1
|
Browne RK, Luo Q, Wang P, Mansour N, Kaurova SA, Gakhova EN, Shishova NV, Uteshev VK, Kramarova LI, Venu G, Bagaturov MF, Vaissi S, Heshmatzad P, Janzen P, Swegen A, Strand J, McGinnity D. The Sixth Mass Extinction and Amphibian Species Sustainability Through Reproduction and Advanced Biotechnologies, Biobanking of Germplasm and Somatic Cells, and Conservation Breeding Programs (RBCs). Animals (Basel) 2024; 14:3395. [PMID: 39682361 DOI: 10.3390/ani14233395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/05/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024] Open
Abstract
Primary themes in intergenerational justice are a healthy environment, the perpetuation of Earth's biodiversity, and the sustainable management of the biosphere. However, the current rate of species declines globally, ecosystem collapses driven by accelerating and catastrophic global heating, and a plethora of other threats preclude the ability of habitat protection alone to prevent a cascade of amphibian and other species mass extinctions. Reproduction and advanced biotechnologies, biobanking of germplasm and somatic cells, and conservation breeding programs (RBCs) offer a transformative change in biodiversity management. This change can economically and reliably perpetuate species irrespective of environmental targets and extend to satisfy humanity's future needs as the biosphere expands into space. Currently applied RBCs include the hormonal stimulation of reproduction, the collection and refrigerated storage of sperm and oocytes, sperm cryopreservation, in vitro fertilization, and biobanking of germplasm and somatic cells. The benefits of advanced biotechnologies in development, such as assisted evolution and cloning for species adaptation or restoration, have yet to be fully realized. We broaden our discussion to include genetic management, political and cultural engagement, and future applications, including the extension of the biosphere through humanity's interplanetary and interstellar colonization. The development and application of RBCs raise intriguing ethical, theological, and philosophical issues. We address these themes with amphibian models to introduce the Multidisciplinary Digital Publishing Institute Special Issue, The Sixth Mass Extinction and Species Sustainability through Reproduction Biotechnologies, Biobanking, and Conservation Breeding Programs.
Collapse
Affiliation(s)
- Robert K Browne
- Sustainability America, Sarteneja, Corozal District, Belize 91011, Belize
| | - Qinghua Luo
- Hunan Engineering Technology Research Center for Amphibian and Reptile Resource Protection and Product Processing, College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
- Hunan Engineering Laboratory for Chinese Giant Salamander's Resource Protection and Comprehensive Utilization, School of Biological Resources and Environmental Sciences, Jishou University, Jishou 416000, China
| | - Pei Wang
- Hunan Engineering Laboratory for Chinese Giant Salamander's Resource Protection and Comprehensive Utilization, School of Biological Resources and Environmental Sciences, Jishou University, Jishou 416000, China
| | - Nabil Mansour
- Fujairah Research Centre, University of Science and Technology of Fujairah, Fujairah P.O. Box 2202, United Arab Emirates
| | - Svetlana A Kaurova
- Institute of Cell Biophysics, Russian Academy of Sciences, PSCBR RAS, Pushchino 142290, Moscow Region, Russia
| | - Edith N Gakhova
- Institute of Cell Biophysics, Russian Academy of Sciences, PSCBR RAS, Pushchino 142290, Moscow Region, Russia
| | - Natalia V Shishova
- Institute of Cell Biophysics, Russian Academy of Sciences, PSCBR RAS, Pushchino 142290, Moscow Region, Russia
| | - Victor K Uteshev
- Institute of Cell Biophysics, Russian Academy of Sciences, PSCBR RAS, Pushchino 142290, Moscow Region, Russia
| | - Ludmila I Kramarova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia
| | - Govindappa Venu
- Centre for Applied Genetics, Department of Zoology, Jnana Bharathi Campus, Bangalore University, Bengaluru 560056, Karnataka, India
| | - Mikhail F Bagaturov
- IUCN/SSC/Athens Institute for Education and Research/Zoological Institute RAS, St. Petersburg 199034, Northern Region, Russia
- Leningrad Zoo, St. Petersburg 197198, Northern Region, Russia
| | - Somaye Vaissi
- Department of Biology, Faculty of Science, Razi University, Baghabrisham, Kermanshah 57146, Iran
| | - Pouria Heshmatzad
- Department of Biology, Faculty of Science, Razi University, Baghabrisham, Kermanshah 57146, Iran
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49138, Iran
| | - Peter Janzen
- Justus-von-Liebig-Schule, 47166 Duisburg, Germany
| | - Aleona Swegen
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Julie Strand
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7K, 9220 Aalborg Ost, Denmark and Randers Regnskov, Torvebryggen 11, 8900 Randers C, Denmark
| | - Dale McGinnity
- Ectotherm Department, Nashville Zoo at Grassmere, Nashville, TN 37211, USA
| |
Collapse
|
2
|
Smith KT, Khosla K, Han G, Humphrey T, Phelps N, Bischof J. Revival of cryopreserved larvae from the important aquaculture species Pacific White Shrimp (Litopenaeus vannamei) using vitrification and ultra-rapid laser warming. Cryobiology 2024; 117:105160. [PMID: 39486606 DOI: 10.1016/j.cryobiol.2024.105160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Cryopreservation of aquatic embryos or larvae is needed to help safeguard genetics from important wild and captive species, increase aquaculture output, and meet the global demand for protein. To this end, the development of a cryopreservation protocol for nauplius larvae of the commercially important aquaculture species Litopenaeus vannamei, or Pacific White Shrimp, was pursued. Toxicity screening was performed using multiple cryoprotective agents (CPA), and a multi-constituent CPA cocktail was developed to achieve reliable vitrification of shrimp larvae encapsulated in 1.0-μL droplets containing gold nanoparticles. Vitrification and ultra-rapid laser warming were used to cryopreserve and revive nauplius-V stage larvae. Laser warming parameters were optimized to protect the pigmented eye spot from laser-induced ablation, and ice recrystallization inhibitors (IRIs) were tested to induce long-term survival. Approximately 54 % of revived larvae resumed active swimming, but all failed to molt to the zoea-I stage of development or live beyond 15 h post warming.
Collapse
Affiliation(s)
- Kieran T Smith
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN 55108, USA; Center for Advanced Technologies for the Preservation of Biological Systems (ATP-Bio), University of Minnesota, Minneapolis, MN, 55455, USA; ECTO Inc, Atlanta, GA, 30361, USA.
| | - Kanav Khosla
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA; Center for Advanced Technologies for the Preservation of Biological Systems (ATP-Bio), University of Minnesota, Minneapolis, MN, 55455, USA
| | - Guebum Han
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA; Center for Advanced Technologies for the Preservation of Biological Systems (ATP-Bio), University of Minnesota, Minneapolis, MN, 55455, USA
| | | | - Nicholas Phelps
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - John Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA; Center for Advanced Technologies for the Preservation of Biological Systems (ATP-Bio), University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
3
|
Wang Z, Gao D, Shu Z. Mechanisms, Applications, and Challenges of Utilizing Nanomaterials in Cryopreservation. ADVANCED ENGINEERING MATERIALS 2024; 26. [DOI: 10.1002/adem.202400800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Indexed: 01/05/2025]
Abstract
Cryopreservation of biological samples, including cells, tissues, and organs, has become an essential component in various biomedical research and applications, such as cellular therapy, tissue engineering, organ transplantation, and conservation of endangered species. However, it faces critical challenges throughout the cryopreservation process, such as loading/unloading of cryoprotective agent (CPA), ice inhibition during cooling, and ultrafast and uniform heating during rewarming. Applying nanomaterials in cryopreservation has emerged as a promising solution to address these challenges in each step due to their unique properties. For instance, in order to deliver nonpermeating CPA into cells, some nanomaterials, such as polymeric nanocapsule, can carry nonpermeating CPA to penetrate into the cells, regulating the intracellular ice crystal. During cooling, some nanomaterials, such as graphene oxide, can bind to basal or prism planes of ice crystals, suppressing the ice growth. During rewarming, some nanomaterials, such as magnetic nanoparticles, can improve the heating performance, preventing devitrification and recrystallization during rewarming. However, challenges in nanomaterials‐assisted cryopreservation remain, including the need for comprehensive studies on nanomaterials toxicity and the development of scalable manufacturing processes for industrial applications. This review examines the role of nanomaterials in cryopreservation, focusing on their mechanisms, applications, and associated challenges.
Collapse
Affiliation(s)
- Ziyuan Wang
- Department of Mechanical Engineering University of Washington Seattle WA 98195 USA
| | - Dayong Gao
- Department of Mechanical Engineering University of Washington Seattle WA 98195 USA
| | - Zhiquan Shu
- Department of Mechanical Engineering University of Washington Seattle WA 98195 USA
- School of Engineering and Technology University of Washington Tacoma Tacoma WA 98402 USA
| |
Collapse
|
4
|
Han G, Khosla K, Smith KT, Ng DWH, Lee J, Ouyang X, Bischof JC, McAlpine MC. 3D Printed Organisms Enabled by Aspiration-Assisted Adaptive Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404617. [PMID: 39031674 PMCID: PMC11348114 DOI: 10.1002/advs.202404617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Indexed: 07/22/2024]
Abstract
Devising an approach to deterministically position organisms can impact various fields such as bioimaging, cybernetics, cryopreservation, and organism-integrated devices. This requires continuously assessing the locations of randomly distributed organisms to collect and transfer them to target spaces without harm. Here, an aspiration-assisted adaptive printing system is developed that tracks, harvests, and relocates living and moving organisms on target spaces via a pick-and-place mechanism that continuously adapts to updated visual and spatial information about the organisms and target spaces. These adaptive printing strategies successfully positioned a single static organism, multiple organisms in droplets, and a single moving organism on target spaces. Their capabilities are exemplified by printing vitrification-ready organisms in cryoprotectant droplets, sorting live organisms from dead ones, positioning organisms on curved surfaces, organizing organism-powered displays, and integrating organisms with materials and devices in customizable shapes. These printing strategies can ultimately lead to autonomous biomanufacturing methods to evaluate and assemble organisms for a variety of single and multi-organism-based applications.
Collapse
Affiliation(s)
- Guebum Han
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
- Center for Advanced Technologies for the Preservation of Biological Systems (ATP‐Bio)University of MinnesotaMinneapolisMN55455USA
| | - Kanav Khosla
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
- Center for Advanced Technologies for the Preservation of Biological Systems (ATP‐Bio)University of MinnesotaMinneapolisMN55455USA
| | - Kieran T. Smith
- Center for Advanced Technologies for the Preservation of Biological Systems (ATP‐Bio)University of MinnesotaMinneapolisMN55455USA
- Department of FisheriesWildlife and Conservation BiologyUniversity of MinnesotaMinneapolisMN55108USA
| | - Daniel Wai Hou Ng
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
| | - JiYong Lee
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
| | - Xia Ouyang
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
| | - John C. Bischof
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
- Center for Advanced Technologies for the Preservation of Biological Systems (ATP‐Bio)University of MinnesotaMinneapolisMN55455USA
- Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
| | - Michael C. McAlpine
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
- Center for Advanced Technologies for the Preservation of Biological Systems (ATP‐Bio)University of MinnesotaMinneapolisMN55455USA
- Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
| |
Collapse
|
5
|
Jiang M, Zhang GH, Yu Y, Zhao YH, Liu J, Zeng Q, Feng MY, Ye F, Xiong DS, Wang L, Zhang YN, Yu L, Wei JJ, He LB, Zhi W, Du XR, Li NJ, Han CL, Yan HQ, Zhou ZT, Miao YB, Wang W, Liu WX. De novo design of a nanoregulator for the dynamic restoration of ovarian tissue in cryopreservation and transplantation. J Nanobiotechnology 2024; 22:330. [PMID: 38862987 PMCID: PMC11167790 DOI: 10.1186/s12951-024-02602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
The cryopreservation and transplantation of ovarian tissue underscore its paramount importance in safeguarding reproductive capacity and ameliorating reproductive disorders. However, challenges persist in ovarian tissue cryopreservation and transplantation (OTC-T), including the risk of tissue damage and dysfunction. Consequently, there has been a compelling exploration into the realm of nanoregulators to refine and enhance these procedures. This review embarks on a meticulous examination of the intricate anatomical structure of the ovary and its microenvironment, thereby establishing a robust groundwork for the development of nanomodulators. It systematically categorizes nanoregulators and delves deeply into their functions and mechanisms, meticulously tailored for optimizing ovarian tissue cryopreservation and transplantation. Furthermore, the review imparts valuable insights into the practical applications and obstacles encountered in clinical settings associated with OTC-T. Moreover, the review advocates for the utilization of microbially derived nanomodulators as a potent therapeutic intervention in ovarian tissue cryopreservation. The progression of these approaches holds the promise of seamlessly integrating nanoregulators into OTC-T practices, thereby heralding a new era of expansive applications and auspicious prospects in this pivotal domain.
Collapse
Affiliation(s)
- Min Jiang
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Guo-Hui Zhang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Yuan Yu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yu-Hong Zhao
- School of Clinical Laboratory Medicine, Chengdu Medical College, Chengdu, 610083, China
| | - Jun Liu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Qin Zeng
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Meng-Yue Feng
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Fei Ye
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Dong-Sheng Xiong
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Li Wang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Ya-Nan Zhang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Ling Yu
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Jia-Jing Wei
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Li-Bing He
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Weiwei Zhi
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Xin-Rong Du
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ning-Jing Li
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Chang-Li Han
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - He-Qiu Yan
- School of Clinical Laboratory Medicine, Chengdu Medical College, Chengdu, 610083, China
| | - Zhuo-Ting Zhou
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, China.
| | - Wen Wang
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, China.
| | - Wei-Xin Liu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China.
| |
Collapse
|
6
|
Davis EHS, Jones C, Coward K. Rethinking the application of nanoparticles in women's reproductive health and assisted reproduction. Nanomedicine (Lond) 2024; 19:1231-1251. [PMID: 38686941 PMCID: PMC11285225 DOI: 10.2217/nnm-2023-0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/25/2024] [Indexed: 05/02/2024] Open
Abstract
Nanoparticles and nanotechnology may present opportunities to revolutionize the prevention, treatment and diagnosis of a range of reproductive health conditions in women. These technologies are also used to improve outcomes of assisted reproductive technology. We highlight a range of these potential clinical uses of nanoparticles for polycystic ovary syndrome, endometriosis, uterine fibroids and sexually transmitted infections, considering in vitro and in vivo studies along with clinical trials. In addition, we discuss applications of nanoparticles in assisted reproductive technology, including sperm loading, gamete and embryo preservation and preventing preterm birth. Finally, we present some of the concerns associated with the medical use of nanoparticles, identifying routes for further exploration before nanoparticles can be applied to women's reproductive health in the clinic.
Collapse
Affiliation(s)
- Emily HS Davis
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Women’s Centre, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Celine Jones
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Women’s Centre, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Kevin Coward
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Women’s Centre, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| |
Collapse
|
7
|
Alegria AD, Joshi AS, Mendana JB, Khosla K, Smith KT, Auch B, Donovan M, Bischof J, Gohl DM, Kodandaramaiah SB. High-throughput genetic manipulation of multicellular organisms using a machine-vision guided embryonic microinjection robot. Genetics 2024; 226:iyae025. [PMID: 38373262 PMCID: PMC10990426 DOI: 10.1093/genetics/iyae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 02/21/2024] Open
Abstract
Microinjection is a technique used for transgenesis, mutagenesis, cell labeling, cryopreservation, and in vitro fertilization in multiple single and multicellular organisms. Microinjection requires specialized skills and involves rate-limiting and labor-intensive preparatory steps. Here, we constructed a machine-vision guided generalized robot that fully automates the process of microinjection in fruit fly (Drosophila melanogaster) and zebrafish (Danio rerio) embryos. The robot uses machine learning models trained to detect embryos in images of agar plates and identify specific anatomical locations within each embryo in 3D space using dual view microscopes. The robot then serially performs a microinjection in each detected embryo. We constructed and used three such robots to automatically microinject tens of thousands of Drosophila and zebrafish embryos. We systematically optimized robotic microinjection for each species and performed routine transgenesis with proficiency comparable to highly skilled human practitioners while achieving up to 4× increases in microinjection throughput in Drosophila. The robot was utilized to microinject pools of over 20,000 uniquely barcoded plasmids into 1,713 embryos in 2 days to rapidly generate more than 400 unique transgenic Drosophila lines. This experiment enabled a novel measurement of the number of independent germline integration events per successfully injected embryo. Finally, we showed that robotic microinjection of cryoprotective agents in zebrafish embryos significantly improves vitrification rates and survival of cryopreserved embryos post-thaw as compared to manual microinjection. We anticipate that the robot can be used to carry out microinjection for genome-wide manipulation and cryopreservation at scale in a wide range of organisms.
Collapse
Affiliation(s)
- Andrew D Alegria
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Amey S Joshi
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jorge Blanco Mendana
- University of Minnesota Genomics Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kanav Khosla
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kieran T Smith
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Benjamin Auch
- University of Minnesota Genomics Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Margaret Donovan
- University of Minnesota Genomics Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - John Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daryl M Gohl
- University of Minnesota Genomics Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Suhasa B Kodandaramaiah
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Guo Z, Zuchowicz N, Bouwmeester J, Joshi AS, Neisch AL, Smith K, Daly J, Etheridge ML, Finger EB, Kodandaramaiah SB, Hays TS, Hagedorn M, Bischof JC. Conduction-Dominated Cryomesh for Organism Vitrification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303317. [PMID: 38018294 PMCID: PMC10797434 DOI: 10.1002/advs.202303317] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/20/2023] [Indexed: 11/30/2023]
Abstract
Vitrification-based cryopreservation is a promising approach to achieving long-term storage of biological systems for maintaining biodiversity, healthcare, and sustainable food production. Using the "cryomesh" system achieves rapid cooling and rewarming of biomaterials, but further improvement in cooling rates is needed to increase biosystem viability and the ability to cryopreserve new biosystems. Improved cooling rates and viability are possible by enabling conductive cooling through cryomesh. Conduction-dominated cryomesh improves cooling rates from twofold to tenfold (i.e., 0.24 to 1.2 × 105 °C min-1 ) in a variety of biosystems. Higher thermal conductivity, smaller mesh wire diameter and pore size, and minimizing the nitrogen vapor barrier (e.g., vertical plunging in liquid nitrogen) are key parameters to achieving improved vitrification. Conduction-dominated cryomesh successfully vitrifies coral larvae, Drosophila embryos, and zebrafish embryos with improved outcomes. Not only a theoretical foundation for improved vitrification in µm to mm biosystems but also the capability to scale up for biorepositories and/or agricultural, aquaculture, or scientific use are demonstrated.
Collapse
Affiliation(s)
- Zongqi Guo
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
| | - Nikolas Zuchowicz
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
| | - Jessica Bouwmeester
- Hawaii Institute of Marine BiologyUniversity of HawaiiKaneoheHI96744USA
- Smithsonian National Zoo and Conservation Biology InstituteFront RoyalVA22630USA
| | - Amey S. Joshi
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
| | - Amanda L. Neisch
- Department of GeneticsCell Biology and DevelopmentUniversity of MinnesotaMinneapolisMN55455USA
| | - Kieran Smith
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
| | - Jonathan Daly
- Taronga Conservation Society AustraliaMosmanNew South Wales2088Australia
- School of BiologicalEarth and Environmental SciencesUniversity of New South WalesKensingtonNew South Wales2033Australia
| | - Michael L. Etheridge
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
| | - Erik B. Finger
- Department of SurgeryUniversity of MinnesotaMinneapolisMN55455USA
| | - Suhasa B. Kodandaramaiah
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
- Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
- Graduate Program in NeuroscienceUniversity of MinnesotaMinneapolisMN55455USA
| | - Thomas S. Hays
- Department of GeneticsCell Biology and DevelopmentUniversity of MinnesotaMinneapolisMN55455USA
| | - Mary Hagedorn
- Hawaii Institute of Marine BiologyUniversity of HawaiiKaneoheHI96744USA
- Smithsonian National Zoo and Conservation Biology InstituteFront RoyalVA22630USA
| | - John C. Bischof
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
- Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
- Institute for Engineering in MedicineUniversity of MinnesotaMinneapolisMN55455USA
| |
Collapse
|
9
|
Da Silveira Cavalcante L, Higuita ML, González-Rosa JM, Marques B, To S, Pendexter CA, Cronin SE, Gopinathan K, de Vries RJ, Ellett F, Uygun K, Langenau DM, Toner M, Tessier SN. Zebrafish as a high throughput model for organ preservation and transplantation research. FASEB J 2023; 37:e23187. [PMID: 37718489 PMCID: PMC10754348 DOI: 10.1096/fj.202300076r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/19/2023]
Abstract
Despite decades of effort, the preservation of complex organs for transplantation remains a significant barrier that exacerbates the organ shortage crisis. Progress in organ preservation research is significantly hindered by suboptimal research tools that force investigators to sacrifice translatability over throughput. For instance, simple model systems, such as single cell monolayers or co-cultures, lack native tissue structure and functional assessment, while mammalian whole organs are complex systems with confounding variables not compatible with high-throughput experimentation. In response, diverse fields and industries have bridged this experimental gap through the development of rich and robust resources for the use of zebrafish as a model organism. Through this study, we aim to demonstrate the value zebrafish pose for the fields of solid organ preservation and transplantation, especially with respect to experimental transplantation efforts. A wide array of methods were customized and validated for preservation-specific experimentation utilizing zebrafish, including the development of assays at multiple developmental stages (larvae and adult), methods for loading and unloading preservation agents, and the development of viability scores to quantify functional outcomes. Using this platform, the largest and most comprehensive screen of cryoprotectant agents (CPAs) was performed to determine their toxicity and efficiency at preserving complex organ systems using a high subzero approach called partial freezing (i.e., storage in the frozen state at -10°C). As a result, adult zebrafish cardiac function was successfully preserved after 5 days of partial freezing storage. In combination, the methods and techniques developed have the potential to drive and accelerate research in the fields of solid organ preservation and transplantation.
Collapse
Affiliation(s)
- Luciana Da Silveira Cavalcante
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston MA, USA
- Shriners Hospitals for Children - Boston, Boston MA, USA
| | - Manuela Lopera Higuita
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston MA, USA
- Shriners Hospitals for Children - Boston, Boston MA, USA
| | - Juan Manuel González-Rosa
- Cardiovascular Research Center, Massachusetts General Hospital Research Institute, Harvard Medical School, Charlestown MA, USA
| | - Beatriz Marques
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston MA, USA
| | - Samantha To
- Cardiovascular Research Center, Massachusetts General Hospital Research Institute, Harvard Medical School, Charlestown MA, USA
| | - Casie A. Pendexter
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston MA, USA
- Shriners Hospitals for Children - Boston, Boston MA, USA
| | - Stephanie E.J. Cronin
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston MA, USA
- Shriners Hospitals for Children - Boston, Boston MA, USA
| | - Kaustav Gopinathan
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston MA, USA
| | - Reinier J. de Vries
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston MA, USA
- Shriners Hospitals for Children - Boston, Boston MA, USA
| | - Felix Ellett
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston MA, USA
- Shriners Hospitals for Children - Boston, Boston MA, USA
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston MA, USA
- Shriners Hospitals for Children - Boston, Boston MA, USA
| | - David M. Langenau
- Molecular Pathology Unit and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Mehmet Toner
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston MA, USA
- Shriners Hospitals for Children - Boston, Boston MA, USA
| | - Shannon N. Tessier
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston MA, USA
- Shriners Hospitals for Children - Boston, Boston MA, USA
| |
Collapse
|
10
|
Powell-Palm MJ, Henley EM, Consiglio AN, Lager C, Chang B, Perry R, Fitzgerald K, Daly J, Rubinsky B, Hagedorn M. Cryopreservation and revival of Hawaiian stony corals using isochoric vitrification. Nat Commun 2023; 14:4859. [PMID: 37612315 PMCID: PMC10447501 DOI: 10.1038/s41467-023-40500-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
Corals are under siege by both local and global threats, creating a worldwide reef crisis. Cryopreservation is an important intervention measure and a vital component of the modern coral conservation toolkit, but preservation techniques are currently limited to sensitive reproductive materials that can only be obtained a few nights per year during spawning. Here, we report the successful cryopreservation and revival of cm-scale coral fragments via mL-scale isochoric vitrification. We demonstrate coral viability at 24 h post-thaw using a calibrated oxygen-uptake respirometry technique, and further show that the method can be applied in a passive, electronics-free configuration. Finally, we detail a complete prototype coral cryopreservation pipeline, which provides a platform for essential next steps in modulating post-thaw stress and initiating long-term growth. These findings pave the way towards an approach that can be rapidly deployed around the world to secure the biological genetic diversity of our vanishing coral reefs.
Collapse
Affiliation(s)
- Matthew J Powell-Palm
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, USA.
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA.
| | - E Michael Henley
- Smithsonian National Zoo and Conservation Biology Institute, Front Royal, VA, 22630, USA.
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA.
| | - Anthony N Consiglio
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Claire Lager
- Smithsonian National Zoo and Conservation Biology Institute, Front Royal, VA, 22630, USA
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| | - Brooke Chang
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Riley Perry
- Smithsonian National Zoo and Conservation Biology Institute, Front Royal, VA, 22630, USA
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| | - Kendall Fitzgerald
- Smithsonian National Zoo and Conservation Biology Institute, Front Royal, VA, 22630, USA
| | - Jonathan Daly
- Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, NSW, 2088, Australia
- Centre for Ecosystem Science and Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Boris Rubinsky
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Mary Hagedorn
- Smithsonian National Zoo and Conservation Biology Institute, Front Royal, VA, 22630, USA
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| |
Collapse
|
11
|
Narida A, Hsieh WC, Huang CL, Wen ZH, Tsai S, Lin C. Novel Long-Term Cryo-Storage Using Vitrification and Laser Warming Techniques. Biopreserv Biobank 2023; 21:427-432. [PMID: 36036798 DOI: 10.1089/bio.2022.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vitrification and laser warming have gained popularity over the traditional convective warming techniques in cryopreservation. Laser warming is rapid with uniform effects, thus preventing ice crystal formation in samples. Contemporary laser warming studies have focused on proof-of-concept experiments. Yet, no protocols or techniques have been developed to address the problem of warming samples from long-term storage. Herein, a new approach to laser warming samples without exposing the samples to ambient temperature is introduced. The new device presented has a mean laser-hitting accuracy of 76% ± 16% and a rewarming rate of 59% ± 25% on samples with <1 μL in volume. Although these rates depend on the choice of vitrification solution and mastery of the technique, the approach described represents a successful first step toward laser warming samples from long-term cryo-storage.
Collapse
Affiliation(s)
- Arah Narida
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
| | | | - Cheng-Liang Huang
- Department of Applied Chemistry, National Chiayi University, Chiayi, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Sujune Tsai
- Department of Post-Modern Agriculture, Mingdao University, Chang Hua, Taiwan
| | - Chiahsin Lin
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan
| |
Collapse
|
12
|
Zhan T, Niu W, Cui M, Han H, Dang H, Guo N, Wang D, Hao Y, Zang C, Xu Y, Guo H. A study on the relationship between the crystallization characteristics of quenched droplets and the effect of cell cryopreservation with Raman spectroscopy. Analyst 2023. [PMID: 37337775 DOI: 10.1039/d3an00652b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The cryopreservation method of microdroplets has steadily become widely employed in the cryopreservation of microscale biological samples such as various types of cells due to its fast cooling rate, significant reduction of the concentration of cryoprotectants, and practical liquid handling method. However, it is still necessary to consider the corresponding relationship between droplet size and concentration and the impact of crystallization during the cooling process on cell viability. The key may be a misunderstanding of the influencing factors of crystallization and vitrification behavior with concentration during cooling on the ultimate cell viability, which may be attributable to the inability to analyze the freezing state inside the microdroplets. Therefore, in this work, an in situ Raman observation system for droplet quenching was assembled to obtain Raman spectra in the frozen state, and the spectral characteristics of the crystallization and vitrification processes of microdroplets with varied concentrations and volumes were investigated. Furthermore, the degree of crystallization inside the droplets was quantitatively analyzed, and it was found that the ratio of the crystalline peak to hydrogen bond shoulder could clearly distinguish the degree of crystallization and the vitrified state, and the Raman crystallization characteristic parameters gradually increased with the decrease of concentrations. By obtaining the cooling curve and the overall cooling rate of quenching droplets, the vitrification state of the microdroplets was confirmed by theoretical analysis of the cooling characteristics of a DMSO solution system. In addition, the effect of cell cryopreservation was investigated using the microdroplet quenching device, and it was found that the key to cell survival during the quenching process of low-concentration microdroplets was dominated by the cooling rate and the internal crystallization degree, while the main influencing factor on high concentration was the toxic effect of a protective agent. In general, this work introduces a new nondestructive evaluation and analysis method for the cryopreservation of quenching microdroplets.
Collapse
Affiliation(s)
- Taijie Zhan
- Institute of Bio-thermal Science and Technology, Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai Technical Service Platform for Cryopreservation of Biological Resources, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Wenya Niu
- Institute of Bio-thermal Science and Technology, Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai Technical Service Platform for Cryopreservation of Biological Resources, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Mengdong Cui
- Institute of Bio-thermal Science and Technology, Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai Technical Service Platform for Cryopreservation of Biological Resources, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Hengxin Han
- Institute of Bio-thermal Science and Technology, Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai Technical Service Platform for Cryopreservation of Biological Resources, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Hangyu Dang
- Institute of Bio-thermal Science and Technology, Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai Technical Service Platform for Cryopreservation of Biological Resources, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Ning Guo
- Institute of Bio-thermal Science and Technology, Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai Technical Service Platform for Cryopreservation of Biological Resources, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Ding Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yan Hao
- Yinfeng Cryomedicine Technology Co. Ltd, Jinan, China
| | - Chuanbao Zang
- Yinfeng Cryomedicine Technology Co. Ltd, Jinan, China
| | - Yi Xu
- Institute of Bio-thermal Science and Technology, Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai Technical Service Platform for Cryopreservation of Biological Resources, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Hanming Guo
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
13
|
Zhang W, Liu X, Hu Y, Tan S. Incorporate delivery, warming and washing methods into efficient cryopreservation. Front Bioeng Biotechnol 2023; 11:1215591. [PMID: 37397963 PMCID: PMC10309563 DOI: 10.3389/fbioe.2023.1215591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/08/2023] [Indexed: 07/04/2023] Open
|
14
|
Hydrogel encapsulation as a handling and vitrification tool for zebrafish ovarian tissue. Theriogenology 2023; 198:153-163. [PMID: 36586353 DOI: 10.1016/j.theriogenology.2022.12.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/25/2022]
Abstract
Zebrafish is an important animal model, thousands lines have been developed, thus having a great need for their preservation. However, the cryopreservation of fish oocytes is still limited and needs improvement. The sodium alginate hydrogel, in addition to providing support for the cells, has been shown to be a potential cryoprotectant. Therefore, the aim of this study was to evaluate the sodium alginate hydrogel encapsulation technique efficiency during zebrafish ovarian tissue vitrification. The encapsulation methodology was standardized in the first experiment. In Experiment 2, we evaluated four vitrified groups: standard protocol without encapsulation (VS); encapsulated with cryoprotectants (VS1-A); encapsulated with half the cryoprotectants concentration (VS2-A); encapsulated without cryoprotectants (VA). VS treatment (54.6 ± 12.3%; 23.7 ± 9.9%; 12.6 ± 5.0%) did not differ from the VS1-A and VA showed a lower membrane integrity percentage (1.2 ± 1.4%; 0.3 ± 0.6%; 0.5 ± 1.5%). Mitochondrial activity was significantly greater in non-encapsulated treatment (VS) when compared to the encapsulated treatments. VS1-A and VS obtained the lowest lipid peroxidation (39.4 ± 4.4 and 40.5 ± 3.3 nmol MDA/mg respectively) in which VS was not significantly different from the VS2-A treatment (63.6 ± 3.1 nmol MDA/mg), unlike, VA obtained the highest lipid peroxidation level (124.7 ± 7.9 nmol MDA/mg). The results obtained in this study demonstrate that the sodium alginate hydrogel encapsulation technique did not have a cryoprotective action, but maintained the membrane integrity when used the standard concentration of cryoprotectants. However, halving the cryoprotectant concentration of fragments encapsulated in alginate hydrogel did not cause an increase in lipid peroxidation. In addition, it provided support and prevented the oocytes from loosening from the tissue during the vitrification process, being an interesting alternative for later in vitro maturation.
Collapse
|
15
|
Narida A, Tsai S, Huang CY, Wen ZH, Lin C. The Effects of Cryopreservation on the Cell Ultrastructure in Aquatic Organisms. Biopreserv Biobank 2023; 21:23-30. [PMID: 35482293 DOI: 10.1089/bio.2021.0132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This review provides an update on the current state of cryopreservation studies coupled with ultrastructural observation. Research in these fields has evolved and advanced since its inception in the 1950s. Different techniques have different advantages, but the researcher's technical proficiency is also necessary to derive a sound conclusion. Sperm samples are the most widely studied specimen because they are less sensitive to freezing and have high fluidity in the membrane and low water content. Some studies have also investigated oocytes, embryos, larvae, and algae from aquatic species. Cryopreservation studies have formulated a method applicable to every species of interest to preserve their biodiversity and prevent extinction. However, the avoidance of cryoinjury because of intracellular ice formation is a species-specific challenge. More comprehensive studies on ultrastructural observation can assist in understanding the underlying mechanisms of failed cellular responses to cryopreservation. Thus, optimizing protocols and increasing the survival rates of thawed samples can improve current cryopreservation techniques. Nevertheless, investigations into the effects of freezing on organisms' ultrastructure remain limited, especially regarding aquatic organisms.
Collapse
Affiliation(s)
- Arah Narida
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Planning and Research, National Museum of Marine Biology and Aquarium, Checheng, Taiwan
| | - Sujune Tsai
- Department of Post Modern Agriculture, Mingdao University, Peetow, Taiwan
| | - Chih-Yang Huang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chiahsin Lin
- Department of Planning and Research, National Museum of Marine Biology and Aquarium, Checheng, Taiwan
- Graduate Institute of Marine Biology, Institute of Marine Biology, National Dong Hwa University, Hualien, Taiwan
| |
Collapse
|
16
|
Vitrification of the ovarian tissue in sturgeons. Theriogenology 2023; 196:18-24. [PMID: 36375212 DOI: 10.1016/j.theriogenology.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/16/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022]
Abstract
The aim of this study was to test whether vitrification of sterlet Acipenser ruthenus and Russian sturgeon Acipenser gueldenstaedtii ovarian tissue through needle-immersed vitrification (NIV) is an efficient strategy for the preservation of oogonia (OOG) in order to supplement the current conservation efforts for these endangered fish species. Histological analyses of the gonads displayed that the ovaries of both species were immature and contained predominantly OOG and primary oocytes. The germline origin of these cells was verified by localization of the vasa protein through immunocytochemistry. NIV protocol was optimized by testing different equilibration (ES) and vitrification solutions (VS) containing various concentrations of dimethyl sulfoxide (Me2SO), propylene glycol (PG) or methanol (MeOH). In sterlet, the highest average viability (55.7 ± 11.5%) was obtained by using a combination of 1.5 M PG and 1.5 M Me2SO in the ES, and 1.5 M MeOH and 5.5 M Me2SO in the VS. In Russian sturgeon, the highest average viability (49.4 ± 17.1%) was obtained by using a combination of 1.5 M MeOH and 1.5 M Me2SO in the ES, and 3 M PG and 3 M Me2SO in the VS. To test whether vitrified/warmed OOG are functional, we have conducted an intra-specific transplantation assay to verify whether transplanted sterlet OOG will colonize the gonads of recipient fish. Fluorescently labelled cells were detected within recipient gonads at 2 and 3 months post-fertilization (mpf). Colonization rates of vitrified/warmed OOG (70% at 2 mpf and 61% at 3 mpf) were similar to those of fresh OOG (80% at 2 mpf and 70% at 3 mpf). This study has demonstrated that vitrification of ovarian tissue is an effective method for the preservation of OOG, and that the vitrified/warmed cells are functional and are able to colonize recipient gonads after transplantation similarly to the fresh cells. Since the vitrification procedure displayed in this study is simple and does not require complex and expensive laboratory equipment, it can be readily applied in field conditions, and therefore it can be invaluable for the conservation efforts of the critically endangered sturgeon species. However, care needs to be taken that despite the research conducted so far, donor-derived progeny was not yet obtained in sturgeons.
Collapse
|
17
|
Gangwar L, Phatak SS, Etheridge M, Bischof JC. A guide to successful mL to L scale vitrification and rewarming. CRYO LETTERS 2022; 43:316-321. [PMID: 36629824 PMCID: PMC10217567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cryopreservation by vitrification to achieve an "ice free" glassy state is an effective technique for preserving biomaterials including cells, tissues, and potentially even whole organs. The major challenges in cooling to and rewarming from a vitrified state remain ice crystallization and cracking/fracture. Ice crystallization can be inhibited by the use of cryoprotective agents (CPAs), though the inhibition further depends upon the rates achieved during cooling and rewarming. The minimal rate required to prevent any ice crystallization or recrystallization/devitrification in a given CPA is called the critical cooling rate (CCR) or critical warming rate (CWR), respectively. On the other hand, physical cracking is mainly related to thermomechanical stresses, which can be avoided by maintaining temperature differences below a critical threshold. In this simplified analysis, we calculate deltaT as the largest temperature difference occurring in a system during cooling or rewarming in the brittle/glassy phase. This deltaT is then used in a simple "thermal shock equation" to estimate thermal stress within the material to decide if the material is above the yield strength and to evaluate the potential for fracture failure. In this review we aimed to understand the limits of success and failure at different length scales for cryopreservation by vitrification, due to both ice crystallization and cracking. Here we use thermal modeling to help us understand the magnitude and trajectory of these challenges as we scale the biomaterial volume for a given CPA from the milliliter to liter scale. First, we solved the governing heat transfer equations in a cylindrical geometry for three common vitrification cocktails (i.e., VS55, DP6, and M22) to estimate the cooling and warming rates during convective cooling and warming and nanowarming (volumetric heating). Second, we estimated the temperature difference deltaT and compared it to a tolerable threshold (deltaTmax) based on a simplified "thermal shock" equation for the same cooling and rewarming conditions. We found, not surprisingly, that M22 achieves vitrification more easily during convective cooling and rewarming for all volumes compared to VS55 or DP6 due to its considerably lower CCR and CWR. Further, convective rewarming (boundary rewarming) leads to larger temperature differences and smaller rates compared to nanowarming (volumetric rewarming) for all CPAs with increasing failure at larger volumes. We conclude that as more and larger systems are vitrified and rewarmed with standard CPA cocktails, this work can serve as a practical guide to successful implementation based on the characteristic length (volume/surface area) of the system and the specific conditions of cooling and warming. doi.org/10.54680/fr22610110112.
Collapse
Affiliation(s)
- L Gangwar
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455 USA
| | - S S Phatak
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455 USA
| | - M Etheridge
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455 USA
| | - J C Bischof
- Department of Mechanical Engineering; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, 55455 USA.
| |
Collapse
|
18
|
Gangwar L, Phatak SS, Etheridge M, Bischof JC. Perspective: A Guide to Successful ml to L Scale Vitrification and Rewarming. CRYOLETTERS 2022. [DOI: 10.54680/fr22610110112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cryopreservation by vitrification to achieve an "ice free" glassy state is an effective technique for preserving biomaterials including cells, tissues, and potentially even whole organs. The major challenges in cooling to and rewarming from a vitrified state remain ice crystallization
and cracking/fracture. Ice crystallization can be inhibited by the use of cryoprotective agents (CPAs), though the inhibition further depends upon the rates achieved during cooling and rewarming. The minimal rate required to prevent any ice crystallization or recrystallization/devitrification
in a given CPA is called the critical cooling rate (CCR) or critical warming rate (CWR), respectively. On the other hand, physical cracking is mainly related to thermomechanical stresses, which can be avoided by maintaining temperature differences below a critical threshold. In this simplified
analysis, we calculate ΔT as the largest temperature difference occurring in a system during cooling or rewarming in the brittle/glassy phase. This ΔT is then used in a simple "thermal shock equation" to estimate thermal stress within the material to decide if the material is above
the yield strength and to evaluate the potential for fracture failure. In this review we aimed to understand the limits of success and failure at different length scales for cryopreservation by vitrification, due to both ice crystallization and cracking. Here we use thermal modeling to help
us understand the magnitude and trajectory of these challenges as we scale the biomaterial volume for a given CPA from the milliliter to liter scale. First, we solved the governing heat transfer equations in a cylindrical geometry for three common vitrification cocktails (i. e., VS55, DP6,
and M22) to estimate the cooling and warming rates during convective cooling and warming and nanowarming (volumetric heating). Second, we estimated the temperature difference (ΔT) an d compared it to a tolerable threshold ( ΔTmax) based on a simplified "thermal shock" equation
for the same cooling and rewarming conditions . We found, not surprisingly, that M22 achieves vitrification more easily during convective cooling and rewarming for all volumes compared to VS55 or DP6 due to its considerably lower CCR and CWR. Further, convective rewarming (boundary rewarming)
leads to larger temperature differences and smaller rates compared to nanowarming (volumetric rewarming) for all CPAs with increasing failure at larger volumes. We conclude that as more and larger systems are vitrified and rewarmed with standard CPA cocktails, this work can serve as a practical
guide to successful implementation based on the characteristic length (volume/surface area) of the system and the specific conditions of cooling and warming.
Collapse
Affiliation(s)
- Lakshya Gangwar
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455 USA
| | - Shaunak S. Phatak
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455 USA
| | - Michael Etheridge
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455 USA
| | - John C. Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455 USA
| |
Collapse
|
19
|
Zhan L, Han Z, Shao Q, Etheridge ML, Hays T, Bischof JC. Rapid joule heating improves vitrification based cryopreservation. Nat Commun 2022; 13:6017. [PMID: 36224179 PMCID: PMC9556611 DOI: 10.1038/s41467-022-33546-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/21/2022] [Indexed: 01/24/2023] Open
Abstract
Cryopreservation by vitrification has far-reaching implications. However, rewarming techniques that are rapid and scalable (both in throughput and biosystem size) for low concentrations of cryoprotective agent (CPA) for reduced toxicity are lacking, limiting the potential for translation. Here, we introduce a joule heating-based platform technology, whereby biosystems are rapidly rewarmed by contact with an electrical conductor that is fed a voltage pulse. We demonstrate successful cryopreservation of three model biosystems with thicknesses across three orders of magnitude, including adherent cells (~4 µm), Drosophila melanogaster embryos (~50 µm) and rat kidney slices (~1.2 mm) using low CPA concentrations (2-4 M). Using tunable voltage pulse widths from 10 µs to 100 ms, numerical simulation predicts that warming rates from 5 × 104 to 6 × 108 °C/min can be achieved. Altogether, our results present a general solution to the cryopreservation of a broad spectrum of cellular, organismal and tissue-based biosystems.
Collapse
Affiliation(s)
- Li Zhan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA.
- Center for Engineering in Medicine, Massachusetts General Hospital, Shriners Hospital for Children, Harvard Medical School, Boston, MA, USA.
| | - Zonghu Han
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Qi Shao
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Michael L Etheridge
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Thomas Hays
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - John C Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA.
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
20
|
Alvarez C, Berrospe-Rodriguez C, Wu C, Pasek-Allen J, Khosla K, Bischof J, Mangolini L, Aguilar G. Photothermal heating of titanium nitride nanomaterials for fast and uniform laser warming of cryopreserved biomaterials. Front Bioeng Biotechnol 2022; 10:957481. [PMID: 36091458 PMCID: PMC9455577 DOI: 10.3389/fbioe.2022.957481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022] Open
Abstract
Titanium nitride (TiN) is presented as an alternative plasmonic nanomaterial to the commonly used gold (Au) for its potential use in laser rewarming of cryopreserved biomaterials. The rewarming of vitrified, glass like state, cryopreserved biomaterials is a delicate process as potential ice formation leads to mechanical stress and cracking on a macroscale, and damage to cell walls and DNA on a microscale, ultimately leading to the destruction of the biomaterial. The use of plasmonic nanomaterials dispersed in cryoprotective agent solutions to rapidly convert optical radiation into heat, generally supplied by a focused laser beam, proposes a novel approach to overcome this difficulty. This study focuses on the performance of TiN nanoparticles (NPs), since they present high thermal stability and are inexpensive compared to Au. To uniformly warm up the nanomaterial solutions, a beam splitting laser system was developed to heat samples from multiple sides with equal beam energy distribution. In addition, uniform laser warming requires equal distribution of absorption and scattering properties in the nanomaterials. Preliminary results demonstrated higher absorption but less scattering in TiN NPs than Au nanorods (GNRs). This led to the development of TiN clusters, synthetized by nanoparticle agglomeration, to increase the scattering cross-section of the material. Overall, this study analyzed the heating rate, thermal efficiency, and heating uniformity of TiN NPs and clusters in comparison to GNRs at different solution concentrations. TiN NPs and clusters demonstrated higher heating rates and solution temperatures, while only clusters led to a significantly improved uniformity in heating. These results highlight a promising alternative plasmonic nanomaterial to rewarm cryopreserved biological systems in the future.
Collapse
Affiliation(s)
- Crysthal Alvarez
- J. Mike Walker ’66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, United States
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, United States
| | - Carla Berrospe-Rodriguez
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, United States
| | - Chaolumen Wu
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| | - Jacqueline Pasek-Allen
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Kanav Khosla
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - John Bischof
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Lorenzo Mangolini
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Lorenzo Mangolini, ; Guillermo Aguilar,
| | - Guillermo Aguilar
- J. Mike Walker ’66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, United States
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Lorenzo Mangolini, ; Guillermo Aguilar,
| |
Collapse
|
21
|
Cryopreservation and Flow Cytometric Analysis of Ovarian Tissue in Murray River Rainbowfish, Melanotaenia fluviatilis. Animals (Basel) 2022; 12:ani12060794. [PMID: 35327190 PMCID: PMC8944819 DOI: 10.3390/ani12060794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Freshwater fish populations are in global decline, with many Australian freshwater species expected to become extinct in the next twenty years. The storage of reproductive cells and tissues at extremely cold temperatures in bio-banks known as “Frozen Zoos”, allows for the indefinite storage of genetic material, meaning that in the event of an extinction, we have a genetic blueprint available to produce new individuals and reintroduce a species into the wild. Here we have developed a cryopreservation protocol for the storage of ovarian tissue from the threatened Murray River Rainbowfish. Many Australian freshwater fish species are threatened with extinction, our methodology provides a framework for the conservation of other fish species in Australia and globally. Abstract Freshwater fish populations are declining with many small, Australian fish species at risk of extinction within the next twenty-years. Cryopreservation of reproductive cells and tissues makes it possible to reproduce individuals from a species even after they are extinct in the wild. We describe the successful cryopreservation of ovarian tissue in the Murray River Rainbowfish, Melanotaenia fluviatilis (Order: Atheriniformes). Histology showed that oogonia are 13.70 µm ± 1.75 µm in size, stain positive for germ-line marker Vasa, and represent approximately 2.29 ± 0.81% of cells in the ovary. Flow cytometry was used to analyse ovarian cell suspensions, requiring an optimised tissue digestion protocol. We found that 0.25% trypsin with 1.13 mM EDTA produced cell suspensions with the highest viability (76.28 ± 4.64%) and the highest number of cells recovered per gram of tissue (1.2 × 108 ± 4.4 × 107 cells/g). Subsequent sorting of ovarian cell suspensions by flow cytometry increased oogonial cells in suspension from 2.53 ± 1.31% in an unsorted sample to 5.85 ± 4.01% in a sorted sample (p = 0.0346). Cryopreservation of ovarian tissue showed DMSO-treated samples had higher cell viability post-thaw (63.5 ± 18.2%) which was comparable to fresh samples (82.5 ± 7.1%; p = 0.36). Tissue cryopreserved in 2.0 M DMSO had the highest cell viability overall (76.07 ± 3.89%). This protocol could be applied to bio-banking programs for other species in the Melanotaeniidae, and perhaps species in other families and orders of Australian fish.
Collapse
|
22
|
Pancreatic islet cryopreservation by vitrification achieves high viability, function, recovery and clinical scalability for transplantation. Nat Med 2022; 28:798-808. [PMID: 35288694 PMCID: PMC9018423 DOI: 10.1038/s41591-022-01718-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/26/2022] [Indexed: 12/15/2022]
Abstract
Pancreatic islet transplantation can cure diabetes but requires accessible, high-quality islets in sufficient quantities. Cryopreservation could solve islet supply chain challenges by enabling quality-controlled banking and pooling of donor islets. Unfortunately, cryopreservation has not succeeded in this objective, as it must simultaneously provide high recovery, viability, function and scalability. Here, we achieve this goal in mouse, porcine, human and human stem cell (SC)-derived beta cell (SC-beta) islets by comprehensive optimization of cryoprotectant agent (CPA) composition, CPA loading and unloading conditions and methods for vitrification and rewarming (VR). Post-VR islet viability, relative to control, was 90.5% for mouse, 92.1% for SC-beta, 87.2% for porcine and 87.4% for human islets, and it remained unchanged for at least 9 months of cryogenic storage. VR islets had normal macroscopic, microscopic, and ultrastructural morphology. Mitochondrial membrane potential and adenosine triphosphate (ATP) levels were slightly reduced, but all other measures of cellular respiration, including oxygen consumption rate (OCR) to produce ATP, were unchanged. VR islets had normal glucose-stimulated insulin secretion (GSIS) function in vitro and in vivo. Porcine and SC-beta islets made insulin in xenotransplant models, and mouse islets tested in a marginal mass syngeneic transplant model cured diabetes in 92% of recipients within 24–48 h after transplant. Excellent glycemic control was seen for 150 days. Finally, our approach processed 2,500 islets with >95% islets recovery at >89% post-thaw viability and can readily be scaled up for higher throughput. These results suggest that cryopreservation can now be used to supply needed islets for improved transplantation outcomes that cure diabetes. Optimization of vitrification approaches substantially improves pancreatic islet cryopreservation for banking and boosts transplantation outcomes in diabetes.
Collapse
|
23
|
Tian Y, Li N, Wang W, Liu L. Preoperative Cryopreservation Promotes Digital Survival after Digit Replantation. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2003618. [PMID: 35295200 PMCID: PMC8920615 DOI: 10.1155/2022/2003618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/07/2022] [Accepted: 02/16/2022] [Indexed: 11/27/2022]
Abstract
Cryopreservation has been applied in the replantation of limbs with a minimal amount of muscle tissue replanted. And small composite tissues have also been reported to be successfully replanted by preoperative cryopreservation. In this study, we aimed to study the effect of preoperative cryopreservation on digital survival after digit replantation. Accordingly, we collected and compared the demographic and clinicopathological characteristics of patients with digit injury of patients, and we observed no significant difference between the NT and CP patients of digital injury. We also investigated the records of successful digit replantation and other parameters which influenced the odds of digital survival of all recruited patients. Accordingly, we found that the number of survived digits was remarkably increased in patients in the CP group compared with that in patients in the NT group. And the number of patients requiring blood transfusion and the mean length of hospital stay were notably decreased in the CP group. And compared with other patient characteristics, the mechanism of injury (blade, crush, or avulsion) showed a remarkable difference between the two groups of digital failure. Moreover, we analyzed the correlations between patient characteristics and the odds of digit survival and found that compared with other basic characteristics of patients and their injury, the preservation temperature, especially cryopreservation, could significantly promote digital survival after replantation.
Collapse
Affiliation(s)
- Yu Tian
- Department of Hand & Foot Surgery, First Hospital of Qinhuangdao, Qinhuangdao, 066000 Hebei, China
| | - Nan Li
- Department of Ophthalmology, Qinhuangdao Maternal and Child Health Hospital, Qinhuangdao, 066000 Hebei, China
| | - Wei Wang
- Department of Hand & Foot Surgery, First Hospital of Qinhuangdao, Qinhuangdao, 066000 Hebei, China
| | - Lei Liu
- Department of Plastic Surgery, Shanhaiguan People's Hospital, Shanhaiguan, 066200 Hebei, China
| |
Collapse
|
24
|
Clulow S, Clulow J, Marcec-Greaves R, Della Togna G, Calatayud NE. Common goals, different stages: the state of the ARTs for reptile and amphibian conservation. Reprod Fertil Dev 2022; 34:i-ix. [PMID: 35275052 DOI: 10.1071/rdv34n5_fo] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Amphibians and reptiles are highly threatened vertebrate taxa with large numbers of species threatened with extinction. With so many species at risk, conservation requires the efficient and cost-effective application of all the tools available so that as many species as possible are assisted. Biobanking of genetic material in genetic resource banks (GRBs) in combination with assisted reproductive technologies (ARTs) to retrieve live animals from stored materials are two powerful, complementary tools in the conservation toolbox for arresting and reversing biodiversity decline for both amphibians and reptiles. However, the degree of development of the ARTs and cryopreservation technologies differ markedly between these two groups. These differences are explained in part by different perceptions of the taxa, but also to differing reproductive anatomy and biology between the amphibians and reptiles. Artificial fertilisation with cryopreserved sperm is becoming a more widely developed and utilised technology for amphibians. However, in contrast, artificial insemination with production of live progeny has been reported in few reptiles, and while sperm have been successfully cryopreserved, there are still no reports of the production of live offspring generated from cryopreserved sperm. In both amphibians and reptiles, a focus on sperm cryopreservation and artificial fertilisation or artificial insemination has been at the expense of the development and application of more advanced technologies such as cryopreservation of the female germline and embryonic genome, or the use of sophisticated stem cell/primordial germ cell cryopreservation and transplantation approaches. This review accompanies the publication of ten papers on amphibians and twelve papers on reptiles reporting advances in ARTs and biobanking for the herpetological taxa.
Collapse
Affiliation(s)
- Simon Clulow
- Centre for Conservation Ecology & Genomics, Institute for Applied Ecology, University of Canberra, Bruce, ACT 2617, Australia
| | - John Clulow
- University of Newcastle, Conservation Biology Research Group, University Drive, Callaghan, NSW 2308, Australia
| | | | - Gina Della Togna
- Universidad Interamericana de Panama, Direccion de Investigacion, Campus Central, Avenida Ricardo J. Alfaro, Panama City, Panama; and Smithsonian Tropical Research Institute, Panama Amphibian Rescue and Conservation Project, Panama
| | - Natalie E Calatayud
- San Diego Zoo Wildlife Alliance, Beckman Center for Conservation Research, 15600 San Pasqual valley Road, Escondido, CA 92025, USA; and Conservation Science Network, 24 Thomas Street, Mayfield, NSW 2304, Australia
| |
Collapse
|
25
|
Dou M, Lu C, Rao W. Bioinspired materials and technology for advanced cryopreservation. Trends Biotechnol 2021; 40:93-106. [PMID: 34238601 DOI: 10.1016/j.tibtech.2021.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/25/2022]
Abstract
Cryopreservation can help to meet the demand for biosamples of high medical value. However, it remains difficult to effectively cryopreserve some sensitive cells, tissues, and reproductive organs. A coordinated effort from the perspective of the whole frozen biological system is necessary to advance cryopreservation technology. Animals that survive in cold temperatures, such as hibernators and cold-tolerant insects, offer excellent natural models. Their anti-cold strategies, such as programmed suppression of metabolism and the synthesis of cryoprotectants (CPAs), warrant systematic study. Furthermore, the discovery and synthesis of metabolism-regulating and cryoprotective biomaterials, combined with biotechnological breakthroughs, can also promote the development of cryopreservation. Further advances in the quality and duration of biosample storage inspired by nature will promote the application of cryopreserved biosamples in clinical therapy.
Collapse
Affiliation(s)
- Mengjia Dou
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China; Beijing Key Laboratory of Cryo-Biomedical Engineering, Beijing, 100190, China
| | - Chennan Lu
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; Beijing Key Laboratory of Cryo-Biomedical Engineering, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Rao
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; Beijing Key Laboratory of Cryo-Biomedical Engineering, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
26
|
Zhan L, Guo S, Kangas J, Shao Q, Shiao M, Khosla K, Low WC, McAlpine MC, Bischof J. Conduction Cooling and Plasmonic Heating Dramatically Increase Droplet Vitrification Volumes for Cell Cryopreservation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004605. [PMID: 34141523 PMCID: PMC8188207 DOI: 10.1002/advs.202004605] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/05/2021] [Indexed: 05/28/2023]
Abstract
Droplet vitrification has emerged as a promising ice-free cryopreservation approach to provide a supply chain for off-the-shelf cell products in cell therapy and regenerative medicine applications. Translation of this approach requires the use of low concentration (i.e., low toxicity) permeable cryoprotectant agents (CPA) and high post cryopreservation viability (>90%), thereby demanding fast cooling and warming rates. Unfortunately, with traditional approaches using convective heat transfer, the droplet volumes that can be successfully vitrified and rewarmed are impractically small (i.e., 180 picoliter) for <2.5 m permeable CPA. Herein, a novel approach to achieve 90-95% viability in micro-liter size droplets with 2 m permeable CPA, is presented. Droplets with plasmonic gold nanorods (GNRs) are printed onto a cryogenic copper substrate for improved cooling rates via conduction, while plasmonic laser heating yields >400-fold improvement in warming rates over traditional convective approach. High viability cryopreservation is then demonstrated in a model cell line (human dermal fibroblasts) and an important regenerative medicine cell line (human umbilical cord blood stem cells). This approach opens a new paradigm for cryopreservation and rewarming of dramatically larger volume droplets at lower CPA concentration for cell therapy and other regenerative medicine applications.
Collapse
Affiliation(s)
- Li Zhan
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
- Center for Advanced Technologies for the Preservation of Biological Systems (ATP‐Bio)University of MinnesotaMinneapolisMN55455USA
| | - Shuang‐Zhuang Guo
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
- School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Joseph Kangas
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
- Center for Advanced Technologies for the Preservation of Biological Systems (ATP‐Bio)University of MinnesotaMinneapolisMN55455USA
| | - Qi Shao
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
| | - Maple Shiao
- Department of NeurosurgeryUniversity of MinnesotaMinneapolisMN55455USA
- Stem Cell InstituteUniversity of MinnesotaMinneapolisMN55455USA
| | - Kanav Khosla
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
- Center for Advanced Technologies for the Preservation of Biological Systems (ATP‐Bio)University of MinnesotaMinneapolisMN55455USA
| | - Walter C. Low
- Department of NeurosurgeryUniversity of MinnesotaMinneapolisMN55455USA
- Stem Cell InstituteUniversity of MinnesotaMinneapolisMN55455USA
| | - Michael C. McAlpine
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
- Center for Advanced Technologies for the Preservation of Biological Systems (ATP‐Bio)University of MinnesotaMinneapolisMN55455USA
| | - John Bischof
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
- Center for Advanced Technologies for the Preservation of Biological Systems (ATP‐Bio)University of MinnesotaMinneapolisMN55455USA
- Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
| |
Collapse
|