1
|
Dhauria M, Mondal R, Deb S, Shome G, Chowdhury D, Sarkar S, Benito-León J. Blood-Based Biomarkers in Alzheimer's Disease: Advancing Non-Invasive Diagnostics and Prognostics. Int J Mol Sci 2024; 25:10911. [PMID: 39456697 PMCID: PMC11507237 DOI: 10.3390/ijms252010911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia, is expected to rise dramatically in incidence due to the global population aging. Traditional diagnostic approaches, such as cerebrospinal fluid analysis and positron emission tomography, are expensive and invasive, limiting their routine clinical use. Recent advances in blood-based biomarkers, including amyloid-beta, phosphorylated tau, and neurofilament light, offer promising non-invasive alternatives for early AD detection and disease monitoring. This review synthesizes current research on these blood-based biomarkers, highlighting their potential to track AD pathology and enhance diagnostic accuracy. Furthermore, this review uniquely integrates recent findings on protein-protein interaction networks and microRNA pathways, exploring novel combinations of proteomic, genomic, and epigenomic biomarkers that provide new insights into AD's molecular mechanisms. Additionally, we discuss the integration of these biomarkers with advanced neuroimaging techniques, emphasizing their potential to revolutionize AD diagnostics. Although large-scale validation is still needed, these biomarkers represent a critical advancement toward more accessible, cost-effective, and early diagnostic tools for AD.
Collapse
Affiliation(s)
| | - Ritwick Mondal
- Department of Clinical Pharmacology and Therapeutic Medicine, IPGMER and SSKM Hospital, Kolkata 700020, India;
| | - Shramana Deb
- Department of Stroke Medicine, Institute of Neuroscience, Kolkata 700017, India;
| | - Gourav Shome
- Department of Biological Sciences, Bose Institute, Kolkata 700054, India;
| | - Dipanjan Chowdhury
- Department of Internal Medicine, IPGMER and SSKM Hospital, Kolkata 700020, India; (D.C.); (S.S.)
| | - Shramana Sarkar
- Department of Internal Medicine, IPGMER and SSKM Hospital, Kolkata 700020, India; (D.C.); (S.S.)
| | - Julián Benito-León
- Department of Neurology, University Hospital “12 de Octubre”, ES-28041 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), ES-28041 Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ES-28029 Madrid, Spain
- Department of Medicine, Complutense University, ES-28040 Madrid, Spain
| |
Collapse
|
2
|
Corriveau-Lecavalier N, Botha H, Graff-Radford J, Switzer AR, Przybelski SA, Wiste HJ, Murray ME, Reichard RR, Dickson DW, Nguyen AT, Ramanan VK, McCarter SJ, Boeve BF, Machulda MM, Fields JA, Stricker NH, Nelson PT, Grothe MJ, Knopman DS, Lowe VJ, Petersen RC, Jack CR, Jones DT. Clinical criteria for a limbic-predominant amnestic neurodegenerative syndrome. Brain Commun 2024; 6:fcae183. [PMID: 39021510 PMCID: PMC11251771 DOI: 10.1093/braincomms/fcae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/16/2024] [Accepted: 05/22/2024] [Indexed: 07/20/2024] Open
Abstract
Predominant limbic degeneration has been associated with various underlying aetiologies and an older age, predominant impairment of episodic memory and slow clinical progression. However, the neurological syndrome associated with predominant limbic degeneration is not defined. This endeavour is critical to distinguish such a syndrome from those originating from neocortical degeneration, which may differ in underlying aetiology, disease course and therapeutic needs. We propose a set of clinical criteria for a limbic-predominant amnestic neurodegenerative syndrome that is highly associated with limbic-predominant age-related TDP-43 encephalopathy but also other pathologic entities. The criteria incorporate core, standard and advanced features, including older age at evaluation, mild clinical syndrome, disproportionate hippocampal atrophy, impaired semantic memory, limbic hypometabolism, absence of neocortical degeneration and low likelihood of neocortical tau, with degrees of certainty (highest, high, moderate and low). We operationalized this set of criteria using clinical, imaging and biomarker data to validate its associations with clinical and pathologic outcomes. We screened autopsied patients from Mayo Clinic and Alzheimer's Disease Neuroimaging Initiative cohorts and applied the criteria to those with an antemortem predominant amnestic syndrome (Mayo, n = 165; Alzheimer's Disease Neuroimaging Initiative, n = 53) and who had Alzheimer's disease neuropathological change, limbic-predominant age-related TDP-43 encephalopathy or both pathologies at autopsy. These neuropathology-defined groups accounted for 35, 37 and 4% of cases in the Mayo cohort, respectively, and 30, 22 and 9% of cases in the Alzheimer's Disease Neuroimaging Initiative cohort, respectively. The criteria effectively categorized these cases, with Alzheimer's disease having the lowest likelihoods, limbic-predominant age-related TDP-43 encephalopathy patients having the highest likelihoods and patients with both pathologies having intermediate likelihoods. A logistic regression using the criteria features as predictors of TDP-43 achieved a balanced accuracy of 74.6% in the Mayo cohort, and out-of-sample predictions in an external cohort achieved a balanced accuracy of 73.3%. Patients with high likelihoods had a milder and slower clinical course and more severe temporo-limbic degeneration compared to those with low likelihoods. Stratifying patients with both Alzheimer's disease neuropathological change and limbic-predominant age-related TDP-43 encephalopathy from the Mayo cohort according to their likelihoods revealed that those with higher likelihoods had more temporo-limbic degeneration and a slower rate of decline and those with lower likelihoods had more lateral temporo-parietal degeneration and a faster rate of decline. The implementation of criteria for a limbic-predominant amnestic neurodegenerative syndrome has implications to disambiguate the different aetiologies of progressive amnestic presentations in older age and guide diagnosis, prognosis, treatment and clinical trials.
Collapse
Affiliation(s)
- Nick Corriveau-Lecavalier
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Aaron R Switzer
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Scott A Przybelski
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Heather J Wiste
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 3224, USA
| | - Robert Ross Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 3224, USA
| | - Aivi T Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Vijay K Ramanan
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Julie A Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Nikki H Stricker
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Peter T Nelson
- Department of Pathology, University of Kentucky, Lexington, KY 40506, USA
| | - Michel J Grothe
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center, Madrid, Spain
- Wallenberg Center for Molecular and Translational Medicine and Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Shahidehpour RK, Nelson PT, Bachstetter AD. A pathologic study of Perivascular pTDP-43 Lin bodies in LATE-NC. Acta Neuropathol Commun 2024; 12:114. [PMID: 38997773 PMCID: PMC11241908 DOI: 10.1186/s40478-024-01826-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND TAR DNA-Binding Protein 43 (TDP-43) pathological inclusions are a distinctive feature in dozens of neurodegenerative pathologies, including limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC). Prior investigations identified vascular-associated TDP-43-positive micro-lesions, known as "Lin bodies," located on or near the brain capillaries of some individuals with LATE-NC. This study aimed to investigate the relationship between the accumulation of Lin bodies and glial cells in LATE-NC and the potential co-localization with ferritin, a protein associated with iron storage. Using multiplexed immunohistochemistry and digital pathology tools, we conducted pathological analyses to investigate the relationship between Lin bodies and glial markers (GFAP for astrocytes, IBA1 for microglia) and ferritin. Analyses were conducted on post-mortem brain tissues collected from individuals with pathologically confirmed Alzheimer's disease neuropathological changes (ADNC) and LATE-NC. RESULTS As shown previously, there was a robust association between Lin bodies and GFAP-positive astrocyte processes. Moreover, we also observed Lin bodies frequently co-localizing with ferritin, suggesting a potential link to compromised vascular integrity. Subsequent analyses demonstrated increased astrocytosis near Lin body-positive vessels compared to those without Lin bodies, particularly in ADNC cases. These results suggest that the accumulation of Lin bodies may elicit an increased glial response, particularly among astrocytes, possibly related to impaired vascular integrity. CONCLUSIONS Lin bodies are associated with a local reactive glial response. The strong association of Lin bodies with ferritin suggests that the loss of vascular integrity may be either a cause or a consequence of the pTDP-43 pathology. The reactive glia surrounding the affected vessels could further compromise vascular function.
Collapse
Affiliation(s)
- Ryan K Shahidehpour
- Spinal cord and brain injury research center, Sander-Brown Center on Aging, Department of Neuroscience, University of Kentucky, 741 S. Limestone St, Lexington, KY, 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, University of Kentucky, Lexington, KY, USA
| | - Adam D Bachstetter
- Spinal cord and brain injury research center, Sander-Brown Center on Aging, Department of Neuroscience, University of Kentucky, 741 S. Limestone St, Lexington, KY, 40536, USA.
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA.
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
4
|
Nelson PT, Fardo DW, Wu X, Aung KZ, Cykowski MD, Katsumata Y. Limbic-predominant age-related TDP-43 encephalopathy (LATE-NC): Co-pathologies and genetic risk factors provide clues about pathogenesis. J Neuropathol Exp Neurol 2024; 83:396-415. [PMID: 38613823 PMCID: PMC11110076 DOI: 10.1093/jnen/nlae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024] Open
Abstract
Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is detectable at autopsy in more than one-third of people beyond age 85 years and is robustly associated with dementia independent of other pathologies. Although LATE-NC has a large impact on public health, there remain uncertainties about the underlying biologic mechanisms. Here, we review the literature from human studies that may shed light on pathogenetic mechanisms. It is increasingly clear that certain combinations of pathologic changes tend to coexist in aging brains. Although "pure" LATE-NC is not rare, LATE-NC often coexists in the same brains with Alzheimer disease neuropathologic change, brain arteriolosclerosis, hippocampal sclerosis of aging, and/or age-related tau astrogliopathy (ARTAG). The patterns of pathologic comorbidities provide circumstantial evidence of mechanistic interactions ("synergies") between the pathologies, and also suggest common upstream influences. As to primary mediators of vulnerability to neuropathologic changes, genetics may play key roles. Genes associated with LATE-NC include TMEM106B, GRN, APOE, SORL1, ABCC9, and others. Although the anatomic distribution of TDP-43 pathology defines the condition, important cofactors for LATE-NC may include Tau pathology, endolysosomal pathways, and blood-brain barrier dysfunction. A review of the human phenomenology offers insights into disease-driving mechanisms, and may provide clues for diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Peter T Nelson
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - David W Fardo
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Xian Wu
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Khine Zin Aung
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Matthew D Cykowski
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Yuriko Katsumata
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
5
|
Liou JJ, Li J, Berardinelli J, Jin H, Santini T, Noh J, Farhat N, Wu M, Aizenstein H, Mettenburg JM, Yong W, Head E, Ikonomovic M, Ibrahim T, Kofler J. Correlating hippocampal and amygdala volumes with neuropathological burden in neurodegenerative diseases using 7T postmortem MRI. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.15.24307354. [PMID: 38798514 PMCID: PMC11118630 DOI: 10.1101/2024.05.15.24307354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Numerous research groups worldwide have focused on postmortem imaging to bridge the resolution gap between clinical neuroimaging and neuropathology data. We developed a standardized protocol for brain embedding, imaging, and processing, facilitating alignment between antemortem MRI, postmortem MRI, and pathology to observe brain atrophy and structural damage progression over time. Using 7T postmortem ex vivo MRI, we explore the potential correlation of amygdala and hippocampal atrophy with neuropathological burden in both Down syndrome (DS) and Alzheimer's disease (AD) cohorts. Using 7T postmortem ex vivo MRI scans from 66 cases (12 DS and 54 AD) alongside a subset of antemortem scans (n=17), we correlated manually segmented hippocampal and amygdala volumes, adjusted for age, sex, and ApoE4 status, with pathological indicators such as Thal phase, Braak stage, limbic-predominant age-related TDP-43 encephalopathy (LATE) stage, hippocampal sclerosis (HS), and Lewy body (LB) stage. A significant correlation was observed between postmortem and antemortem volumes for the hippocampus, but a similar trend observed for the amygdala did not reach statistical significance. DS individuals exhibited notably smaller hippocampal and amygdala volumes compared to AD subjects. In DS, lower hippocampal and amygdala volumes correlated with more severe Braak stage, without significant associations with Thal phase. LATE and HS pathologies were uncommon in DS cases but trended toward smaller hippocampal volumes. In AD, lower hippocampal volume associated with dementia duration, advanced Thal phase, Braak stage, LATE stage, and HS presence, whereas reduced amygdala volume correlated mainly with severe LATE stage and HS, but not with Thal or Braak stages. No significant LB correlation was detected in either DS or AD cohorts. Hippocampal volume in AD appears influenced by both AD and LATE pathologies, while amygdala volume seems primarily influenced by LATE. In DS, smaller hippocampal volume, relative to AD, appears primarily influenced by tau pathology.
Collapse
|
6
|
Chang K, Ling JP, Redding-Ochoa J, An Y, Li L, Dean SA, Blanchard TG, Pylyukh T, Barrett A, Irwin KE, Moghekar A, Resnick SM, Wong PC, Troncoso JC. Loss of TDP-43 splicing repression occurs early in the aging population and is associated with Alzheimer's disease neuropathologic changes and cognitive decline. Acta Neuropathol 2023; 147:4. [PMID: 38133681 DOI: 10.1007/s00401-023-02653-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 12/23/2023]
Abstract
LATE-NC, the neuropathologic changes of limbic-predominant age-related TAR DNA-binding protein 43 kDa (TDP-43) encephalopathy are frequently associated with Alzheimer's disease (AD) and cognitive impairment in older adults. The association of TDP-43 proteinopathy with AD neuropathologic changes (ADNC) and its impact on specific cognitive domains are not fully understood and whether loss of TDP-43 function occurs early in the aging brain remains unknown. Here, using a large set of autopsies from the Baltimore Longitudinal Study of Aging (BLSA) and another younger cohort, we were able to study brains from subjects 21-109 years of age. Examination of these brains show that loss of TDP-43 splicing repression, as judged by TDP-43 nuclear clearance and expression of a cryptic exon in HDGFL2, first occurs during the 6th decade, preceding by a decade the appearance of TDP-43+ neuronal cytoplasmic inclusions (NCIs). We corroborated this observation using a monoclonal antibody to demonstrate a cryptic exon-encoded neoepitope within HDGFL2 in neurons exhibiting nuclear clearance of TDP-43. TDP-43 nuclear clearance is associated with increased burden of tau pathology. Age at death, female sex, high CERAD neuritic plaque score, and high Braak neurofibrillary stage significantly increase the odds of LATE-NC. Faster rates of cognitive decline on verbal memory (California Verbal Learning Test immediate recall), visuospatial ability (Card Rotations Test), mental status (MMSE) and semantic fluency (Category Fluency Test) were associated with LATE-NC. Notably, the effects of LATE-NC on verbal memory and visuospatial ability are independent of ADNC. However, the effects of TDP-43 nuclear clearance in absence of NCI on the longitudinal trajectories and levels of cognitive measures are not significant. These results establish that loss of TDP-43 splicing repression is an early event occurring in the aging population during the development of TDP-43 proteinopathy and is associated with increased tau pathology. Furthermore, LATE-NC correlates with high levels of ADNC but also has an impact on specific memory and visuospatial functions in aging that is independent of AD.
Collapse
Affiliation(s)
- Koping Chang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department and Graduate Institute of Pathology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, 100225, Taiwan
| | - Jonathan P Ling
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Javier Redding-Ochoa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Ling Li
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Office of the Chief Medical Examiner, State of Maryland, Baltimore, MD, 21223, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Stephanie A Dean
- Office of the Chief Medical Examiner, State of Maryland, Baltimore, MD, 21223, USA
| | - Thomas G Blanchard
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Tatiana Pylyukh
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Alexander Barrett
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Katherine E Irwin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Philip C Wong
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
7
|
Niedowicz DM, Katsumata Y, Nelson PT. In severe ADNC, hippocampi with comorbid LATE-NC and hippocampal sclerosis have substantially more astrocytosis than those with LATE-NC or hippocampal sclerosis alone. J Neuropathol Exp Neurol 2023; 82:987-994. [PMID: 37935530 PMCID: PMC10658353 DOI: 10.1093/jnen/nlad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) and hippocampal sclerosis of aging (HS-A) pathologies are found together at autopsy in ∼20% of elderly demented persons. Although astrocytosis is known to occur in neurodegenerative diseases, it is currently unknown how the severity of astrocytosis is correlated with the common combinations of pathologies in aging brains. To address this knowledge gap, we analyzed a convenience sample of autopsied subjects from the University of Kentucky Alzheimer's Disease Research Center community-based autopsy cohort. The subjects were stratified into 5 groups (n = 51 total): pure ADNC, ADNC + LATE-NC, ADNC + HS-A, ADNC + LATE-NC + HS-A, and low-pathology controls. Following GFAP immunostaining and digital slide scanning with a ScanScope, we measured GFAP-immunoreactive astrocytosis. The severities of GFAP-immunoreactive astrocytosis in hippocampal subfield CA1 and subiculum were compared between groups. The group with ADNC + LATE-NC + HS-A had the most astrocytosis as operationalized by either any GFAP+ or strong GFAP+ immunoreactivity in both CA1 and subiculum. In comparison to that pathologic combination, ADNC + HS or ADNC + LATE-NC alone showed lower astrocytosis. Pure ADNC had only marginally increased astrocytosis in CA1 and subiculum, in comparison to low-pathology controls. We conclude that there appeared to be pathogenetic synergy such that ADNC + LATE-NC + HS-A cases had relatively high levels of astrocytosis in the hippocampal formation.
Collapse
|
8
|
Corriveau-Lecavalier N, Botha H, Graff-Radford J, Switzer AR, Przybelski SA, Wiste HJ, Murray ME, Reichard RR, Dickson DW, Nguyen AT, Ramanan VK, McCarter SJ, Boeve BF, Machulda MM, Fields JA, Stricker NH, Nelson PT, Grothe MJ, Knopman DS, Lowe VJ, Petersen RC, Jack CR, Jones DT. A limbic-predominant amnestic neurodegenerative syndrome associated with TDP-43 pathology. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.19.23298314. [PMID: 38045300 PMCID: PMC10690340 DOI: 10.1101/2023.11.19.23298314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Limbic-predominant age-related TDP-43 encephalopathy (LATE) is a neuropathologically-defined disease that affects 40% of persons in advanced age, but its associated neurological syndrome is not defined. LATE neuropathological changes (LATE-NC) are frequently comorbid with Alzheimer's disease neuropathologic changes (ADNC). When seen in isolation, LATE-NC have been associated with a predominantly amnestic profile and slow clinical progression. We propose a set of clinical criteria for a limbic-predominant amnestic neurodegenerative syndrome (LANS) that is highly associated with LATE-NC but also other pathologic entities. The LANS criteria incorporate core, standard and advanced features that are measurable in vivo, including older age at evaluation, mild clinical syndrome, disproportionate hippocampal atrophy, impaired semantic memory, limbic hypometabolism, absence of neocortical degenerative patterns and low likelihood of neocortical tau, with degrees of certainty (highest, high, moderate, low). We operationalized this set of criteria using clinical, imaging and biomarker data to validate its associations with clinical and pathologic outcomes. We screened autopsied patients from Mayo Clinic (n = 922) and ADNI (n = 93) cohorts and applied the LANS criteria to those with an antemortem predominant amnestic syndrome (Mayo, n = 165; ADNI, n = 53). ADNC, ADNC/LATE-NC and LATE-NC accounted for 35%, 37% and 4% of cases in the Mayo cohort, respectively, and 30%, 22%, and 9% of cases in the ADNI cohort, respectively. The LANS criteria effectively categorized these cases, with ADNC having the lowest LANS likelihoods, LATE-NC patients having the highest likelihoods, and ADNC/LATE-NC patients having intermediate likelihoods. A logistic regression model using the LANS features as predictors of LATE-NC achieved a balanced accuracy of 74.6% in the Mayo cohort, and out-of-sample predictions in the ADNI cohort achieved a balanced accuracy of 73.3%. Patients with high LANS likelihoods had a milder and slower clinical course and more severe temporo-limbic degeneration compared to those with low likelihoods. Stratifying ADNC/LATE-NC patients from the Mayo cohort according to their LANS likelihood revealed that those with higher likelihoods had more temporo-limbic degeneration and a slower rate of cognitive decline, and those with lower likelihoods had more lateral temporo-parietal degeneration and a faster rate of cognitive decline. The implementation of LANS criteria has implications to disambiguate the different driving etiologies of progressive amnestic presentations in older age and guide prognosis, treatment, and clinical trials. The development of in vivo biomarkers specific to TDP-43 pathology are needed to refine molecular associations between LANS and LATE-NC and precise antemortem diagnoses of LATE.
Collapse
Affiliation(s)
- Nick Corriveau-Lecavalier
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Heather J. Wiste
- Department of Quantitative Health Sciences, Mayo Clinic Rochester, MN, USA
| | | | - R. Ross Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, MN, USA
| | | | - Aivi T. Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, MN, USA
| | | | | | | | - Mary M. Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Julie A. Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Nikki H. Stricker
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Peter T. Nelson
- Department of Pathology, University of Kentucky, Lexington, KY, USA
| | - Michel J. Grothe
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center, Madrid, Spain
- Wallenberg Center for Molecular and Translational Medicine and Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | | | - Val J. Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Clifford R. Jack
- Department of Neuroscience, Mayo Clinic Jacksonville, FL, USA
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - David T. Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
9
|
Ortega-Cruz D, Iglesias JE, Rabano A, Strange BA. Hippocampal sclerosis of aging at post-mortem is evident on MRI more than a decade prior. Alzheimers Dement 2023; 19:5307-5315. [PMID: 37366342 PMCID: PMC10751387 DOI: 10.1002/alz.13352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/05/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION Hippocampal sclerosis of aging (HS) is an important component of combined dementia neuropathology. However, the temporal evolution of its histologically-defined features is unknown. We investigated pre-mortem longitudinal hippocampal atrophy associated with HS, as well as with other dementia-associated pathologies. METHODS We analyzed hippocampal volumes from magnetic resonance imaging (MRI) segmentations in 64 dementia patients with longitudinal MRI follow-up and post-mortem neuropathological evaluation, including HS assessment in the hippocampal head and body. RESULTS Significant HS-associated hippocampal volume changes were observed throughout the evaluated timespan, up to 11.75 years before death. These changes were independent of age and Alzheimer's disease (AD) neuropathology and were driven specifically by CA1 and subiculum atrophy. AD pathology, but not HS, was associated significantly with the rate of hippocampal atrophy. DISCUSSION HS-associated volume changes are detectable on MRI earlier than 10 years before death. Based on these findings, volumetric cutoffs could be derived for in vivo differentiation between HS and AD. HIGHLIGHTS Hippocampal atrophy was found in HS+ patients earlier than 10 years before death. These early pre-mortem changes were driven by reduced CA1 and subiculum volumes. Rates of hippocampus and subfield volume decline were independent of HS. In contrast, steeper atrophy rates were associated with AD pathology burden. Differentiation between AD and HS could be facilitated based on these MRI findings.
Collapse
Affiliation(s)
- Diana Ortega-Cruz
- Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, 28223, Madrid, Spain
- Alzheimer’s Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, 28031, Madrid, Spain
| | - Juan Eugenio Iglesias
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 02129, Boston, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 02139, Boston, MA, USA
- Centre for Medical Image Computing, University College London, WC1V 6LJ, London, UK
| | - Alberto Rabano
- Alzheimer’s Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, 28031, Madrid, Spain
| | - Bryan A. Strange
- Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, 28223, Madrid, Spain
- Alzheimer’s Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, 28031, Madrid, Spain
| |
Collapse
|
10
|
Sordo L, Qian T, Bukhari SA, Nguyen KM, Woodworth DC, Head E, Kawas CH, Corrada MM, Montine TJ, Sajjadi SA. Characterization of hippocampal sclerosis of aging and its association with other neuropathologic changes and cognitive deficits in the oldest-old. Acta Neuropathol 2023; 146:415-432. [PMID: 37382680 PMCID: PMC10412485 DOI: 10.1007/s00401-023-02606-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 06/30/2023]
Abstract
Hippocampal sclerosis of aging (HS-A) is a common age-related neuropathological lesion characterized by neuronal loss and astrogliosis in subiculum and CA1 subfield of hippocampus. HS-A is associated with cognitive decline that mimics Alzheimer's disease. Pathological diagnosis of HS-A is traditionally binary based on presence/absence of the lesion. We compared this traditional measure against our novel quantitative measure for studying the relationship between HS-A and other neuropathologies and cognitive impairment. We included 409 participants from The 90+ study with neuropathological examination and longitudinal neuropsychological assessments. In those with HS-A, we examined digitized H&E and LFB stained hippocampal slides. The length of HS-A in each subfield of hippocampus and subiculum, each further divided into three subregions, was measured using Aperio eSlide Manager. For each subregion, the proportion affected by HS-A was calculated. Using regression models, both traditional/binary and quantitative measures were used to study the relationship between HS-A and other neuropathological changes and cognitive outcomes. HS-A was present in 48 (12%) of participants and was always focal, primarily affecting CA1 (73%), followed by subiculum (9%); overlapping pathology (subiculum and CA1) affected 18% of individuals. HS-A was more common in the left (82%) than the right (25%) hemisphere and was bilateral in 7% of participants. HS-A traditional/binary assessment was associated with limbic-predominant age-related TDP-43 encephalopathy (LATE-NC; OR = 3.45, p < 0.001) and aging-related tau astrogliopathy (ARTAG; OR = 2.72, p = 0.008). In contrast, our quantitative approach showed associations between the proportion of HS-A (CA1/subiculum/combined) and LATE-NC (p = 0.001) and arteriolosclerosis (p = 0.005). While traditional binary assessment of HS-A was associated with impaired memory (OR = 2.60, p = 0.007), calculations (OR = 2.16, p = 0.027), and orientation (OR = 3.56, p < 0.001), our quantitative approach revealed additional associations with impairments in language (OR = 1.33, p = 0.018) and visuospatial domains (OR = 1.37, p = 0.006). Our novel quantitative method revealed associations between HS-A and vascular pathologies and impairment in cognitive domains that were not detected using traditional/binary measures.
Collapse
Affiliation(s)
- Lorena Sordo
- Department of Neurology, University of California, Irvine, Office 364, Med Surge II Building, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| | - Tianchen Qian
- Department of Statistics, University of California, Irvine, CA, USA
| | - Syed A Bukhari
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Katelynn M Nguyen
- Department of Neurology, University of California, Irvine, Office 364, Med Surge II Building, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Davis C Woodworth
- Department of Neurology, University of California, Irvine, Office 364, Med Surge II Building, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Elizabeth Head
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| | - Claudia H Kawas
- Department of Neurology, University of California, Irvine, Office 364, Med Surge II Building, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - María M Corrada
- Department of Neurology, University of California, Irvine, Office 364, Med Surge II Building, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Epidemiology and Biostatistics, University of California, Irvine, CA, USA
| | - Thomas J Montine
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - S Ahmad Sajjadi
- Department of Neurology, University of California, Irvine, Office 364, Med Surge II Building, Irvine, CA, 92697, USA.
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA.
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
11
|
Ortega-Cruz D, Uceda-Heras A, Iglesias JE, Zea-Sevilla MA, Strange B, Rabano A. A novel histological staging of hippocampal sclerosis that is evident in gray matter loss in vivo. Alzheimers Dement 2023; 19:3028-3040. [PMID: 36691755 PMCID: PMC10363577 DOI: 10.1002/alz.12942] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/05/2022] [Accepted: 12/21/2022] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Hippocampal sclerosis of aging (HS) is defined by end-stage histological findings, strongly associated with limbic-predominant age-related TAR DNA-binding protein 43 (TDP-43) encephalopathy (LATE). We aimed to characterize features of early HS to refine the understanding of its role within combined pathology. METHODS We studied 159 brain donations from the multimodal Vallecas Alzheimer's Center Study. A staging system (0 to IV) was developed to account for HS progression and analyzed in relation to pre-mortem cognitive and magnetic resonance imaging (MRI) data. RESULTS Our HS staging system displayed a significant correlation with disease duration, cognitive performance, and combined neuropathologies, especially with LATE. Two-level assessment along the hippocampal longitudinal axis revealed an anterior-posterior gradient of HS severity. In vivo MRI showed focally reduced hippocampal gray matter density as a function of HS staging. DISCUSSION The association of this staging system with clinical progression and structural differences supports its utility in the characterization and potential in vivo monitoring of HS. HIGHLIGHTS The definition of hippocampal sclerosis of aging (HS) is currently limited to an end-stage pathological fingerprint. We characterize early HS histological features to define a complete staging system. The proposed staging displays a parallel but not identical progression to limbic-predominant age-related TAR DNA-binding protein 43 (TDP-43) encephalopathy (LATE). The proposed staging also reflects the expected demographic and cognitive differences associated with HS. In vivo magnetic resonance imaging (MRI) showed focal hippocampal gray matter loss as a function of HS staging.
Collapse
Affiliation(s)
- Diana Ortega-Cruz
- Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, Madrid, Spain
- Alzheimer’s Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Alicia Uceda-Heras
- Alzheimer’s Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
- Current address: Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Eugenio Iglesias
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Boston, MA, USA
| | | | - Bryan Strange
- Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, Madrid, Spain
- Alzheimer’s Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Alberto Rabano
- Alzheimer’s Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| |
Collapse
|
12
|
Ortega-Cruz D, Eugenio Iglesias J, Rabano A, Strange B. Hippocampal sclerosis of aging at post-mortem is evident on MRI more than a decade prior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531683. [PMID: 36945448 PMCID: PMC10028863 DOI: 10.1101/2023.03.08.531683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
INTRODUCTION Hippocampal sclerosis of aging (HS) is an important component of combined dementia neuropathology. However, the temporal evolution of its histologically-defined features is unknown. We investigated pre-mortem longitudinal hippocampal atrophy associated with HS, as well as with other dementia-associated pathologies. METHODS We analyzed hippocampal volumes from MRI segmentations in 64 dementia patients with longitudinal MRI follow-up and post-mortem neuropathological evaluation, including HS assessment in the hippocampal head and body. RESULTS Significant HS-associated hippocampal volume changes were observed thoughout the evaluated timespan, up to 11.75 years before death. These changes were independent of age and Alzheimer’s Disease (AD) burden, and specifically driven by CA1 and subiculum. AD burden, but not HS, significantly associated with the rate of hippocampal atrophy. DISCUSSION HS-associated volume changes are detectable on MRI earlier than 10 years before death. These findings could contribute to the derivation of volumetric cut-offs for in vivo differentiation between HS and AD.
Collapse
Affiliation(s)
- Diana Ortega-Cruz
- Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, Madrid, Spain
- Alzheimer’s Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Juan Eugenio Iglesias
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Boston, MA, USA
- Centre for Medical Image Computing, University College London, London, UK
| | - Alberto Rabano
- Alzheimer’s Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Bryan Strange
- Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, Madrid, Spain
- Alzheimer’s Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| |
Collapse
|
13
|
Nelson PT, Lee EB, Cykowski MD, Alafuzoff I, Arfanakis K, Attems J, Brayne C, Corrada MM, Dugger BN, Flanagan ME, Ghetti B, Grinberg LT, Grossman M, Grothe MJ, Halliday GM, Hasegawa M, Hokkanen SRK, Hunter S, Jellinger K, Kawas CH, Keene CD, Kouri N, Kovacs GG, Leverenz JB, Latimer CS, Mackenzie IR, Mao Q, McAleese KE, Merrick R, Montine TJ, Murray ME, Myllykangas L, Nag S, Neltner JH, Newell KL, Rissman RA, Saito Y, Sajjadi SA, Schwetye KE, Teich AF, Thal DR, Tomé SO, Troncoso JC, Wang SHJ, White CL, Wisniewski T, Yang HS, Schneider JA, Dickson DW, Neumann M. LATE-NC staging in routine neuropathologic diagnosis: an update. Acta Neuropathol 2023; 145:159-173. [PMID: 36512061 PMCID: PMC9849315 DOI: 10.1007/s00401-022-02524-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
An international consensus report in 2019 recommended a classification system for limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC). The suggested neuropathologic staging system and nomenclature have proven useful for autopsy practice and dementia research. However, some issues remain unresolved, such as cases with unusual features that do not fit with current diagnostic categories. The goal of this report is to update the neuropathologic criteria for the diagnosis and staging of LATE-NC, based primarily on published data. We provide practical suggestions about how to integrate available genetic information and comorbid pathologies [e.g., Alzheimer's disease neuropathologic changes (ADNC) and Lewy body disease]. We also describe recent research findings that have enabled more precise guidance on how to differentiate LATE-NC from other subtypes of TDP-43 pathology [e.g., frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS)], and how to render diagnoses in unusual situations in which TDP-43 pathology does not follow the staging scheme proposed in 2019. Specific recommendations are also made on when not to apply this diagnostic term based on current knowledge. Neuroanatomical regions of interest in LATE-NC are described in detail and the implications for TDP-43 immunohistochemical results are specified more precisely. We also highlight questions that remain unresolved and areas needing additional study. In summary, the current work lays out a number of recommendations to improve the precision of LATE-NC staging based on published reports and diagnostic experience.
Collapse
Affiliation(s)
- Peter T Nelson
- University of Kentucky, Rm 575 Todd Building, Lexington, KY, USA.
| | - Edward B Lee
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Konstantinos Arfanakis
- Rush University Medical Center, Chicago, IL, USA
- Illinois Institute of Technology, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología Y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | | | - Masato Hasegawa
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | | | | | | | | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Laboratory Medicine Program, University Health Network, Toronto, Canada
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | | | | | | | - Qinwen Mao
- University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | - Liisa Myllykangas
- University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sukriti Nag
- Rush University Medical Center, Chicago, IL, USA
| | - Janna H Neltner
- University of Kentucky, Rm 575 Todd Building, Lexington, KY, USA
| | | | | | - Yuko Saito
- Tokyo Metropolitan Geriatric Hospital & Institute of Gerontology, Tokyo, Japan
| | | | | | | | - Dietmar R Thal
- Laboratory for Neuropathology, Department of Imaging and Pathoogy, and Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Sandra O Tomé
- Laboratory for Neuropathology, Department of Imaging and Pathoogy, and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | | | | | - Charles L White
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Hyun-Sik Yang
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, BostonBoston, MAMA, USA
| | | | | | | |
Collapse
|
14
|
Duong MT, Wolk DA. Limbic-Predominant Age-Related TDP-43 Encephalopathy: LATE-Breaking Updates in Clinicopathologic Features and Biomarkers. Curr Neurol Neurosci Rep 2022; 22:689-698. [PMID: 36190653 PMCID: PMC9633415 DOI: 10.1007/s11910-022-01232-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Limbic-predominant age-related TDP-43 encephalopathy (LATE) is a recently defined neurodegenerative disease characterized by amnestic phenotype and pathological inclusions of TAR DNA-binding protein 43 (TDP-43). LATE is distinct from rarer forms of TDP-43 diseases such as frontotemporal lobar degeneration with TDP-43 but is also a common copathology with Alzheimer's disease (AD) and cerebrovascular disease and accelerates cognitive decline. LATE contributes to clinicopathologic heterogeneity in neurodegenerative diseases, so it is imperative to distinguish LATE from other etiologies. RECENT FINDINGS Novel biomarkers for LATE are being developed with magnetic resonance imaging (MRI) and positron emission tomography (PET). When cooccurring with AD, LATE exhibits identifiable patterns of limbic-predominant atrophy on MRI and hypometabolism on 18F-fluorodeoxyglucose PET that are greater than expected relative to levels of local AD pathology. Efforts are being made to develop TDP-43-specific radiotracers, molecularly specific biofluid measures, and genomic predictors of TDP-43. LATE is a highly prevalent neurodegenerative disease distinct from previously characterized cognitive disorders.
Collapse
Affiliation(s)
- Michael Tran Duong
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Alzheimer's Disease Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute On Aging, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA.
| |
Collapse
|
15
|
Kim HJ, Oh JS, Lim JS, Lee S, Jo S, Chung EN, Shim WH, Oh M, Kim JS, Roh JH, Lee JH. The impact of subthreshold levels of amyloid deposition on conversion to dementia in patients with amyloid-negative amnestic mild cognitive impairment. Alzheimers Res Ther 2022; 14:93. [PMID: 35821150 PMCID: PMC9277922 DOI: 10.1186/s13195-022-01035-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 06/25/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND About 40-50% of patients with amnestic mild cognitive impairment (MCI) are found to have no significant Alzheimer's pathology based on amyloid PET positivity. Notably, conversion to dementia in this population is known to occur much less often than in amyloid-positive MCI. However, the relationship between MCI and brain amyloid deposition remains largely unknown. Therefore, we investigated the influence of subthreshold levels of amyloid deposition on conversion to dementia in amnestic MCI patients with negative amyloid PET scans. METHODS This study was a retrospective cohort study of patients with amyloid-negative amnestic MCI who visited the memory clinic of Asan Medical Center. All participants underwent detailed neuropsychological testing, brain magnetic resonance imaging, and [18F]-florbetaben (FBB) positron emission tomography scan (PET). Conversion to dementia was determined by a neurologist based on a clinical interview with a detailed neuropsychological test or a decline in the Korean version of the Mini-Mental State Examination score of more than 4 points per year combined with impaired activities of daily living. Regional cortical amyloid levels were calculated, and a receiver operating characteristic (ROC) curve for conversion to dementia was obtained. To increase the reliability of the results of the study, we analyzed the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset together. RESULTS During the follow-up period, 36% (39/107) of patients converted to dementia from amnestic MCI. The dementia converter group displayed increased standardized uptake value ratio (SUVR) values of FBB on PET in the bilateral temporal, parietal, posterior cingulate, occipital, and left precuneus cortices as well as increased global SUVR. Among volume of interests, the left parietal SUVR predicted conversion to dementia with the highest accuracy in the ROC analysis (area under the curve [AUC] = 0.762, P < 0.001). The combination of precuneus, parietal cortex, and FBB composite SUVRs also showed a higher accuracy in predicting conversion to dementia than other models (AUC = 0.763). Of the results of ADNI data, the SUVR of the left precuneus SUVR showed the highest AUC (AUC = 0.596, P = 0.006). CONCLUSION Our findings suggest that subthreshold amyloid levels may contribute to conversion to dementia in patients with amyloid-negative amnestic MCI.
Collapse
Affiliation(s)
- Hyung-Ji Kim
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
- Department of Neurology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu, South Korea
| | - Jungsu S Oh
- Department of Nuclear Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Jae-Sung Lim
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Sunju Lee
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Sungyang Jo
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - E-Nae Chung
- Health Innovation Bigdata Center, Asan Institute for Lifesciences, Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Woo-Hyun Shim
- Health Innovation Bigdata Center, Asan Institute for Lifesciences, Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Minyoung Oh
- Department of Nuclear Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Jae Seung Kim
- Department of Nuclear Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Jee Hoon Roh
- Neuroscience Institute, Korea University College of Medicine and School of Medicine, Seoul, South Korea
| | - Jae-Hong Lee
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.
| |
Collapse
|
16
|
Nelson PT, Brayne C, Flanagan ME, Abner EL, Agrawal S, Attems J, Castellani RJ, Corrada MM, Cykowski MD, Di J, Dickson DW, Dugger BN, Ervin JF, Fleming J, Graff-Radford J, Grinberg LT, Hokkanen SRK, Hunter S, Kapasi A, Kawas CH, Keage HAD, Keene CD, Kero M, Knopman DS, Kouri N, Kovacs GG, Labuzan SA, Larson EB, Latimer CS, Leite REP, Matchett BJ, Matthews FE, Merrick R, Montine TJ, Murray ME, Myllykangas L, Nag S, Nelson RS, Neltner JH, Nguyen AT, Petersen RC, Polvikoski T, Reichard RR, Rodriguez RD, Suemoto CK, Wang SHJ, Wharton SB, White L, Schneider JA. Frequency of LATE neuropathologic change across the spectrum of Alzheimer's disease neuropathology: combined data from 13 community-based or population-based autopsy cohorts. Acta Neuropathol 2022; 144:27-44. [PMID: 35697880 PMCID: PMC9552938 DOI: 10.1007/s00401-022-02444-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/04/2022] [Accepted: 05/22/2022] [Indexed: 02/02/2023]
Abstract
Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) and Alzheimer's disease neuropathologic change (ADNC) are each associated with substantial cognitive impairment in aging populations. However, the prevalence of LATE-NC across the full range of ADNC remains uncertain. To address this knowledge gap, neuropathologic, genetic, and clinical data were compiled from 13 high-quality community- and population-based longitudinal studies. Participants were recruited from United States (8 cohorts, including one focusing on Japanese-American men), United Kingdom (2 cohorts), Brazil, Austria, and Finland. The total number of participants included was 6196, and the average age of death was 88.1 years. Not all data were available on each individual and there were differences between the cohorts in study designs and the amount of missing data. Among those with known cognitive status before death (n = 5665), 43.0% were cognitively normal, 14.9% had MCI, and 42.4% had dementia-broadly consistent with epidemiologic data in this age group. Approximately 99% of participants (n = 6125) had available CERAD neuritic amyloid plaque score data. In this subsample, 39.4% had autopsy-confirmed LATE-NC of any stage. Among brains with "frequent" neuritic amyloid plaques, 54.9% had comorbid LATE-NC, whereas in brains with no detected neuritic amyloid plaques, 27.0% had LATE-NC. Data on LATE-NC stages were available for 3803 participants, of which 25% had LATE-NC stage > 1 (associated with cognitive impairment). In the subset of individuals with Thal Aβ phase = 0 (lacking detectable Aβ plaques), the brains with LATE-NC had relatively more severe primary age-related tauopathy (PART). A total of 3267 participants had available clinical data relevant to frontotemporal dementia (FTD), and none were given the clinical diagnosis of definite FTD nor the pathological diagnosis of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP). In the 10 cohorts with detailed neurocognitive assessments proximal to death, cognition tended to be worse with LATE-NC across the full spectrum of ADNC severity. This study provided a credible estimate of the current prevalence of LATE-NC in advanced age. LATE-NC was seen in almost 40% of participants and often, but not always, coexisted with Alzheimer's disease neuropathology.
Collapse
Affiliation(s)
- Peter T Nelson
- University of Kentucky, Rm 311 Sanders-Brown Center on Aging, Lexington, KY, USA.
| | | | | | - Erin L Abner
- University of Kentucky, Rm 311 Sanders-Brown Center on Aging, Lexington, KY, USA
| | | | | | | | | | | | - Jing Di
- University of Kentucky, Rm 311 Sanders-Brown Center on Aging, Lexington, KY, USA
| | | | | | | | | | | | - Lea T Grinberg
- University of California, San Francisco, CA, USA
- University of Sao Paulo Medical School, Sao Paulo, Brazil
| | | | | | | | | | | | | | - Mia Kero
- University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | | | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - Eric B Larson
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | | | | | | | | | | | | | | | - Liisa Myllykangas
- University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sukriti Nag
- Rush University Medical Center, Chicago, IL, USA
| | | | - Janna H Neltner
- University of Kentucky, Rm 311 Sanders-Brown Center on Aging, Lexington, KY, USA
| | | | | | | | | | | | | | | | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Lon White
- Pacific Health Research and Education Institute, Honolulu, HI, USA
| | | |
Collapse
|
17
|
Gauthreaux KM, Teylan MA, Katsumata Y, Mock C, Culhane JE, Chen YC, Chan KCG, Fardo DW, Dugan AJ, Cykowski MD, Jicha GA, Kukull WA, Nelson PT. Limbic-Predominant Age-Related TDP-43 Encephalopathy: Medical and Pathologic Factors Associated With Comorbid Hippocampal Sclerosis. Neurology 2022; 98:e1422-e1433. [PMID: 35121671 PMCID: PMC8992604 DOI: 10.1212/wnl.0000000000200001] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/03/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Limbic-predominant age-related Tar DNA binding protein 43 (TDP-43) encephalopathy neuropathologic change (LATE-NC) is present in ≈25% of older persons' brains and is strongly associated with cognitive impairment. Hippocampal sclerosis (HS) pathology is often comorbid with LATE-NC, but the clinical and pathologic correlates of HS in LATE-NC are not well understood. METHODS This retrospective autopsy cohort study used data derived from the National Alzheimer's Coordinating Center Neuropathology Data Set, which included neurologic status, medical histories, and neuropathologic results. All autopsies were performed in 2014 or later. Among participants with LATE-NC, those who also had HS pathology were compared with those without HS with regard to candidate risk factors or common underlying diseases. Statistical significance was set at nominal p < 0.05 in this exploratory study. RESULTS A total of 408 participants were included (n = 221 were LATE-NC+/HS-, n = 145 were LATE-NC+/HS+, and n = 42 were LATE-NC-/HS+). Most of the included LATE-NC+ participants were severely impaired cognitively (83.3% with dementia). Compared to HS- participants, LATE-NC+ participants with HS trended toward having worse cognitive status and scored lower on the Personal Care and Orientation domains (both p = 0.03). Among LATE-NC+ participants with Braak neurofibrillary tangle (NFT) stages 0 to IV (n = 88), HS+ participants were more impaired in the Memory and Orientation domains (both p = 0.02). There were no differences (HS+ compared with HS-) in the proportion with clinical histories of seizures, stroke, cardiac bypass procedures, diabetes, or hypertension. The HS+ group lacking TDP-43 proteinopathy (n = 42) was relatively likely to have had strokes (p = 0.03). When LATE-NC+ participants with or without HS were compared, there were no differences in Alzheimer disease neuropathologies (Thal β-amyloid phases or Braak NFT stages) or Lewy body pathologies. However, the HS+ group was less likely to have amygdala-restricted TDP-43 proteinopathy (LATE-NC stage 1) and more likely to have neocortical TDP-43 proteinopathy (LATE-NC stage 3) (p < 0.001). LATE-NC+ brains with HS also tended to have more severe circle of Willis atherosclerosis and arteriolosclerosis pathologies. DISCUSSION In this cohort skewed toward participants with severe dementia, LATE-NC+ HS pathology was not associated with seizures or with Alzheimer-type pathologies. Rather, the presence of comorbid HS pathology was associated with more widespread TDP-43 proteinopathy and with more severe non-β-amyloid vessel wall pathologies.
Collapse
Affiliation(s)
- Kathryn M Gauthreaux
- From the National Alzheimer's Coordinating Center (K.M.G., M.A.T., C.M., J.E.C., K.C.G.C., W.A.K.), Department of Epidemiology, and Department of Statistics (Y.-C.C.) University of Washington, Seattle; Houston Methodist Hospital (M.D.C.), TX; and Sanders-Brown Center on Aging (Y.K., D.W.F., G.A.J., P.T.N.), Department of Biostatistics (Y.K., D.W.F., A.J.D.), Department of Neurology (G.A.J.), and Department of Pathology (P.T.N.), Division of Neuropathology, University of Kentucky, Lexington
| | - Merilee A Teylan
- From the National Alzheimer's Coordinating Center (K.M.G., M.A.T., C.M., J.E.C., K.C.G.C., W.A.K.), Department of Epidemiology, and Department of Statistics (Y.-C.C.) University of Washington, Seattle; Houston Methodist Hospital (M.D.C.), TX; and Sanders-Brown Center on Aging (Y.K., D.W.F., G.A.J., P.T.N.), Department of Biostatistics (Y.K., D.W.F., A.J.D.), Department of Neurology (G.A.J.), and Department of Pathology (P.T.N.), Division of Neuropathology, University of Kentucky, Lexington
| | - Yuriko Katsumata
- From the National Alzheimer's Coordinating Center (K.M.G., M.A.T., C.M., J.E.C., K.C.G.C., W.A.K.), Department of Epidemiology, and Department of Statistics (Y.-C.C.) University of Washington, Seattle; Houston Methodist Hospital (M.D.C.), TX; and Sanders-Brown Center on Aging (Y.K., D.W.F., G.A.J., P.T.N.), Department of Biostatistics (Y.K., D.W.F., A.J.D.), Department of Neurology (G.A.J.), and Department of Pathology (P.T.N.), Division of Neuropathology, University of Kentucky, Lexington
| | - Charles Mock
- From the National Alzheimer's Coordinating Center (K.M.G., M.A.T., C.M., J.E.C., K.C.G.C., W.A.K.), Department of Epidemiology, and Department of Statistics (Y.-C.C.) University of Washington, Seattle; Houston Methodist Hospital (M.D.C.), TX; and Sanders-Brown Center on Aging (Y.K., D.W.F., G.A.J., P.T.N.), Department of Biostatistics (Y.K., D.W.F., A.J.D.), Department of Neurology (G.A.J.), and Department of Pathology (P.T.N.), Division of Neuropathology, University of Kentucky, Lexington
| | - Jessica E Culhane
- From the National Alzheimer's Coordinating Center (K.M.G., M.A.T., C.M., J.E.C., K.C.G.C., W.A.K.), Department of Epidemiology, and Department of Statistics (Y.-C.C.) University of Washington, Seattle; Houston Methodist Hospital (M.D.C.), TX; and Sanders-Brown Center on Aging (Y.K., D.W.F., G.A.J., P.T.N.), Department of Biostatistics (Y.K., D.W.F., A.J.D.), Department of Neurology (G.A.J.), and Department of Pathology (P.T.N.), Division of Neuropathology, University of Kentucky, Lexington
| | - Yen-Chi Chen
- From the National Alzheimer's Coordinating Center (K.M.G., M.A.T., C.M., J.E.C., K.C.G.C., W.A.K.), Department of Epidemiology, and Department of Statistics (Y.-C.C.) University of Washington, Seattle; Houston Methodist Hospital (M.D.C.), TX; and Sanders-Brown Center on Aging (Y.K., D.W.F., G.A.J., P.T.N.), Department of Biostatistics (Y.K., D.W.F., A.J.D.), Department of Neurology (G.A.J.), and Department of Pathology (P.T.N.), Division of Neuropathology, University of Kentucky, Lexington
| | - Kwun C G Chan
- From the National Alzheimer's Coordinating Center (K.M.G., M.A.T., C.M., J.E.C., K.C.G.C., W.A.K.), Department of Epidemiology, and Department of Statistics (Y.-C.C.) University of Washington, Seattle; Houston Methodist Hospital (M.D.C.), TX; and Sanders-Brown Center on Aging (Y.K., D.W.F., G.A.J., P.T.N.), Department of Biostatistics (Y.K., D.W.F., A.J.D.), Department of Neurology (G.A.J.), and Department of Pathology (P.T.N.), Division of Neuropathology, University of Kentucky, Lexington
| | - David W Fardo
- From the National Alzheimer's Coordinating Center (K.M.G., M.A.T., C.M., J.E.C., K.C.G.C., W.A.K.), Department of Epidemiology, and Department of Statistics (Y.-C.C.) University of Washington, Seattle; Houston Methodist Hospital (M.D.C.), TX; and Sanders-Brown Center on Aging (Y.K., D.W.F., G.A.J., P.T.N.), Department of Biostatistics (Y.K., D.W.F., A.J.D.), Department of Neurology (G.A.J.), and Department of Pathology (P.T.N.), Division of Neuropathology, University of Kentucky, Lexington
| | - Adam J Dugan
- From the National Alzheimer's Coordinating Center (K.M.G., M.A.T., C.M., J.E.C., K.C.G.C., W.A.K.), Department of Epidemiology, and Department of Statistics (Y.-C.C.) University of Washington, Seattle; Houston Methodist Hospital (M.D.C.), TX; and Sanders-Brown Center on Aging (Y.K., D.W.F., G.A.J., P.T.N.), Department of Biostatistics (Y.K., D.W.F., A.J.D.), Department of Neurology (G.A.J.), and Department of Pathology (P.T.N.), Division of Neuropathology, University of Kentucky, Lexington
| | - Matthew D Cykowski
- From the National Alzheimer's Coordinating Center (K.M.G., M.A.T., C.M., J.E.C., K.C.G.C., W.A.K.), Department of Epidemiology, and Department of Statistics (Y.-C.C.) University of Washington, Seattle; Houston Methodist Hospital (M.D.C.), TX; and Sanders-Brown Center on Aging (Y.K., D.W.F., G.A.J., P.T.N.), Department of Biostatistics (Y.K., D.W.F., A.J.D.), Department of Neurology (G.A.J.), and Department of Pathology (P.T.N.), Division of Neuropathology, University of Kentucky, Lexington
| | - Gregory A Jicha
- From the National Alzheimer's Coordinating Center (K.M.G., M.A.T., C.M., J.E.C., K.C.G.C., W.A.K.), Department of Epidemiology, and Department of Statistics (Y.-C.C.) University of Washington, Seattle; Houston Methodist Hospital (M.D.C.), TX; and Sanders-Brown Center on Aging (Y.K., D.W.F., G.A.J., P.T.N.), Department of Biostatistics (Y.K., D.W.F., A.J.D.), Department of Neurology (G.A.J.), and Department of Pathology (P.T.N.), Division of Neuropathology, University of Kentucky, Lexington
| | - Walter A Kukull
- From the National Alzheimer's Coordinating Center (K.M.G., M.A.T., C.M., J.E.C., K.C.G.C., W.A.K.), Department of Epidemiology, and Department of Statistics (Y.-C.C.) University of Washington, Seattle; Houston Methodist Hospital (M.D.C.), TX; and Sanders-Brown Center on Aging (Y.K., D.W.F., G.A.J., P.T.N.), Department of Biostatistics (Y.K., D.W.F., A.J.D.), Department of Neurology (G.A.J.), and Department of Pathology (P.T.N.), Division of Neuropathology, University of Kentucky, Lexington
| | - Peter T Nelson
- From the National Alzheimer's Coordinating Center (K.M.G., M.A.T., C.M., J.E.C., K.C.G.C., W.A.K.), Department of Epidemiology, and Department of Statistics (Y.-C.C.) University of Washington, Seattle; Houston Methodist Hospital (M.D.C.), TX; and Sanders-Brown Center on Aging (Y.K., D.W.F., G.A.J., P.T.N.), Department of Biostatistics (Y.K., D.W.F., A.J.D.), Department of Neurology (G.A.J.), and Department of Pathology (P.T.N.), Division of Neuropathology, University of Kentucky, Lexington.
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW People over 90 are the fastest growing segment of the population with the highest rates of dementia. This review highlights recent findings that provide insight to our understanding of dementia and cognition at all ages. RECENT FINDINGS Risk factors for Alzheimer's disease (AD) and dementia differ by age, with some factors, like the development of hypertension, actually becoming protective in the oldest-old. At least half of all dementia in this age group is due to non AD pathologies, including microinfarcts, hippocampal sclerosis and TDP-43. The number of pathologic changes found in the brain is related to both risk and severity of dementia, but many people in this age group appear to be 'resilient' to these pathologies. Resilience to Alzheimer pathology, in part, may be related to absence of other pathologies, and imaging and spinal fluid biomarkers for AD have limited utility in this age group. SUMMARY Studies of dementia in the oldest-old are important for our understanding and eventual treatment or prevention of dementia at all ages.
Collapse
Affiliation(s)
- Claudia H. Kawas
- Department of Neurology and Department of Neurobiology & Behavior, University of California, Irvine, Irvine, California, USA
| | - Nienke Legdeur
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC and Department of Internal Medicine, Spaarne Gasthuis, Haarlem, the Netherlands
| | - María M. Corrada
- Department of Neurology and Department of Epidemiology, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
19
|
Sieben A, Van Langenhove T, Vermeiren Y, Gossye H, Praet M, Vanhauwaert D, Cousaert C, Engelborghs S, Raedt R, Boon P, Santens P, De Deyn PP, Bracke KR, De Meulemeester K, Van Broeckhoven C, Martin JJ, Bjerke M. Hippocampal Sclerosis in Frontotemporal Dementia: When Vascular Pathology Meets Neurodegeneration. J Neuropathol Exp Neurol 2021; 80:313-324. [PMID: 33638350 DOI: 10.1093/jnen/nlab010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hippocampal sclerosis (HS) is a common neuropathological finding and has been associated with advanced age, TDP-43 proteinopathy, and cerebrovascular pathology. We analyzed neuropathological data of an autopsy cohort of early-onset frontotemporal dementia patients. The study aimed to determine whether in this cohort HS was related to TDP-43 proteinopathy and whether additional factors could be identified. We examined the relationship between HS, proteinopathies in frontotemporal cortices and hippocampus, Alzheimer disease, cerebrovascular changes, and age. We confirmed a strong association between HS and hippocampal TDP-43, whereas there was a weaker association between HS and frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP). Nearly all of the FTLD-TDP cases had TDP-43 pathology in the hippocampus. HS was present in all FTLD-TDP type D cases, in 50% of the FTLD-TDP A cohort and in 6% of the FTLD-TDP B cohort. Our data also showed a significant association between HS and vascular changes. We reviewed the literature on HS and discuss possible pathophysiological mechanisms between TDP-43 pathology, cerebrovascular disease, and HS. Additionally, we introduced a quantitative neuronal cell count in CA1 to objectify the semiquantitative visual appreciation of HS.
Collapse
Affiliation(s)
- Anne Sieben
- Institute Born-Bunge, Neuropathology and Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp, Belgium.,Department of Neurology, Ghent University Hospital, Ghent, Belgium.,Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Neurology, AZ Jan Palfijn, Ghent, Belgium
| | - Tim Van Langenhove
- Department of Neurology, Ghent University Hospital, Ghent, Belgium.,Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
| | - Yannick Vermeiren
- Institute Born-Bunge, Neuropathology and Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp, Belgium.,Division of Human Nutrition and Health, Chair Group of Nutritional Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Helena Gossye
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Neurology, Antwerp University Hospital, Edegem, Belgium.,Institute Born-Bunge, Laboratory of Neurogenetics, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Center for Neurosciences (C4N), UZ Brussel and Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Marleen Praet
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | | | | | - Sebastiaan Engelborghs
- Institute Born-Bunge, Neuropathology and Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Center for Neurosciences (C4N), UZ Brussel and Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Robrecht Raedt
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Paul Boon
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Patrick Santens
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Peter Paul De Deyn
- Institute Born-Bunge, Neuropathology and Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp, Belgium.,Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Ken R Bracke
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | | | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jean-Jacques Martin
- Institute Born-Bunge, Neuropathology and Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp, Belgium
| | - Maria Bjerke
- Institute Born-Bunge, Neuropathology and Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp, Belgium.,Neurochemistry Laboratory, Department of Clinical Biology and Center for Neurosciences, University hospital Brussels and Free University of Brussels, Brussels, Belgium
| |
Collapse
|