1
|
Yadav S, Kc S, Blaskovich MAT, Lu CT, Lam AK, Nguyen NT. RhoA and Rac1 as Mechanotransduction Mediators in Colorectal Cancer. Adv Biol (Weinh) 2025:e2400626. [PMID: 39887960 DOI: 10.1002/adbi.202400626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related deaths, creating an urgent need for innovative diagnostic solutions. Mechanobiology, a cutting-edge field that investigates how physical forces influence cell behavior, is now revealing new insights into cancer progression. This research focuses on two crucial players: RhoA and Rac1, small yet powerful proteins that regulate the structure and movement of cancer cells. RhoA controls cell adhesion and migration, while Rac1 drives cell movement and invasion. As CRC tumors grow and reshape the colon's mechanical environment, these pathways become disrupted, accelerating cancer progression. Examining the level of RhoA and Rac1 in CRC clinical samples under mechanical strain reveals their potential as diagnostic markers. Tracking the activity of these proteins can unlock valuable insights into cancer cell dissemination, offering new avenues for understanding and diagnosing CRC. This approach holds promise for earlier detection and better outcomes by offering key insights for more effective diagnostic strategies.
Collapse
Affiliation(s)
- Sharda Yadav
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, Brisbane, QLD, 4111, Australia
| | - Sanjaya Kc
- Institute of Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4067, Australia
| | - Mark A T Blaskovich
- Institute of Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4067, Australia
| | - Cu-Tai Lu
- School of Medicine and Dentistry, Griffith University, Southport, QLD, 4222, Australia
| | - Alfred K Lam
- School of Medicine and Dentistry, Griffith University, Southport, QLD, 4222, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, Brisbane, QLD, 4111, Australia
| |
Collapse
|
2
|
Roshan U, Mudugamuwa A, Cha H, Hettiarachchi S, Zhang J, Nguyen NT. Actuation for flexible and stretchable microdevices. LAB ON A CHIP 2024; 24:2146-2175. [PMID: 38507292 DOI: 10.1039/d3lc01086d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Flexible and stretchable microdevices incorporate highly deformable structures, facilitating precise functionality at the micro- and millimetre scale. Flexible microdevices have showcased extensive utility in the fields of biomedicine, microfluidics, and soft robotics. Actuation plays a critical role in transforming energy between different forms, ensuring the effective operation of devices. However, when it comes to actuating flexible microdevices at the small millimetre or even microscale, translating actuation mechanisms from conventional rigid large-scale devices is not straightforward. The recent development of actuation mechanisms leverages the benefits of device flexibility, particularly in transforming conventional actuation concepts into more efficient approaches for flexible devices. Despite many reviews on soft robotics, flexible electronics, and flexible microfluidics, a specific and systematic review of the actuation mechanisms for flexible and stretchable microdevices is still lacking. Therefore, the present review aims to address this gap by providing a comprehensive overview of state-of-the-art actuation mechanisms for flexible and stretchable microdevices. We elaborate on the different actuation mechanisms based on fluid pressure, electric, magnetic, mechanical, and chemical sources, thoroughly examining and comparing the structure designs, characteristics, performance, advantages, and drawbacks of these diverse actuation mechanisms. Furthermore, the review explores the pivotal role of materials and fabrication techniques in the development of flexible and stretchable microdevices. Finally, we summarise the applications of these devices in biomedicine and soft robotics and provide perspectives on current and future research.
Collapse
Affiliation(s)
- Uditha Roshan
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia.
| | - Amith Mudugamuwa
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia.
| | - Haotian Cha
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia.
| | - Samith Hettiarachchi
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia.
| | - Jun Zhang
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia.
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia.
| |
Collapse
|
3
|
Yadav S, Singha P, Nguyen NK, Ooi CH, Kashaninejad N, Nguyen NT. Uniaxial Cyclic Cell Stretching Device for Accelerating Cellular Studies. MICROMACHINES 2023; 14:1537. [PMID: 37630073 PMCID: PMC10456305 DOI: 10.3390/mi14081537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023]
Abstract
Cellular response to mechanical stimuli is a crucial factor for maintaining cell homeostasis. The interaction between the extracellular matrix and mechanical stress plays a significant role in organizing the cytoskeleton and aligning cells. Tools that apply mechanical forces to cells and tissues, as well as those capable of measuring the mechanical properties of biological cells, have greatly contributed to our understanding of fundamental mechanobiology. These tools have been extensively employed to unveil the substantial influence of mechanical cues on the development and progression of various diseases. In this report, we present an economical and high-performance uniaxial cell stretching device. This paper reports the detailed operation concept of the device, experimental design, and characterization. The device was tested with MDA-MB-231 breast cancer cells. The experimental results agree well with previously documented morphological changes resulting from stretching forces on cancer cells. Remarkably, our new device demonstrates comparable cellular changes within 30 min compared with the previous 2 h stretching duration. This third-generation device significantly improved the stretching capabilities compared with its previous counterparts, resulting in a remarkable reduction in stretching time and a substantial increase in overall efficiency. Moreover, the device design incorporates an open-source software interface, facilitating convenient parameter adjustments such as strain, stretching speed, frequency, and duration. Its versatility enables seamless integration with various optical microscopes, thereby yielding novel insights into the realm of mechanobiology.
Collapse
Affiliation(s)
| | | | | | | | | | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan, QLD 4111, Australia; (S.Y.); (P.S.); (N.-K.N.); (C.H.O.); (N.K.)
| |
Collapse
|
4
|
Hassani B, Mollanoori H, Pouresmaeili F, Asgari Y, Ghafouri-Fard S. Constructing mRNA, miRNA, circRNA and lncRNA regulatory network by Analysis of microarray data in breast cancer. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
5
|
Post-Translational Modification and Subcellular Compartmentalization: Emerging Concepts on the Regulation and Physiopathological Relevance of RhoGTPases. Cells 2021; 10:cells10081990. [PMID: 34440759 PMCID: PMC8393718 DOI: 10.3390/cells10081990] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/26/2022] Open
Abstract
Cells and tissues are continuously exposed to both chemical and physical stimuli and dynamically adapt and respond to this variety of external cues to ensure cellular homeostasis, regulated development and tissue-specific differentiation. Alterations of these pathways promote disease progression-a prominent example being cancer. Rho GTPases are key regulators of the remodeling of cytoskeleton and cell membranes and their coordination and integration with different biological processes, including cell polarization and motility, as well as other signaling networks such as growth signaling and proliferation. Apart from the control of GTP-GDP cycling, Rho GTPase activity is spatially and temporally regulated by post-translation modifications (PTMs) and their assembly onto specific protein complexes, which determine their controlled activity at distinct cellular compartments. Although Rho GTPases were traditionally conceived as targeted from the cytosol to the plasma membrane to exert their activity, recent research demonstrates that active pools of different Rho GTPases also localize to endomembranes and the nucleus. In this review, we discuss how PTM-driven modulation of Rho GTPases provides a versatile mechanism for their compartmentalization and functional regulation. Understanding how the subcellular sorting of active small GTPase pools occurs and what its functional significance is could reveal novel therapeutic opportunities.
Collapse
|
6
|
Fallahi H, Yadav S, Phan HP, Ta H, Zhang J, Nguyen NT. Size-tuneable isolation of cancer cells using stretchable inertial microfluidics. LAB ON A CHIP 2021; 21:2008-2018. [PMID: 34008666 DOI: 10.1039/d1lc00082a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Inertial microfluidics is a simple, low cost, efficient size-based separation technique which is being widely investigated for rare-cell isolation and detection. Due to the fixed geometrical dimensions of the current rigid inertial microfluidic systems, most of them are only capable of isolating and separating cells with certain types and sizes. Herein, we report the design, fabrication, and validation of a stretchable inertial microfluidic device with a tuneable separation threshold that can be used for heterogenous mixtures of particles and cells. Stretchability allows for the fine-tuning of the critical sorting size, resulting in a high separation resolution that makes the separation of cells with small size differences possible. We validated the tunability of the separation threshold by stretching the length of a microchannel to separate the particle sizes of interest. We also evaluated the focusing efficiency, flow behaviour, and the positions of cancer cells and white blood cells (WBCs) in an elongated channel, separately. In addition, the performance of the device was verified by isolating cancer cells from WBCs which revealed a high recovery rate and purity. The stretchable chip showed promising results in the separation of cells with comparable sizes. Further validation of the chip using whole blood spiked with cancer cells delivered a 98.6% recovery rate with 90% purity. Elongating a stretchable microfluidic chip enables onsite modification of the dimensions of a microchannel leading to a precise tunability of the separation threshold as well as a high separation resolution.
Collapse
Affiliation(s)
- Hedieh Fallahi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Sharda Yadav
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Hoang-Phuong Phan
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Hang Ta
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| |
Collapse
|
7
|
Abstract
Dermal interstitial fluid (ISF) is a novel source of biomarkers that can be considered as an alternative to blood sampling for disease diagnosis and treatment. Nevertheless, in vivo extraction and analysis of ISF are challenging. On the other hand, microneedle (MN) technology can address most of the challenges associated with dermal ISF extraction and is well suited for long-term, continuous ISF monitoring as well as in situ detection. In this review, we first briefly summarise the different dermal ISF collection methods and compare them with MN methods. Next, we elaborate on the design considerations and biocompatibility of MNs. Subsequently, the fabrication technologies of various MNs used for dermal ISF extraction, including solid MNs, hollow MNs, porous MNs, and hydrogel MNs, are thoroughly explained. In addition, different sensing mechanisms of ISF detection are discussed in detail. Subsequently, we identify the challenges and propose the possible solutions associated with ISF extraction. A detailed investigation is provided for the transport and sampling mechanism of ISF in vivo. Also, the current in vitro skin model integrated with the MN arrays is discussed. Finally, future directions to develop a point-of-care (POC) device to sample ISF are proposed.
Collapse
|
8
|
Kawarazaki W, Fujita T. Role of Rho in Salt-Sensitive Hypertension. Int J Mol Sci 2021; 22:ijms22062958. [PMID: 33803946 PMCID: PMC8001214 DOI: 10.3390/ijms22062958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022] Open
Abstract
A high amount of salt in the diet increases blood pressure (BP) and leads to salt-sensitive hypertension in individuals with impaired renal sodium excretion. Small guanosine triphosphatase (GTP)ase Rho and Rac, activated by salt intake, play important roles in the pathogenesis of salt-sensitive hypertension as key switches of intracellular signaling. Focusing on Rho, high salt intake in the central nervous system increases sodium concentrations of cerebrospinal fluid in salt-sensitive subjects via Rho/Rho kinase and renin-angiotensin system activation and causes increased brain salt sensitivity and sympathetic nerve outflow in BP control centers. In vascular smooth muscle cells, Rho-guanine nucleotide exchange factors and Rho determine sensitivity to vasoconstrictors such as angiotensin II (Ang II), and facilitate vasoconstriction via G-protein and Wnt pathways, leading to increased vascular resistance, including in the renal arteries, in salt-sensitive subjects with high salt intake. In the vascular endothelium, Rho/Rho kinase inhibits nitric oxide (NO) production and function, and high salt amounts further augment Rho activity via asymmetric dimethylarginine, an endogenous inhibitor of NO synthetase, causing aberrant relaxation and increased vascular tone. Rho-associated mechanisms are deeply involved in the development of salt-sensitive hypertension, and their further elucidation can help in developing effective protection and new therapies.
Collapse
|
9
|
Yadav S, Ta HT, Nguyen N. Mechanobiology in cardiology: Micro‐ and nanotechnologies to probe mechanosignaling. VIEW 2021. [DOI: 10.1002/viw.20200080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Sharda Yadav
- Queensland Micro‐ and Nanotechnology Centre Griffith University Nathan Queensland Australia
| | - Hang T. Ta
- Queensland Micro‐ and Nanotechnology Centre Griffith University Nathan Queensland Australia
- School of Environment and Science Griffith University Nathan Queensland Australia
| | - Nam‐Trung Nguyen
- Queensland Micro‐ and Nanotechnology Centre Griffith University Nathan Queensland Australia
| |
Collapse
|
10
|
Enríquez Á, Libring S, Field TC, Jimenez J, Lee T, Park H, Satoski D, Wendt MK, Calve S, Tepole AB, Solorio L, Lee H. High-Throughput Magnetic Actuation Platform for Evaluating the Effect of Mechanical Force on 3D Tumor Microenvironment. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2005021. [PMID: 34764824 PMCID: PMC8577425 DOI: 10.1002/adfm.202005021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Indexed: 05/03/2023]
Abstract
Accurately replicating and analyzing cellular responses to mechanical cues is vital for exploring metastatic disease progression. However, many of the existing in vitro platforms for applying mechanical stimulation seed cells on synthetic substrates. To better recapitulate physiological conditions, a novel actuating platform is developed with the ability to apply tensile strain on cells at various amplitudes and frequencies in a high-throughput multi-well culture plate using a physiologically-relevant substrate. Suspending fibrillar fibronectin across the body of the magnetic actuator provides a matrix representative of early metastasis for 3D cell culture that is not reliant on a synthetic substrate. This platform enables the culturing and analysis of various cell types in an environment that mimics the dynamic stretching of lung tissue during normal respiration. Metabolic activity, YAP activation, and morphology of breast cancer cells are analyzed within one week of cyclic stretching or static culture. Further, matrix degradation is significantly reduced in breast cancer cell lines with metastatic potential after actuation. These new findings demonstrate a clear suppressive cellular response due to cyclic stretching that has implications for a mechanical role in the dormancy and reactivation of disseminated breast cancer cells to macrometastases.
Collapse
Affiliation(s)
- Ángel Enríquez
- Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Center for Implantable Devices, Purdue University, West Lafayette, IN 47907, USA
| | - Sarah Libring
- Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Tyler C. Field
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Julian Jimenez
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Taeksang Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Hyunsu Park
- Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Center for Implantable Devices, Purdue University, West Lafayette, IN 47907, USA
| | - Douglas Satoski
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Michael K. Wendt
- Purdue Center for Cancer Research, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Sarah Calve
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | | - Luis Solorio
- Purdue Center for Cancer Research, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Hyowon Lee
- Weldon School of Biomedical Engineering, Birck Nanotechnology Center, Center for Implantable Devices, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
11
|
Micro Elastofluidics: Elasticity and Flexibility for Efficient Microscale Liquid Handling. MICROMACHINES 2020; 11:mi11111004. [PMID: 33202539 PMCID: PMC7696685 DOI: 10.3390/mi11111004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 01/05/2023]
Abstract
Microfluidics is the science and technology around the behaviour of fluid and fluid flow at the microscale [...].
Collapse
|
12
|
RhoA and Rac1 in Liver Cancer Cells: Induction of Overexpression Using Mechanical Stimulation. MICROMACHINES 2020; 11:mi11080729. [PMID: 32731493 PMCID: PMC7463892 DOI: 10.3390/mi11080729] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 01/21/2023]
Abstract
Liver cancer, especially hepatocellular carcinoma (HCC), is an aggressive disease with an extremely high mortality rate. Unfortunately, no promising markers are currently available for the early diagnosis of this disease. Thus, a reliable biomarker reflecting the early behaviour of the tumour will be valuable for diagnosis and treatment. The Ras homologous (Rho) GTPases, which belong to the small guanosine triphosphate (GTP) binding proteins, have been reported to play an important role in mediating liver cancer based on their important function in cytoskeletal reorganisation. These proteins can be either oncogenic or tumour suppressors. They are also associated with the acquirement of malignant features by cancer cells. The overexpression of RhoA and Rac1, members of the Rho GTPases, have been linked with carcinogenesis and the progression of different types of cancer. In the quest of elucidating the role of mechanical stimulation in the mechanobiology of liver cancer cells, this paper evaluates the effect of stretching on the expression levels of RhoA and Rac1 in different types of liver cancers. It is shown that that stretching liver cancer cells significantly increases the expression levels of RhoA and Rac1 in HCC and cholangiocarcinoma cell lines. We hypothesise that this relatively simple and sensitive method could be helpful for screening biological features and provide suitable treatment guidance for liver cancer patients.
Collapse
|
13
|
Rho GTPases in Gynecologic Cancers: In-Depth Analysis toward the Paradigm Change from Reactive to Predictive, Preventive, and Personalized Medical Approach Benefiting the Patient and Healthcare. Cancers (Basel) 2020; 12:cancers12051292. [PMID: 32443784 PMCID: PMC7281750 DOI: 10.3390/cancers12051292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/24/2022] Open
Abstract
Rho guanosine triphospatases (GTPases) resemble a conserved family of GTP-binding proteins regulating actin cytoskeleton dynamics and several signaling pathways central for the cell. Rho GTPases create a so-called Ras-superfamily of GTPases subdivided into subgroups comprising at least 20 members. Rho GTPases play a key regulatory role in gene expression, cell cycle control and proliferation, epithelial cell polarity, cell migration, survival, and apoptosis, among others. They also have tissue-related functions including angiogenesis being involved in inflammatory and wound healing processes. Contextually, any abnormality in the Rho GTPase function may result in severe consequences at molecular, cellular, and tissue levels. Rho GTPases also play a key role in tumorigenesis and metastatic disease. Corresponding mechanisms include a number of targets such as kinases and scaffold/adaptor-like proteins initiating GTPases-related signaling cascades. The accumulated evidence demonstrates the oncogenic relevance of Rho GTPases for several solid malignancies including breast, liver, bladder, melanoma, testicular, lung, central nervous system (CNS), head and neck, cervical, and ovarian cancers. Furthermore, Rho GTPases play a crucial role in the development of radio- and chemoresistance e.g. under cisplatin-based cancer treatment. This article provides an in-depth overview on the role of Rho GTPases in gynecological cancers, highlights relevant signaling pathways and pathomechanisms, and sheds light on their involvement in tumor progression, metastatic spread, and radio/chemo resistance. In addition, insights into a spectrum of novel biomarkers and innovative approaches based on the paradigm shift from reactive to predictive, preventive, and personalized medicine are provided.
Collapse
|