1
|
Zhao KY, Du YX, Cao HM, Su LY, Su XL, Li X. The biological macromolecules constructed Matrigel for cultured organoids in biomedical and tissue engineering. Colloids Surf B Biointerfaces 2025; 247:114435. [PMID: 39647422 DOI: 10.1016/j.colsurfb.2024.114435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Matrigel is the most commonly used matrix for 3D organoid cultures. Research on the biomaterial basis of Matrigel for organoid cultures is a highly challenging field. Currently, many studies focus on Matrigel-based biological macromolecules or combinations to construct natural Matrigel and synthetic hydrogel scaffolds based on collagen, peptides, polysaccharides, microbial transglutaminase, DNA supramolecules, and polymers for organoid culture. In this review, we discuss the limitations of both natural and synthetic Matrigel, and describe alternative scaffolds that have been employed for organoid cultures. The patient-derived organoids were constructed in different cancer types and limitations of animal-derived organoids based on the hydrogel or Matrigel. The constructed techniques utilizing 3D bioprinting platforms, air-liquid interface (ALI) culture, microfluidic culture, and organ-on-a-chip platform are summarized. Given the potential of organoids for a wide range of therapeutic, tissue engineering and pharmaceutical applications, it is indeed imperative to develop defined and customized hydrogels in addition to Matrigel.
Collapse
Affiliation(s)
- Ke-Yu Zhao
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China; Key Laboratory of Medical Cell Biology in Inner Mongolia, Inner Mongolia Bioactive Peptide Engineering Laboratory, 1 North Tongdao Street, Hohhot, Inner Mongolia 010050, China
| | - Yi-Xiang Du
- Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Hui-Min Cao
- Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Li-Ya Su
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Xiu-Lan Su
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China; Key Laboratory of Medical Cell Biology in Inner Mongolia, Inner Mongolia Bioactive Peptide Engineering Laboratory, 1 North Tongdao Street, Hohhot, Inner Mongolia 010050, China
| | - Xian Li
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China; Key Laboratory of Medical Cell Biology in Inner Mongolia, Inner Mongolia Bioactive Peptide Engineering Laboratory, 1 North Tongdao Street, Hohhot, Inner Mongolia 010050, China.
| |
Collapse
|
2
|
Malafaia AP, Sobreiro-Almeida R, Rodrigues JMM, Mano JF. Thiol-ene click chemistry: Enabling 3D printing of natural-based inks for biomedical applications. BIOMATERIALS ADVANCES 2025; 167:214105. [PMID: 39522498 DOI: 10.1016/j.bioadv.2024.214105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/14/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Over the last decade, 3D bioprinting has gained increasing popularity, being a technique capable of producing well-defined tissue-like structures. One of its most groundbreaking features is the ability to create personalized therapies tailored to the specific demands of individual patients. However, challenges including the selection of materials and crosslinking strategies, still need to be addressed to enhance ink characteristics and develop robust biomaterials. Herein, the authors showcase the potential of overcoming these challenges, focusing on the use of versatile, fast, and selective thiol-ene click chemistry to formulate inks for 3D bioprinting. The exploration of natural polymers, specifically proteins and polysaccharides, will be discussed and highlighted, outlining the advantages and disadvantages of this approach. Leveraging advanced thiol-ene click chemistry and natural polymers in the development of 3D printable bioinks may face the current challenges and is envisioned to pave the way towards innovative and personalized biomaterials for biomedical applications.
Collapse
Affiliation(s)
- Andreia P Malafaia
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rita Sobreiro-Almeida
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - João M M Rodrigues
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
3
|
Yu Q, Hao H, Wang W, Zhang L, Huang C, Hao J, Yang X, Zhu D, Li J, Sun H. Dynamic and photodegradable dextran/gelatin hydrogel niche crosslinked with disulfide bonds: Promoting growth and release of stem cells. Int J Biol Macromol 2024; 293:139430. [PMID: 39746418 DOI: 10.1016/j.ijbiomac.2024.139430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Due to the utilization of well-defined artificial niches, stem cell culture in a three-dimensional hydrogel matrix has been a promising method for obtaining sufficient seed cells. Although various hydrogels can support desirable cell proliferation, establishing a normalized hydrogel that adequately mimics the extracellular matrix (ECM), maintains stemness and allows for controlled release of stem cells remains a significant challenge. Herein, we report a hydrogel composed of sulfobetaine-modified dextran and gelatin to maintain stemness and enable the rapid release of adipose-derived stem cells (ADSCs). Dextran can effectively maintain multipotent phenotype of ADSCs by grafting zwitterionic groups. Gelatin can significantly improve the proliferation of ADSCs. The hydrogel network they form effectively mimics the ECM microenvironment, providing an advantage when used as a three-dimensional niche to promote cell proliferation. Most importantly, the disulfide-crosslinked hydrogels show specific photodegradation capability, which precisely enables the system to achieve controlled release and efficient harvest of ADSCs. The cell viability (90 %) and harvest ratio (64 %) were well maintained by light degradation compared with GSH and collagenase degradation. Overall, this study offers a universal stem cell niche based on photodegradable hydrogel that shows great promise in the field of ADSCs proliferation and harvest.
Collapse
Affiliation(s)
- Qingyu Yu
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, China
| | - Huizhong Hao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Weitong Wang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Linhua Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, China
| | - Chenlu Huang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, China
| | - Jianying Hao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Xinyu Yang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, China
| | - Dunwan Zhu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, China.
| | - Junjie Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.
| | - Hong Sun
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China.
| |
Collapse
|
4
|
Lai Y, Xiao X, Huang Z, Duan H, Yang L, Yang Y, Li C, Feng L. Photocrosslinkable Biomaterials for 3D Bioprinting: Mechanisms, Recent Advances, and Future Prospects. Int J Mol Sci 2024; 25:12567. [PMID: 39684279 DOI: 10.3390/ijms252312567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024] Open
Abstract
Constructing scaffolds with the desired structures and functions is one of the main goals of tissue engineering. Three-dimensional (3D) bioprinting is a promising technology that enables the personalized fabrication of devices with regulated biological and mechanical characteristics similar to natural tissues/organs. To date, 3D bioprinting has been widely explored for biomedical applications like tissue engineering, drug delivery, drug screening, and in vitro disease model construction. Among different bioinks, photocrosslinkable bioinks have emerged as a powerful choice for the advanced fabrication of 3D devices, with fast crosslinking speed, high resolution, and great print fidelity. The photocrosslinkable biomaterials used for light-based 3D printing play a pivotal role in the fabrication of functional constructs. Herein, this review outlines the general 3D bioprinting approaches related to photocrosslinkable biomaterials, including extrusion-based printing, inkjet printing, stereolithography printing, and laser-assisted printing. Further, the mechanisms, advantages, and limitations of photopolymerization and photoinitiators are discussed. Next, recent advances in natural and synthetic photocrosslinkable biomaterials used for 3D bioprinting are highlighted. Finally, the challenges and future perspectives of photocrosslinkable bioinks and bioprinting approaches are envisaged.
Collapse
Affiliation(s)
- Yushang Lai
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiong Xiao
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziwei Huang
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongying Duan
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liping Yang
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuchu Yang
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chenxi Li
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Feng
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Chemla Y, Kaufman F, Amiram M, Alfonta L. Expanding the Genetic Code of Bioelectrocatalysis and Biomaterials. Chem Rev 2024; 124:11187-11241. [PMID: 39377473 DOI: 10.1021/acs.chemrev.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Genetic code expansion is a promising genetic engineering technology that incorporates noncanonical amino acids into proteins alongside the natural set of 20 amino acids. This enables the precise encoding of non-natural chemical groups in proteins. This review focuses on the applications of genetic code expansion in bioelectrocatalysis and biomaterials. In bioelectrocatalysis, this technique enhances the efficiency and selectivity of bioelectrocatalysts for use in sensors, biofuel cells, and enzymatic electrodes. In biomaterials, incorporating non-natural chemical groups into protein-based polymers facilitates the modification, fine-tuning, or the engineering of new biomaterial properties. The review provides an overview of relevant technologies, discusses applications, and highlights achievements, challenges, and prospects in these fields.
Collapse
|
6
|
Pande S, Pati F, Chakraborty P. Harnessing Peptide-Based Hydrogels for Enhanced Cartilage Tissue Engineering. ACS APPLIED BIO MATERIALS 2024; 7:5885-5905. [PMID: 39159490 DOI: 10.1021/acsabm.4c00879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Cartilage tissue engineering remains a formidable challenge due to its complex, avascular structure and limited regenerative capacity. Traditional approaches, such as microfracture, autografts, and stem cell delivery, often fail to restore functional tissue adequately. Recently, there has been a surge in the exploration of new materials that mimic the extracellular microenvironment necessary to guide tissue regeneration. This review investigates the potential of peptide-based hydrogels as an innovative solution for cartilage regeneration. These hydrogels, formed via supramolecular self-assembly, exhibit excellent properties, including biocompatibility, ECM mimicry, and controlled biodegradation, making them highly suitable for cartilage tissue engineering. This review explains the structure of cartilage and the principles of supramolecular and peptide hydrogels. It also delves into their specific properties relevant to cartilage regeneration. Additionally, this review presents recent examples and a comparative analysis of various peptide-based hydrogels used for cartilage regeneration. The review also addresses the translational challenges of these materials, highlighting regulatory hurdles and the complexities of clinical application. This comprehensive investigation provides valuable insights for biomedical researchers, tissue engineers, and clinical professionals aiming to enhance cartilage repair methodologies.
Collapse
Affiliation(s)
- Shreya Pande
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Priyadarshi Chakraborty
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| |
Collapse
|
7
|
Kang NW, Jang K, Song E, Han U, Seo YA, Chen F, Wungcharoen T, Heilshorn SC, Myung D. In Situ-Forming, Bioorthogonally Cross-linked, Nanocluster-Reinforced Hydrogel for the Regeneration of Corneal Defects. ACS NANO 2024; 18:21925-21938. [PMID: 39106436 DOI: 10.1021/acsnano.4c02345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Corneal defects can lead to stromal scarring and vision loss, which is currently only treatable with a cadaveric corneal transplant. Although in situ-forming hydrogels have been shown to foster regeneration of the cornea in the setting of stromal defects, the cross-linking, biomechanical, and compositional parameters that optimize healing have not yet been established. This, Corneal defects are also almost universally inflamed, and their rapid closure without fibrosis are critical to preserving vision. Here, an in situ forming, bioorthogonally cross-linked, nanocluster (NC)-reinforced collagen and hyaluronic acid hydrogel (NCColHA hydrogel) with enhanced structural integrity and both pro-regenerative and anti-inflammatory effects was developed and tested within a corneal defect model in vivo. The NCs serve as bioorthogonal nanocross-linkers, providing higher cross-linking density than polymer-based alternatives. The NCs also serve as delivery vehicles for prednisolone (PRD) and the hepatocyte growth factor (HGF). NCColHA hydrogels rapidly gel within a few minutes upon administration and exhibit robust rheological properties, excellent transparency, and negligible swelling/deswelling behavior. The hydrogel's biocompatibility and capacity to support cell growth were assessed using primary human corneal epithelial cells. Re-epithelialization on the NCColHA hydrogel was clearly observed in rabbit eyes, both ex vivo and in vivo, with expression of normal epithelial biomarkers, including CD44, CK12, CK14, α-SMA, Tuj-1, and ZO-1, and stratified, multilayered morphology. The applied hydrogel maintained its structural integrity for at least 14 days and remodeled into a transparent stroma by 56 days.
Collapse
Affiliation(s)
- Nae-Won Kang
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California 94304, United States
| | - Kyeongwoo Jang
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California 94304, United States
| | - Euisun Song
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California 94304, United States
| | - Uiyoung Han
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California 94304, United States
| | - Youngyoon Amy Seo
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California 94304, United States
| | - Fang Chen
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California 94304, United States
| | - Thitima Wungcharoen
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California 94304, United States
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - David Myung
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California 94304, United States
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- VA Palo Alto HealthCare System, Palo Alto, California 94304, United States
| |
Collapse
|
8
|
Yin S, Wu H, Huang Y, Lu C, Cui J, Li Y, Xue B, Wu J, Jiang C, Gu X, Wang W, Cao Y. Structurally and mechanically tuned macroporous hydrogels for scalable mesenchymal stem cell-extracellular matrix spheroid production. Proc Natl Acad Sci U S A 2024; 121:e2404210121. [PMID: 38954541 PMCID: PMC11253011 DOI: 10.1073/pnas.2404210121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/01/2024] [Indexed: 07/04/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are essential in regenerative medicine. However, conventional expansion and harvesting methods often fail to maintain the essential extracellular matrix (ECM) components, which are crucial for their functionality and efficacy in therapeutic applications. Here, we introduce a bone marrow-inspired macroporous hydrogel designed for the large-scale production of MSC-ECM spheroids. Through a soft-templating approach leveraging liquid-liquid phase separation, we engineer macroporous hydrogels with customizable features, including pore size, stiffness, bioactive ligand distribution, and enzyme-responsive degradability. These tailored environments are conducive to optimal MSC proliferation and ease of harvesting. We find that soft hydrogels enhance mechanotransduction in MSCs, establishing a standard for hydrogel-based 3D cell culture. Within these hydrogels, MSCs exist as both cohesive spheroids, preserving their innate vitality, and as migrating entities that actively secrete functional ECM proteins. Additionally, we also introduce a gentle, enzymatic harvesting method that breaks down the hydrogels, allowing MSCs and secreted ECM to naturally form MSC-ECM spheroids. These spheroids display heightened stemness and differentiation capacity, mirroring the benefits of a native ECM milieu. Our research underscores the significance of sophisticated materials design in nurturing distinct MSC subpopulations, facilitating the generation of MSC-ECM spheroids with enhanced therapeutic potential.
Collapse
Affiliation(s)
- Sheng Yin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan250021, China
| | - Haipeng Wu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan250021, China
| | - Yaying Huang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing210093, China
| | - Chenjing Lu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan250021, China
| | - Jian Cui
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing210093, China
| | - Ying Li
- Institute of Advanced Materials and Flexible Electronics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing210044, China
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing210093, China
| | - Junhua Wu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan250021, China
- Medical School, Nanjing University, Nanjing210093, China
| | - Chunping Jiang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan250021, China
- Medical School, Nanjing University, Nanjing210093, China
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing210008, China
| | - Xiaosong Gu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan250021, China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing210093, China
- Institute for Brain Sciences, Nanjing University, Nanjing210093, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan250021, China
- Institute for Brain Sciences, Nanjing University, Nanjing210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing210093, China
- Chemistry and Biomedicine Innovation Center, the Ministry of Education Key Laboratory of High Performance Polymer Materials and Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| |
Collapse
|
9
|
Ghorbani S, Sutherland DS. Building better habitats: Spatiotemporal signaling cues in 3D biointerfaces for tailored cellular functionality. Biointerphases 2024; 19:048501. [PMID: 38975887 DOI: 10.1116/6.0003685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
A promising research direction in the field of biological engineering is the design and functional programming of three-dimensional (3D) biointerfaces designed to support living cell functionality and growth in vitro, offering a route to precisely regulate cellular behaviors and phenotypes for addressing therapeutic challenges. While traditional two-dimensional (2D) biointerfaces have provided valuable insights, incorporating specific signaling cues into a 3D biointeractive microenvironment at the right locations and time is now recognized as crucial for accurately programming cellular decision-making and communication processes. This approach aims to engineer cell-centric microenvironments with the potential to recapitulate complex biological functions into a finite set of growing cellular organizations. Additionally, they provide insights into the hierarchical logic governing the relationship between molecular components and higher-order multicellular functionality. The functional live cell-based microenvironment engineered through such innovative biointerfaces has the potential to be used as an in vitro model system for expanding our understanding of cellular behaviors or as a therapeutic habitat where cellular functions can be reprogrammed.
Collapse
Affiliation(s)
- Sadegh Ghorbani
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
- Department of Health Technology, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Duncan S Sutherland
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C 8000, Denmark
- The Centre for Cellular Signal Patterns (CELLPAT), Aarhus University, Aarhus C 8000, Denmark
| |
Collapse
|
10
|
Lu P, Ruan D, Huang M, Tian M, Zhu K, Gan Z, Xiao Z. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther 2024; 9:166. [PMID: 38945949 PMCID: PMC11214942 DOI: 10.1038/s41392-024-01852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 07/02/2024] Open
Abstract
The applications of hydrogels have expanded significantly due to their versatile, highly tunable properties and breakthroughs in biomaterial technologies. In this review, we cover the major achievements and the potential of hydrogels in therapeutic applications, focusing primarily on two areas: emerging cell-based therapies and promising non-cell therapeutic modalities. Within the context of cell therapy, we discuss the capacity of hydrogels to overcome the existing translational challenges faced by mainstream cell therapy paradigms, provide a detailed discussion on the advantages and principal design considerations of hydrogels for boosting the efficacy of cell therapy, as well as list specific examples of their applications in different disease scenarios. We then explore the potential of hydrogels in drug delivery, physical intervention therapies, and other non-cell therapeutic areas (e.g., bioadhesives, artificial tissues, and biosensors), emphasizing their utility beyond mere delivery vehicles. Additionally, we complement our discussion on the latest progress and challenges in the clinical application of hydrogels and outline future research directions, particularly in terms of integration with advanced biomanufacturing technologies. This review aims to present a comprehensive view and critical insights into the design and selection of hydrogels for both cell therapy and non-cell therapies, tailored to meet the therapeutic requirements of diverse diseases and situations.
Collapse
Affiliation(s)
- Peilin Lu
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Dongxue Ruan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Meiqi Huang
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Mi Tian
- Department of Stomatology, Chengdu Second People's Hospital, Chengdu, 610021, PR China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Ziqi Gan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China.
| | - Zecong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China.
| |
Collapse
|
11
|
Degirmenci A, Sanyal R, Sanyal A. Metal-Free Click-Chemistry: A Powerful Tool for Fabricating Hydrogels for Biomedical Applications. Bioconjug Chem 2024; 35:433-452. [PMID: 38516745 PMCID: PMC11036366 DOI: 10.1021/acs.bioconjchem.4c00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/23/2024]
Abstract
Increasing interest in the utilization of hydrogels in various areas of biomedical sciences ranging from biosensing and drug delivery to tissue engineering has necessitated the synthesis of these materials using efficient and benign chemical transformations. In this regard, the advent of "click" chemistry revolutionized the design of hydrogels and a range of efficient reactions was utilized to obtain hydrogels with increased control over their physicochemical properties. The ability to apply the "click" chemistry paradigm to both synthetic and natural polymers as hydrogel precursors further expanded the utility of this chemistry in network formation. In particular, the ability to integrate clickable handles at predetermined locations in polymeric components enables the formation of well-defined networks. Although, in the early years of "click" chemistry, the copper-catalyzed azide-alkyne cycloaddition was widely employed, recent years have focused on the use of metal-free "click" transformations, since residual metal impurities may interfere with or compromise the biological function of such materials. Furthermore, many of the non-metal-catalyzed "click" transformations enable the fabrication of injectable hydrogels, as well as the fabrication of microstructured gels using spatial and temporal control. This review article summarizes the recent advances in the fabrication of hydrogels using various metal-free "click" reactions and highlights the applications of thus obtained materials. One could envision that the use of these versatile metal-free "click" reactions would continue to revolutionize the design of functional hydrogels geared to address unmet needs in biomedical sciences.
Collapse
Affiliation(s)
- Aysun Degirmenci
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
| | - Rana Sanyal
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
- Center
for Life Sciences and Technologies, Bogazici
University, Bebek, Istanbul 34342, Türkiye
| | - Amitav Sanyal
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
- Center
for Life Sciences and Technologies, Bogazici
University, Bebek, Istanbul 34342, Türkiye
| |
Collapse
|
12
|
Puertas-Bartolomé M, Venegas-Bustos D, Acosta S, Rodríguez-Cabello JC. Contribution of the ELRs to the development of advanced in vitro models. Front Bioeng Biotechnol 2024; 12:1363865. [PMID: 38650751 PMCID: PMC11033926 DOI: 10.3389/fbioe.2024.1363865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Developing in vitro models that accurately mimic the microenvironment of biological structures or processes holds substantial promise for gaining insights into specific biological functions. In the field of tissue engineering and regenerative medicine, in vitro models able to capture the precise structural, topographical, and functional complexity of living tissues, prove to be valuable tools for comprehending disease mechanisms, assessing drug responses, and serving as alternatives or complements to animal testing. The choice of the right biomaterial and fabrication technique for the development of these in vitro models plays an important role in their functionality. In this sense, elastin-like recombinamers (ELRs) have emerged as an important tool for the fabrication of in vitro models overcoming the challenges encountered in natural and synthetic materials due to their intrinsic properties, such as phase transition behavior, tunable biological properties, viscoelasticity, and easy processability. In this review article, we will delve into the use of ELRs for molecular models of intrinsically disordered proteins (IDPs), as well as for the development of in vitro 3D models for regenerative medicine. The easy processability of the ELRs and their rational design has allowed their use for the development of spheroids and organoids, or bioinks for 3D bioprinting. Thus, incorporating ELRs into the toolkit of biomaterials used for the fabrication of in vitro models, represents a transformative step forward in improving the accuracy, efficiency, and functionality of these models, and opening up a wide range of possibilities in combination with advanced biofabrication techniques that remains to be explored.
Collapse
Affiliation(s)
- María Puertas-Bartolomé
- Technical Proteins Nanobiotechnology, S.L. (TPNBT), Valladolid, Spain
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), CIBER's Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Edificio LUCIA, Universidad de Valladolid, Valladolid, Spain
| | - Desiré Venegas-Bustos
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), CIBER's Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Edificio LUCIA, Universidad de Valladolid, Valladolid, Spain
| | - Sergio Acosta
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), CIBER's Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Edificio LUCIA, Universidad de Valladolid, Valladolid, Spain
| | - José Carlos Rodríguez-Cabello
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), CIBER's Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Edificio LUCIA, Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
13
|
Doulames VM, Marquardt LM, Hefferon ME, Baugh NJ, Suhar RA, Wang AT, Dubbin KR, Weimann JM, Palmer TD, Plant GW, Heilshorn SC. Custom-engineered hydrogels for delivery of human iPSC-derived neurons into the injured cervical spinal cord. Biomaterials 2024; 305:122400. [PMID: 38134472 PMCID: PMC10846596 DOI: 10.1016/j.biomaterials.2023.122400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/18/2023] [Accepted: 11/11/2023] [Indexed: 12/24/2023]
Abstract
Cervical damage is the most prevalent type of spinal cord injury clinically, although few preclinical research studies focus on this anatomical region of injury. Here we present a combinatorial therapy composed of a custom-engineered, injectable hydrogel and human induced pluripotent stem cell (iPSC)-derived deep cortical neurons. The biomimetic hydrogel has a modular design that includes a protein-engineered component to allow customization of the cell-adhesive peptide sequence and a synthetic polymer component to allow customization of the gel mechanical properties. In vitro studies with encapsulated iPSC-neurons were used to select a bespoke hydrogel formulation that maintains cell viability and promotes neurite extension. Following injection into the injured cervical spinal cord in a rat contusion model, the hydrogel biodegraded over six weeks without causing any adverse reaction. Compared to cell delivery using saline, the hydrogel significantly improved the reproducibility of cell transplantation and integration into the host tissue. Across three metrics of animal behavior, this combinatorial therapy significantly improved sensorimotor function by six weeks post transplantation. Taken together, these findings demonstrate that design of a combinatorial therapy that includes a gel customized for a specific fate-restricted cell type can induce regeneration in the injured cervical spinal cord.
Collapse
Affiliation(s)
- V M Doulames
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - L M Marquardt
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - M E Hefferon
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - N J Baugh
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - R A Suhar
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - A T Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - K R Dubbin
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - J M Weimann
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - T D Palmer
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - G W Plant
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - S C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
14
|
Mehak, Singh G, Singh R, Singh G, Stanzin J, Singh H, Kaur G, Singh J. Clicking in harmony: exploring the bio-orthogonal overlap in click chemistry. RSC Adv 2024; 14:7383-7413. [PMID: 38433942 PMCID: PMC10906366 DOI: 10.1039/d4ra00494a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
In the quest to scrutinize and modify biological systems, the global research community has continued to explore bio-orthogonal click reactions, a set of reactions exclusively targeting non-native molecules within biological systems. These methodologies have brought about a paradigm shift, demonstrating the feasibility of artificial chemical reactions occurring on cellular surfaces, in the cell cytosol, or within the body - an accomplishment challenging to achieve with the majority of conventional chemical reactions. This review delves into the principles of bio-orthogonal click chemistry, contrasting metal-catalyzed and metal-free reactions of bio-orthogonal nature. It comprehensively explores mechanistic details and applications, highlighting the versatility and potential of this methodology in diverse scientific contexts, from cell labelling to biosensing and polymer synthesis. Researchers globally continue to advance this powerful tool for precise and selective manipulation of biomolecules in complex biological systems.
Collapse
Affiliation(s)
- Mehak
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| | - Gurleen Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| | - Riddima Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| | - Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160014 India
| | - Jigmat Stanzin
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160014 India
| | - Harminder Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| | - Gurpreet Kaur
- Department of Chemistry, Gujranwala Guru Nanak Khalsa College Civil Lines Ludhiana-141001 Punjab India
| | - Jandeep Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| |
Collapse
|
15
|
Thakur KK, Lekurwale R, Bansode S, Pansare R. 3D Bioprinting: A Systematic Review for Future Research Direction. Indian J Orthop 2023; 57:1949-1967. [PMID: 38009170 PMCID: PMC10673757 DOI: 10.1007/s43465-023-01000-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/05/2023] [Indexed: 11/28/2023]
Abstract
Purpose 3D bioprinting is capable of rapidly producing small-scale human-based tissue models, or organoids, for pathology modeling, diagnostics, and drug development. With the use of 3D bioprinting technology, 3D functional complex tissue can be created by combining biocompatible materials, cells, and growth factor. In today's world, 3D bioprinting may be the best solution for meeting the demand for organ transplantation. It is essential to examine the existing literature with the objective to identify the future trend in terms of application of 3D bioprinting, different bioprinting techniques, and selected tissues by the researchers, it is very important to examine the existing literature. To find trends in 3D bioprinting research, this work conducted an systematic literature review of 3D bioprinting. Methodology This literature provides a thorough study and analysis of research articles on bioprinting from 2000 to 2022 that were extracted from the Scopus database. The articles selected for analysis were classified according to the year of publication, articles and publishers, nation, authors who are working in bioprinting area, universities, biomaterial used, and targeted applications. Findings The top nations, universities, journals, publishers, and writers in this field were picked out after analyzing research publications on bioprinting. During this study, the research themes and research trends were also identified. Furthermore, it has been observed that there is a need for additional research in this domain for the development of bioink and their properties that can guide practitioners and researchers while selecting appropriate combinations of biomaterials to obtain bioink suitable for mimicking human tissue. Significance of the Research This research includes research findings, recommendations, and observations for bioprinting researchers and practitioners. This article lists significant research gaps, future research directions, and potential application areas for bioprinting. Novelty The review conducted here is mainly focused on the process of collecting, organizing, capturing, evaluating, and analyzing data to give a deeper understanding of bioprinting and to identify potential future research trends.
Collapse
Affiliation(s)
- Kavita Kumari Thakur
- Department of Mechanical Engineering, K.J.Somaiya College of Engineering, Somaiya Vidyavihar University, Mumbai, Maharashtra 4000 77 India
| | - Ramesh Lekurwale
- Department of Mechanical Engineering, K.J.Somaiya College of Engineering, Somaiya Vidyavihar University, Mumbai, Maharashtra 4000 77 India
| | - Sangita Bansode
- Department of Mechanical Engineering, K.J.Somaiya College of Engineering, Somaiya Vidyavihar University, Mumbai, Maharashtra 4000 77 India
| | - Rajesh Pansare
- Department of Mechanical Engineering, K.J.Somaiya College of Engineering, Somaiya Vidyavihar University, Mumbai, Maharashtra 4000 77 India
| |
Collapse
|
16
|
Hefferon ME, Huang MS, Liu Y, Navarro RS, de Paiva Narciso N, Zhang D, Aviles-Rodriguez G, Heilshorn SC. Cell Microencapsulation Within Engineered Hyaluronan Elastin-Like Protein (HELP) Hydrogels. Curr Protoc 2023; 3:e917. [PMID: 37929691 PMCID: PMC10629846 DOI: 10.1002/cpz1.917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Three-dimensional cell encapsulation has rendered itself a staple in the tissue engineering field. Using recombinantly engineered, biopolymer-based hydrogels to encapsulate cells is especially promising due to the enhanced control and tunability it affords. Here, we describe in detail the synthesis of our hyaluronan (i.e., hyaluronic acid) and elastin-like protein (HELP) hydrogel system. In addition to validating the efficacy of our synthetic process, we also demonstrate the modularity of the HELP system. Finally, we show that cells can be encapsulated within HELP gels over a range of stiffnesses, exhibit strong viability, and respond to stiffness cues. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Elastin-like protein modification with hydrazine Basic Protocol 2: Nuclear magnetic resonance quantification of elastin-like protein modification with hydrazine Basic Protocol 3: Hyaluronic acid-benzaldehyde synthesis Basic Protocol 4: Nuclear magnetic resonance quantification of hyaluronic acid-benzaldehyde Basic Protocol 5: 3D cell encapsulation in hyaluronan elastin-like protein gels.
Collapse
Affiliation(s)
- Meghan E. Hefferon
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, 605-724-6784
| | - Michelle S. Huang
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, 650-723-4906, 605-724-6784
| | - Yueming Liu
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, 605-724-6784
| | - Renato S. Navarro
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, 605-724-6784
| | - Narelli de Paiva Narciso
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, 605-724-6784
| | - Daiyao Zhang
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, 650-723-4906, 605-724-6784
| | - Giselle Aviles-Rodriguez
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, 605-724-6784
| | - Sarah C. Heilshorn
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, 605-724-6784
| |
Collapse
|
17
|
Thede AT, Tang JD, Cocker CE, Harold LJ, Amelung CD, Kittel AR, Taylor PA, Lampe KJ. Effects of Cell-Adhesive Ligand Presentation on Pentapeptide Supramolecular Assembly and Gelation: Simulations and Experiments. Cells Tissues Organs 2023; 212:468-483. [PMID: 37751723 DOI: 10.1159/000534280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 09/21/2023] [Indexed: 09/28/2023] Open
Abstract
The extracellular matrix (ECM) is a complex, hierarchical material containing structural and bioactive components. This complexity makes decoupling the effects of biomechanical properties and cell-matrix interactions difficult, especially when studying cellular processes in a 3D environment. Matrix mechanics and cell adhesion are both known regulators of specific cellular processes such as stem cell proliferation and differentiation. However, more information is required about how such variables impact various neural lineages that could, upon transplantation, therapeutically improve neural function after a central nervous system injury or disease. Rapidly Assembling Pentapeptides for Injectable Delivery (RAPID) hydrogels are one biomaterial approach to meet these goals, consisting of a family of peptide sequences that assemble into physical hydrogels in physiological media. In this study, we studied our previously reported supramolecularly-assembling RAPID hydrogels functionalized with the ECM-derived cell-adhesive peptide ligands RGD, IKVAV, and YIGSR. Using molecular dynamics simulations and experimental rheology, we demonstrated that these integrin-binding ligands at physiological concentrations (3-12 mm) did not impact the assembly of the KYFIL peptide system. In simulations, molecular measures of assembly such as hydrogen bonding and pi-pi interactions appeared unaffected by cell-adhesion sequence or concentration. Visualizations of clustering and analysis of solvent-accessible surface area indicated that the integrin-binding domains remained exposed. KYFIL or AYFIL hydrogels containing 3 mm of integrin-binding domains resulted in mechanical properties consistent with their non-functionalized equivalents. This strategy of doping RAPID gels with cell-adhesion sequences allows for the precise tuning of peptide ligand concentration, independent of the rheological properties. The controllability of the RAPID hydrogel system provides an opportunity to investigate the effect of integrin-binding interactions on encapsulated neural cells to discern how hydrogel microenvironment impacts growth, maturation, or differentiation.
Collapse
Affiliation(s)
- Andrew T Thede
- University of Virginia Biomedical Engineering, Charlottesville, Virginia, USA
| | - James D Tang
- University of Virginia Chemical Engineering, Charlottesville, Virginia, USA
| | - Clare E Cocker
- University of Virginia Chemical Engineering, Charlottesville, Virginia, USA
| | - Liza J Harold
- University of Virginia Biomedical Engineering, Charlottesville, Virginia, USA
| | - Connor D Amelung
- University of Virginia Biomedical Engineering, Charlottesville, Virginia, USA
| | - Anna R Kittel
- University of Virginia Biomedical Engineering, Charlottesville, Virginia, USA
| | - Phillip A Taylor
- University of Virginia Chemical Engineering, Charlottesville, Virginia, USA
| | | |
Collapse
|
18
|
Hasturk O, Sahoo JK, Kaplan DL. Synthesis and characterization of silk-poly(guluronate) hybrid polymers for the fabrication of dual crosslinked, mechanically dynamic hydrogels. POLYMER 2023; 281:126129. [PMID: 37483847 PMCID: PMC10357961 DOI: 10.1016/j.polymer.2023.126129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The rapid ionic crosslinking of alginate has been actively studied for biomedical applications including hydrogel scaffolds for tissue engineering, injectable gels, and 3D bioprinting. However, the poor structural stability of ionic crosslinks under physiological conditions limits the widespread applications of these hydrogels. Moreover, the lack of cell adhesion to the material combined with the inability of proteases to degrade alginate further restrict utility as hydrogel scaffolds. Blends of alginate with silk fibroin have been proposed for improved structural and mechanical properties, but potential phase separation between the hydrophobic protein and the hydrophilic polysaccharide remains an issue. In this study, we demonstrated the synthesis of a hybrid biopolymer composed of a silk backbone with side chains of poly(guluronate) isolated from alginate to introduce rapid ionic crosslinking on enzymatically crosslinked silk-based hydrogels for on-demand and reversible stiffening and softening properties. Dual crosslinked macro- and microgels of silk fibroin-poly(guluronate) (SF-PG) hybrid polymers displayed dynamic morphology with reversible shrinking and swelling behavior. SF-PG hydrogel discs demonstrated dynamic mechanics with compressive moduli ranging from less than 5 kPa to over 80 kPa and underwent proteolytic degradation unlike covalently crosslinked alginate controls. SF-PG gels supplemented with gelatin substituted with tyramine or both tyramine and PG also supported the attachment and survival of murine fibroblasts, suggesting potential uses of these new hydrogels in mammalian cell culture to investigate cellular responses to dynamic mechanics or modeling of diseases defined by matrix mechanics, such as fibrosis and cancer.
Collapse
Affiliation(s)
- Onur Hasturk
- Tufts University, Department of Biomedical Engineering, Medford MA, USA
| | | | - David L Kaplan
- Tufts University, Department of Biomedical Engineering, Medford MA, USA
| |
Collapse
|
19
|
Chavez T, Gerecht S. Engineering of the microenvironment to accelerate vascular regeneration. Trends Mol Med 2023; 29:35-47. [PMID: 36371337 PMCID: PMC9742290 DOI: 10.1016/j.molmed.2022.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022]
Abstract
Blood vessels are crucial for tissue development, functionality, and homeostasis and are typically a determinant in the progression of healing and regeneration. The tissue microenvironment provides physicochemical cues that affect cellular function, and the study of the microenvironment can be accelerated by the engineering of approaches capable of mimicking various aspects of the microenvironment. In this review, we introduce the major components of the vascular niche and focus on the roles of oxygen and the extracellular matrix (ECM). We demonstrate how vascular engineering approaches enhance our understanding of the microenvironment's impact on the vasculature towards vascular regeneration and describe the current limitations and future directions towards clinical utilization.
Collapse
Affiliation(s)
- Taylor Chavez
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Sharon Gerecht
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
20
|
González P, González-Fernández C, Maqueda A, Pérez V, Escalera-Anzola S, Rodríguez de Lope Á, Arias FJ, Girotti A, Rodríguez FJ. Silk-Elastin-like Polymers for Acute Intraparenchymal Treatment of the Traumatically Injured Spinal Cord: A First Systematic Experimental Approach. Pharmaceutics 2022; 14:pharmaceutics14122713. [PMID: 36559207 PMCID: PMC9784492 DOI: 10.3390/pharmaceutics14122713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the promising potential of hydrogel-based therapeutic approaches for spinal cord injury (SCI), the need for new biomaterials to design effective strategies for SCI treatment and the outstanding properties of silk-elastin-like polymers (SELP), the potential use of SELPs in SCI is currently unknown. In this context, we assessed the effects elicited by the in vivo acute intraparenchymal injection of an SELP named (EIS)2-RGD6 in a clinically relevant model of SCI. After optimization of the injection system, the distribution, structure, biodegradability, and cell infiltration capacity of (EIS)2-RGD6 were assessed. Finally, the effects exerted by the (EIS)2-RGD6 injection-in terms of motor function, myelin preservation, astroglial and microglia/macrophage reactivity, and fibrosis-were evaluated. We found that (EIS)2-RGD6 can be acutely injected in the lesioned spinal cord without inducing further damage, showing a widespread distribution covering all lesioned areas with a single injection and facilitating the formation of a slow-degrading porous scaffold at the lesion site that allows for the infiltration and/or proliferation of endogenous cells with no signs of collapse and without inducing further microglial and astroglial reactivity, as well as even reducing SCI-associated fibrosis. Altogether, these observations suggest that (EIS)2-RGD6-and, by extension, SELPs-could be promising polymers for the design of therapeutic strategies for SCI treatment.
Collapse
Affiliation(s)
- Pau González
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, 45071 Toledo, Spain
| | | | - Alfredo Maqueda
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, 45071 Toledo, Spain
| | - Virginia Pérez
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, 45071 Toledo, Spain
| | - Sara Escalera-Anzola
- Smart Devices for NanoMedicine Group University of Valladolid, 47003 Valladolid, Spain
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
| | | | - Francisco Javier Arias
- Smart Devices for NanoMedicine Group University of Valladolid, 47003 Valladolid, Spain
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
| | - Alessandra Girotti
- Smart Devices for NanoMedicine Group University of Valladolid, 47003 Valladolid, Spain
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
- Correspondence: (A.G.); (F.J.R.)
| | - Francisco Javier Rodríguez
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, 45071 Toledo, Spain
- Correspondence: (A.G.); (F.J.R.)
| |
Collapse
|
21
|
Shen J, Dai Y, Xia F, Zhang X. Role of divalent metal ions in the function and application of hydrogels. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
The application of elastin-like peptides in cancer, tissue engineering and ocular disease. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Lou J, Mooney DJ. Chemical strategies to engineer hydrogels for cell culture. Nat Rev Chem 2022; 6:726-744. [PMID: 37117490 DOI: 10.1038/s41570-022-00420-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 12/12/2022]
Abstract
Two-dimensional and three-dimensional cell culture systems are widely used for biological studies, and are the basis of the organoid, tissue engineering and organ-on-chip research fields in applications such as disease modelling and drug screening. The natural extracellular matrix of tissues, a complex scaffold with varying chemical and mechanical properties, has a critical role in regulating important cellular functions such as spreading, migration, proliferation and differentiation, as well as tissue morphogenesis. Hydrogels are biomaterials that are used in cell culture systems to imitate critical features of a natural extracellular matrix. Chemical strategies to synthesize and tailor the properties of these hydrogels in a controlled manner, and manipulate their biological functions in situ, have been developed. In this Review, we provide the rational design criteria for predictably engineering hydrogels to mimic the properties of the natural extracellular matrix. We highlight the advances in using biocompatible strategies to engineer hydrogels for cell culture along with recent developments to dynamically control the cellular environment by exploiting stimuli-responsive chemistries. Finally, future opportunities to engineer hydrogels are discussed, in which the development of novel chemical methods will probably have an important role.
Collapse
|
24
|
Navarro RS, Huang MS, Roth JG, Hubka KM, Long CM, Enejder A, Heilshorn SC. Tuning Polymer Hydrophilicity to Regulate Gel Mechanics and Encapsulated Cell Morphology. Adv Healthc Mater 2022; 11:e2200011. [PMID: 35373510 PMCID: PMC9262823 DOI: 10.1002/adhm.202200011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/20/2022] [Indexed: 12/20/2022]
Abstract
Mechanically tunable hydrogels are attractive platforms for 3D cell culture, as hydrogel stiffness plays an important role in cell behavior. Traditionally, hydrogel stiffness has been controlled through altering either the polymer concentration or the stoichiometry between crosslinker reactive groups. Here, an alternative strategy based upon tuning the hydrophilicity of an elastin-like protein (ELP) is presented. ELPs undergo a phase transition that leads to protein aggregation at increasing temperatures. It is hypothesized that increasing this transition temperature through bioconjugation with azide-containing molecules of increasing hydrophilicity will allow direct control of the resulting gel stiffness by making the crosslinking groups more accessible. These azide-modified ELPs are crosslinked into hydrogels with bicyclononyne-modified hyaluronic acid (HA-BCN) using bioorthogonal, click chemistry, resulting in hydrogels with tunable storage moduli (100-1000 Pa). Human mesenchymal stromal cells (hMSCs), human umbilical vein endothelial cells (HUVECs), and human neural progenitor cells (hNPCs) are all observed to alter their cell morphology when encapsulated within hydrogels of varying stiffness. Taken together, the use of protein hydrophilicity as a lever to tune hydrogel mechanical properties is demonstrated. These hydrogels have tunable moduli over a stiffness range relevant to soft tissues, support the viability of encapsulated cells, and modify cell spreading as a consequence of gel stiffness.
Collapse
Affiliation(s)
- Renato S Navarro
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Michelle S Huang
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Julien G Roth
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kelsea M Hubka
- Maternal and Child Health Research Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Chris M Long
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Annika Enejder
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
25
|
Jury M, Matthiesen I, Rasti Boroojeni F, Ludwig SL, Civitelli L, Winkler TE, Selegård R, Herland A, Aili D. Bioorthogonally Cross-Linked Hyaluronan-Laminin Hydrogels for 3D Neuronal Cell Culture and Biofabrication. Adv Healthc Mater 2022; 11:e2102097. [PMID: 35114074 PMCID: PMC11468931 DOI: 10.1002/adhm.202102097] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/31/2022] [Indexed: 12/13/2022]
Abstract
Laminins (LNs) are key components in the extracellular matrix of neuronal tissues in the developing brain and neural stem cell niches. LN-presenting hydrogels can provide a biologically relevant matrix for the 3D culture of neurons toward development of advanced tissue models and cell-based therapies for the treatment of neurological disorders. Biologically derived hydrogels are rich in fragmented LN and are poorly defined concerning composition, which hampers clinical translation. Engineered hydrogels require elaborate and often cytotoxic chemistries for cross-linking and LN conjugation and provide limited possibilities to tailor the properties of the materials. Here a modular hydrogel system for neural 3D cell cultures, based on hyaluronan and poly(ethylene glycol), that is cross-linked and functionalized with human recombinant LN-521 using bioorthogonal copper-free click chemistry, is shown. Encapsulated human neuroblastoma cells demonstrate high viability and grow into spheroids. Long-term neuroepithelial stem cells (lt-NES) cultured in the hydrogels can undergo spontaneous differentiation to neural fate and demonstrate significantly higher viability than cells cultured without LN. The hydrogels further support the structural integrity of 3D bioprinted structures and maintain high viability of bioprinted and syringe extruded lt-NES, which can facilitate biofabrication and development of cell-based therapies.
Collapse
Affiliation(s)
- Michael Jury
- Laboratory of Molecular MaterialsDivision of Biophysics and BioengineeringDepartment of Physics, Chemistry and BiologyLinköping UniversityLinköping581 83Sweden
| | - Isabelle Matthiesen
- Division of Micro and NanosystemsKTH Royal Institute of TechnologyStockholm100 44Sweden
| | - Fatemeh Rasti Boroojeni
- Laboratory of Molecular MaterialsDivision of Biophysics and BioengineeringDepartment of Physics, Chemistry and BiologyLinköping UniversityLinköping581 83Sweden
| | - Saskia L. Ludwig
- Division of Micro and NanosystemsKTH Royal Institute of TechnologyStockholm100 44Sweden
| | - Livia Civitelli
- Laboratory of Molecular MaterialsDivision of Biophysics and BioengineeringDepartment of Physics, Chemistry and BiologyLinköping UniversityLinköping581 83Sweden
- Nuffield Department of Clinical NeurosciencesJohn Radcliffe HospitalWest WingUniversity of OxfordOxfordOX3 9DUUK
| | - Thomas E. Winkler
- Division of Micro and NanosystemsKTH Royal Institute of TechnologyStockholm100 44Sweden
- Institute of MicrotechnologyCenter of Pharmaceutical EngineeringTechnische Universität BraunschweigBraunschweig38106Germany
| | - Robert Selegård
- Laboratory of Molecular MaterialsDivision of Biophysics and BioengineeringDepartment of Physics, Chemistry and BiologyLinköping UniversityLinköping581 83Sweden
| | - Anna Herland
- Division of Micro and NanosystemsKTH Royal Institute of TechnologyStockholm100 44Sweden
- AIMES, Center for Integrated Medical and Engineering ScienceDepartment of NeuroscienceKarolinska InstituteSolna171 65Sweden
- Division of NanobiotechnologyDepartment of Protein Science, Science for Life LaboratoryKTH Royal Institute of TechnologyStockholm17165Sweden
| | - Daniel Aili
- Laboratory of Molecular MaterialsDivision of Biophysics and BioengineeringDepartment of Physics, Chemistry and BiologyLinköping UniversityLinköping581 83Sweden
| |
Collapse
|
26
|
Freeze-thaw and solvent-exchange strategy to generate physically cross-linked organogels and hydrogels of curdlan with tunable mechanical properties. Carbohydr Polym 2022; 278:119003. [PMID: 34973803 DOI: 10.1016/j.carbpol.2021.119003] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/24/2021] [Accepted: 12/07/2021] [Indexed: 12/29/2022]
Abstract
Physical gels from natural polysaccharides present the advantage of no toxic cross-linking agents and no chemical modification during preparation. Herein, novel physical gels, transparent organogels and opaque hydrogels from the microorganism-derived (1,3)-β-D-glucan of curdlan were prepared in dimethyl sulfoxide (DMSO) using the freeze-thaw technique, followed by a solvent-exchange strategy with water. The mechanical and structural properties of these gels were investigated by rheology, scanning electron microscopy, attenuated total reflection infrared spectroscopy, wide-angle X-ray diffraction and small-angle X-ray scattering. Gelation mechanisms and intermolecular interaction models have also been proposed. The good solvent DMSO serves as both a crosslinker and a pore-foaming agent in organogels. The reversible macromolecular conformation changes and phase separation of curdlan endow the gels with reversible transparency, volume change and tunable mechanical strength. The new design strategy of facile preparation and performance tuning provides a platform for developing new organogels and sterile hydrogels of curdlan.
Collapse
|
27
|
Abstract
Organoids-cellular aggregates derived from stem or progenitor cells that recapitulate organ function in miniature-are of growing interest in developmental biology and medicine. Organoids have been developed for organs and tissues such as the liver, gut, brain, and pancreas; they are used as organ surrogates to study a wide range of questions in basic and developmental biology, genetic disorders, and therapies. However, many organoids reported to date have been cultured in Matrigel, which is prepared from the secretion of Engelbreth-Holm-Swarm mouse sarcoma cells; Matrigel is complex and poorly defined. This complexity makes it difficult to elucidate Matrigel-specific factors governing organoid development. In this review, we discuss promising Matrigel-free methods for the generation and maintenance of organoids that use decellularized extracellular matrix (ECM), synthetic hydrogels, or gel-forming recombinant proteins.
Collapse
Affiliation(s)
- Mark T Kozlowski
- DEVCOM US Army Research Laboratory, Weapons and Materials Research Directorate, Science of Extreme Materials Division, Polymers Branch, 6300 Rodman Rd. Building 4600, Aberdeen Proving Ground, Aberdeen, MD, 21005, USA.
| | - Christiana J Crook
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA, 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, 1500 Duarte Rd., Duarte, CA, 91010, USA
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA, 91010, USA
| | - Hsun Teresa Ku
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA, 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, 1500 Duarte Rd., Duarte, CA, 91010, USA
| |
Collapse
|
28
|
Abstract
Biopolymers are natural polymers sourced from plants and animals, which include a variety of polysaccharides and polypeptides. The inclusion of biopolymers into biomedical hydrogels is of great interest because of their inherent biochemical and biophysical properties, such as cellular adhesion, degradation, and viscoelasticity. The objective of this Review is to provide a detailed overview of the design and development of biopolymer hydrogels for biomedical applications, with an emphasis on biopolymer chemical modifications and cross-linking methods. First, the fundamentals of biopolymers and chemical conjugation methods to introduce cross-linking groups are described. Cross-linking methods to form biopolymer networks are then discussed in detail, including (i) covalent cross-linking (e.g., free radical chain polymerization, click cross-linking, cross-linking due to oxidation of phenolic groups), (ii) dynamic covalent cross-linking (e.g., Schiff base formation, disulfide formation, reversible Diels-Alder reactions), and (iii) physical cross-linking (e.g., guest-host interactions, hydrogen bonding, metal-ligand coordination, grafted biopolymers). Finally, recent advances in the use of chemically modified biopolymer hydrogels for the biofabrication of tissue scaffolds, therapeutic delivery, tissue adhesives and sealants, as well as the formation of interpenetrating network biopolymer hydrogels, are highlighted.
Collapse
Affiliation(s)
- Victoria G. Muir
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Juanes-Gusano D, Santos M, Reboto V, Alonso M, Rodríguez-Cabello JC. Self-assembling systems comprising intrinsically disordered protein polymers like elastin-like recombinamers. J Pept Sci 2021; 28:e3362. [PMID: 34545666 DOI: 10.1002/psc.3362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/02/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022]
Abstract
Despite lacking cooperatively folded structures under native conditions, numerous intrinsically disordered proteins (IDPs) nevertheless have great functional importance. These IDPs are hybrids containing both ordered and intrinsically disordered protein regions (IDPRs), the structure of which is highly flexible in this unfolded state. The conformational flexibility of these disordered systems favors transitions between disordered and ordered states triggered by intrinsic and extrinsic factors, folding into different dynamic molecular assemblies to enable proper protein functions. Indeed, prokaryotic enzymes present less disorder than eukaryotic enzymes, thus showing that this disorder is related to functional and structural complexity. Protein-based polymers that mimic these IDPs include the so-called elastin-like polypeptides (ELPs), which are inspired by the composition of natural elastin. Elastin-like recombinamers (ELRs) are ELPs produced using recombinant techniques and which can therefore be tailored for a specific application. One of the most widely used and studied characteristic structures in this field is the pentapeptide (VPGXG)n . The structural disorder in ELRs probably arises due to the high content of proline and glycine in the ELR backbone, because both these amino acids help to keep the polypeptide structure of elastomers disordered and hydrated. Moreover, the recombinant nature of these systems means that different sequences can be designed, including bioactive domains, to obtain specific structures for each application. Some of these structures, along with their applications as IDPs that self-assemble into functional vesicles or micelles from diblock copolymer ELRs, will be studied in the following sections. The incorporation of additional order- and disorder-promoting peptide/protein domains, such as α-helical coils or β-strands, in the ELR sequence, and their influence on self-assembly, will also be reviewed. In addition, chemically cross-linked systems with controllable order-disorder balance, and their role in biomineralization, will be discussed. Finally, we will review different multivalent IDPs-based coatings and films for different biomedical applications, such as spatially controlled cell adhesion, osseointegration, or biomaterial-associated infection (BAI).
Collapse
Affiliation(s)
- Diana Juanes-Gusano
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology) CIBER-BBN, Edificio Lucía, University of Valladolid, Valladolid, Spain
| | - Mercedes Santos
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology) CIBER-BBN, Edificio Lucía, University of Valladolid, Valladolid, Spain
| | - Virginia Reboto
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology) CIBER-BBN, Edificio Lucía, University of Valladolid, Valladolid, Spain
| | - Matilde Alonso
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology) CIBER-BBN, Edificio Lucía, University of Valladolid, Valladolid, Spain
| | - José Carlos Rodríguez-Cabello
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology) CIBER-BBN, Edificio Lucía, University of Valladolid, Valladolid, Spain
| |
Collapse
|
30
|
Hui E, Sumey JL, Caliari SR. Click-functionalized hydrogel design for mechanobiology investigations. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2021; 6:670-707. [PMID: 36338897 PMCID: PMC9631920 DOI: 10.1039/d1me00049g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The advancement of click-functionalized hydrogels in recent years has coincided with rapid growth in the fields of mechanobiology, tissue engineering, and regenerative medicine. Click chemistries represent a group of reactions that possess high reactivity and specificity, are cytocompatible, and generally proceed under physiologic conditions. Most notably, the high level of tunability afforded by these reactions enables the design of user-controlled and tissue-mimicking hydrogels in which the influence of important physical and biochemical cues on normal and aberrant cellular behaviors can be independently assessed. Several critical tissue properties, including stiffness, viscoelasticity, and biomolecule presentation, are known to regulate cell mechanobiology in the context of development, wound repair, and disease. However, many questions still remain about how the individual and combined effects of these instructive properties regulate the cellular and molecular mechanisms governing physiologic and pathologic processes. In this review, we discuss several click chemistries that have been adopted to design dynamic and instructive hydrogels for mechanobiology investigations. We also chart a path forward for how click hydrogels can help reveal important insights about complex tissue microenvironments.
Collapse
Affiliation(s)
- Erica Hui
- Department of Chemical Engineering, University of Virginia, 102 Engineer's Way, Charlottesville, Virginia 22904, USA
| | - Jenna L Sumey
- Department of Chemical Engineering, University of Virginia, 102 Engineer's Way, Charlottesville, Virginia 22904, USA
| | - Steven R Caliari
- Department of Chemical Engineering, University of Virginia, 102 Engineer's Way, Charlottesville, Virginia 22904, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
| |
Collapse
|
31
|
Abid H, Maqsood Khan S, Iqbal S. A study on optical and thermal properties of natural polymer-based hemicellulose compounds. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1472-1488. [PMID: 33977864 DOI: 10.1080/09205063.2021.1925392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Films of husks of Plantango ovate, Cydonia oblonga, Mimosa pudica, Cochlospermum religiosum were prepared, delignified without protein and cellulose content, and their optical properties were evaluated. UV-Vis, FTIR TGA analysis revealed that these natural materials have strong potential in fiber optics, contact lenses and human transplantation infrastructure applications, where there is need of efficient transparency, high thermal stability and good conductivity with minimum light absorption. These natural polymeric films possess significant direct and indirect optical band gap values and better optical conductivity than currently in use synthetic polymeric materials. The Refractive index of these films is also found high in the visible region in comparison to pure or composite metal-doped synthetic films. Urbach energy (Eu), Dispersion energy (Ed), Average oscillation wavelength (λ0), and oscillation strength(S0) of this hemicellulose based natural polymeric films were found to be appropriate for such optical materials which are green, organic, economical and compatible to human systems.
Collapse
Affiliation(s)
- Hina Abid
- Department of Chemistry, Forman Christian College, A Chartered University, Lahore, Pakistan
| | - Shahzad Maqsood Khan
- Institute of Polymer and Textile Engineering, University of the Punjab, Lahore, Pakistan
| | - Saeed Iqbal
- Department of Chemistry, Forman Christian College, A Chartered University, Lahore, Pakistan
| |
Collapse
|
32
|
Contessi Negrini N, Angelova Volponi A, Sharpe PT, Celiz AD. Tunable Cross-Linking and Adhesion of Gelatin Hydrogels via Bioorthogonal Click Chemistry. ACS Biomater Sci Eng 2021; 7:4330-4346. [PMID: 34086456 DOI: 10.1021/acsbiomaterials.1c00136] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Engineering cytocompatible hydrogels with tunable physico-mechanical properties as a biomimetic three-dimensional extracellular matrix (ECM) is fundamental to guide cell response and target tissue regeneration or development of in vitro models. Gelatin represents an optimal choice given its ECM biomimetic properties; however, gelatin cross-linking is required to ensure structural stability at physiological temperature (i.e., T > Tsol-gel gelatin). Here, we use a previously developed cross-linking reaction between tetrazine (Tz)- and norbornene (Nb) modified gelatin derivatives to prepare gelatin hydrogels and we demonstrate the possible tuning of their properties by varying their degree of modification (DOM) and the Tz/Nb ratio (R). The percentage DOM of the gelatin derivatives was tuned between 5 and 15%. Hydrogels prepared with higher DOM cross-linked faster (i.e., 10-20 min) compared to hydrogels prepared with lower DOM (i.e., 60-70 min). A higher DOM and equimolar Tz/Nb ratio R resulted in hydrogels with lower weight variation after immersion in PBS at 37 °C. The mechanical properties of the hydrogels were tuned by varying DOM and R by 1 order of magnitude, achieving elastic modulus E values ranging from 0.5 (low DOM and nonequimolar Tz/Nb ratio) to 5 kPa (high DOM and equimolar Tz/Nb ratio). Human dental pulp stem cells were embedded in the hydrogels and successfully 3D cultured in the hydrogels (percentage viable cells >85%). An increase in metabolic activity and a more elongated cell morphology was detected for cells cultured in hydrogels with lower mechanical properties (E < 1 kPa). Hydrogels prepared with an excess of Tz or Nb were successfully adhered and remained in contact during in vitro cultures, highlighting the potential use of these hydrogels as compartmentalized coculture systems. The successful tuning of the gelatin hydrogel properties here developed by controlling their bioorthogonal cross-linking is promising for tissue engineering and in vitro modeling applications.
Collapse
Affiliation(s)
- Nicola Contessi Negrini
- Department of Bioengineering, Imperial College London, White City Campus, 86 Wood Ln, W12 0BZ London, U.K
| | - Ana Angelova Volponi
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, King's College London, Guy's Hospital, SE1 9RT London, U.K
| | - Paul T Sharpe
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, King's College London, Guy's Hospital, SE1 9RT London, U.K
| | - Adam D Celiz
- Department of Bioengineering, Imperial College London, White City Campus, 86 Wood Ln, W12 0BZ London, U.K
| |
Collapse
|
33
|
Gao Y, Peng K, Mitragotri S. Covalently Crosslinked Hydrogels via Step-Growth Reactions: Crosslinking Chemistries, Polymers, and Clinical Impact. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006362. [PMID: 33988273 DOI: 10.1002/adma.202006362] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Hydrogels are an important class of biomaterials with the unique property of high-water content in a crosslinked polymer network. In particular, chemically crosslinked hydrogels have made a great clinical impact in past years because of their desirable mechanical properties and tunability of structural and chemical properties. Various polymers and step-growth crosslinking chemistries are harnessed for fabricating such covalently crosslinked hydrogels for translational research. However, selecting appropriate crosslinking chemistries and polymers for the intended clinical application is time-consuming and challenging. It requires the integration of polymer chemistry knowledge with thoughtful crosslinking reaction design. This task becomes even more challenging when other factors such as the biological mechanisms of the pathology, practical administration routes, and regulatory requirements add additional constraints. In this review, key features of crosslinking chemistries and polymers commonly used for preparing translatable hydrogels are outlined and their performance in biological systems is summarized. The examples of effective polymer/crosslinking chemistry combinations that have yielded clinically approved hydrogel products are specifically highlighted. These hydrogel design parameters in the context of the regulatory process and clinical translation barriers, providing a guideline for the rational selection of polymer/crosslinking chemistry combinations to construct hydrogels with high translational potential are further considered.
Collapse
Affiliation(s)
- Yongsheng Gao
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Kevin Peng
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Samir Mitragotri
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| |
Collapse
|
34
|
González-Pérez M, Camasão DB, Mantovani D, Alonso M, Rodríguez-Cabello JC. Biocasting of an elastin-like recombinamer and collagen bi-layered model of the tunica adventitia and external elastic lamina of the vascular wall. Biomater Sci 2021; 9:3860-3874. [PMID: 33890956 DOI: 10.1039/d0bm02197k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The development of techniques for fabricating vascular wall models will foster the development of preventive and therapeutic therapies for treating cardiovascular diseases. However, the physical and biological complexity of vascular tissue represents a major challenge, especially for the design and the production of off-the-shelf biomimetic vascular replicas. Herein, we report the development of a biocasting technique that can be used to replicate the tunica adventitia and the external elastic lamina of the vascular wall. Type I collagen embedded with neonatal human dermal fibroblast (HDFn) and an elastic click cross-linkable, cell-adhesive and protease-sensitive elastin-like recombinamer (ELR) hydrogel were investigated as readily accessible and tunable layers to the envisaged model. Mechanical characterization confirmed that the viscous and elastic attributes predominated in the collagen and ELR layers, respectively. In vitro maturation confirmed that the collagen and ELR provided a favorable environment for the HDFn viability, while histology revealed the wavy and homogenous morphology of the ELR and collagen layer respectively, the cell polarization towards the cell-attachment sites encoded on the ELR, and the enhanced expression of glycosaminoglycan-rich extracellular matrix and differentiation of the embedded HDFn into myofibroblasts. As a complementary assay, 30% by weight of the collagen layer was substituted with the ELR. This model proved the possibility to tune the composition and confirm the versatile character of the technology developed, while revealing no significant differences with respect to the original construct. On-demand modification of the model dimensions, number and composition of the layers, as well as the type and density of the seeded cells, can be further envisioned, thus suggesting that this bi-layered model may be a promising platform for the fabrication of biomimetic vascular wall models.
Collapse
Affiliation(s)
- Miguel González-Pérez
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), University of Valladolid, CIBER-BBN, 47011 Valladolid, Spain.
| | - Dimitria Bonizol Camasão
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering, Research Center of CHU de Québec, Division of Regenerative Medicine, Laval University, Québec, QC, Canada G1V 0A6
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering, Research Center of CHU de Québec, Division of Regenerative Medicine, Laval University, Québec, QC, Canada G1V 0A6
| | - Matilde Alonso
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), University of Valladolid, CIBER-BBN, 47011 Valladolid, Spain.
| | - José Carlos Rodríguez-Cabello
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), University of Valladolid, CIBER-BBN, 47011 Valladolid, Spain.
| |
Collapse
|
35
|
Rodrigues LL, Micallef AS, Pfrunder MC, Truong VX, McMurtrie JC, Dargaville TR, Goldmann AS, Feist F, Barner-Kowollik C. A Self-Catalyzed Visible Light Driven Thiol Ligation. J Am Chem Soc 2021; 143:7292-7297. [PMID: 33955743 DOI: 10.1021/jacs.1c03213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We introduce a highly efficient ligation system based on a visible light-induced rearrangement affording a thiophenol which rapidly undergoes thiol-Michael additions. Unlike conventional light-triggered thiol-ene/yne systems, which rely on the use of photocaged bases/nucleophiles, (organo)-photo catalysts, or radical photoinitiators, our system provides a light-induced reaction in the absence of any additives. The ligation is self-catalyzed via the pyridine mediated deprotonation of the photochemically generated thiophenol. Subsequently, the thiol-Michael reaction between the thiophenol anion and electron deficient alkynes/alkenes proceeds additive-free. Hereby, the underlying photoinduced rearrangement of o-thiopyrinidylbenzaldehyde (oTPyB) generating the free thiol is described for the first time. We studied the influence of various reactions conditions as well as solvents and substrates. We exemplify our findings in a polymer end group modification and obtained macromolecules with excellent end group fidelity.
Collapse
Affiliation(s)
- Leona L Rodrigues
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Aaron S Micallef
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Michael C Pfrunder
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Vinh X Truong
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - John C McMurtrie
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Tim R Dargaville
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Anja S Goldmann
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Florian Feist
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christopher Barner-Kowollik
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
36
|
Sugioka Y, Nakamura J, Ohtsuki C, Sugawara-Narutaki A. Thixotropic Hydrogels Composed of Self-Assembled Nanofibers of Double-Hydrophobic Elastin-Like Block Polypeptides. Int J Mol Sci 2021; 22:4104. [PMID: 33921095 PMCID: PMC8071462 DOI: 10.3390/ijms22084104] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 12/29/2022] Open
Abstract
Physically crosslinked hydrogels with thixotropic properties attract considerable attention in the biomedical research field because their self-healing nature is useful in cell encapsulation, as injectable gels, and as bioinks for three-dimensional (3D) bioprinting. Here, we report the formation of thixotropic hydrogels containing nanofibers of double-hydrophobic elastin-like polypeptides (ELPs). The hydrogels are obtained with the double-hydrophobic ELPs at 0.5 wt%, the concentration of which is an order of magnitude lower than those for previously reported ELP hydrogels. Although the kinetics of hydrogel formation is slower for the double-hydrophobic ELP with a cell-binding sequence, the storage moduli G' of mature hydrogels are similar regardless of the presence of a cell-binding sequence. Reversible gel-sol transitions are demonstrated in step-strain rheological measurements. The degree of recovery of the storage modulus G' after the removal of high shear stress is improved by chemical crosslinking of nanofibers when intermolecular crosslinking is successful. This work would provide deeper insight into the structure-property relationships of the self-assembling polypeptides and a better design strategy for hydrogels with desired viscoelastic properties.
Collapse
Affiliation(s)
- Yusuke Sugioka
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (Y.S.); (J.N.); (C.O.)
| | - Jin Nakamura
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (Y.S.); (J.N.); (C.O.)
| | - Chikara Ohtsuki
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (Y.S.); (J.N.); (C.O.)
| | - Ayae Sugawara-Narutaki
- Department of Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
37
|
Momin A, Bahrampour S, Min HK, Chen X, Wang X, Sun Y, Huang X. Channeling Force in the Brain: Mechanosensitive Ion Channels Choreograph Mechanics and Malignancies. Trends Pharmacol Sci 2021; 42:367-384. [PMID: 33752907 DOI: 10.1016/j.tips.2021.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/15/2021] [Accepted: 02/26/2021] [Indexed: 12/15/2022]
Abstract
Force is everywhere. Through cell-intrinsic activities and interactions with the microenvironment, cells generate, transmit, and sense mechanical forces, such as compression, tension, and shear stress. These forces shape the mechanical properties of cells and tissues. Akin to how balanced biochemical signaling safeguards physiological processes, a mechanical optimum is required for homeostasis. The brain constructs a mechanical optimum from its cellular and extracellular constituents. However, in brain cancer, the mechanical properties are disrupted: tumor and nontumoral cells experience dysregulated solid and fluid stress, while tumor tissue develops altered stiffness. Mechanosensitive (MS) ion channels perceive mechanical cues to govern ion flux and cellular signaling. In this review, we describe the mechanical properties of the brain in healthy and cancer states and illustrate MS ion channels as sensors of mechanical cues to regulate malignant growth. Targeting MS ion channels offers disease insights at the interface of cancer, neuroscience, and mechanobiology to reveal therapeutic opportunities in brain tumors.
Collapse
Affiliation(s)
- Ali Momin
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ONT, M5G 1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ONT, M5G 1X8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ONT, M5S 3E1, Canada.
| | - Shahrzad Bahrampour
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ONT, M5G 1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ONT, M5G 1X8, Canada; Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Hyun-Kee Min
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ONT, M5G 1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ONT, M5G 1X8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ONT, M5S 3E1, Canada
| | - Xin Chen
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ONT, M5G 1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ONT, M5G 1X8, Canada
| | - Xian Wang
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ONT, M5G 1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ONT, M5G 1X8, Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ONT, M5S 3G8, Canada
| | - Xi Huang
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ONT, M5G 1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ONT, M5G 1X8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ONT, M5S 3E1, Canada.
| |
Collapse
|
38
|
Hull SM, Lindsay CD, Brunel LG, Shiwarski DJ, Tashman JW, Roth JG, Myung D, Feinberg AW, Heilshorn SC. 3D Bioprinting using UNIversal Orthogonal Network (UNION) Bioinks. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2007983. [PMID: 33613150 PMCID: PMC7888563 DOI: 10.1002/adfm.202007983] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Indexed: 05/02/2023]
Abstract
Three-dimensional (3D) bioprinting is a promising technology to produce tissue-like structures, but a lack of diversity in bioinks is a major limitation. Ideally each cell type would be printed in its own customizable bioink. To fulfill this need for a universally applicable bioink strategy, we developed a versatile, bioorthogonal bioink crosslinking mechanism that is cell compatible and works with a range of polymers. We term this family of materials UNIversal, Orthogonal Network (UNION) bioinks. As demonstration of UNION bioink versatility, gelatin, hyaluronic acid (HA), recombinant elastin-like protein (ELP), and polyethylene glycol (PEG) were each used as backbone polymers to create inks with storage moduli spanning 200 to 10,000 Pa. Because UNION bioinks are crosslinked by a common chemistry, multiple materials can be printed together to form a unified, cohesive structure. This approach is compatible with any support bath that enables diffusion of UNION crosslinkers. Both matrix-adherent human corneal mesenchymal stromal cells and non-matrix-adherent human induced pluripotent stem cell-derived neural progenitor spheroids were printed with UNION bioinks. The cells retained high viability and expressed characteristic phenotypic markers after printing. Thus, UNION bioinks are a versatile strategy to expand the toolkit of customizable materials available for 3D bioprinting.
Collapse
Affiliation(s)
- Sarah M Hull
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Christopher D Lindsay
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
| | - Lucia G Brunel
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Daniel J Shiwarski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Joshua W Tashman
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Julien G Roth
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - David Myung
- Department of Ophthalmology, Stanford University, Stanford, CA 94305, USA
| | - Adam W Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Sarah C Heilshorn
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
39
|
Maspes A, Pizzetti F, Rossetti A, Makvandi P, Sitia G, Rossi F. Advances in Bio-Based Polymers for Colorectal CancerTreatment: Hydrogels and Nanoplatforms. Gels 2021; 7:6. [PMID: 33440908 PMCID: PMC7838948 DOI: 10.3390/gels7010006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/29/2020] [Accepted: 01/07/2021] [Indexed: 12/27/2022] Open
Abstract
Adenocarcinoma of the colon is the most common malignant neoplasia of the gastrointestinal tract and is a major contributor to mortality worldwide. Invasiveness and metastatic behavior are typical of malignant tumors and, because of its portal drainage, the liver is the closest capillary bed available in this case, hence the common site of metastatic dissemination. Current therapies forecast total resection of primary tumor when possible and partial liver resection at advanced stages, along with systemic intravenous therapies consisting of chemotherapeutic agents such as 5-fluorouracil. These cures are definitely not exempt from drawbacks and heavy side effects. Biocompatible polymeric networks, both in colloids and bulk forms, able to absorb large quantities of water and load a variety of molecules-belong to the class of innovative drug delivery systems, thus suitable for the purpose and tunable on each patient can represent a promising alternative. Indeed, the implantation of polymeric scaffolds easy to synthesize can substitute chemotherapy and combination therapies scheduling, shortening side effects. Moreover, they do not require a surgical removal thanks to spontaneous degradation and guarantees an extended and regional cargo release, maintaining high drug concentrations. In this review, we focus our attention on the key role of polymeric networks as drug delivery systems potentially able to counteract this dramatic disease.
Collapse
Affiliation(s)
- Anna Maspes
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, 20131 Milan, Italy; (A.M.); (F.P.); (A.R.)
| | - Fabio Pizzetti
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, 20131 Milan, Italy; (A.M.); (F.P.); (A.R.)
| | - Arianna Rossetti
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, 20131 Milan, Italy; (A.M.); (F.P.); (A.R.)
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, 56025 Pisa, Italy;
| | - Giovanni Sitia
- Division of Immunology, Transplantation and Infectious Diseases, Experimental Hepatology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Filippo Rossi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, 20131 Milan, Italy; (A.M.); (F.P.); (A.R.)
| |
Collapse
|
40
|
Park JR, Bolle ECL, Santos Cavalcanti AD, Podevyn A, Van Guyse JFR, Forget A, Hoogenboom R, Dargaville TR. Injectable biocompatible poly(2-oxazoline) hydrogels by strain promoted alkyne-azide cycloaddition. Biointerphases 2021; 16:011001. [PMID: 33401918 DOI: 10.1116/6.0000630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Poly(2-alkyl-2-oxazoline) (PAOx) hydrogels are tailorable synthetic materials with demonstrated biomedical applications, thanks to their excellent biocompatibility and tunable properties. However, their use as injectable hydrogels is challenging as it requires invasive surgical procedures to insert the formed hydrogel into the body due to their nonsoluble 3D network structures. Herein, we introduce cyclooctyne and azide functional side chains to poly(2-oxazoline) copolymers to induce in situ gelation using strain promoted alkyne-azide cycloaddition. The gelation occurs rapidly, within 5 min, under physiological conditions when two polymer solutions are simply mixed. The influence of several parameters, such as temperature and different aqueous solutions, and stoichiometric ratios between the two polymers on the structural properties of the resultant hydrogels have been investigated. The gel formation within tissue samples was verified by subcutaneous injection of the polymer solution into an ex vivo model. The degradation study of the hydrogels in vitro showed that the degradation rate was highly dependent on the type of media, ranging from days to a month. This result opens up the potential uses of PAOx hydrogels in attempts to achieve optimal, injectable drug delivery systems and tissue engineering.
Collapse
Affiliation(s)
- Jong-Ryul Park
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Eleonore C L Bolle
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Amanda Dos Santos Cavalcanti
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Annelore Podevyn
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Joachim F R Van Guyse
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Aurelien Forget
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-St. 31, Freiburg, 79104, Germany
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Tim R Dargaville
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
41
|
González-Pérez M, González de Torre I, Alonso M, Rodríguez-Cabello JC. Controlled Production of Elastin-like Recombinamer Polymer-Based Membranes at a Liquid-Liquid Interface by Click Chemistry. Biomacromolecules 2020; 21:4149-4158. [PMID: 32852195 DOI: 10.1021/acs.biomac.0c00939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diffusion of organic and inorganic molecules controls most industrial and biological processes that occur in a liquid phase. Although significant efforts have been devoted to the design and operation of large-scale purification systems, diffusion devices with adjustable biochemical characteristics have remained difficult to achieve. In this regard, micrometer-scale, bioinspired membranes with tunable diffusion properties have been engineered by covalent cross-linking of two elastin-like recombinamers (ELRs) at a liquid-liquid interface. The covalent approach selected provides the desired ELR-based membranes with structural support, and modulation of the concentration of the polypeptides employed confers direct control of the thickness, pore size, and diffusive properties over a broad range of molecular weights (4-150 kDa). The recombinant and versatile nature of the proteinaceous building blocks employed further paves the way to engineering bioactive motifs within the membrane scaffold, thereby widening their applicability in the biological field.
Collapse
Affiliation(s)
- Miguel González-Pérez
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | - Israel González de Torre
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | - Matilde Alonso
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| | - José Carlos Rodríguez-Cabello
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, 47011 Valladolid, Spain
| |
Collapse
|
42
|
Meco E, Zheng WS, Sharma AH, Lampe KJ. Guiding Oligodendrocyte Precursor Cell Maturation With Urokinase Plasminogen Activator-Degradable Elastin-like Protein Hydrogels. Biomacromolecules 2020; 21:4724-4736. [PMID: 32816463 DOI: 10.1021/acs.biomac.0c00828] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Demyelinating injuries and diseases, like multiple sclerosis, affect millions of people worldwide. Oligodendrocyte precursor cells (OPCs) have the potential to repair demyelinated tissues because they can both self-renew and differentiate into oligodendrocytes (OLs), the myelin producing cells of the central nervous system (CNS). Cell-matrix interactions impact OPC differentiation into OLs, but the process is not fully understood. Biomaterial hydrogel systems help to elucidate cell-matrix interactions because they can mimic specific properties of native CNS tissues in an in vitro setting. We investigated whether OPC maturation into OLs is influenced by interacting with a urokinase plasminogen activator (uPA) degradable extracellular matrix (ECM). uPA is a proteolytic enzyme that is transiently upregulated in the developing rat brain, with peak uPA expression correlating with an increase in myelin production in vivo. OPC-like cells isolated through the Mosaic Analysis with Double Marker technique (MADM OPCs) produced low-molecular-weight uPA in culture. MADM OPCs were encapsulated into two otherwise similar elastin-like protein (ELP) hydrogel systems: one that was uPA degradable and one that was nondegradable. Encapsulated MADM OPCs had similar viability, proliferation, and metabolic activity in uPA degradable and nondegradable ELP hydrogels. Expression of OPC maturation-associated genes, however, indicated that uPA degradable ELP hydrogels promoted MADM OPC maturation although not sufficiently for these cells to differentiate into OLs.
Collapse
Affiliation(s)
- Edi Meco
- Department of Chemical Engineering, Chemical Eng., Office 117, University of Virginia, 102 Engineer's Way, Charlottesville, Virginia 22904, United States
| | - W Sharon Zheng
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, MR5 2010, Box 800759, Charlottesville, Virginia 22908, United States
| | - Anahita H Sharma
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, MR5 2010, Box 800759, Charlottesville, Virginia 22908, United States
| | - Kyle J Lampe
- Department of Chemical Engineering, Chemical Eng., Office 117, University of Virginia, 102 Engineer's Way, Charlottesville, Virginia 22904, United States
| |
Collapse
|
43
|
Adhikari J, Roy A, Das A, Ghosh M, Thomas S, Sinha A, Kim J, Saha P. Effects of Processing Parameters of 3D Bioprinting on the Cellular Activity of Bioinks. Macromol Biosci 2020; 21:e2000179. [PMID: 33017096 DOI: 10.1002/mabi.202000179] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/04/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022]
Abstract
In this review, few established cell printing techniques along with their parameters that affect the cell viability during bioprinting are considered. 3D bioprinting is developed on the principle of additive manufacturing using biomaterial inks and bioinks. Different bioprinting methods impose few challenges on cell printing such as shear stress, mechanical impact, heat, laser radiation, etc., which eventually lead to cell death. These factors also cause alteration of cells phenotype, recoverable or irrecoverable damages to the cells. Such challenges are not addressed in detail in the literature and scientific reports. Hence, this review presents a detailed discussion of several cellular bioprinting methods and their process-related impacts on cell viability, followed by probable mitigation techniques. Most of the printable bioinks encompass cells within hydrogel as scaffold material to avoid the direct exposure of the harsh printing environment on cells. However, the advantages of printing with scaffold-free cellular aggregates over cell-laden hydrogels have emerged very recently. Henceforth, optimal and favorable crosslinking mechanisms providing structural rigidity to the cell-laden printed constructs with ideal cell differentiation and proliferation, are discussed for improved understanding of cell printing methods for the future of organ printing and transplantation.
Collapse
Affiliation(s)
- Jaideep Adhikari
- J. Adhikari, A. Das, Dr. A. Sinha, M. N. Dastur School of Materials Science and Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, India
| | - Avinava Roy
- A. Roy, Dr. M. Ghosh, Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, India
| | - Anindya Das
- J. Adhikari, A. Das, Dr. A. Sinha, M. N. Dastur School of Materials Science and Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, India
| | - Manojit Ghosh
- A. Roy, Dr. M. Ghosh, Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, India
| | - Sabu Thomas
- Prof. S. Thomas, School of Chemical Sciences, MG University, Kottayam, Kerala, 686560, India
| | - Arijit Sinha
- J. Adhikari, A. Das, Dr. A. Sinha, M. N. Dastur School of Materials Science and Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, India
| | - Jinku Kim
- Prof. J. Kim, Department of Bio and Chemical Engineering, Hongik University, Sejong, 30016, South Korea
| | - Prosenjit Saha
- Dr. P. Saha, Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR) Kolkata, JIS University, Arch Water Front Building, Salt Lake City, Kolkata, 700091, India
| |
Collapse
|
44
|
Chen F, Le P, Fernandes-Cunha GM, Heilshorn SC, Myung D. Bio-orthogonally crosslinked hyaluronate-collagen hydrogel for suture-free corneal defect repair. Biomaterials 2020; 255:120176. [PMID: 32559566 PMCID: PMC7396293 DOI: 10.1016/j.biomaterials.2020.120176] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/28/2020] [Accepted: 06/04/2020] [Indexed: 01/13/2023]
Abstract
Biomaterials that mimic corneal stroma could decrease the need for donor corneal tissue and could decrease the prevalence of complications associated with corneal transplantation, including infection and rejection. We developed a bio-orthogonally crosslinked hyaluronate-collagen hydrogel which can fill corneal defects in situ without the need for any sutures, initiators, or catalysts. We studied the effects of biorthogonal crosslinking on the light transmittance of the hydrogel, which was greater than 97% water. The transmittance of the optimized hydrogel in the visible light range was over 94%. We also investigated the mechanical properties, refractive index, morphology, biocompatibility, and corneal re-epithelialization capacity of the hyaluronate-collagen hydrogel. Our in vitro, in vivo, and ex vivo results demonstrated that this bio-orthogonally crosslinked hyaluronate-collagen hydrogel has excellent potential as a biomaterial for cornea repair and regeneration.
Collapse
Affiliation(s)
- Fang Chen
- Ophthalmology, Stanford University School of Medicine, CA, United States; VA Palo Alto Health Care System, Palo Alto, CA, United States
| | - Peter Le
- Ophthalmology, Stanford University School of Medicine, CA, United States; VA Palo Alto Health Care System, Palo Alto, CA, United States
| | | | - Sarah C Heilshorn
- Materials Science & Engineering, Stanford University, CA, United States
| | - David Myung
- Ophthalmology, Stanford University School of Medicine, CA, United States; VA Palo Alto Health Care System, Palo Alto, CA, United States; Chemical Engineering, Stanford University, CA, United States.
| |
Collapse
|
45
|
Arkenberg MR, Nguyen HD, Lin CC. Recent advances in bio-orthogonal and dynamic crosslinking of biomimetic hydrogels. J Mater Chem B 2020; 8:7835-7855. [PMID: 32692329 PMCID: PMC7574327 DOI: 10.1039/d0tb01429j] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In recent years, dynamic, 'click' hydrogels have been applied in numerous biomedical applications. Owing to the mild, cytocompatible, and highly specific reaction kinetics, a multitude of orthogonal handles have been developed for fabricating dynamic hydrogels to facilitate '4D' cell culture. The high degree of tunability in crosslinking reactions of orthogonal 'click' chemistry has enabled a bottom-up approach to install specific biomimicry in an artificial extracellular matrix. In addition to click chemistry, highly specific enzymatic reactions are also increasingly used for network crosslinking and for spatiotemporal control of hydrogel properties. On the other hand, covalent adaptable chemistry has been used to recapitulate the viscoelastic component of biological tissues and for formulating self-healing and shear-thinning hydrogels. The common feature of these three classes of chemistry (i.e., orthogonal click chemistry, enzymatic reactions, and covalent adaptable chemistry) is that they can be carried out under ambient and aqueous conditions, a prerequisite for maintaining cell viability for in situ cell encapsulation and post-gelation modification of network properties. Due to their orthogonality, different chemistries can also be applied sequentially to provide additional biochemical and mechanical control to guide cell behavior. Herein, we review recent advances in the use of orthogonal click chemistry, enzymatic reactions, and covalent adaptable chemistry for the development of dynamically tunable and biomimetic hydrogels.
Collapse
Affiliation(s)
- Matthew R Arkenberg
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
46
|
GhavamiNejad A, Ashammakhi N, Wu XY, Khademhosseini A. Crosslinking Strategies for 3D Bioprinting of Polymeric Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002931. [PMID: 32734720 PMCID: PMC7754762 DOI: 10.1002/smll.202002931] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Indexed: 05/15/2023]
Abstract
Three-dimensional (3D) bioprinting has recently advanced as an important tool to produce viable constructs that can be used for regenerative purposes or as tissue models. To develop biomimetic and sustainable 3D constructs, several important processing aspects need to be considered, among which crosslinking is most important for achieving desirable biomechanical stability of printed structures, which is reflected in subsequent behavior and use of these constructs. In this work, crosslinking methods used in 3D bioprinting studies are reviewed, parameters that affect bioink chemistry are discussed, and the potential toward improving crosslinking outcomes and construct performance is highlighted. Furthermore, current challenges and future prospects are discussed. Due to the direct connection between crosslinking methods and properties of 3D bioprinted structures, this Review can provide a basis for developing necessary modifications to the design and manufacturing process of advanced tissue-like constructs in future.
Collapse
Affiliation(s)
- Amin GhavamiNejad
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics, California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Radiological Sciences, University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics, California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Radiological Sciences, University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, California, USA
| |
Collapse
|
47
|
Lee M, Rizzo R, Surman F, Zenobi-Wong M. Guiding Lights: Tissue Bioprinting Using Photoactivated Materials. Chem Rev 2020; 120:10950-11027. [DOI: 10.1021/acs.chemrev.0c00077] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mihyun Lee
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Riccardo Rizzo
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - František Surman
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| |
Collapse
|
48
|
Magli S, Rossi GB, Risi G, Bertini S, Cosentino C, Crippa L, Ballarini E, Cavaletti G, Piazza L, Masseroni E, Nicotra F, Russo L. Design and Synthesis of Chitosan-Gelatin Hybrid Hydrogels for 3D Printable in vitro Models. Front Chem 2020; 8:524. [PMID: 32760695 PMCID: PMC7373092 DOI: 10.3389/fchem.2020.00524] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
The development of 3D printable hydrogels based on the crosslinking between chitosan and gelatin is proposed. Chitosan and gelatin were both functionalized with methyl furan groups. Chemical modification was performed by reductive amination with methyl furfural involving the lysine residues of gelatin and the amino groups of chitosan to generate hydrogels with tailored properties. The methyl furan residues present in both polymers were exploited for efficient crosslinking via Diels-Alder ligation with PEG-Star-maleimide under cell-compatible conditions. The obtained chitosan-gelatin hybrid was employed to formulate hydrogels and 3D printable biopolymers and its processability and biocompatibility were preliminarily investigated.
Collapse
Affiliation(s)
- Sofia Magli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Giulia Beatrice Rossi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Giulia Risi
- G. Ronzoni Institute for Chemical and Biochemical Research, Milan, Italy
| | - Sabrina Bertini
- G. Ronzoni Institute for Chemical and Biochemical Research, Milan, Italy
| | - Cesare Cosentino
- G. Ronzoni Institute for Chemical and Biochemical Research, Milan, Italy
| | - Luca Crippa
- Department of Medical and Surgical Science, University of Milano-Bicocca, Milan, Italy
| | - Elisa Ballarini
- Department of Medical and Surgical Science, University of Milano-Bicocca, Milan, Italy
| | - Guido Cavaletti
- Department of Medical and Surgical Science, University of Milano-Bicocca, Milan, Italy
| | - Laura Piazza
- Department of Environmental Science and Policy (ESP), University of Milan, Milan, Italy
| | - Elisa Masseroni
- Department of Environmental Science and Policy (ESP), University of Milan, Milan, Italy
| | - Francesco Nicotra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Laura Russo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
49
|
Aronsson C, Jury M, Naeimipour S, Boroojeni FR, Christoffersson J, Lifwergren P, Mandenius CF, Selegård R, Aili D. Dynamic peptide-folding mediated biofunctionalization and modulation of hydrogels for 4D bioprinting. Biofabrication 2020; 12:035031. [DOI: 10.1088/1758-5090/ab9490] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
50
|
Chen F, Le P, Lai K, Fernandes-Cunha GM, Myung D. Simultaneous Interpenetrating Polymer Network of Collagen and Hyaluronic Acid as an In Situ-Forming Corneal Defect Filler. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2020; 32:5208-5216. [PMID: 33603277 PMCID: PMC7888987 DOI: 10.1021/acs.chemmater.0c01307] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Timely treatment of corneal injuries injury can help to prevent corneal scarring, blindness, and the need for corneal transplantation. This work describes a novel hydrogel that can fill corneal defects and assist in corneal regeneration. This hydrogel is a simultaneous interpenetrating polymer network (IPN) composed of collagen cross-linked via strain-promoted azide-alkyne cycloaddition reaction and hyaluronic acid cross-linked via thiol-ene Michael click reaction. The formation of the IPN gel was confirmed via FTIR spectra, UV-vis spectra, and morphological changes. We compared the gelation time, mechanical properties, transmittance, and refractive index of the IPN gel to the collagen gel, hyaluronic acid gel, and semi-IPN gel. The IPN combined the advantages of collagen and hyaluronic acid gels and supported corneal epithelial cell growth on its surface. When applied to corneal stromal defects in vivo, the IPN avoided epithelial hyperplasia, decreased stromal myofibroblast formation, and increased tight junction formation in the regenerated epithelium.
Collapse
Affiliation(s)
- Fang Chen
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California 94305, United States; VA Palo Alto, Palo Alto, California 94304, United States
| | - Peter Le
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California 94305, United States; VA Palo Alto, Palo Alto, California 94304, United States
| | - Krystal Lai
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Gabriella M Fernandes-Cunha
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - David Myung
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California 94305, United States; Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States; VA Palo Alto, Palo Alto, California 94304, United States
| |
Collapse
|