1
|
Du Y, Dong S, Zou W. Exploring the underlying mechanisms of exercise as therapy for multiple sclerosis: insights from preclinical studies. Front Cell Neurosci 2024; 18:1460262. [PMID: 39479523 PMCID: PMC11521911 DOI: 10.3389/fncel.2024.1460262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system CNS characterized by demyelination, inflammation, and neurodegenerative changes, making it the most common nontraumatic disabling neurological disease in young adults. While current pharmacological treatments primarily target immunomodulation or immunosuppression, exercise is gaining increasing attention from the scientific community as an adjunctive therapy. This review explores the potential biological mechanisms of exercise in animal models of MS, focusing on its effects on neuroprotection and inflammation. The review examines how exercise inhibits pro-inflammatory microglial reactivity, stabilizes the blood-brain barrier, and enhances neurotrophic factor expression in animal studies. Future research directions are proposed by summarizing the evidence and limitations of existing animal models of MS, emphasizing the need to further validate these mechanisms in humans to better integrate exercise into the comprehensive management of MS. Additionally, investigating exercise-induced biomarkers for MS symptom reduction may provide a scientific basis for new therapeutic strategies.
Collapse
Affiliation(s)
- Yunpeng Du
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shuhan Dong
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Zou
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Azzolini F, Dolcetti E, Bruno A, Rovella V, Centonze D, Buttari F. Physical exercise and synaptic protection in human and pre-clinical models of multiple sclerosis. Neural Regen Res 2024; 19:1768-1771. [PMID: 38103243 PMCID: PMC10960279 DOI: 10.4103/1673-5374.389359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/11/2023] [Accepted: 09/14/2023] [Indexed: 12/18/2023] Open
Abstract
In multiple sclerosis, only immunomodulatory and immunosuppressive drugs are recognized as disease-modifying therapies. However, in recent years, several data from pre-clinical and clinical studies suggested a possible role of physical exercise as disease-modifying therapy in multiple sclerosis. Current evidence is sparse and often conflicting, and the mechanisms underlying the neuroprotective and antinflammatory role of exercise in multiple sclerosis have not been fully elucidated. Data, mainly derived from pre-clinical studies, suggest that exercise could enhance long-term potentiation and thus neuroplasticity, could reduce neuroinflammation and synaptopathy, and dampen astrogliosis and microgliosis. In humans, most trials focused on direct clinical and MRI outcomes, as investigating synaptic, neuroinflammatory, and pathological changes is not straightforward compared to animal models. The present review analyzed current evidence and limitations in research concerning the potential disease-modifying therapy effects of exercise in multiple sclerosis in animal models and human studies.
Collapse
Affiliation(s)
| | | | | | - Valentina Rovella
- Department of System Medicine, University of Tor Vergata, Rome, Italy
| | - Diego Centonze
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Italy
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Fabio Buttari
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Italy
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| |
Collapse
|
3
|
Schiffmann D, Lampkemeyer V, Lindner M, Fleck AK, Koch K, Eschborn M, Liebmann M, Strecker JK, Minnerup J, Wiendl H, Klotz L. Endurance Exercise Attenuates Established Progressive Experimental Autoimmune Encephalomyelitis and Is Associated with an Amelioration of Innate Immune Responses in NOD Mice. Int J Mol Sci 2023; 24:15798. [PMID: 37958787 PMCID: PMC10648469 DOI: 10.3390/ijms242115798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease causing axonal degeneration and demyelination. Exercise in mice with active monophasic experimental autoimmune encephalomyelitis (EAE) attenuates disease severity associated with diverse impacts on T cell-mediated immunity. However, studies have so far focused on preventive approaches. In this study, we investigated the impact of endurance exercise on established EAE disease in a model of secondary progressive MS. When the exercise program on motorized running wheels was started at disease manifestation, the disease course was significantly ameliorated. This was associated with a significant decrease in B cell, dendritic cell, and neutrophil cell counts in the central nervous system (CNS). Furthermore, we observed an increased expression of major histocompatibility complex class II (MHC-II) as well as alterations in costimulatory molecule expression in CNS B cells and dendritic cells. In contrast, T cell responses were not altered in the CNS or periphery. Thus, exercise training is capable of attenuating the disease course even in established secondary progressive EAE, potentially via modulation of the innate immune compartment. Further studies are warranted to corroborate our findings and assess the potential of this lifestyle intervention as a complementary therapeutic strategy in secondary progressive MS patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany; (D.S.)
| |
Collapse
|
4
|
Martin SJ, Schneider R. Multiple sclerosis and exercise-A disease-modifying intervention of mice or men? Front Neurol 2023; 14:1190208. [PMID: 37885474 PMCID: PMC10598461 DOI: 10.3389/fneur.2023.1190208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023] Open
Abstract
Research suggests that physical exercise can promote an anti-inflammatory and neuroprotective state. If so, increasing or optimizing exercise could be considered a 'disease-modifying intervention' in neuroinflammatory diseases, such as multiple sclerosis (MS). Exercise intervention studies conducted in animal models of MS are promising. Various aerobic and strength training regimes have been shown to delay disease onset and to reduce both the clinical and pathological disease severity in mice. However, fundamental differences between the physiology of animals and humans, the disease states studied, and the timing of exercise intervention are significant. In animal models of MS, most exercise interventions begin before disease initiation and before any clinical sign of disease. In contrast, studies in humans recruit participants on average nearly a decade after diagnosis and often once disability is established. If, as is thought to be the case for disease-modifying treatments, the immunomodulatory effect of exercise decreases with advancing disease duration, current studies may therefore fail to detect the true disease-modifying potential. Clinical studies in early disease cohorts are needed to determine the role of exercise as a disease-modifying intervention for people with MS.
Collapse
Affiliation(s)
- Sarah-Jane Martin
- BARLO MS Center, St. Michael's Hospital, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Institute of Infection & Immunity, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Raphael Schneider
- BARLO MS Center, St. Michael's Hospital, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Goldberg Y, Segal S, Hamdi L, Nabat H, Fainstein N, Mediouni E, Asis Y, Theotokis P, Salamotas I, Grigoriadis N, Katz A, Ben-Hur T, Einstein O. High-intensity interval training attenuates development of autoimmune encephalomyelitis solely by systemic immunomodulation. Sci Rep 2023; 13:16513. [PMID: 37783693 PMCID: PMC10545672 DOI: 10.1038/s41598-023-43534-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023] Open
Abstract
The impact of high-intensity interval training (HIIT) on the central nervous system (CNS) in autoimmune neuroinflammation is not known. The aim of this study was to determine the direct effects of HIIT on the CNS and development of experimental autoimmune encephalomyelitis (EAE). Healthy mice were subjected to HIIT by treadmill running and the proteolipid protein (PLP) transfer EAE model was utilized. To examine neuroprotection, PLP-reactive lymph-node cells (LNCs) were transferred to HIIT and sedentary (SED) mice. To examine immunomodulation, PLP-reactive LNCs from HIIT and SED donor mice were transferred to naïve recipients and analyzed in vitro. HIIT in recipient mice did not affect the development of EAE following exposure to PLP-reactive LNCs. HIIT mice exhibited enhanced migration of systemic autoimmune cells into the CNS and increased demyelination. In contrast, EAE severity in recipient mice injected with PLP-reactive LNCs from HIIT donor mice was significantly diminished. The latter positive effect was associated with decreased migration of autoimmune cells into the CNS and inhibition of very late antigen (VLA)-4 expression in LNCs. Thus, the beneficial effect of HIIT on EAE development is attributed solely to systemic immunomodulatory effects, likely because of systemic inhibition of autoreactive cell migration and reduced VLA-4 integrin expression.
Collapse
Affiliation(s)
- Yehuda Goldberg
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, 40700, Ariel, Israel
| | - Shir Segal
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, 40700, Ariel, Israel
| | - Liel Hamdi
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, 40700, Ariel, Israel
| | - Hanan Nabat
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, 40700, Ariel, Israel
| | - Nina Fainstein
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, 40700, Ariel, Israel
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Efrat Mediouni
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, 40700, Ariel, Israel
| | - Yarden Asis
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, 40700, Ariel, Israel
| | - Paschalis Theotokis
- B' Department of Neurology, AHEPA University Hospital of Thessaloniki, Thessaloniki, Greece
| | - Ilias Salamotas
- B' Department of Neurology, AHEPA University Hospital of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- B' Department of Neurology, AHEPA University Hospital of Thessaloniki, Thessaloniki, Greece
| | - Abram Katz
- Åstrand Laboratory, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Tamir Ben-Hur
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Ofira Einstein
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, 40700, Ariel, Israel.
| |
Collapse
|
6
|
Zong B, Yu F, Zhang X, Zhao W, Li S, Li L. Mechanisms underlying the beneficial effects of physical exercise on multiple sclerosis: focus on immune cells. Front Immunol 2023; 14:1260663. [PMID: 37841264 PMCID: PMC10570846 DOI: 10.3389/fimmu.2023.1260663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Multiple sclerosis (MS) is a prevalent neuroimmunological illness that leads to neurological disability in young adults. Although the etiology of MS is heterogeneous, it is well established that aberrant activity of adaptive and innate immune cells plays a crucial role in its pathogenesis. Several immune cell abnormalities have been described in MS and its animal models, including T lymphocytes, B lymphocytes, dendritic cells, neutrophils, microglia/macrophages, and astrocytes, among others. Physical exercise offers a valuable alternative or adjunctive disease-modifying therapy for MS. A growing body of evidence indicates that exercise may reduce the autoimmune responses triggered by immune cells in MS. This is partially accomplished by restricting the infiltration of peripheral immune cells into the central nervous system (CNS) parenchyma, curbing hyperactivation of immune cells, and facilitating a transition in the balance of immune cells from a pro-inflammatory to an anti-inflammatory state. This review provides a succinct overview of the correlation between physical exercise, immune cells, and MS pathology, and highlights the potential benefits of exercise as a strategy for the prevention and treatment of MS.
Collapse
Affiliation(s)
- Boyi Zong
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Fengzhi Yu
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
| | - Xiaoyou Zhang
- School of Physical Education, Hubei University, Wuhan, China
| | - Wenrui Zhao
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Shichang Li
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Lin Li
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| |
Collapse
|
7
|
Wang M, Zhang H, Liang J, Huang J, Chen N. Exercise suppresses neuroinflammation for alleviating Alzheimer's disease. J Neuroinflammation 2023; 20:76. [PMID: 36935511 PMCID: PMC10026496 DOI: 10.1186/s12974-023-02753-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 02/28/2023] [Indexed: 03/21/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease, with the characteristics of neurofibrillary tangle (NFT) and senile plaque (SP) formation. Although great progresses have been made in clinical trials based on relevant hypotheses, these studies are also accompanied by the emergence of toxic and side effects, and it is an urgent task to explore the underlying mechanisms for the benefits to prevent and treat AD. Herein, based on animal experiments and a few clinical trials, neuroinflammation in AD is characterized by long-term activation of pro-inflammatory microglia and the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasomes. Damaged signals from the periphery and within the brain continuously activate microglia, thus resulting in a constant source of inflammatory responses. The long-term chronic inflammatory response also exacerbates endoplasmic reticulum oxidative stress in microglia, which triggers microglia-dependent immune responses, ultimately leading to the occurrence and deterioration of AD. In this review, we systematically summarized and sorted out that exercise ameliorates AD by directly and indirectly regulating immune response of the central nervous system and promoting hippocampal neurogenesis to provide a new direction for exploring the neuroinflammation activity in AD.
Collapse
Affiliation(s)
- Minghui Wang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| | - Hu Zhang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| | - Jiling Liang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| | - Jielun Huang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China.
| |
Collapse
|
8
|
Neurorehabilitation in Multiple Sclerosis-A Review of Present Approaches and Future Considerations. J Clin Med 2022; 11:jcm11237003. [PMID: 36498578 PMCID: PMC9739865 DOI: 10.3390/jcm11237003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Multiple sclerosis is an increasingly prevalent disease, representing the leading cause of non-traumatic neurological disease in Europe and North America. The most common symptoms include gait deficits, balance and coordination impairments, fatigue, spasticity, dysphagia and an overactive bladder. Neurorehabilitation therapeutic approaches aim to alleviate symptoms and improve the quality of life through promoting positive immunological transformations and neuroplasticity. The purpose of this study is to evaluate the current treatments for the most debilitating symptoms in multiple sclerosis, identify areas for future improvement, and provide a reference guide for practitioners in the field. It analyzes the most cited procedures currently in use for the management of a number of symptoms affecting the majority of patients with multiple sclerosis, from different training routines to cognitive rehabilitation and therapies using physical agents, such as electrostimulation, hydrotherapy, cryotherapy and electromagnetic fields. Furthermore, it investigates the quality of evidence for the aforementioned therapies and the different tests applied in practice to assess their utility. Lastly, the study looks at potential future candidates for the treatment and evaluation of patients with multiple sclerosis and the supposed benefits they could bring in clinical settings.
Collapse
|
9
|
Sheinboim D, Parikh S, Manich P, Markus I, Dahan S, Parikh R, Stubbs E, Cohen G, Zemser-Werner V, Bell RE, Ruiz SA, Percik R, Brenner R, Leibou S, Vaknine H, Arad G, Gerber Y, Keinan-Boker L, Shimony T, Bikovski L, Goldstein N, Constantini K, Labes S, Mordechai S, Doron H, Lonescu A, Ziv T, Nizri E, Choshen G, Eldar-Finkelman H, Tabach Y, Helman A, Ben-Eliyahu S, Erez N, Perlson E, Geiger T, Ben-Zvi D, Khaled M, Gepner Y, Levy C. An Exercise-Induced Metabolic Shield in Distant Organs Blocks Cancer Progression and Metastatic Dissemination. Cancer Res 2022; 82:4164-4178. [PMID: 36084256 PMCID: PMC9762351 DOI: 10.1158/0008-5472.can-22-0237] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/16/2022] [Accepted: 08/31/2022] [Indexed: 01/07/2023]
Abstract
Exercise prevents cancer incidence and recurrence, yet the underlying mechanism behind this relationship remains mostly unknown. Here we report that exercise induces the metabolic reprogramming of internal organs that increases nutrient demand and protects against metastatic colonization by limiting nutrient availability to the tumor, generating an exercise-induced metabolic shield. Proteomic and ex vivo metabolic capacity analyses of murine internal organs revealed that exercise induces catabolic processes, glucose uptake, mitochondrial activity, and GLUT expression. Proteomic analysis of routinely active human subject plasma demonstrated increased carbohydrate utilization following exercise. Epidemiologic data from a 20-year prospective study of a large human cohort of initially cancer-free participants revealed that exercise prior to cancer initiation had a modest impact on cancer incidence in low metastatic stages but significantly reduced the likelihood of highly metastatic cancer. In three models of melanoma in mice, exercise prior to cancer injection significantly protected against metastases in distant organs. The protective effects of exercise were dependent on mTOR activity, and inhibition of the mTOR pathway with rapamycin treatment ex vivo reversed the exercise-induced metabolic shield. Under limited glucose conditions, active stroma consumed significantly more glucose at the expense of the tumor. Collectively, these data suggest a clash between the metabolic plasticity of cancer and exercise-induced metabolic reprogramming of the stroma, raising an opportunity to block metastasis by challenging the metabolic needs of the tumor. SIGNIFICANCE Exercise protects against cancer progression and metastasis by inducing a high nutrient demand in internal organs, indicating that reducing nutrient availability to tumor cells represents a potential strategy to prevent metastasis. See related commentary by Zerhouni and Piskounova, p. 4124.
Collapse
Affiliation(s)
- Danna Sheinboim
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shivang Parikh
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paulee Manich
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Irit Markus
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv, Israel
| | - Sapir Dahan
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Roma Parikh
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elisa Stubbs
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv, Israel
| | - Gali Cohen
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv, Israel.,Stanley Steyer Institute for Cancer Epidemiology and Research, Tel Aviv University, Tel Aviv, Israel
| | | | - Rachel E. Bell
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sara Arciniegas Ruiz
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ruth Percik
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Institute of Endocrinology, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Ronen Brenner
- Institute of Oncology, E. Wolfson Medical Center, Holon, Israel
| | - Stav Leibou
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hananya Vaknine
- Institute of Pathology, E. Wolfson Medical Center, Holon, Israel
| | - Gali Arad
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yariv Gerber
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv, Israel.,Stanley Steyer Institute for Cancer Epidemiology and Research, Tel Aviv University, Tel Aviv, Israel
| | - Lital Keinan-Boker
- School of Public Health, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel.,Israel Center for Disease Control, Israel Ministry of Health, Ramat Gan, Israel
| | - Tal Shimony
- Israel Center for Disease Control, Israel Ministry of Health, Ramat Gan, Israel
| | - Lior Bikovski
- The Myers Neuro-Behavioral Core Facility, Tel Aviv University, Tel Aviv, Israel.,School of Behavioral Sciences, Netanya Academic College, Netanya, Israel
| | - Nir Goldstein
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv, Israel
| | - Keren Constantini
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv, Israel
| | - Sapir Labes
- Department of Developmental Biology and Cancer Research, Institute of Medical Research-Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shimonov Mordechai
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Surgery, E. Wolfson Medical Center, Holon, Israel
| | - Hila Doron
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Lonescu
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Ziv
- The Smoler Proteomics Center, Technion, Haifa, Israel
| | - Eran Nizri
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Dermatology, Tel Aviv Sourasky (Ichilov) Medical Center, Tel Aviv, Israel
| | - Guy Choshen
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Internal Medicine, Tel Aviv Sourasky (Ichilov) Medical Center, Tel Aviv, Israel
| | - Hagit Eldar-Finkelman
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, Institute of Medical Research-Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aharon Helman
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel
| | - Shamgar Ben-Eliyahu
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Neta Erez
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eran Perlson
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Geiger
- The Weizmann Institute of Science, Rehovot, Israel
| | - Danny Ben-Zvi
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel–Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mehdi Khaled
- INSERM 1186, Gustave Roussy, Université Paris-Saclay, Villejuif, France.,Corresponding Authors: Carmit Levy, Human Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv, 69978, Israel. E-mail: ; Yftach Gepner, E-mail: ; and Mehdi Khaled, E-mail:
| | - Yftach Gepner
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv, Israel.,Corresponding Authors: Carmit Levy, Human Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv, 69978, Israel. E-mail: ; Yftach Gepner, E-mail: ; and Mehdi Khaled, E-mail:
| | - Carmit Levy
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Corresponding Authors: Carmit Levy, Human Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv, 69978, Israel. E-mail: ; Yftach Gepner, E-mail: ; and Mehdi Khaled, E-mail:
| |
Collapse
|
10
|
Lavi G, Horwitz A, Einstein O, Zipori R, Gross O, Birk R. Fndc5/irisin is regulated by myogenesis stage, irisin, muscle type and training. Am J Transl Res 2022; 14:7063-7079. [PMID: 36398256 PMCID: PMC9641476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/20/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVES Irisin, a novel myokine that responds to exercise, was initially identified as a regulator of fat tissue metabolism. We aimed to investigate fibronectin type III domain-containing protein 5 (Fndc5)/irisin, auto/para-crine role in different muscle fibers, different activities, and muscle cell differentiation. METHODS Using in-vitro, ex-vivo, and in-vivo muscle models, Fndc5 was studied at the physiological and molecular levels. RESULTS Following training, C57BL/6 mice (n=10) were subject to fast and slow-twitch muscles dissection and molecular analysis. Isolated mice (C57BL/6, n=14) slow and fast-twitch muscles were subject to electrical aerobic and anaerobic pulses stimulation (EPS). L6 muscle cells differentiation was characterized by Fndc5 differentiation-depended expression pattern parallel with significant hypertrophy, Myogenin elevation, and overlapping Peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (Pgc-1α) expression pattern. Exogenous irisin significantly altered Fndc5 expression; augmented at early differentiation (3-4-fold, P<0.05) and decreased (2-fold, P<0.05) at late differentiation. Training induced a significant elevation in Fndc5/irisin and Pgc-1α expression levels in all muscle types compared to the sedentary state, where soleus muscle (slow) Fndc5 expression levels were significantly higher compared to levels in all other fast muscles (3-140-fold, P<0.001). Similarly, following EPS, Fndc5 expression levels were significantly augmented in the soleus slow muscle following both aerobic and anaerobic activity (3-3.5-fold, P<0.05) compared to extensor digitorum longus (fast) muscle. CONCLUSIONS Muscle cell's Fndc5 expression has a differentiation-depended pattern paralleling Pgc-1α expression and hypertrophy. Irisin autocrinally and significantly regulate Fndc5 and Pgc-1α in a differentiation-depended manner. Muscle Fndc5 expression levels are dependent on fiber type and activity type.
Collapse
Affiliation(s)
- Gal Lavi
- Department of Nutrition, Faculty of Health Sciences, Ariel UniversityIsrael
| | - Avital Horwitz
- Department of Nutrition, Faculty of Health Sciences, Ariel UniversityIsrael
| | - Ofira Einstein
- Department of Physical Therapy, Faculty of Health Sciences, Ariel UniversityIsrael
| | - Reut Zipori
- Department of Nutrition, Faculty of Health Sciences, Ariel UniversityIsrael
| | - Ofri Gross
- Department of Nutrition, Faculty of Health Sciences, Ariel UniversityIsrael
| | - Ruth Birk
- Department of Nutrition, Faculty of Health Sciences, Ariel UniversityIsrael
| |
Collapse
|
11
|
Hamdi L, Nabat H, Goldberg Y, Fainstein N, Segal S, Mediouni E, Asis Y, Touloumi O, Grigoriadis N, Katz A, Ben-Hur T, Einstein O. Exercise training alters autoimmune cell invasion into the brain in autoimmune encephalomyelitis. Ann Clin Transl Neurol 2022; 9:1792-1806. [PMID: 36217574 DOI: 10.1002/acn3.51677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/01/2022] [Accepted: 09/23/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The mechanisms by which exercise training (ET) elicits beneficial effects on the systemic immune system and the central nervous system (CNS) in autoimmune neuroinflammation are not fully understood. OBJECTIVES To investigate (1) the systemic effects of high-intensity continuous training (HICT) on the migratory potential of autoimmune cells; (2) the direct effects of HICT on blood-brain-barrier (BBB) properties. METHODS Healthy mice were subjected to high-intensity continuous training (HICT) by treadmill running. The proteolipid protein (PLP) transfer EAE model was utilized to examine the immunomodulatory effects of training, where PLP-reactive lymph-node cells (LNCs) from HICT and sedentary donor mice were analyzed in vitro and transferred to naïve recipients that developed EAE. To examine neuroprotection, encephalitogenic LNCs from donor mice were transferred into HICT or sedentary recipient mice and the BBB was analyzed. RESULTS Transfer of PLP-reactive LNCs obtained from HICT donor mice attenuated EAE severity and inflammation in recipient mice. HICT markedly inhibited very late antigen (VLA)-4 and lymphocyte function-associated antigen (LFA)-1 expression in LNCs. Transfer of encephalitogenic LNCs into HICT recipients resulted in milder EAE and attenuated CNS inflammation. HICT reduced BBB permeability and the expression of intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 in CNS blood vessels. INTERPRETATION HICT attenuates EAE development by both immunomodulatory and neuroprotective effects. The reduction in destructive CNS inflammation in EAE is attributed to systemic inhibition of autoreactive cell migratory potential, as well as reduction in BBB permeability, which are associated with reduced VLA-4/VCAM-1 and LFA-1/ICAM-1 interactions.
Collapse
Affiliation(s)
- Liel Hamdi
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Hanan Nabat
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Yehuda Goldberg
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Nina Fainstein
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Shir Segal
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Efrat Mediouni
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Yarden Asis
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Olga Touloumi
- B' Department of Neurology, AHEPA University Hospital of Thessaloniki, Greece
| | | | - Abram Katz
- Åstrand Laboratory, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Tamir Ben-Hur
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Ofira Einstein
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| |
Collapse
|
12
|
Einstein O, Katz A, Ben-Hur T. Physical exercise therapy for autoimmune neuroinflammation: Application of knowledge from animal models to patient care. Clin Exp Rheumatol 2022; 21:103033. [PMID: 34995760 DOI: 10.1016/j.autrev.2022.103033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/02/2022] [Indexed: 12/12/2022]
Abstract
Physical exercise (PE) impacts various autoimmune diseases. Accordingly, clinical trials demonstrated the safety of PE in multiple sclerosis (MS) patients and indicated beneficial outcomes. There is also an increasing body of research on the beneficial effects of exercise on experimental autoimmune encephalomyelitis (EAE), the animal model of MS, and various mechanisms underlying these effects were suggested. However, despite the documented favorable impact of PE on our health, we still lack a thorough understanding of its effects on autoimmune neuroinflammation and specific guidelines of PE therapy for MS patients are lacking. To that end, current findings on the impact of PE on autoimmune neuroinflammation, both in human MS and animal models are reviewed. The concept of personalized PE therapy for autoimmune neuroinflammation is discussed, and future research for providing biological rationale for clinical trials to pave the road for precise PE therapy in MS patients is described.
Collapse
Affiliation(s)
- Ofira Einstein
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel.
| | - Abram Katz
- Åstrand Laboratory, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Tamir Ben-Hur
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
13
|
Lozinski BM, de Almeida LGN, Silva C, Dong Y, Brown D, Chopra S, Yong VW, Dufour A. Exercise rapidly alters proteomes in mice following spinal cord demyelination. Sci Rep 2021; 11:7239. [PMID: 33790323 PMCID: PMC8012633 DOI: 10.1038/s41598-021-86593-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/16/2021] [Indexed: 02/01/2023] Open
Abstract
Exercise affords broad benefits for people with multiple sclerosis (PwMS) including less fatigue, depression, and improved cognition. In animal models of multiple sclerosis (MS), exercise has been shown to improve remyelination, decrease blood-brain barrier permeability and reduce leukocyte infiltration. Despite these benefits many PwMS refrain from engaging in physical activity. This barrier to participation in exercise may be overcome by uncovering and describing the mechanisms by which exercise promotes beneficial changes in the central nervous system (CNS). Here, we show that acute bouts of exercise in mice profoundly alters the proteome in demyelinating lesions. Following lysolecithin induced demyelination of the ventral spinal cord, mice were given immediate access to a running wheel for 4 days. Lesioned spinal cords and peripheral blood serum were then subjected to tandem mass tag labeling shotgun proteomics workflow to identify alteration in protein levels. We identified 86 significantly upregulated and 85 downregulated proteins in the lesioned spinal cord as well as 14 significantly upregulated and 11 downregulated proteins in the serum following acute exercise. Altered pathways following exercise in demyelinated mice include oxidative stress response, metabolism and transmission across chemical synapses. Similar acute bout of exercise in naïve mice also changed several proteins in the serum and spinal cord, including those for metabolism and anti-oxidant responses. Improving our understanding of the mechanisms and duration of activity required to influence the injured CNS should motivate PwMS and other conditions to embrace exercise as part of their therapy to manage CNS disability.
Collapse
Affiliation(s)
- Brian Mark Lozinski
- Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
- The Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Luiz Gustavo Nogueira de Almeida
- Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada
- HRIC 3C64, Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Drive Calgary, Alberta, T2N 4N1, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Alberta, Canada
| | - Claudia Silva
- Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
- The Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Yifei Dong
- Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
- The Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Dennis Brown
- Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
- The Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Sameeksha Chopra
- Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada
- HRIC 3C64, Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Drive Calgary, Alberta, T2N 4N1, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Alberta, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
- The Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Antoine Dufour
- Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada.
- HRIC 3C64, Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Drive Calgary, Alberta, T2N 4N1, Canada.
- The Hotchkiss Brain Institute, University of Calgary, Alberta, Canada.
- McCaig Institute for Bone and Joint Health, University of Calgary, Alberta, Canada.
| |
Collapse
|
14
|
Zaychik Y, Fainstein N, Touloumi O, Goldberg Y, Hamdi L, Segal S, Nabat H, Zoidou S, Grigoriadis N, Katz A, Ben-Hur T, Einstein O. High-Intensity Exercise Training Protects the Brain Against Autoimmune Neuroinflammation: Regulation of Microglial Redox and Pro-inflammatory Functions. Front Cell Neurosci 2021; 15:640724. [PMID: 33708074 PMCID: PMC7940666 DOI: 10.3389/fncel.2021.640724] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/27/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Exercise training induces beneficial effects on neurodegenerative diseases, and specifically on multiple sclerosis (MS) and it’s model experimental autoimmune encephalomyelitis (EAE). However, it is unclear whether exercise training exerts direct protective effects on the central nervous system (CNS), nor are the mechanisms of neuroprotection fully understood. In this study, we investigated the direct neuroprotective effects of high-intensity continuous training (HICT) against the development of autoimmune neuroinflammation and the role of resident microglia. Methods: We used the transfer EAE model to examine the direct effects of training on the CNS. Healthy mice performed HICT by treadmill running, followed by injection of encephalitogenic proteolipid (PLP)-reactive T-cells to induce EAE. EAE severity was assessed clinically and pathologically. Brain microglia from sedentary (SED) and HICT healthy mice, as well as 5-days post EAE induction (before the onset of disease), were analyzed ex vivo for reactive oxygen species (ROS) and nitric oxide (NO) formation, mRNA expression of M1/M2 markers and neurotrophic factors, and secretion of cytokines and chemokines. Results: Transfer of encephalitogenic T-cells into HICT mice resulted in milder EAE, compared to sedentary mice, as indicated by reduced clinical severity, attenuated T-cell, and neurotoxic macrophage/microglial infiltration, and reduced loss of myelin and axons. In healthy mice, HICT reduced the number of resident microglia without affecting their profile. Isolated microglia from HICT mice after transfer of encephalitogenic T-cells exhibited reduced ROS formation and released less IL-6 and monocyte chemoattractant protein (MCP) in response to PLP-stimulation. Conclusions: These findings point to the critical role of training intensity in neuroprotection. HICT protects the CNS against autoimmune neuroinflammation by reducing microglial-derived ROS formation, neurotoxicity, and pro-inflammatory responses involved in the propagation of autoimmune neuroinflammation.
Collapse
Affiliation(s)
- Yifat Zaychik
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Nina Fainstein
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Olga Touloumi
- B' Department of Neurology, AHEPA University Hospital of Thessaloniki, Thessaloniki, Greece
| | - Yehuda Goldberg
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Liel Hamdi
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Shir Segal
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Hanan Nabat
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Sofia Zoidou
- B' Department of Neurology, AHEPA University Hospital of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- B' Department of Neurology, AHEPA University Hospital of Thessaloniki, Thessaloniki, Greece
| | - Abram Katz
- Åstrand Laboratory of Work Physiology, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Tamir Ben-Hur
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ofira Einstein
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| |
Collapse
|
15
|
Goldberg Y, Fainstein N, Zaychik Y, Hamdi L, Segal S, Nabat H, Touloumi O, Zoidou S, Grigoriadis N, Hoffman JR, Katz A, Ben-Hur T, Einstein O. Continuous and interval training attenuate encephalomyelitis by separate immunomodulatory mechanisms. Ann Clin Transl Neurol 2020; 8:190-200. [PMID: 33285042 PMCID: PMC7818088 DOI: 10.1002/acn3.51267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/12/2020] [Accepted: 11/14/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Studies have reported beneficial effects of exercise training on autoimmunity, and specifically on multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). However, it is unknown whether different training paradigms affect disease course via shared or separate mechanisms. OBJECTIVE To compare the effects and mechanism of immune modulation of high intensity continuous training (HICT) versus high intensity interval training (HIIT) on systemic autoimmunity in EAE. METHODS We used the proteolipid protein (PLP)-induced transfer EAE model to examine training effects on the systemic autoimmune response. Healthy mice performed HICT or HIIT by running on a treadmill. Lymph-node (LN)-T cells from PLP-immunized trained- versus sedentary donor mice were transferred to naïve recipients and EAE clinical and pathological severity were assessed. LN cells derived from donor trained and sedentary PLP-immunized mice were analyzed in vitro for T-cell activation and proliferation, immune cell profiling, and cytokine mRNA levels and cytokine secretion measurements. RESULTS Both HICT and HIIT attenuated the encephalitogenicity of PLP-reactive T cells, as indicated by reduced EAE clinical severity and inflammation and tissue pathology in the central nervous system, following their transfer into recipient mice. HICT caused a marked inhibition of PLP-induced T-cell proliferation without affecting the T-cell profile. In contrast, HIIT did not alter T-cell proliferation, but rather inhibited polarization of T cells into T-helper 1 and T-helper 17 autoreactive populations. INTERPRETATION HICT and HIIT attenuate systemic autoimmunity and T cell encephalitogenicity by distinct immunomodulatory mechanisms.
Collapse
Affiliation(s)
- Yehuda Goldberg
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Nina Fainstein
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Yifat Zaychik
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Liel Hamdi
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Shir Segal
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Hanan Nabat
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Olga Touloumi
- B' Department of Neurology, AHEPA University Hospital of Thessaloniki, Greece
| | - Sofia Zoidou
- B' Department of Neurology, AHEPA University Hospital of Thessaloniki, Greece
| | | | - Jay R Hoffman
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Abram Katz
- Åstrand Laboratory of Work Physiology, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Tamir Ben-Hur
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Ofira Einstein
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| |
Collapse
|
16
|
Abstract
While people with multiple sclerosis (PwMS) historically were advised to avoid physical activity to reduce symptoms such as fatigue, they are now encouraged to remain active and to enlist in programs of exercise. However, despite an extensive current literature that exercise not only increases physical well-being but also their cognition and mental health, many PwMS are not meeting recommended levels of exercise. Here, we emphasize the impact and mechanisms of exercise on functional and structural changes to the brain, including improved connectome, neuroprotection, neurogenesis, oligodendrogenesis, and remyelination. We review evidence from animal models of multiple sclerosis (MS) that exercise protects and repairs the brain, and provide supportive data from clinical studies of PwMS. We introduce the concept of MedXercise, where exercise provides a brain milieu particularly conducive for a brain regenerative medication to act upon. The emphasis on exercise improving brain functions and repair should incentivize PwMS to remain physically active.
Collapse
Affiliation(s)
- Brian M Lozinski
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
17
|
Impact of Exercise on Immunometabolism in Multiple Sclerosis. J Clin Med 2020; 9:jcm9093038. [PMID: 32967206 PMCID: PMC7564219 DOI: 10.3390/jcm9093038] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple Sclerosis (MS) is a chronic, autoimmune condition characterized by demyelinating lesions and axonal degradation. Even though the cause of MS is heterogeneous, it is known that peripheral immune invasion in the central nervous system (CNS) drives pathology at least in the most common form of MS, relapse-remitting MS (RRMS). The more progressive forms’ mechanisms of action remain more elusive yet an innate immune dysfunction combined with neurodegeneration are likely drivers. Recently, increasing studies have focused on the influence of metabolism in regulating immune cell function. In this regard, exercise has long been known to regulate metabolism, and has emerged as a promising therapy for management of autoimmune disorders. Hence, in this review, we inspect the role of key immunometabolic pathways specifically dysregulated in MS and highlight potential therapeutic benefits of exercise in modulating those pathways to harness an anti-inflammatory state. Finally, we touch upon current challenges and future directions for the field of exercise and immunometabolism in MS.
Collapse
|
18
|
|
19
|
Gentile A, Musella A, De Vito F, Rizzo FR, Fresegna D, Bullitta S, Vanni V, Guadalupi L, Stampanoni Bassi M, Buttari F, Centonze D, Mandolesi G. Immunomodulatory Effects of Exercise in Experimental Multiple Sclerosis. Front Immunol 2019; 10:2197. [PMID: 31572399 PMCID: PMC6753861 DOI: 10.3389/fimmu.2019.02197] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/30/2019] [Indexed: 12/20/2022] Open
Abstract
Multiple Sclerosis (MS) is a demyelinating and neurodegenerative disease. Though a specific antigen has not been identified, it is widely accepted that MS is an autoimmune disorder characterized by myelin-directed immune attack. Pharmacological treatments for MS are based on immunomodulatory or immunosuppressant drugs, designed to attenuate or dampen the immune reaction, to improve neurological functions. Recently, rehabilitation has gained increasing attention in the scientific community dealing with MS. Engagement of people with MS in exercise programs has been associated with a number of functional improvements in mobility, balance, and motor coordination. Moreover, several studies indicate the effectiveness of exercise against fatigue and mood disorders that are frequently associated with the disease. However, whether exercise acts like an immunomodulatory therapy is still an unresolved question. A good tool to address this issue is provided by the study of the immunomodulatory effects of exercise in an animal model of MS, including the experimental autoimmune encephalomyelitis (EAE), the Theiler's virus induced-demyelinating disease (TMEV-IDD) and toxic-demyelinating models, cuprizone (CPZ), and lysolecithin (LPC). So far, despite the availability of different animal models, most of the pre-clinical data have been gained in EAE and to a lesser extent in CPZ and LPC. These studies have highlighted beneficial effects of exercise, suggesting the modulation of both the innate and the adaptive immune response in the peripheral blood as well as in the brain. In the present paper, starting from the biological differences among MS animal models in terms of immune system involvement, we revise the literature regarding the effects of exercise in EAE, CPZ, and LPC, and critically highlight the advantages of either model, including the so-far unexplored TMEV-IDD, to address the immune effects of exercise in MS.
Collapse
Affiliation(s)
- Antonietta Gentile
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy.,Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy
| | - Alessandra Musella
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy.,San Raffaele University, Rome, Italy
| | | | - Francesca Romana Rizzo
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Diego Fresegna
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy
| | - Silvia Bullitta
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy.,Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy
| | - Valentina Vanni
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy
| | - Livia Guadalupi
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy.,Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy
| | | | | | - Diego Centonze
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy.,Unit of Neurology, IRCCS Neuromed, Pozzilli, Italy
| | - Georgia Mandolesi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy.,San Raffaele University, Rome, Italy
| |
Collapse
|