1
|
Głowacki MJ, Niedziałkowski P, Ryl J, Prześniak-Welenc M, Sawczak M, Prusik K, Ficek M, Janik M, Pyrchla K, Olewniczak M, Bojarski K, Czub J, Bogdanowicz R. Enhancing colloidal stability of nanodiamond via surface modification with dendritic molecules for optical sensing in physiological environments. J Colloid Interface Sci 2024; 675:236-250. [PMID: 38970910 DOI: 10.1016/j.jcis.2024.06.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
Pre-treatment of diamond surface in low-temperature plasma for oxygenation and in acids for carboxylation was hypothesized to promote the branching density of the hyperbranched glycidol polymer. This was expected to increase the homogeneity of the branching level and suppress interactions with proteins. As a result, composite nanodiamonds with reduced hydrodynamic diameters that are maintained in physiological environments were anticipated. Surfaces of 140-nm-sized nanodiamonds were functionalized with oxygen and carboxyl groups for grafting of hyperbranched dendritic polyglycerol via anionic ring-opening polymerization of glycidol. The modification was verified with Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. Dynamic light scattering investigated colloidal stability in pH-diverse (2-12) solutions, concentrated phosphate-buffered saline, and cell culture media. Thermogravimetric analysis of nanodiamonds-protein incubations examined non-specific binding. Fluorescence emission was tested across pH conditions. Molecular dynamics simulations modeled interparticle interactions in ionic solutions. The hyperbranched polyglycerol grafting increased colloidal stability of nanodiamonds across diverse pH, high ionic media like 10 × concentrated phosphate-buffered saline, and physiological media like serum and cell culture medium. The hyperbranched polyglycerol suppressed non-specific protein adsorption while maintaining intensive fluorescence of nanodiamonds regardless of pH. Molecular modelling indicated reduced interparticle interactions in ionic solutions correlating with the improved colloidal stability.
Collapse
Affiliation(s)
- Maciej J Głowacki
- Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Department of Metrology and Optoelectronics, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Paweł Niedziałkowski
- University of Gdańsk, Faculty of Chemistry, Department of Analytical Chemistry, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Jacek Ryl
- Gdańsk University of Technology, Faculty of Applied Physics and Mathematics, Institute of Nanotechnology and Materials Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Marta Prześniak-Welenc
- Gdańsk University of Technology, Faculty of Applied Physics and Mathematics, Institute of Nanotechnology and Materials Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mirosław Sawczak
- Polish Academy of Sciences, The Szewalski Institute of Fluid-Flow Machinery, The Centre for Plasma and Laser Engineering, Fiszera 14, 80-231 Gdańsk, Poland
| | - Klaudia Prusik
- Gdańsk University of Technology, Faculty of Applied Physics and Mathematics, Institute of Nanotechnology and Materials Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mateusz Ficek
- Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Department of Metrology and Optoelectronics, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Monika Janik
- Warsaw University of Technology, Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw, Poland
| | - Krzysztof Pyrchla
- Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Department of Metrology and Optoelectronics, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Michał Olewniczak
- Gdańsk University of Technology, Faculty of Chemistry, Department of Physical Chemistry, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Krzysztof Bojarski
- Gdańsk University of Technology, Faculty of Chemistry, Department of Physical Chemistry, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Jacek Czub
- Gdańsk University of Technology, Faculty of Chemistry, Department of Physical Chemistry, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Robert Bogdanowicz
- Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Department of Metrology and Optoelectronics, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
2
|
Mohammadifar E, Gasbarri M, Dimde M, Nie C, Wang H, Povolotsky TL, Kerkhoff Y, Desmecht D, Prevost S, Zemb T, Ludwig K, Stellacci F, Haag R. Supramolecular Architectures of Dendritic Polymers Provide Irreversible Inhibitor to Block Viral Infection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2408294. [PMID: 39344918 DOI: 10.1002/adma.202408294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/20/2024] [Indexed: 10/01/2024]
Abstract
In Nature, most known objects can perform their functions only when in supramolecular self-assembled from, e.g. protein complexes and cell membranes. Here, a dendritic polymer is presented that inhibits severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with an irreversible (virucidal) mechanism only when self-assembled into a Two-dimmensional supramolecular polymer (2D-SupraPol). Monomeric analogs of the dendritic polymer can only inhibit SARS-CoV-2 reversibly, thus allowing for the virus to regain infectivity after dilution. Upon assembly, 2D-SupraPol shows a remarkable half-inhibitory concentration (IC50 30 nM) in vitro and in vivo in a Syrian Hamster model has a good efficacy. Using cryo-TEM, it is shown that the 2D-SupraPol has a controllable lateral size that can be tuned by adjusting the pH and use small angle X-ray and neutron scattering to unveil the architecture of the supramolecular assembly. This functional 2D-SupraPol, and its supramolecular architecture are proposed, as a prophylaxis nasal spray to inhibit the virus interaction with the respiratory tract.
Collapse
Affiliation(s)
- Ehsan Mohammadifar
- Institut für Chemie und Biochemie Freie Universität Berlin, Takustr 3, 14195, Berlin, Germany
| | - Matteo Gasbarri
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Mathias Dimde
- Forschungszentrum für Elektronenmikroskopie und Gerätezentrum BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Chuanxiong Nie
- Institut für Chemie und Biochemie Freie Universität Berlin, Takustr 3, 14195, Berlin, Germany
| | - Heyun Wang
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Tatyana L Povolotsky
- Institut für Chemie und Biochemie Freie Universität Berlin, Takustr 3, 14195, Berlin, Germany
| | - Yannic Kerkhoff
- Forschungszentrum für Elektronenmikroskopie und Gerätezentrum BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Daniel Desmecht
- Animal Pathology, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Sart-Tilman B43, Liège, 4000, Belgium
| | - Sylvain Prevost
- Institut Laue-Langevin - The European Neutron Source, 71 avenue des Martyrs - CS 20156 38042, Grenoble, cedex 9, France
| | - Thomas Zemb
- ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Bagnols-sur-Ceze, 30207, France
| | - Kai Ludwig
- Forschungszentrum für Elektronenmikroskopie und Gerätezentrum BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Francesco Stellacci
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Rainer Haag
- Institut für Chemie und Biochemie Freie Universität Berlin, Takustr 3, 14195, Berlin, Germany
| |
Collapse
|
3
|
Khosravani N, Ahmadi V, Kakanejadifard A, Adeli M. Thermoresponsive and antibacterial two-dimensional polyglycerol- interlocked-polynipam for targeted drug delivery. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2022:1-11. [PMID: 36196295 PMCID: PMC9523184 DOI: 10.1007/s40097-022-00514-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Two-dimensional polymeric networks are a new class of polymers with interesting physicochemical and biological properties. They promise a wide range of future biomedical applications including pathogen interactions, drug delivery, bioimaging, photothermal, and photodynamic therapy, owing to their unique features, such as high surface area and multivalent interactions at nano-biointerfaces. In this work, a thermosensitive two-dimensional polymeric network consisting poly(N-isopropylacrylamide) (pNIPAM) chains that are mechanically interlocked by a polyglycerol platform was synthesized and used for bacteria incapacitation. Two-dimensional hyperbranched polyglycerol (2D-hPG) was synthesized by a graphene-assisted strategy and used for encapsulation of azobisisobutyronitrile (AIBN). Radical polymerization of N-isopropylacrylamide by encapsulated AIBN resulted in thermoresponsive platforms with ~ 500 nm lateral size and 20-50 nm thickness. Due to its porous structure, 2D-PNPG was able to efficiently load antibiotics, such as tetracycline (TC) and amoxicillin (AMX). The rate of release of antibiotics from 2D-PNPG and the antibacterial activity of the system correlated with the variation of temperature as a result of the thermosensitivity of 2D-PNPG. This study shows that two-dimensional polymers are efficient platforms for future biomedical applications including drug delivery and bacteria incapacitation. Graphical abstract Thermoresponsive two-dimensional nanomaterials with the ability of loading therapeutic agents and antibacterial activity are synthesized and characterized.
Collapse
Affiliation(s)
- Nasim Khosravani
- Department of Chemistry, Faculty of Science, Lorestan University, Khoramabad, 68151-44316 Iran
| | - Vahid Ahmadi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Ali Kakanejadifard
- Department of Chemistry, Faculty of Science, Lorestan University, Khoramabad, 68151-44316 Iran
| | - Mohsen Adeli
- Department of Chemistry, Faculty of Science, Lorestan University, Khoramabad, 68151-44316 Iran
| |
Collapse
|
4
|
Pouyan P, Cherri M, Haag R. Polyglycerols as Multi-Functional Platforms: Synthesis and Biomedical Applications. Polymers (Basel) 2022; 14:polym14132684. [PMID: 35808728 PMCID: PMC9269438 DOI: 10.3390/polym14132684] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 02/07/2023] Open
Abstract
The remarkable and unique characteristics of polyglycerols (PG) have made them an attractive candidate for many applications in the biomedical and pharmaceutical fields. The presence of multiple hydroxy groups on the flexible polyether backbone not only enables the further modification of the PG structure but also makes the polymer highly water-soluble and results in excellent biocompatibility. In this review, the polymerization routes leading to PG with different architectures are discussed. Moreover, we discuss the role of these polymers in different biomedical applications such as drug delivery systems, protein conjugation, and surface modification.
Collapse
|
5
|
Rafiee Z, Omidi S. Modification of carbon-based nanomaterials by polyglycerol: recent advances and applications. RSC Adv 2021; 12:181-192. [PMID: 35424494 PMCID: PMC8978678 DOI: 10.1039/d1ra07554c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Hyperbranched polymers, a subclass of dendritic polymers, mimic nature's components such as trees and nerves. Hyperbranched polyglycerol (HPG) is a hyperbranched polyether with outstanding physicochemical properties, including high water-solubility and functionality, biocompatibility, and an antifouling feature. HPG has attracted great interest in the modification of different objects, in particular carbon-based nanomaterials. In this review, recent advances in the synthesis and application of HPG to modify carbon-based nanomaterials, including graphene, carbon nanotubes, fullerene, nanodiamonds, carbon dots, and carbon fibers, are reviewed.
Collapse
Affiliation(s)
- Zeinab Rafiee
- Department of Chemistry, Malayer University Malayer Iran
| | - Sakineh Omidi
- Shahid Beheshti University of Medical Sciences Tehran Iran +98-9181438542
| |
Collapse
|
6
|
Ahmadi V, Nie C, Mohammadifar E, Achazi K, Wedepohl S, Kerkhoff Y, Block S, Osterrieder K, Haag R. One-pot gram-scale synthesis of virucidal heparin-mimicking polymers as HSV-1 inhibitors. Chem Commun (Camb) 2021; 57:11948-11951. [PMID: 34671786 DOI: 10.1039/d1cc04703e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A straightforward and gram-scale synthesis method was developed to engineer highly sulfated hyperbranched polyglycerol bearing sulfated alkyl chains. The compounds with shorter alkyl chains showed multivalent virustatic inhibition against herpes simplex virus type 1 (HSV-1), similar to heparin. In contrast, the compound with the longest alkyl chains irreversibly inhibited the virus.
Collapse
Affiliation(s)
- Vahid Ahmadi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany.
| | - Chuanxiong Nie
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany.
| | - Ehsan Mohammadifar
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany.
| | - Katharina Achazi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany.
| | - Stefanie Wedepohl
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany.
| | - Yannic Kerkhoff
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany.
| | - Stephan Block
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany.
| | - Klaus Osterrieder
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany.
| |
Collapse
|
7
|
Seifi T, Reza Kamali A. Antiviral performance of graphene-based materials with emphasis on COVID-19: A review. MEDICINE IN DRUG DISCOVERY 2021; 11:100099. [PMID: 34056572 PMCID: PMC8151376 DOI: 10.1016/j.medidd.2021.100099] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease-2019 has been one of the most challenging global epidemics of modern times with a large number of casualties combined with economic hardships across the world. Considering that there is still no definitive cure for the recent viral crisis, this article provides a review of nanomaterials with antiviral activity, with an emphasis on graphene and its derivatives, including graphene oxide, reduced graphene oxide and graphene quantum dots. The possible interactions between surfaces of such nanostructured materials with coronaviruses are discussed. The antiviral mechanisms of graphene materials can be related to events such as the inactivation of virus and/or the host cell receptor, electrostatic trapping and physico-chemical destruction of viral species. These effects can be enhanced by functionalization and/or decoration of carbons with species that enhances graphene-virus interactions. The low-cost and large-scale preparation of graphene materials with enhanced antiviral performances is an interesting research direction to be explored.
Collapse
Affiliation(s)
- Tahereh Seifi
- Energy and Environmental Materials Research Centre (E2MC), School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Ali Reza Kamali
- Energy and Environmental Materials Research Centre (E2MC), School of Metallurgy, Northeastern University, Shenyang 110819, China
| |
Collapse
|