1
|
Pourmostafa A, Bhusal A, Haridas Menon N, Li Z, Basuray S, Miri AK. Integrating conductive electrodes into hydrogel-based microfluidic chips for real-time monitoring of cell response. Front Bioeng Biotechnol 2024; 12:1421592. [PMID: 39257447 PMCID: PMC11384590 DOI: 10.3389/fbioe.2024.1421592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/31/2024] [Indexed: 09/12/2024] Open
Abstract
The conventional real-time screening in organs-on-chips is limited to optical tracking of pre-tagged cells and biological agents. This work introduces an efficient biofabrication protocol to integrate tunable hydrogel electrodes into 3D bioprinted-on-chips. We established our method of fabricating cell-laden hydrogel-based microfluidic chips through digital light processing-based 3D bioprinting. Our conductive ink includes poly-(3,4-ethylene-dioxythiophene)-polystyrene sulfonate (PEDOT: PSS) microparticles doped in polyethylene glycol diacrylate (PEGDA). We optimized the manufacturing process of PEDOT: PSS microparticles characterized our conductive ink for different 3D bioprinting parameters, geometries, and materials conditions. While the literature is limited to 0.5% w/v for PEDOT: PSS microparticle concentration, we increased their concentration to 5% w/v with superior biological responses. We measured the conductivity in the 3-15 m/m for a range of 0.5%-5% w/v microparticles, and we showed the effectiveness of 3D-printed electrodes for predicting cell responses when encapsulated in gelatin-methacryloyl (GelMA). Interestingly, a higher cellular activity was observed in the case of 5% w/v microparticles compared to 0.5% w/v microparticles. Electrochemical impedance spectroscopy measurements indicated significant differences in cell densities and spheroid sizes embedded in GelMA microtissues.
Collapse
Affiliation(s)
- Ayda Pourmostafa
- Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Anant Bhusal
- Department of Mechanical Engineering, Rowan University, Glassboro, NJ, United States
| | - Niranjan Haridas Menon
- Department of Chemical Engineering, Newark College of Engineering, New Jersey Institute of Technology, Glassboro, Newark, NJ, United States
| | - Zhenglong Li
- Department of Chemical Engineering, Newark College of Engineering, New Jersey Institute of Technology, Glassboro, Newark, NJ, United States
| | - Sagnik Basuray
- Department of Chemical Engineering, Newark College of Engineering, New Jersey Institute of Technology, Glassboro, Newark, NJ, United States
| | - Amir K Miri
- Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
2
|
Nahon DM, Moerkens R, Aydogmus H, Lendemeijer B, Martínez-Silgado A, Stein JM, Dostanić M, Frimat JP, Gontan C, de Graaf MNS, Hu M, Kasi DG, Koch LS, Le KTT, Lim S, Middelkamp HHT, Mooiweer J, Motreuil-Ragot P, Niggl E, Pleguezuelos-Manzano C, Puschhof J, Revyn N, Rivera-Arbelaez JM, Slager J, Windt LM, Zakharova M, van Meer BJ, Orlova VV, de Vrij FMS, Withoff S, Mastrangeli M, van der Meer AD, Mummery CL. Standardizing designed and emergent quantitative features in microphysiological systems. Nat Biomed Eng 2024; 8:941-962. [PMID: 39187664 DOI: 10.1038/s41551-024-01236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/06/2024] [Indexed: 08/28/2024]
Abstract
Microphysiological systems (MPSs) are cellular models that replicate aspects of organ and tissue functions in vitro. In contrast with conventional cell cultures, MPSs often provide physiological mechanical cues to cells, include fluid flow and can be interlinked (hence, they are often referred to as microfluidic tissue chips or organs-on-chips). Here, by means of examples of MPSs of the vascular system, intestine, brain and heart, we advocate for the development of standards that allow for comparisons of quantitative physiological features in MPSs and humans. Such standards should ensure that the in vivo relevance and predictive value of MPSs can be properly assessed as fit-for-purpose in specific applications, such as the assessment of drug toxicity, the identification of therapeutics or the understanding of human physiology or disease. Specifically, we distinguish designed features, which can be controlled via the design of the MPS, from emergent features, which describe cellular function, and propose methods for improving MPSs with readouts and sensors for the quantitative monitoring of complex physiology towards enabling wider end-user adoption and regulatory acceptance.
Collapse
Affiliation(s)
- Dennis M Nahon
- Leiden University Medical Center, Leiden, the Netherlands
| | - Renée Moerkens
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Bas Lendemeijer
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Adriana Martínez-Silgado
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, the Netherlands
| | - Jeroen M Stein
- Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - Cristina Gontan
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Michel Hu
- Leiden University Medical Center, Leiden, the Netherlands
| | - Dhanesh G Kasi
- Leiden University Medical Center, Leiden, the Netherlands
| | - Lena S Koch
- University of Twente, Enschede, the Netherlands
| | - Kieu T T Le
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sangho Lim
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, the Netherlands
| | | | - Joram Mooiweer
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Eva Niggl
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Jens Puschhof
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, the Netherlands
| | - Nele Revyn
- Delft University of Technology, Delft, the Netherlands
| | | | - Jelle Slager
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Laura M Windt
- Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | | | - Sebo Withoff
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | | | | |
Collapse
|
3
|
Nasser RA, Arya SS, Alshehhi KH, Teo JCM, Pitsalidis C. Conducting polymer scaffolds: a new frontier in bioelectronics and bioengineering. Trends Biotechnol 2024; 42:760-779. [PMID: 38184439 DOI: 10.1016/j.tibtech.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 01/08/2024]
Abstract
Conducting polymer (CP) scaffolds have emerged as a transformative tool in bioelectronics and bioengineering, advancing the ability to interface with biological systems. Their unique combination of electrical conductivity, tailorability, and biocompatibility surpasses the capabilities of traditional nonconducting scaffolds while granting them access to the realm of bioelectronics. This review examines recent developments in CP scaffolds, focusing on material and device advancements, as well as their interplay with biological systems. We highlight applications for monitoring, tissue stimulation, and drug delivery and discuss perspectives and challenges currently faced for their ultimate translation and clinical implementation.
Collapse
Affiliation(s)
- Rasha A Nasser
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE
| | - Sagar S Arya
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE
| | - Khulood H Alshehhi
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE
| | - Jeremy C M Teo
- Mechanical and Biomedical Engineering Department, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
| | - Charalampos Pitsalidis
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE; Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE.
| |
Collapse
|
4
|
Rahav N, Marrero D, Soffer A, Glickman E, Beldjilali‐Labro M, Yaffe Y, Tadmor K, Leichtmann‐Bardoogo Y, Ashery U, Maoz BM. Multi-Sensor Origami Platform: A Customizable System for Obtaining Spatiotemporally Precise Functional Readouts in 3D Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305555. [PMID: 38634605 PMCID: PMC11200086 DOI: 10.1002/advs.202305555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/14/2024] [Indexed: 04/19/2024]
Abstract
Bioprinting technology offers unprecedented opportunities to construct in vitro tissue models that recapitulate the 3D morphology and functionality of native tissue. Yet, it remains difficult to obtain adequate functional readouts from such models. In particular, it is challenging to position sensors in desired locations within pre-fabricated 3D bioprinted structures. At the same time, bioprinting tissue directly onto a sensing device is not feasible due to interference with the printer head. As such, a multi-sensing platform inspired by origami that overcomes these challenges by "folding" around a separately fabricated 3D tissue structure is proposed, allowing for the insertion of electrodes into precise locations, which are custom-defined using computer-aided-design software. The multi-sensing origami platform (MSOP) can be connected to a commercial multi-electrode array (MEA) system for data-acquisition and processing. To demonstrate the platform, how integrated 3D MEA electrodes can record neuronal electrical activity in a 3D model of a neurovascular unit is shown. The MSOP also enables a microvascular endothelial network to be cultured separately and integrated with the 3D tissue structure. Accordingly, how impedance-based sensors in the platform can measure endothelial barrier function is shown. It is further demonstrated the device's versatility by using it to measure neuronal activity in brain organoids.
Collapse
Affiliation(s)
- Noam Rahav
- School of Neurobiology, Biochemistry and BiophysicsThe George S. Wise Faculty of Life SciencesTel Aviv UniversityTel Aviv69978Israel
| | - Denise Marrero
- Instituto de Microelectrónica de Barcelona (IMB‐CNM, CSIC)Campus UABBellaterraBarcelona08193Spain
- Centro de Investigación Biomédica en Red en Bioingeniería Biomateriales y NanomedicinaMadrid50018Spain
- Department of Biomedical EngineeringTel Aviv UniversityTel Aviv69978Israel
| | - Adi Soffer
- Department of Biomedical EngineeringTel Aviv UniversityTel Aviv69978Israel
| | - Emma Glickman
- Department of Biomedical EngineeringTel Aviv UniversityTel Aviv69978Israel
| | | | - Yakey Yaffe
- Sagol Center for Regenerative MedicineTel Aviv UniversityTel Aviv69978Israel
| | - Keshet Tadmor
- Sagol School of NeuroscienceTel Aviv UniversityTel Aviv69978Israel
| | | | - Uri Ashery
- School of Neurobiology, Biochemistry and BiophysicsThe George S. Wise Faculty of Life SciencesTel Aviv UniversityTel Aviv69978Israel
- Sagol Center for Regenerative MedicineTel Aviv UniversityTel Aviv69978Israel
- Sagol School of NeuroscienceTel Aviv UniversityTel Aviv69978Israel
| | - Ben M. Maoz
- Department of Biomedical EngineeringTel Aviv UniversityTel Aviv69978Israel
- Sagol Center for Regenerative MedicineTel Aviv UniversityTel Aviv69978Israel
- Sagol School of NeuroscienceTel Aviv UniversityTel Aviv69978Israel
- The Center for Nanoscience and NanotechnologyTel Aviv UniversityTel Aviv69978Israel
| |
Collapse
|
5
|
Barron SL, Oldroyd SV, Saez J, Chernaik A, Guo W, McCaughan F, Bulmer D, Owens RM. A Conformable Organic Electronic Device for Monitoring Epithelial Integrity at the Air Liquid Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306679. [PMID: 38061027 DOI: 10.1002/adma.202306679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/27/2023] [Indexed: 02/23/2024]
Abstract
Air liquid interfaced (ALI) epithelial barriers are essential for homeostatic functions such as nutrient transport and immunological protection. Dysfunction of such barriers are implicated in a variety of autoimmune and inflammatory disorders and, as such, sensors capable of monitoring barrier health are integral for disease modelling, diagnostics and drug screening applications. To date, gold-standard electrical methods for detecting barrier resistance require rigid electrodes bathed in an electrolyte, which limits compatibility with biological architectures and is non-physiological for ALI. This work presents a flexible all-planar electronic device capable of monitoring barrier formation and perturbations in human respiratory and intestinal cells at ALI. By interrogating patient samples with electrochemical impedance spectroscopy and simple equivalent circuit models, disease-specific and patient-specific signatures are uncovered. Device readouts are validated against commercially available chopstick electrodes and show greater conformability, sensitivity and biocompatibility. The effect of electrode size on sensing efficiency is investigated and a cut-off sensing area is established, which is one order of magnitude smaller than previously reported. This work provides the first steps in creating a physiologically relevant sensor capable of mapping local and real-time changes of epithelial barrier function at ALI, which will have broad applications in toxicology and drug screening applications.
Collapse
Affiliation(s)
- Sarah L Barron
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Sophie V Oldroyd
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Janire Saez
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
- Microfluidics Cluster, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, CP 01006, Spain
- Basque Foundation for Science, IKERBASQUE, Bilbao, Spain
- Bioaraba Health Research Institute, Microfluidics Cluster UPV/EHU, Vitoria-Gasteiz, 01009, Spain
| | - Alice Chernaik
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, CB2 2QQ, UK
| | - Wenrui Guo
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, CB2 2QQ, UK
| | - Frank McCaughan
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, CB2 2QQ, UK
| | - David Bulmer
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| |
Collapse
|
6
|
McCoy R, Oldroyd S, Yang W, Wang K, Hoven D, Bulmer D, Zilbauer M, Owens RM. In Vitro Models for Investigating Intestinal Host-Pathogen Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306727. [PMID: 38155358 PMCID: PMC10885678 DOI: 10.1002/advs.202306727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/01/2023] [Indexed: 12/30/2023]
Abstract
Infectious diseases are increasingly recognized as a major threat worldwide due to the rise of antimicrobial resistance and the emergence of novel pathogens. In vitro models that can adequately mimic in vivo gastrointestinal physiology are in high demand to elucidate mechanisms behind pathogen infectivity, and to aid the design of effective preventive and therapeutic interventions. There exists a trade-off between simple and high throughput models and those that are more complex and physiologically relevant. The complexity of the model used shall be guided by the biological question to be addressed. This review provides an overview of the structure and function of the intestine and the models that are developed to emulate this. Conventional models are discussed in addition to emerging models which employ engineering principles to equip them with necessary advanced monitoring capabilities for intestinal host-pathogen interrogation. Limitations of current models and future perspectives on the field are presented.
Collapse
Affiliation(s)
- Reece McCoy
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Sophie Oldroyd
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Woojin Yang
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
- Wellcome‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeCB2 0AWUK
| | - Kaixin Wang
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Darius Hoven
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - David Bulmer
- Department of PharmacologyUniversity of CambridgeCambridgeCB2 1PDUK
| | - Matthias Zilbauer
- Wellcome‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeCB2 0AWUK
| | - Róisín M. Owens
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| |
Collapse
|
7
|
Traberg WC, Uribe J, Druet V, Hama A, Moysidou C, Huerta M, McCoy R, Hayward D, Savva A, Genovese AMR, Pavagada S, Lu Z, Koklu A, Pappa A, Fitzgerald R, Inal S, Daniel S, Owens RM. Organic Electronic Platform for Real-Time Phenotypic Screening of Extracellular-Vesicle-Driven Breast Cancer Metastasis. Adv Healthc Mater 2023; 12:e2301194. [PMID: 37171457 PMCID: PMC11468090 DOI: 10.1002/adhm.202301194] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 04/21/2023] [Indexed: 05/13/2023]
Abstract
Tumor-derived extracellular vesicles (TEVs) induce the epithelial-to-mesenchymal transition (EMT) in nonmalignant cells to promote invasion and cancer metastasis, representing a novel therapeutic target in a field severely lacking in efficacious antimetastasis treatments. However, scalable technologies that allow continuous, multiparametric monitoring for identifying metastasis inhibitors are absent. Here, the development of a functional phenotypic screening platform based on organic electrochemical transistors (OECTs) for real-time, noninvasive monitoring of TEV-induced EMT and screening of antimetastatic drugs is reported. TEVs derived from the triple-negative breast cancer cell line MDA-MB-231 induce EMT in nonmalignant breast epithelial cells (MCF10A) over a nine-day period, recapitulating a model of invasive ductal carcinoma metastasis. Immunoblot analysis and immunofluorescence imaging confirm the EMT status of TEV-treated cells, while dual optical and electrical readouts of cell phenotype are obtained using OECTs. Further, heparin, a competitive inhibitor of cell surface receptors, is identified as an effective blocker of TEV-induced EMT. Together, these results demonstrate the utility of the platform for TEV-targeted drug discovery, allowing for facile modeling of the transient drug response using electrical measurements, and provide proof of concept that inhibitors of TEV function have potential as antimetastatic drug candidates.
Collapse
Affiliation(s)
- Walther C. Traberg
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Johana Uribe
- Robert F. Smith School of Chemical and Biomolecular EngineeringCornell UniversityOlin HallIthacaNY14853USA
| | - Victor Druet
- Biological and Environmental Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal3955Kingdom of Saudi Arabia
| | - Adel Hama
- Biological and Environmental Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal3955Kingdom of Saudi Arabia
| | | | - Miriam Huerta
- Robert F. Smith School of Chemical and Biomolecular EngineeringCornell UniversityOlin HallIthacaNY14853USA
| | - Reece McCoy
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Daniel Hayward
- Early Cancer InstituteUniversity of CambridgeHutchison Research CentreCambridgeCB2 0XZUK
| | - Achilleas Savva
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Amaury M. R. Genovese
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Suraj Pavagada
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
- Early Cancer InstituteUniversity of CambridgeHutchison Research CentreCambridgeCB2 0XZUK
| | - Zixuan Lu
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Anil Koklu
- Biological and Environmental Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal3955Kingdom of Saudi Arabia
| | - Anna‐Maria Pappa
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
- Healthcare Innovation Engineering CenterKhalifa UniversityAbu DhabiPO Box 127788United Arab Emirates
- Department of Biomedical EngineeringKhalifa University of Science and TechnologyAbu DhabiPO Box 127788United Arab Emirates
| | - Rebecca Fitzgerald
- Early Cancer InstituteUniversity of CambridgeHutchison Research CentreCambridgeCB2 0XZUK
| | - Sahika Inal
- Biological and Environmental Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal3955Kingdom of Saudi Arabia
| | - Susan Daniel
- Robert F. Smith School of Chemical and Biomolecular EngineeringCornell UniversityOlin HallIthacaNY14853USA
| | - Róisín M. Owens
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| |
Collapse
|
8
|
Savva A, Saez J, Withers A, Barberio C, Stoeger V, Elias-Kirma S, Lu Z, Moysidou CM, Kallitsis K, Pitsalidis C, Owens RM. 3D organic bioelectronics for electrical monitoring of human adult stem cells. MATERIALS HORIZONS 2023; 10:3589-3600. [PMID: 37318042 PMCID: PMC10464098 DOI: 10.1039/d3mh00785e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Three-dimensional in vitro stem cell models have enabled a fundamental understanding of cues that direct stem cell fate. While sophisticated 3D tissues can be generated, technology that can accurately monitor these complex models in a high-throughput and non-invasive manner is not well adapted. Here we show the development of 3D bioelectronic devices based on the electroactive polymer poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)-(PEDOT:PSS) and their use for non-invasive, electrical monitoring of stem cell growth. We show that the electrical, mechanical and wetting properties as well as the pore size/architecture of 3D PEDOT:PSS scaffolds can be fine-tuned simply by changing the processing crosslinker additive. We present a comprehensive characterization of both 2D PEDOT:PSS thin films of controlled thicknesses, and 3D porous PEDOT:PSS structures made by the freeze-drying technique. By slicing the bulky scaffolds we generate homogeneous, porous 250 μm thick PEDOT:PSS slices, constituting biocompatible 3D constructs able to support stem cell cultures. These multifunctional slices are attached on indium-tin oxide substrates (ITO) with the help of an electrically active adhesion layer, enabling 3D bioelectronic devices with a characteristic and reproducible, frequency dependent impedance response. This response changes drastically when human adipose derived stem cells (hADSCs) grow within the porous PEDOT:PSS network as revealed by fluorescence microscopy. The increase of cell population within the PEDOT:PSS porous network impedes the charge flow at the interface between PEDOT:PSS and ITO, enabling the interface resistance (R1) to be used as a figure of merit to monitor the proliferation of stem cells. The non-invasive monitoring of stem cell growth allows for the subsequent differentiation 3D stem cell cultures into neuron like cells, as verified by immunofluorescence and RT-qPCR measurements. The strategy of controlling important properties of 3D PEDOT:PSS structures simply by altering processing parameters can be applied for development of a number of stem cell in vitro models as well as stem cell differentiation pathways. We believe the results presented here will advance 3D bioelectronic technology for both fundamental understanding of in vitro stem cell cultures as well as the development of personalized therapies.
Collapse
Affiliation(s)
- Achilleas Savva
- Department of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0AS Cambridge, UK.
| | - Janire Saez
- Department of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0AS Cambridge, UK.
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Avenida Miguel de Unamuno, 3, 01006, Vitoria-Gasteiz, Spain
- Basque Foundation for Science, IKERBASQUE, E-48011 Bilbao, Spain
- Bioaraba Health Research Institute, Microfluidics Cluster UPV/EHU, Vitoria-Gasteiz, Spain
| | - Aimee Withers
- Department of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0AS Cambridge, UK.
| | - Chiara Barberio
- Department of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0AS Cambridge, UK.
| | - Verena Stoeger
- Department of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0AS Cambridge, UK.
| | - Shani Elias-Kirma
- Department of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0AS Cambridge, UK.
| | - Zixuan Lu
- Department of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0AS Cambridge, UK.
| | - Chrysanthi-Maria Moysidou
- Department of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0AS Cambridge, UK.
| | - Konstantinos Kallitsis
- Department of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0AS Cambridge, UK.
| | - Charalampos Pitsalidis
- Department of Physics, Khalifa University of Science and Technology, P. O. Box 127788, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0AS Cambridge, UK.
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0AS Cambridge, UK.
| |
Collapse
|
9
|
Kim J, Kim J, Jin Y, Cho SW. In situbiosensing technologies for an organ-on-a-chip. Biofabrication 2023; 15:042002. [PMID: 37587753 DOI: 10.1088/1758-5090/aceaae] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 07/25/2023] [Indexed: 08/18/2023]
Abstract
Thein vitrosimulation of organs resolves the accuracy, ethical, and cost challenges accompanyingin vivoexperiments. Organoids and organs-on-chips have been developed to model thein vitro, real-time biological and physiological features of organs. Numerous studies have deployed these systems to assess thein vitro, real-time responses of an organ to external stimuli. Particularly, organs-on-chips can be most efficiently employed in pharmaceutical drug development to predict the responses of organs before approving such drugs. Furthermore, multi-organ-on-a-chip systems facilitate the close representations of thein vivoenvironment. In this review, we discuss the biosensing technology that facilitates thein situ, real-time measurements of organ responses as readouts on organ-on-a-chip systems, including multi-organ models. Notably, a human-on-a-chip system integrated with automated multi-sensing will be established by further advancing the development of chips, as well as their assessment techniques.
Collapse
Affiliation(s)
- Jinyoung Kim
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Junghoon Kim
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Yoonhee Jin
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- Institute for Basic Science (IBS), Center for Nanomedicine, Seoul 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
10
|
Qi Y, Yu L, Tian F, Zhao J, Zhai Q. In vitro models to study human gut-microbiota interactions: Applications, advances, and limitations. Microbiol Res 2023; 270:127336. [PMID: 36871313 DOI: 10.1016/j.micres.2023.127336] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
In vitro models of the human gut help compensate for the limitations of animal models in studying the human gut-microbiota interaction and are indispensable in the clarification the mechanism of microbial action or in the high-throughput screening and functional evaluation of probiotics. The development of these models constitutes a rapidly developing field of research. From 2D1 to 3D2 and from simple to complex, several in vitro cell and tissue models have been developed and continuously improved. In this review, we categorized and summarized these models and described their development, applications, advances, and limitations by using specific examples. We also highlighted the best ways to select an appropriate in vitro model, and we also discussed which variables to consider when imitating microbial and human gut epithelial interactions.
Collapse
Affiliation(s)
- Yuli Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
11
|
Hall V, Bendtsen KMS. Getting closer to modeling the gut-brain axis using induced pluripotent stem cells. Front Cell Dev Biol 2023; 11:1146062. [PMID: 37065853 PMCID: PMC10102862 DOI: 10.3389/fcell.2023.1146062] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
The gut microbiome (GM), the gut barrier, and the blood-brain barrier (BBB) are key elements of the gut-brain axis (GBA). The advances in organ-on-a-chip and induced pluripotent stem cell (iPSCs) technology might enable more physiological gut-brain-axis-on-a-chip models. The ability to mimic complex physiological functions of the GBA is needed in basic mechanistic research as well as disease research of psychiatric, neurodevelopmental, functional, and neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. These brain disorders have been associated with GM dysbiosis, which may affect the brain via the GBA. Although animal models have paved the way for the breakthroughs and progression in the understanding of the GBA, the fundamental questions of exactly when, how, and why still remain unanswered. The research of the complex GBA have relied on equally complex animal models, but today's ethical knowledge and responsibilities demand interdisciplinary development of non-animal models to study such systems. In this review we briefly describe the gut barrier and BBB, provide an overview of current cell models, and discuss the use of iPSCs in these GBA elements. We highlight the perspectives of producing GBA chips using iPSCs and the challenges that remain in the field.
Collapse
Affiliation(s)
| | - Katja Maria Sahlgren Bendtsen
- Group of Brain Development and Disease, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Marrero D, Guimera A, Maes L, Villa R, Alvarez M, Illa X. Organ-on-a-chip with integrated semitransparent organic electrodes for barrier function monitoring. LAB ON A CHIP 2023; 23:1825-1834. [PMID: 36810654 DOI: 10.1039/d2lc01097f] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Organs-on-a-chip (OoC) are cell culture platforms that replicate key functional units of tissues in vitro. Barrier integrity and permeability evaluation are of utmost importance when studying barrier-forming tissues. Impedance spectroscopy is a powerful tool and is widely used to monitor barrier permeability and integrity in real-time. However, data comparison across devices is misleading due to the generation of a non-homogenous field across the tissue barrier, making impedance data normalization very challenging. In this work, we address this issue by integrating PEDOT:PSS electrodes for barrier function monitoring with impedance spectroscopy. The semitransparent PEDOT:PSS electrodes cover the entire cell culture membrane providing a homogenous electric field across the entire membrane making the cell culture area equally accountable to the measured impedance. To the best of our knowledge, PEDOT:PSS has never been used solely to monitor the impedance of cellular barriers while enabling optical inspection in the OoC. The performance of the device is demonstrated by lining the device with intestinal cells where we monitored barrier formation under flow conditions, as well as barrier disruption and recovery under exposure to a permeability enhancer. The barrier tightness and integrity, and the intercellular cleft have been evaluated by analyzing the full impedance spectrum. Furthermore, the device is autoclavable paving the way toward more sustainable OoC options.
Collapse
Affiliation(s)
- Denise Marrero
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería Biomateriales y Nanomedicina, Madrid, 50018, Spain
| | - Anton Guimera
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería Biomateriales y Nanomedicina, Madrid, 50018, Spain
| | - Laure Maes
- Department of Internal Medicine and Pediatrics, Ghent University, Gent, Belgium
- Ghent Gut Inflammation Group, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Gent, Belgium
| | - Rosa Villa
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería Biomateriales y Nanomedicina, Madrid, 50018, Spain
| | - Mar Alvarez
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, 08193, Barcelona, Spain.
| | - Xavi Illa
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería Biomateriales y Nanomedicina, Madrid, 50018, Spain
| |
Collapse
|
13
|
Ohayon D, Druet V, Inal S. A guide for the characterization of organic electrochemical transistors and channel materials. Chem Soc Rev 2023; 52:1001-1023. [PMID: 36637165 DOI: 10.1039/d2cs00920j] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The organic electrochemical transistor (OECT) is one of the most versatile devices within the bioelectronics toolbox, with its compatibility with aqueous media and the ability to transduce and amplify ionic and biological signals into an electronic output. The OECT operation relies on the mixed (ionic and electronic charge) conduction properties of the material in its channel. With the increased popularity of OECTs in bioelectronics applications and to benchmark mixed conduction properties of channel materials, the characterization methods have broadened somewhat heterogeneously. We intend this review to be a guide for the characterization methods of the OECT and the channel materials used. Our review is composed of two main sections. First, we review techniques to fabricate the OECT, introduce different form factors and configurations, and describe the device operation principle. We then discuss the OECT performance figures of merit and detail the experimental procedures to obtain these characteristics. In the second section, we shed light on the characterization of mixed transport properties of channel materials and describe how to assess films' interactions with aqueous electrolytes. In particular, we introduce experimental methods to monitor ion motion and diffusion, charge carrier mobility, and water uptake in the films. We also discuss a few theoretical models describing ion-polymer interactions. We hope that the guidelines we bring together in this review will help researchers perform a more comprehensive and consistent comparison of new materials and device designs, and they will be used to identify advances and opportunities to improve the device performance, progressing the field of organic bioelectronics.
Collapse
Affiliation(s)
- David Ohayon
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia.
| | - Victor Druet
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia.
| | - Sahika Inal
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
14
|
Barberio C, Saez J, Withers A, Nair M, Tamagnini F, Owens RM. Conducting Polymer-ECM Scaffolds for Human Neuronal Cell Differentiation. Adv Healthc Mater 2022; 11:e2200941. [PMID: 35904257 DOI: 10.1002/adhm.202200941] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/23/2022] [Indexed: 01/28/2023]
Abstract
3D cell culture formats more closely resemble tissue architecture complexity than 2D systems, which are lacking most of the cell-cell and cell-microenvironment interactions of the in vivo milieu. Scaffold-based systems integrating natural biomaterials are extensively employed in tissue engineering to improve cell survival and outgrowth, by providing the chemical and physical cues of the natural extracellular matrix (ECM). Using the freeze-drying technique, porous 3D composite scaffolds consisting of poly(3,4-ethylene-dioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS), containing ECM components (i.e., collagen, hyaluronic acid, and laminin) are engineered for hosting neuronal cells. The resulting scaffolds exhibit a highly porous microstructure and good conductivity, determined by scanning electron microscopy and electrochemical impedance spectroscopy, respectively. These supports boast excellent mechanical stability and water uptake capacity, making them ideal candidates for cell infiltration. SH-SY5Y human neuroblastoma cells show enhanced cell survival and proliferation in the presence of ECM compared to PEDOT:PSS alone. Whole-cell patch-clamp recordings acquired from differentiated SHSY5Y cells in the scaffolds demonstrate that ECM constituents promote neuronal differentiation in situ. These findings reinforce the usability of 3D conducting supports as engineered highly biomimetic and functional in vitro tissue-like platforms for drug or disease modeling.
Collapse
Affiliation(s)
- Chiara Barberio
- Bioelectronic Systems and Technology group, Department of Chemical Engineering and Biotechnology, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Janire Saez
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, 01006, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, E-48011, Spain
| | - Aimee Withers
- Bioelectronic Systems and Technology group, Department of Chemical Engineering and Biotechnology, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Malavika Nair
- Cambridge Centre for Medical Materials, Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Francesco Tamagnini
- University of Reading, School of Pharmacy, Hopkins Building, Reading, RG6 6LA, UK
| | - Roisin M Owens
- Bioelectronic Systems and Technology group, Department of Chemical Engineering and Biotechnology, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| |
Collapse
|
15
|
Pitsalidis C, van Niekerk D, Moysidou CM, Boys AJ, Withers A, Vallet R, Owens RM. Organic electronic transmembrane device for hosting and monitoring 3D cell cultures. SCIENCE ADVANCES 2022; 8:eabo4761. [PMID: 36112689 PMCID: PMC9481123 DOI: 10.1126/sciadv.abo4761] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
3D cell models have made strides in the past decades in response to failures of 2D cultures to translate targets during the drug discovery process. Here, we report on a novel multiwell plate bioelectronic platform, namely, the e-transmembrane, capable of supporting and monitoring complex 3D cell architectures. Scaffolds made of PEDOT:PSS [poly(3,4-ethylenedioxythiophene):polystyrene sulfonate] are microengineered to function as separating membranes for compartmentalized cell cultures, as well as electronic components for real-time in situ recordings of cell growth and function. Owing to the high surface area-to-volume ratio, the e-transmembrane allows generation of deep, stratified tissues within the porous bulk and cell polarization at the apico-basal domains. Impedance spectroscopy measurements carried out throughout the tissue growth identified signatures from different cellular systems and allowed extraction of critical functional parameters. This platform has the potential to become a universal tool for biologists for the next generation of high-throughput drug screening assays.
Collapse
Affiliation(s)
- Charalampos Pitsalidis
- Department of Physics and Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, P. O. Box 127788, Abu Dhabi, UAE
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Douglas van Niekerk
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Chrysanthi-Maria Moysidou
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Alexander J. Boys
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Aimee Withers
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | | | - Róisín M. Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| |
Collapse
|
16
|
Han H, Jang J. Recent advances in biofabricated gut models to understand the gut-brain axis in neurological diseases. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:931411. [PMID: 36188186 PMCID: PMC9515506 DOI: 10.3389/fmedt.2022.931411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Abstract
Increasing evidence has accumulated that gut microbiome dysbiosis could be linked to neurological diseases, including both neurodegenerative and psychiatric diseases. With the high prevalence of neurological diseases, there is an urgent need to elucidate the underlying mechanisms between the microbiome, gut, and brain. However, the standardized aniikmal models for these studies have critical disadvantages for their translation into clinical application, such as limited physiological relevance due to interspecies differences and difficulty interpreting causality from complex systemic interactions. Therefore, alternative in vitro gut–brain axis models are highly required to understand their related pathophysiology and set novel therapeutic strategies. In this review, we outline state-of-the-art biofabrication technologies for modeling in vitro human intestines. Existing 3D gut models are categorized according to their topographical and anatomical similarities to the native gut. In addition, we deliberate future research directions to develop more functional in vitro intestinal models to study the gut–brain axis in neurological diseases rather than simply recreating the morphology.
Collapse
Affiliation(s)
- Hohyeon Han
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Jinah Jang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
- Institute of Convergence Science, Yonsei University, Seoul, South Korea
- Correspondence: Jinah Jang
| |
Collapse
|
17
|
Moysidou CM, Withers AM, Nisbet AJ, Price DRG, Bryant CE, Cantacessi C, Owens RM. Investigation of Host-Microbe-Parasite Interactions in an In Vitro 3D Model of the Vertebrate Gut. Adv Biol (Weinh) 2022; 6:e2200015. [PMID: 35652159 DOI: 10.1002/adbi.202200015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/23/2022] [Indexed: 01/28/2023]
Abstract
In vitro models of the gut-microbiome axis are in high demand. Conventionally, intestinal monolayers grown on Transwell setups are used to test the effects of commensals/pathogens on the barrier integrity, both under homeostatic and pathophysiological conditions. While such models remain valuable for deepening the understanding of host-microbe interactions, often, they lack key biological components that mediate this intricate crosstalk. Here, a 3D in vitro model of the vertebrate intestinal epithelium, interfaced with immune cells surviving in culture for over 3 weeks, is developed and applied to proof-of-concept studies of host-microbe interactions. More specifically, the establishment of stable host-microbe cocultures is described and functional and morphological changes in the intestinal barrier induced by the presence of commensal bacteria are shown. Finally, evidence is provided that the 3D vertebrate gut models can be used as platforms to test host-microbe-parasite interactions. Exposure of gut-immune-bacteria cocultures to helminth "excretory/secretory products" induces in vivo-like up-/down-regulation of certain cytokines. These findings support the robustness of the modular in vitro cell systems for investigating the dynamics of host-microbe crosstalk and pave the way toward new approaches for systems biology studies of pathogens that cannot be maintained in vitro, including parasitic helminths.
Collapse
Affiliation(s)
- Chrysanthi-Maria Moysidou
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, West Cambridge Site, CB3 0AS, UK
| | - Aimee M Withers
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, West Cambridge Site, CB3 0AS, UK
| | - Alasdair J Nisbet
- Moredun Research Institute, Pentlands Science Park, Edinburgh, EH26 0PZ, UK
| | - Daniel R G Price
- Moredun Research Institute, Pentlands Science Park, Edinburgh, EH26 0PZ, UK
| | - Clare E Bryant
- Department of Veterinary Medicine, Cambridge Veterinary School, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, Cambridge Veterinary School, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, West Cambridge Site, CB3 0AS, UK
| |
Collapse
|
18
|
Kavand H, Nasiri R, Herland A. Advanced Materials and Sensors for Microphysiological Systems: Focus on Electronic and Electrooptical Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107876. [PMID: 34913206 DOI: 10.1002/adma.202107876] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Advanced in vitro cell culture systems or microphysiological systems (MPSs), including microfluidic organ-on-a-chip (OoC), are breakthrough technologies in biomedicine. These systems recapitulate features of human tissues outside of the body. They are increasingly being used to study the functionality of different organs for applications such as drug evolutions, disease modeling, and precision medicine. Currently, developers and endpoint users of these in vitro models promote how they can replace animal models or even be a better ethically neutral and humanized alternative to study pathology, physiology, and pharmacology. Although reported models show a remarkable physiological structure and function compared to the conventional 2D cell culture, they are almost exclusively based on standard passive polymers or glass with none or minimal real-time stimuli and readout capacity. The next technology leap in reproducing in vivo-like functionality and real-time monitoring of tissue function could be realized with advanced functional materials and devices. This review describes the currently reported electronic and optical advanced materials for sensing and stimulation of MPS models. In addition, an overview of multi-sensing for Body-on-Chip platforms is given. Finally, one gives the perspective on how advanced functional materials could be integrated into in vitro systems to precisely mimic human physiology.
Collapse
Affiliation(s)
- Hanie Kavand
- Division of Micro- and Nanosystems, Department of Intelligent Systems, KTH Royal Institute of Technology, Malvinas Väg 10 pl 5, Stockholm, 100 44, Sweden
| | - Rohollah Nasiri
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Solnavägen 9/B8, Solna, 171 65, Sweden
- Division of Nanobiotechnology, Department of Protein Science, KTH Royal Institute of Technology, Tomtebodavägen 23a, Solna, 171 65, Sweden
| | - Anna Herland
- Division of Micro- and Nanosystems, Department of Intelligent Systems, KTH Royal Institute of Technology, Malvinas Väg 10 pl 5, Stockholm, 100 44, Sweden
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Solnavägen 9/B8, Solna, 171 65, Sweden
- Division of Nanobiotechnology, Department of Protein Science, KTH Royal Institute of Technology, Tomtebodavägen 23a, Solna, 171 65, Sweden
| |
Collapse
|
19
|
Abarkan M, Pirog A, Mafilaza D, Pathak G, N'Kaoua G, Puginier E, O'Connor R, Raoux M, Donahue MJ, Renaud S, Lang J. Vertical Organic Electrochemical Transistors and Electronics for Low Amplitude Micro-Organ Signals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105211. [PMID: 35064774 PMCID: PMC8922095 DOI: 10.1002/advs.202105211] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Indexed: 06/14/2023]
Abstract
Electrical signals are fundamental to key biological events such as brain activity, heartbeat, or vital hormone secretion. Their capture and analysis provide insight into cell or organ physiology and a number of bioelectronic medical devices aim to improve signal acquisition. Organic electrochemical transistors (OECT) have proven their capacity to capture neuronal and cardiac signals with high fidelity and amplification. Vertical PEDOT:PSS-based OECTs (vOECTs) further enhance signal amplification and device density but have not been characterized in biological applications. An electronic board with individually tuneable transistor biases overcomes fabrication induced heterogeneity in device metrics and allows quantitative biological experiments. Careful exploration of vOECT electric parameters defines voltage biases compatible with reliable transistor function in biological experiments and provides useful maximal transconductance values without influencing cellular signal generation or propagation. This permits successful application in monitoring micro-organs of prime importance in diabetes, the endocrine pancreatic islets, which are known for their far smaller signal amplitudes as compared to neurons or heart cells. Moreover, vOECTs capture their single-cell action potentials and multicellular slow potentials reflecting micro-organ organizations as well as their modulation by the physiological stimulator glucose. This opens the possibility to use OECTs in new biomedical fields well beyond their classical applications.
Collapse
Affiliation(s)
- Myriam Abarkan
- UMR CNRS 5248 (CBMN, Chemistry and Biology of Membranes)Univ. BordeauxAv Geoffroy St HilairePessacF‐33600France
| | - Antoine Pirog
- UMR CNRS 5218 (IMS, Integration of Materials into Systems)Univ. BordeauxBordeaux Institut National Polytechnique351 Cours de la LibérationTalenceF‐33405France
| | - Donnie Mafilaza
- UMR CNRS 5218 (IMS, Integration of Materials into Systems)Univ. BordeauxBordeaux Institut National Polytechnique351 Cours de la LibérationTalenceF‐33405France
| | - Gaurav Pathak
- Department of BioelectronicsMines Saint EtienneCMP‐EMSEMOCGardanne13541France
- Linköping UniversityDepartment of Science and Technology (ITN)Laboratory of Organic ElectronicsLinköpingSE‐581 83Sweden
| | - Gilles N'Kaoua
- UMR CNRS 5218 (IMS, Integration of Materials into Systems)Univ. BordeauxBordeaux Institut National Polytechnique351 Cours de la LibérationTalenceF‐33405France
| | - Emilie Puginier
- UMR CNRS 5248 (CBMN, Chemistry and Biology of Membranes)Univ. BordeauxAv Geoffroy St HilairePessacF‐33600France
| | - Rodney O'Connor
- Department of BioelectronicsMines Saint EtienneCMP‐EMSEMOCGardanne13541France
| | - Matthieu Raoux
- UMR CNRS 5248 (CBMN, Chemistry and Biology of Membranes)Univ. BordeauxAv Geoffroy St HilairePessacF‐33600France
| | - Mary J. Donahue
- Department of BioelectronicsMines Saint EtienneCMP‐EMSEMOCGardanne13541France
- Linköping UniversityDepartment of Science and Technology (ITN)Laboratory of Organic ElectronicsLinköpingSE‐581 83Sweden
| | - Sylvie Renaud
- UMR CNRS 5218 (IMS, Integration of Materials into Systems)Univ. BordeauxBordeaux Institut National Polytechnique351 Cours de la LibérationTalenceF‐33405France
| | - Jochen Lang
- UMR CNRS 5248 (CBMN, Chemistry and Biology of Membranes)Univ. BordeauxAv Geoffroy St HilairePessacF‐33600France
| |
Collapse
|
20
|
Maji S, Lee H. Engineering Hydrogels for the Development of Three-Dimensional In Vitro Models. Int J Mol Sci 2022; 23:2662. [PMID: 35269803 PMCID: PMC8910155 DOI: 10.3390/ijms23052662] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 02/06/2023] Open
Abstract
The superiority of in vitro 3D cultures over conventional 2D cell cultures is well recognized by the scientific community for its relevance in mimicking the native tissue architecture and functionality. The recent paradigm shift in the field of tissue engineering toward the development of 3D in vitro models can be realized with its myriad of applications, including drug screening, developing alternative diagnostics, and regenerative medicine. Hydrogels are considered the most suitable biomaterial for developing an in vitro model owing to their similarity in features to the extracellular microenvironment of native tissue. In this review article, recent progress in the use of hydrogel-based biomaterial for the development of 3D in vitro biomimetic tissue models is highlighted. Discussions of hydrogel sources and the latest hybrid system with different combinations of biopolymers are also presented. The hydrogel crosslinking mechanism and design consideration are summarized, followed by different types of available hydrogel module systems along with recent microfabrication technologies. We also present the latest developments in engineering hydrogel-based 3D in vitro models targeting specific tissues. Finally, we discuss the challenges surrounding current in vitro platforms and 3D models in the light of future perspectives for an improved biomimetic in vitro organ system.
Collapse
Affiliation(s)
- Somnath Maji
- Department of Mechanical and Biomedical Engineering, Kangwon National University (KNU), Chuncheon 24341, Korea;
| | - Hyungseok Lee
- Department of Mechanical and Biomedical Engineering, Kangwon National University (KNU), Chuncheon 24341, Korea;
- Department of Smart Health Science and Technology, Kangwon National University (KNU), Chuncheon 24341, Korea
| |
Collapse
|
21
|
Kim Y, Kim G, Ding B, Jeong D, Lee I, Park S, Kim BJ, McCulloch I, Heeney M, Yoon MH. High-Current-Density Organic Electrochemical Diodes Enabled by Asymmetric Active Layer Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107355. [PMID: 34852181 DOI: 10.1002/adma.202107355] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Owing to their outstanding electrical/electrochemical performance, operational stability, mechanical flexibility, and decent biocompatibility, organic mixed ionic-electronic conductors have shown great potential as implantable electrodes for neural recording/stimulation and as active channels for signal switching/amplifying transistors. Nonetheless, no studies exist on a general design rule for high-performance electrochemical diodes, which are essential for highly functional circuit architectures. In this work, generalizable electrochemical diodes with a very high current density over 30 kA cm-2 are designed by introducing an asymmetric active layer based on organic mixed ionic-electronic conductors. The underlying mechanism on polarity-sensitive balanced ionic doping/dedoping is elucidated by numerical device analysis and in operando spectroelectrochemical potential mapping, while the general material requirements for electrochemical diode operation are deduced using various types of conjugated polymers. In parallel, analog signal rectification and digital logic processing circuits are successfully demonstrated to show the broad impact of circuits incorporating organic electrochemical diodes. It is expected that organic electrochemical diodes will play vital roles in realizing multifunctional soft bioelectronic circuitry in combination with organic electrochemical transistors.
Collapse
Affiliation(s)
- Youngseok Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Gunwoo Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Bowen Ding
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Dahyun Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Inho Lee
- Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Sungjun Park
- Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Iain McCulloch
- KAUST Solar Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Myung-Han Yoon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
22
|
Pitsalidis C, Pappa AM, Boys AJ, Fu Y, Moysidou CM, van Niekerk D, Saez J, Savva A, Iandolo D, Owens RM. Organic Bioelectronics for In Vitro Systems. Chem Rev 2021; 122:4700-4790. [PMID: 34910876 DOI: 10.1021/acs.chemrev.1c00539] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bioelectronics have made strides in improving clinical diagnostics and precision medicine. The potential of bioelectronics for bidirectional interfacing with biology through continuous, label-free monitoring on one side and precise control of biological activity on the other has extended their application scope to in vitro systems. The advent of microfluidics and the considerable advances in reliability and complexity of in vitro models promise to eventually significantly reduce or replace animal studies, currently the gold standard in drug discovery and toxicology testing. Bioelectronics are anticipated to play a major role in this transition offering a much needed technology to push forward the drug discovery paradigm. Organic electronic materials, notably conjugated polymers, having demonstrated technological maturity in fields such as solar cells and light emitting diodes given their outstanding characteristics and versatility in processing, are the obvious route forward for bioelectronics due to their biomimetic nature, among other merits. This review highlights the advances in conjugated polymers for interfacing with biological tissue in vitro, aiming ultimately to develop next generation in vitro systems. We showcase in vitro interfacing across multiple length scales, involving biological models of varying complexity, from cell components to complex 3D cell cultures. The state of the art, the possibilities, and the challenges of conjugated polymers toward clinical translation of in vitro systems are also discussed throughout.
Collapse
Affiliation(s)
- Charalampos Pitsalidis
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE.,Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Anna-Maria Pappa
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE
| | - Alexander J Boys
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Ying Fu
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, U.K
| | - Chrysanthi-Maria Moysidou
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Douglas van Niekerk
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Janire Saez
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Avenida Miguel de Unamuno, 3, 01006 Vitoria-Gasteiz, Spain.,Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain
| | - Achilleas Savva
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Donata Iandolo
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, 42023 Saint-Étienne, France
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| |
Collapse
|
23
|
Torricelli F, Adrahtas DZ, Bao Z, Berggren M, Biscarini F, Bonfiglio A, Bortolotti CA, Frisbie CD, Macchia E, Malliaras GG, McCulloch I, Moser M, Nguyen TQ, Owens RM, Salleo A, Spanu A, Torsi L. Electrolyte-gated transistors for enhanced performance bioelectronics. NATURE REVIEWS. METHODS PRIMERS 2021; 1:66. [PMID: 35475166 PMCID: PMC9037952 DOI: 10.1038/s43586-021-00065-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 12/31/2022]
Abstract
Electrolyte-gated transistors (EGTs), capable of transducing biological and biochemical inputs into amplified electronic signals and stably operating in aqueous environments, have emerged as fundamental building blocks in bioelectronics. In this Primer, the different EGT architectures are described with the fundamental mechanisms underpinning their functional operation, providing insight into key experiments including necessary data analysis and validation. Several organic and inorganic materials used in the EGT structures and the different fabrication approaches for an optimal experimental design are presented and compared. The functional bio-layers and/or biosystems integrated into or interfaced to EGTs, including self-organization and self-assembly strategies, are reviewed. Relevant and promising applications are discussed, including two-dimensional and three-dimensional cell monitoring, ultra-sensitive biosensors, electrophysiology, synaptic and neuromorphic bio-interfaces, prosthetics and robotics. Advantages, limitations and possible optimizations are also surveyed. Finally, current issues and future directions for further developments and applications are discussed.
Collapse
Affiliation(s)
- Fabrizio Torricelli
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | - Demetra Z. Adrahtas
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Fabio Biscarini
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Annalisa Bonfiglio
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Carlo A. Bortolotti
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - C. Daniel Frisbie
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Eleonora Macchia
- Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - George G. Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Iain McCulloch
- Physical Sciences and Engineering Division, KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Maximilian Moser
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Thuc-Quyen Nguyen
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Róisín M. Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Andrea Spanu
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Luisa Torsi
- Department of Chemistry, University of Bari ‘Aldo Moro’, Bari, Italy
| |
Collapse
|
24
|
Signore MA, De Pascali C, Giampetruzzi L, Siciliano PA, Francioso L. Gut-on-Chip microphysiological systems: Latest advances in the integration of sensing strategies and adoption of mature detection mechanisms. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100443] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
25
|
Advances in modelling the human microbiome-gut-brain axis in vitro. Biochem Soc Trans 2021; 49:187-201. [PMID: 33544117 PMCID: PMC7924999 DOI: 10.1042/bst20200338] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/23/2020] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
The human gut microbiome has emerged as a key player in the bidirectional communication of the gut–brain axis, affecting various aspects of homeostasis and pathophysiology. Until recently, the majority of studies that seek to explore the mechanisms underlying the microbiome–gut–brain axis cross-talk, relied almost exclusively on animal models, and particularly gnotobiotic mice. Despite the great progress made with these models, various limitations, including ethical considerations and interspecies differences that limit the translatability of data to human systems, pushed researchers to seek for alternatives. Over the past decades, the field of in vitro modelling of tissues has experienced tremendous growth, thanks to advances in 3D cell biology, materials, science and bioengineering, pushing further the borders of our ability to more faithfully emulate the in vivo situation. The discovery of stem cells has offered a new source of cells, while their use in generating gastrointestinal and brain organoids, among other tissues, has enabled the development of novel 3D tissues that better mimic the native tissue structure and function, compared with traditional assays. In parallel, organs-on-chips technology and bioengineered tissues have emerged as highly promising alternatives to animal models for a wide range of applications. Here, we discuss how recent advances and trends in this area can be applied in host–microbe and host–pathogen interaction studies. In addition, we highlight paradigm shifts in engineering more robust human microbiome-gut-brain axis models and their potential to expand our understanding of this complex system and hence explore novel, microbiome-based therapeutic approaches.
Collapse
|