research, United Kingdom
| | - Simeon Nill
- The Joint Department of Physics, the Royal Marsden Hospital and the Institute of Cancer Research, United Kingdom
| | - Uwe Oelfke
- The Joint Department of Physics, the Royal Marsden Hospital and the Institute of Cancer Research, United Kingdom
| |
Collapse
|
28
|
Murray J, Tree AC. Prostate cancer - Advantages and disadvantages of MR-guided RT. Clin Transl Radiat Oncol 2019; 18:68-73. [PMID: 31341979 PMCID: PMC6630102 DOI: 10.1016/j.ctro.2019.03.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 03/30/2019] [Accepted: 03/30/2019] [Indexed: 12/04/2022] Open
Abstract
External beam radiotherapy for prostate cancer is an optimal treatment choice for men with localised prostate cancer and is associated with long term disease control in most patients. Image-guided prostate radiotherapy is standard of care, however, current techniques can include invasive procedures with imaging of poor soft tissue resolution, thus limiting accuracy. MRI is the imaging of choice for local prostate cancer staging and in radiotherapy planning has been shown to reduce target volume and reduce inter-observer prostate contouring variability. The ultimate aim would be to have a MR-only workflow for prostate radiotherapy. Within this article, we discuss these opportunities and challenges, relevant due to the increasing availability of MR-guided radiotherapy. Prospective multi-centre studies are underway to determine the feasibility of MR-guided prostate radiotherapy and daily adaptive replanning. In parallel, development and adaptation of the existing radiotherapy multidisciplinary workforce is essential to enable an efficient and effective MR-guided radiotherapy workflow. This technology potentially provides us with the anatomical and biological information to further improve outcomes for our patients.
Collapse
Key Words
- ADT, androgen deprivation therapy
- CBCT, cone beam CT
- CTV, clinical target volume
- Daily adaptive replanning
- GI, gastrointestinal
- GU, genitourinary
- IGRT, image-guided radiotherapy
- MRI
- MRI, magnetic resonance imaging
- OAR, organ at risk
- PTV, planning target volume
- Prostate cancer
- RTOG, radiation therapy oncology group
- Radiotherapy
- mpMRI, multi-parametric MRI
Collapse
Affiliation(s)
| | - Alison C. Tree
- The Royal Marsden NHS Foundation Trust and the Institute of Cancer Research, London UK
| |
Collapse
|
29
|
Pathmanathan AU, McNair HA, Schmidt MA, Brand DH, Delacroix L, Eccles CL, Gordon A, Herbert T, van As NJ, Huddart RA, Tree AC. Comparison of prostate delineation on multimodality imaging for MR-guided radiotherapy. Br J Radiol 2019; 92:20180948. [PMID: 30676772 PMCID: PMC6540870 DOI: 10.1259/bjr.20180948] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE: With increasing incorporation of MRI in radiotherapy, we investigate two MRI sequences for prostate delineation in radiographer-led image guidance. METHODS: Five therapeutic radiographers contoured the prostate individually on CT, T2 weighted (T2W) and T2* weighted (T2*W) imaging for 10 patients. Contours were analysed with Monaco ADMIRE (research v. 2.0) to assess interobserver variability and accuracy by comparison with a gold standard clinician contour. Observers recorded time taken for contouring and scored image quality and confidence in contouring. RESULTS: There is good agreement when comparing radiographer contours to the gold-standard for all three imaging types with Dice similarity co-efficient 0.91-0.94, Cohen's κ 0.85-0.91, Hausdorff distance 4.6-7.6 mm and mean distance between contours 0.9-1.2 mm. In addition, there is good concordance between radiographers across all imaging modalities. Both T2W and T2*W MRI show reduced interobserver variability and improved accuracy compared to CT, this was statistically significant for T2*W imaging compared to CT across all four comparison metrics. Comparing MRI sequences reveals significantly reduced interobserver variability and significantly improved accuracy on T2*W compared to T2W MRI for DSC and Cohen's κ. Both MRI sequences scored significantly higher compared to CT for image quality and confidence in contouring, particularly T2*W. This was also reflected in the shorter time for contouring, measuring 15.4, 9.6 and 9.8 min for CT, T2W and T2*W MRI respectively. Conclusion: Therapeutic radiographer prostate contours are more accurate, show less interobserver variability and are more confidently and quickly outlined on MRI compared to CT, particularly using T2*W MRI. Advances in knowledge: Our work is relevant for MRI sequence choice and development of the roles of the interprofessional team in the advancement of MRI-guided radiotherapy.
Collapse
Affiliation(s)
| | - Helen A McNair
- The Royal Marsden Hospital NHS Foundation Trust, Downs Road, Sutton, United Kingdom
| | | | | | - Louise Delacroix
- The Royal Marsden Hospital NHS Foundation Trust, Downs Road, Sutton, United Kingdom
| | | | - Alexandra Gordon
- The Royal Marsden Hospital NHS Foundation Trust, Downs Road, Sutton, United Kingdom
| | - Trina Herbert
- The Royal Marsden Hospital NHS Foundation Trust, Downs Road, Sutton, United Kingdom
| | | | | | | |
Collapse
|