1
|
Haderer LM, Zhou Y, Tang P, Daneshgar A, Globke B, Krenzien F, Reutzel-Selke A, Weinhart M, Pratschke J, Sauer IM, Hillebrandt KH, Keshi E. Thrombogenicity assessment of perfusable tissue engineered constructs: a systematic review. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 39007511 DOI: 10.1089/ten.teb.2024.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Vascular surgery faces a critical demand for novel vascular grafts that are biocompatible and thromboresistant. This urgency particularly applies to bypass operations involving small caliber vessels. In the realm of tissue engineering, the development of fully vascularized organs holds great promise as a solution to organ shortage for transplantation. To achieve this, it is imperative to (re-)construct a biocompatible and non-thrombogenic vascular network within these organs. In this systematic review, we identify, classify and discuss basic principles and methods used to perform in vitro/ex vivo dynamic thrombogenicity testing of perfusable tissue engineered organs and tissues. We conducted a pre-registered systematic review of studies published in the last 23 years according to PRISMA-P Guidelines, comprising a systematic data extraction, in-depth analysis and risk of bias assessment of 116 included studies. We identified shaking (n=28), flow loop (n=17), ex vivo (arterio-venous shunt, n=33) and dynamic in vitro models (n=38) as main approaches for thrombogenicity assessment. This comprehensive review unveils a prevalent lack of standardization and serves as a valuable guide in the design of standardized experimental setups.
Collapse
Affiliation(s)
| | - Yijun Zhou
- Charite Universitatsmedizin Berlin, Berlin, Berlin, Germany;
| | - Peter Tang
- Charité - Campus Virchow, General-, Visceral-, and Transplantation Surgery, Berlin, Germany;
| | - Assal Daneshgar
- Charite Universitatsmedizin Berlin, Berlin, Berlin, Germany;
| | - Brigitta Globke
- Charite Universitatsmedizin Berlin, Berlin, Berlin, Germany;
| | - Felix Krenzien
- Charite Universitatsmedizin Berlin, Berlin, Berlin, Germany;
| | - Anja Reutzel-Selke
- Charité - Campus Virchow, General-, Visceral-, and Transplantation Surgery, Augustenburger Platz 1, Berlin, Germany, 13353;
| | | | - Johann Pratschke
- Charité - Universitätsmedizin Berlin, General, Visceral, and Transplantation Surgery, Berlin, Germany;
| | - Igor M Sauer
- Charité, General, Visceral and Transplantation Surgery, Augustenburger Platz 1, Berlin, Germany, 13353;
| | - Karl Herbert Hillebrandt
- Charité - Campus Virchow, General-, Visceral-, and Transplantation Surgery, Augstenburgerplatz 1, Berlin, Germany, 13353;
| | - Eriselda Keshi
- Charité Universitätsmedizin Berlin, Chirurgische Klinik, Augustenburger Platz 1, Berlin, Germany, 13353;
| |
Collapse
|
2
|
Li P, Feng Q, Chen L, Zhao J, Lei F, Yu H, Yi N, Gan F, Han S, Wang L, Wang X. Environmentally Friendly, Durably Waterproof, and Highly Breathable Fibrous Fabrics Prepared by One-Step Fluorine-Free Waterborne Coating. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8613-8622. [PMID: 35113511 DOI: 10.1021/acsami.1c23664] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Waterproof and breathable membranes (WBMs) have drawn broad attention due to their widespread applications in various scientific and industry fields. However, creating WBMs with environment-friendliness and high performance is still a critical and challenging task. Herein, an environmentally friendly fluorine-free WBM with high performance was prepared through electrospinning and one-step dip-coating technology. The fluorine-free waterborne hydroxyl acrylic resin (HAR) emulsion containing long hydrocarbon chains endowed the electrospun polyacrylonitrile/blocked isocyanate prepolymer (PAN/BIP) fibrous membranes with superior hydrophobicity; meanwhile, crosslinking agent BIP ensured strong chemical binding between hydrocarbon segments and fiber substrate. The as-prepared PAN/BIP@HAR fibrous membranes achieve ideal properties with waterproofness of 112.5 kPa and moisture permeability of 12.7 kg m-2 d-1, which are comparable to the existing high-performance fluorinated WBMs. Besides, the PAN/BIP@HAR membranes also display impressive tensile strength and durability. Significantly, the proposed technology was also applicable to other hydrophilic fiber substrates, such as cellulose acetate and polyamide 6. The successful synthesis of environmentally friendly, durably waterproof, and highly breathable PAN/BIP@HAR membranes not only opens a new avenue to materials design, but also provides promising candidates with tremendous potential in various areas.
Collapse
Affiliation(s)
- Penghui Li
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Qi Feng
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Lixia Chen
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Jing Zhao
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Fuwang Lei
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Hui Yu
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Ningbo Yi
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Feng Gan
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Shaobo Han
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Lihuan Wang
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Xianfeng Wang
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
3
|
Wei Y, Wang F, Guo Z, Zhao Q. Tissue-engineered vascular grafts and regeneration mechanisms. J Mol Cell Cardiol 2021; 165:40-53. [PMID: 34971664 DOI: 10.1016/j.yjmcc.2021.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs) are life-threatening diseases with high morbidity and mortality worldwide. Vascular bypass surgery is still the ultimate strategy for CVD treatment. Autografts are the gold standard for graft transplantation, but insufficient sources limit their widespread application. Therefore, alternative tissue engineered vascular grafts (TEVGs) are urgently needed. In this review, we summarize the major strategies for the preparation of vascular grafts, as well as the factors affecting their patency and tissue regeneration. Finally, the underlying mechanisms of vascular regeneration that are mediated by host cells are discussed.
Collapse
Affiliation(s)
- Yongzhen Wei
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province, China; State key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Fei Wang
- State key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Zhikun Guo
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province, China
| | - Qiang Zhao
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province, China; State key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
4
|
Li D, Liang X, Li S, Wang T, Han G, Guo Z. Bioinspired textile with dual-stimuli responsive wettability for body moisture management and signal expression. NEW J CHEM 2021. [DOI: 10.1039/d1nj02471j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A smart bioinspired loofah textile with biosafe wettability shows high directional liquid transport capacity and the ability to identify liquids with different pH values.
Collapse
Affiliation(s)
- Deke Li
- School of materials engineering
- Lanzhou Institute of Technology
- Lanzhou 730050
- People's Republic of China
- State Key Laboratory of Solid Lubrication
| | - Xiaojing Liang
- State Key Laboratory of Solid Lubrication
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- People's Republic of China
| | - Shanpeng Li
- College of Engineering
- Lishui University
- Lishui 323000
- People's Republic of China
| | - Tao Wang
- School of materials engineering
- Lanzhou Institute of Technology
- Lanzhou 730050
- People's Republic of China
| | - Guocai Han
- School of materials engineering
- Lanzhou Institute of Technology
- Lanzhou 730050
- People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials
- Hubei University
- Wuhan 430062
- People's Republic of China
- State Key Laboratory of Solid Lubrication
| |
Collapse
|
5
|
Badv M, Bayat F, Weitz JI, Didar TF. Single and multi-functional coating strategies for enhancing the biocompatibility and tissue integration of blood-contacting medical implants. Biomaterials 2020; 258:120291. [PMID: 32798745 DOI: 10.1016/j.biomaterials.2020.120291] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/27/2020] [Accepted: 08/01/2020] [Indexed: 12/27/2022]
Abstract
Device-associated clot formation and poor tissue integration are ongoing problems with permanent and temporary implantable medical devices. These complications lead to increased rates of mortality and morbidity and impose a burden on healthcare systems. In this review, we outline the current approaches for developing single and multi-functional surface coating techniques that aim to circumvent the limitations associated with existing blood-contacting medical devices. We focus on surface coatings that possess dual hemocompatibility and biofunctionality features and discuss their advantages and shortcomings to providing a biocompatible and biodynamic interface between the medical implant and blood. Lastly, we outline the newly developed surface modification techniques that use lubricant-infused coatings and discuss their unique potential and limitations in mitigating medical device-associated complications.
Collapse
Affiliation(s)
- Maryam Badv
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Fereshteh Bayat
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Jeffrey I Weitz
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Thrombosis & Atherosclerosis Research Institute (TaARI), Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada; Institute for Infectious Disease Research (IIDR), McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
6
|
Liao Q, Chen D, Zhang X, Ma Y, Yang B, Zhao C, Yang W. Surface Engineering of Organic Polymers by Photo‐induced Free Radical Coupling with p‐Dimethylaminophenyl Group as A Synthesis Block. ChemistrySelect 2020. [DOI: 10.1002/slct.202000082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Qingyu Liao
- College of Materials Science and EngineeringBeijing University of Chemical Technology Beijing 100029
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne PolymersBeijing University of Chemical Technology Beijing 100029
| | - Dong Chen
- College of Materials Science and EngineeringBeijing University of Chemical Technology Beijing 100029
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne PolymersBeijing University of Chemical Technology Beijing 100029
| | - Xianhong Zhang
- College of Materials Science and EngineeringBeijing University of Chemical Technology Beijing 100029
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne PolymersBeijing University of Chemical Technology Beijing 100029
| | - Yuhong Ma
- College of Materials Science and EngineeringBeijing University of Chemical Technology Beijing 100029
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne PolymersBeijing University of Chemical Technology Beijing 100029
| | - Biao Yang
- School of Materials Science & Mechanical EngineeringBeijing Technology & Business University Beijing 100048
| | - Changwen Zhao
- College of Materials Science and EngineeringBeijing University of Chemical Technology Beijing 100029
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne PolymersBeijing University of Chemical Technology Beijing 100029
| | - Wantai Yang
- College of Materials Science and EngineeringBeijing University of Chemical Technology Beijing 100029
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne PolymersBeijing University of Chemical Technology Beijing 100029
| |
Collapse
|
7
|
Zhao J, Zhu W, Wang X, Liu L, Yu J, Ding B. Fluorine-Free Waterborne Coating for Environmentally Friendly, Robustly Water-Resistant, and Highly Breathable Fibrous Textiles. ACS NANO 2020; 14:1045-1054. [PMID: 31877025 DOI: 10.1021/acsnano.9b08595] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Waterproof and breathable membranes (WBMs) with simultaneous environmental friendliness and high performance are highly desirable in a broad range of applications; however, creating such materials still remains a tough challenge. Herein, we present a facile and scalable strategy to fabricate fluorine-free, efficient, and biodegradable WBMs via step-by-step dip-coating and heat curing technology. The hyperbranched polymer (ECO) coating containing long hydrocarbon chains provided an electrospun cellulose acetate (CA) fibrous matrix with high hydrophobicity; meanwhile, the blocked isocyanate cross-linker (BIC) coating ensured the strong attachment of hydrocarbon segments on CA surfaces. The resulting membranes (TCA) exhibited integrated properties with waterproofness of 102.9 kPa, breathability of 12.3 kg m-2 d-1, and tensile strength of 16.0 MPa, which are much superior to that of previously reported fluorine-free fibrous materials. Furthermore, TCA membranes can sustain hydrophobicity after exposure to various harsh environments. More importantly, the present strategy proved to be universally applicable and effective to several other hydrophilic fibrous substrates. This work not only highlights the material design and preparation but also provides environmentally friendly and high-performance WBMs with great potential application prospects for a variety of fields.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
| | - Weixia Zhu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
| | - Xianfeng Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles , Donghua University , Shanghai 201620 , China
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| | - Lifang Liu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles , Donghua University , Shanghai 201620 , China
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| |
Collapse
|
8
|
Engineering blood vessels and vascularized tissues: technology trends and potential clinical applications. Clin Sci (Lond) 2019; 133:1115-1135. [DOI: 10.1042/cs20180155] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 02/06/2023]
Abstract
Abstract
Vascular tissue engineering has the potential to make a significant impact on the treatment of a wide variety of medical conditions, including providing in vitro generated vascularized tissue and organ constructs for transplantation. Since the first report on the construction of a biological blood vessel, significant research and technological advances have led to the generation of clinically relevant large and small diameter tissue engineered vascular grafts (TEVGs). However, developing a biocompatible blood-contacting surface is still a major challenge. Researchers are using biomimicry to generate functional vascular grafts and vascular networks. A multi-disciplinary approach is being used that includes biomaterials, cells, pro-angiogenic factors and microfabrication technologies. Techniques to achieve spatiotemporal control of vascularization include use of topographical engineering and controlled-release of growth/pro-angiogenic factors. Use of decellularized natural scaffolds has gained popularity for engineering complex vascularized organs for potential clinical use. Pre-vascularization of constructs prior to implantation has also been shown to enhance its anastomosis after implantation. Host-implant anastomosis is a phenomenon that is still not fully understood. However, it will be a critical factor in determining the in vivo success of a TEVGs or bioengineered organ. Many clinical studies have been conducted using TEVGs, but vascularized tissue/organ constructs are still in the research & development stage. In addition to technical challenges, there are commercialization and regulatory challenges that need to be addressed. In this review we examine recent advances in the field of vascular tissue engineering, with a focus on technology trends, challenges and potential clinical applications.
Collapse
|
9
|
Petrak K, Vissapragada R, Shi S, Siddiqui Z, Kim KK, Sarkar B, Kumar VA. Challenges in Translating from Bench to Bed-Side: Pro-Angiogenic Peptides for Ischemia Treatment. Molecules 2019; 24:E1219. [PMID: 30925755 PMCID: PMC6479440 DOI: 10.3390/molecules24071219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023] Open
Abstract
We describe progress and obstacles in the development of novel peptide-hydrogel therapeutics for unmet medical needs in ischemia treatment, focusing on the development and translation of therapies specifically in peripheral artery disease (PAD). Ischemia is a potentially life-threatening complication in PAD, which affects a significant percentage of the elderly population. While studies on inducing angiogenesis to treat PAD were started two decades ago, early results from animal models as well as clinical trials have not yet been translated into clinical practice. We examine some of the challenges encountered during such translation. We further note the need for sustained angiogenic effect involving whole growth factor, gene therapy and synthetic growth factor strategies. Finally, we discuss the need for tissue depots for de novo formation of microvasculature. These scaffolds can act as templates for neovasculature development to improve circulation and healing at the preferred anatomical location.
Collapse
Affiliation(s)
| | - Ravi Vissapragada
- Department of Gastrointestinal Surgery, Flinders Medical Centre, 5042 Bedford Park, South Australia, Australia.
| | - Siyu Shi
- Department of Medicine Stanford School of Medicine, Stanford, CA 94305, USA.
| | - Zain Siddiqui
- Department of Biomedical Engineering, Newark, NJ 07102, USA.
| | - Ka Kyung Kim
- Department of Biomedical Engineering, Newark, NJ 07102, USA.
| | - Biplab Sarkar
- Department of Biomedical Engineering, Newark, NJ 07102, USA.
| | - Vivek A Kumar
- Department of Biomedical Engineering, Newark, NJ 07102, USA.
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
- Rutgers School of Dental Medicine, Newark, NJ 07103, USA.
| |
Collapse
|
10
|
Radke D, Jia W, Sharma D, Fena K, Wang G, Goldman J, Zhao F. Tissue Engineering at the Blood-Contacting Surface: A Review of Challenges and Strategies in Vascular Graft Development. Adv Healthc Mater 2018; 7:e1701461. [PMID: 29732735 PMCID: PMC6105365 DOI: 10.1002/adhm.201701461] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/09/2018] [Indexed: 12/14/2022]
Abstract
Tissue engineered vascular grafts (TEVGs) are beginning to achieve clinical success and hold promise as a source of grafting material when donor grafts are unsuitable or unavailable. Significant technological advances have generated small-diameter TEVGs that are mechanically stable and promote functional remodeling by regenerating host cells. However, developing a biocompatible blood-contacting surface remains a major challenge. The TEVG luminal surface must avoid negative inflammatory responses and thrombogenesis immediately upon implantation and promote endothelialization. The surface has therefore become a primary focus for research and development efforts. The current state of TEVGs is herein reviewed with an emphasis on the blood-contacting surface. General vascular physiology and developmental challenges and strategies are briefly described, followed by an overview of the materials currently employed in TEVGs. The use of biodegradable materials and stem cells requires careful control of graft composition, degradation behavior, and cell recruitment ability to ensure that a physiologically relevant vessel structure is ultimately achieved. The establishment of a stable monolayer of endothelial cells and the quiescence of smooth muscle cells are critical to the maintenance of patency. Several strategies to modify blood-contacting surfaces to resist thrombosis and control cellular recruitment are reviewed, including coatings of biomimetic peptides and heparin.
Collapse
Affiliation(s)
- Daniel Radke
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Wenkai Jia
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Dhavan Sharma
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Kemin Fena
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Guifang Wang
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Jeremy Goldman
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| | - Feng Zhao
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, U.S
| |
Collapse
|
11
|
Li J, Zhang K, Huang N. Engineering Cardiovascular Implant Surfaces to Create a Vascular Endothelial Growth Microenvironment. Biotechnol J 2017; 12. [PMID: 28941232 DOI: 10.1002/biot.201600401] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 09/14/2017] [Indexed: 12/16/2022]
Abstract
Cardiovascular disease (CVD) is generally accepted as the leading cause of morbidity and mortality worldwide, and an increasing number of patients suffer from atherosclerosis and thrombosis annually. To treat these disorders and prolong the sufferers' life, several cardiovascular implants have been developed and applied clinically. Nevertheless, thrombosis and hyperplasia at the site of cardiovascular implants are recognized as long-term problems in the practice of interventional cardiology. Here, we start this review from the clinical requirement of the implants, such as anti-hyperplasia, anti-thrombosis, and pro-endothelialization, wherein particularly focus on the natural factors which influence functional endothelialization in situ, including the healthy smooth muscle cells (SMCs) environment, blood flow shear stress (BFSS), and the extracellular matrix (ECM) microenvironment. Then, the currently available strategies on surface modification of cardiovascular biomaterials to create vascular endothelial growth microenvironment are introduced as the main topic, e.g., BFSS effect simulation by surface micro-patterning, ECM rational construction and SMCs phenotype maintain. Finally, the prospects for extending use of the in situ construction of endothelial cells growth microenvironment are discussed and summarized in designing the next generation of vascular implants.
Collapse
Affiliation(s)
- Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.,Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Kun Zhang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China.,School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Nan Huang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| |
Collapse
|
12
|
Wise SG, Liu H, Kondyurin A, Byrom MJ, Bannon PG, Edwards GA, Weiss AS, Bao S, Bilek MM. Plasma Ion Activated Expanded Polytetrafluoroethylene Vascular Grafts with a Covalently Immobilized Recombinant Human Tropoelastin Coating Reducing Neointimal Hyperplasia. ACS Biomater Sci Eng 2016; 2:1286-1297. [DOI: 10.1021/acsbiomaterials.6b00208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Steven G. Wise
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, New South Wales 2042, Australia
- Sydney
Medical School, University of Sydney, Edward Ford Building (A27), Fisher
Road, Sydney, New South Wales 2006, Australia
- School
of Molecular Bioscience, University of Sydney, Biochemistry Building (G08), Butlin
Avenue, Sydney, New South
Wales 2006, Australia
| | - Hongjuan Liu
- Department
of Pathology, University of Sydney, Blackburn Building (D06), Blackburn Circuit, Sydney, New South Wales 2006, Australia
| | - Alexey Kondyurin
- School
of Physics (A28), University of Sydney, Physics Road, Sydney, New South Wales 2006, Australia
| | - Michael J. Byrom
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, New South Wales 2042, Australia
- The Baird Institute, Suite 305, 100 Carillon Avenue, Newtown, Sydney, New South Wales 2042, Australia
| | - Paul G. Bannon
- Sydney
Medical School, University of Sydney, Edward Ford Building (A27), Fisher
Road, Sydney, New South Wales 2006, Australia
- The Baird Institute, Suite 305, 100 Carillon Avenue, Newtown, Sydney, New South Wales 2042, Australia
| | - Glenn A. Edwards
- School
of Veterinary Science, University of Melbourne, 757 Swanston Street, Parkville, Victoria 3030, Australia
| | - Anthony S. Weiss
- School
of Molecular Bioscience, University of Sydney, Biochemistry Building (G08), Butlin
Avenue, Sydney, New South
Wales 2006, Australia
- Bosch
Institute, University of Sydney, Anderson Stuart Building (F13), Fisher Road, Sydney, New
South Wales 2006, Australia
- Charles
Perkins Centre (D17), University of Sydney, John Hopkins Drive, Sydney, New South Wales 2006, Australia
| | - Shisan Bao
- Department
of Pathology, University of Sydney, Blackburn Building (D06), Blackburn Circuit, Sydney, New South Wales 2006, Australia
| | - Marcela M. Bilek
- School
of Physics (A28), University of Sydney, Physics Road, Sydney, New South Wales 2006, Australia
| |
Collapse
|
13
|
Everett W, Scurr DJ, Rammou A, Darbyshire A, Hamilton G, de Mel A. A Material Conferring Hemocompatibility. Sci Rep 2016; 6:26848. [PMID: 27264087 PMCID: PMC4893622 DOI: 10.1038/srep26848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/09/2016] [Indexed: 12/15/2022] Open
Abstract
There is a need for biomimetic materials for use in blood-contacting devices. Blood contacting surfaces maintain their patency through physico-chemical properties of a functional endothelium. A poly(carbonate-urea) urethane (PCU) is used as a base material to examine the feasibility of L-Arginine methyl ester (L-AME) functionalized material for use in implants and coatings. The study hypothesizes that L-AME, incorporated into PCU, functions as a bioactive porogen, releasing upon contact with blood to interact with endothelial nitric oxide synthase (eNOS) present in blood. Endothelial progenitor cells (EPC) were successfully cultured on L-AME functionalized material, indicating that L-AME -increases cell viability. L-AME functionalized material potentially has broad applications in blood-contacting medical devices, as well as various other applications requiring endogenous up-regulation of nitric oxide, such as wound healing. This study presents an in-vitro investigation to demonstrate the novel anti-thrombogenic properties of L-AME, when in solution and when present within a polyurethane-based polymer.
Collapse
Affiliation(s)
- William Everett
- Centre for Nanotechnology & Regenerative Medicine, University College London, London, UK
| | - David J Scurr
- Interface and Surface Analysis Centre, Boots Science Building, University of Nottingham, University Park, Nottingham, UK
| | - Anna Rammou
- Centre for Nanotechnology & Regenerative Medicine, University College London, London, UK
| | - Arnold Darbyshire
- Centre for Nanotechnology & Regenerative Medicine, University College London, London, UK
| | | | - Achala de Mel
- Centre for Nanotechnology & Regenerative Medicine, University College London, London, UK
| |
Collapse
|
14
|
In situ regeneration of bioactive coatings enabled by an evolved Staphylococcus aureus sortase A. Nat Commun 2016; 7:11140. [PMID: 27073027 PMCID: PMC4833859 DOI: 10.1038/ncomms11140] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 02/24/2016] [Indexed: 11/08/2022] Open
Abstract
Surface immobilization of bioactive molecules is a central paradigm in the design of implantable devices and biosensors with improved clinical performance capabilities. However, in vivo degradation or denaturation of surface constituents often limits the long-term performance of bioactive films. Here we demonstrate the capacity to repeatedly regenerate a covalently immobilized monomolecular thin film of bioactive molecules through a two-step stripping and recharging cycle. Reversible transpeptidation by a laboratory evolved Staphylococcus aureus sortase A (eSrtA) enabled the rapid immobilization of an anti-thrombogenic film in the presence of whole blood and permitted multiple cycles of film regeneration in vitro that preserved its biological activity. Moreover, eSrtA transpeptidation facilitated surface re-engineering of medical devices in situ after in vivo implantation through removal and restoration film constituents. These studies establish a rapid, orthogonal and reversible biochemical scheme to regenerate selective molecular constituents with the potential to extend the lifetime of bioactive films. Bioactive coatings offer a strategy to modulate host response to implants, but their translation to the clinic is hampered by their fast in vivo degradation. Here, the authors use an engineered bacterial protein to regenerate an anti-thrombogenic film in vitro and in situ after device implantation.
Collapse
|
15
|
Kim YK, Chen EY, Liu WF. Biomolecular strategies to modulate the macrophage response to implanted materials. J Mater Chem B 2015; 4:1600-1609. [PMID: 32263014 DOI: 10.1039/c5tb01605c] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The material-induced foreign body response is a major challenge for implanted medical devices. This review highlights recent developments in biomimetic approaches to create biomaterials that mitigate the host response to biomaterials. Specifically, we will describe strategies in which biomaterials are decorated with endogenously expressed biomolecules that naturally modulate the function of immune cells. These include molecules that directly bind to and interact with immune cells, as well as molecules that control complement activation or thrombosis and indirectly modulate immune cell function. We provide perspective on how these approaches may impact the design of materials for medical devices and tissue engineering.
Collapse
Affiliation(s)
- Yoon Kyung Kim
- Department of Biomedical Engineering, University of California Irvine, 2412 Engineering Hall, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
16
|
Simulated Thrombin Generation in the Presence of Surface-Bound Heparin and Circulating Tissue Factor. Ann Biomed Eng 2015; 44:1072-84. [PMID: 26168717 DOI: 10.1007/s10439-015-1377-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 06/24/2015] [Indexed: 10/23/2022]
Abstract
An expanded computational model of surface induced thrombin generation was developed that includes hemodynamic effects, 22 biochemical reactions and 44 distinct chemical species. Surface binding of factors V, VIII, IX, and X was included in order to more accurately simulate the formation of the surface complexes tenase and prothrombinase. In order to model these reactions, the non-activated, activated and inactivated forms were all considered. This model was used to investigate the impact of surface bound heparin on thrombin generation with and without the additive effects of thrombomodulin (TM). In total, 104 heparin/TM pairings were evaluated (52 under venous conditions, 52 under arterial conditions), the results demonstrating the synergistic ability of heparin and TM to reduce thrombin generation. Additionally, the role of circulating tissue factor (TF(p)) was investigated and compared to that of surface-bound tissue factor (TF(s)). The numerical results suggest that circulating TF has the power to amplify thrombin generation once the coagulation cascade is already initiated by surface-bound TF. TF(p) concentrations as low as 0.01 nM were found to have a significant impact on total thrombin generation.
Collapse
|
17
|
Enzyme-functionalized vascular grafts catalyze in-situ release of nitric oxide from exogenous NO prodrug. J Control Release 2015; 210:179-88. [DOI: 10.1016/j.jconrel.2015.05.283] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 03/21/2015] [Accepted: 05/20/2015] [Indexed: 12/22/2022]
|
18
|
Yu K, Mei Y, Hadjesfandiari N, Kizhakkedathu JN. Engineering biomaterials surfaces to modulate the host response. Colloids Surf B Biointerfaces 2014; 124:69-79. [PMID: 25193153 DOI: 10.1016/j.colsurfb.2014.08.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/29/2014] [Accepted: 08/09/2014] [Indexed: 12/16/2022]
Abstract
Undesirable host response is responsible for the surface induced thrombus generation, activation of the complement system and the inflammatory reactions by the blood-contacting biomaterials. The surface interaction of biomaterials with different blood components is thought to be the critical factor that dictates the host response to biomaterials. Surface engineering can be utilized as a method to enhance the biocompatibility and tailor the biological response to biomaterials. This review provides a brief account of various polymer brush based approaches used for biomaterials surface modification, both passive and bioactive, to make the material surfaces biocompatible and antibacterial. Initially we discuss the utilization of polymer brushes with different structure and chemistry as a novel strategy to design the surface non-fouling that passively prevent the subsequent biological responses. Further we explore the utility of different bioactive agents including peptides, carbohydrates and proteins which can be conjugated the polymer brush to make the surface actively interact with the body and modulate the host response. A number of such avenues have also been explored in this review.
Collapse
Affiliation(s)
- Kai Yu
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Yan Mei
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Narges Hadjesfandiari
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6 T 1Z3, Canada.
| |
Collapse
|
19
|
Qu Z, Krishnamurthy V, Haller CA, Dorr BM, Marzec UM, Hurst S, Hinds MT, Hanson SR, Liu DR, Chaikof EL. Immobilization of actively thromboresistant assemblies on sterile blood-contacting surfaces. Adv Healthc Mater 2014; 3:30-5. [PMID: 23788402 DOI: 10.1002/adhm.201300110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Indexed: 12/13/2022]
Abstract
Rapid one-step modification of thrombomodulin with alkylamine derivatives such as azide, biotin, and PEG is achieved using an evolved sortase (eSrtA) mutant. The feasibility of a point-of-care scheme is demonstrated herein to site-specifically immobilize azido-thrombomodulin on sterilized commercial ePTFE vascular grafts, which exhibit superior thromboresistance compared with commercial heparin-coated grafts in a primate model of acute graft thrombosis.
Collapse
Affiliation(s)
- Zheng Qu
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School and the Wyss Institute of Biologically Inspired, Engineering of Harvard University, Boston, MA 02115, USA; Coulter Department of Biomedical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yu K, Lai BFL, Kizhakkedathu JN. Carbohydrate structure dependent hemocompatibility of biomimetic functional polymer brushes on surfaces. Adv Healthc Mater 2012. [PMID: 23184724 DOI: 10.1002/adhm.201100042] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Glycocalyx mimicking glycopolymer brushes presenting mannose, galactose and glucose residues in the pyranose form, similar to those present on cell surfaces, were synthesized on planar substrates (Si wafer, gold chip) and monodispersed polystyrene (PS) particles, and the interaction of blood to these surfaces were studied using various methods with the goal of producing a hemocompatible surface. Surface plasmon resonance (SPR) spectroscopy and gel analyses showed that the total protein adsorption from plasma was greatly reduced, as low as 24.3 ng/cm(2) from undiluted plasma on the glucose carrying brush. The protein adsorption decreased with increasing grafting density of the brushes. It was also found that the protein adsorption varied with the anticoagulant used for blood collection; much higher amount of protein was adsorbed from heparinzied plasma than citrated plasma. Proteomics protein identification analysis revealed that protein adsorption from plasma depended on the type of sugar residue present on the surface as well as the type of anticoagulant. All the three types of glycopolymer brushes showed similar level of platelet activation as that of buffer control irrespective of the nature of carbohydrate residue. However, the number of adhered platelet and their morphology depended on the type of carbohydrate residue present on the brush. On glucose brush, the extent of platelet adhesion and spreading was significantly lowered compared to other brushes. All the glycopolymer brushes were neutral to blood coagulation as indicated by thromboelastography analysis. The glucose brush gave a slightly longer initial coagulation time suggesting that this surface may be more biocompatible. Our data demonstrate that the structure of carbohydrate residue is an important factor in the design of synthetic blood contacting surface based on glycopolymer.
Collapse
Affiliation(s)
- Kai Yu
- Centre for Blood Research and Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | |
Collapse
|