1
|
Guan Q, Hou S, Wang K, Li L, Cheng Y, Zheng M, Liu C, Zhao X, Zhou J, Li P, Niu X, Wang L, Fan Y. Micropore structure engineering of injectable granular hydrogels via controlled liquid-liquid phase separation facilitates regenerative wound healing in mice and pigs. Biomaterials 2025; 318:123192. [PMID: 39965423 DOI: 10.1016/j.biomaterials.2025.123192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/22/2025] [Accepted: 02/13/2025] [Indexed: 02/20/2025]
Abstract
Biomaterials can play a crucial role in facilitating tissue regeneration, but their application is often limited by that they induce scarring rather than complete tissue restoration. Hydrogels with microporous architectures, engineered via 3D printing techniques or particle packing (granular hydrogels), have shown promise in providing a conducive microenvironment for cellular infiltration and favorable immune response. Nonetheless, there is a notably lacking in studies that demonstrate scarless regeneration solely through pore structure engineering. In this study, we demonstrate that optimizing micropore structure of injectable granular hydrogels via controlled liquid-liquid phase separation facilitates scarless wound healing. The building block particles are fabricated by precisely controlling the separation kinetics of two immiscible aqueous phases (gelling and porogenic) and timely arresting phase separation, to generate bicontinuous, hollow or closed porous structure. Employing a murine model, we reveal that the optimized pore structure significantly facilitates mature vascular network boosts pro-regenerative macrophage polarization (M2/M1) and CD4+/Foxp3+ regulatory T cells, culminating in scarless skin regeneration enriched with hair follicles. Moreover, our hydrogels outperform the clinical gold-standard collagen/proteoglycan scaffolds in a porcine model, showcasing superior cell infiltration, epidermal integration, and dermal regeneration. Micropore structure engineering of biomaterials presents a promising and biologics free pathway for tissue regeneration.
Collapse
Affiliation(s)
- Qifeng Guan
- Innovation Center for Medical Engineering & Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, 311115, Hangzhou, China; Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Sen Hou
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing, 100191, China.
| | - Kai Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Linhao Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yating Cheng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Mingxia Zheng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Chen Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Xinbin Zhao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Jin Zhou
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Ping Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Xufeng Niu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Lizhen Wang
- Innovation Center for Medical Engineering & Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, 311115, Hangzhou, China; Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yubo Fan
- Innovation Center for Medical Engineering & Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, 311115, Hangzhou, China; Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing, 100191, China.
| |
Collapse
|
2
|
Rong Y, Zhao Z, Lv D, Yin R, Lu L, Xu Z, Ren L, Zhao P, Hu Z, Tao J, Cao X, Tang B. Tailored Metal-Phenolic Network with Hypoglycemic Polyphenol for Promoting Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40025657 DOI: 10.1021/acsami.4c22878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Diabetic foot ulcer is a common and serious complication of diabetes, with a high risk of amputation, recurrence, and mortality. Aiming at the characteristics of diabetic wounds and based on the result of network pharmacology, a tailored ligand cyanidin-3-O-glucoside (C3G) was selected to construct a metal-phenolic network (CM) through the self-assembly reaction with manganese ions. CM integrates the pharmacological advantages of C3G in antidiabetes and the anti-inflammatory activity of metal-phenolic networks by simulating the metal coordination structure of antioxidant enzymes. Reasonably, the wound areas of db/db mice with CM treatment rapidly decreased to 3.06% at day 14, accompanied by the improvement of tissue microenvironment. Mechanism investigation indicated that CM can not only reduce inflammation activation and immunoreaction but also increase gene transcripts in glucose metabolism, response to hypoxia, and angiogenesis. It is believed that this work opens a way for designing disease-specific metal-phenolic networks, and the CM with high biosafety promotes the clinical treatment of diabetic wounds.
Collapse
Affiliation(s)
- Yanchao Rong
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zirui Zhao
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Dongming Lv
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Rong Yin
- Department of Dermatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Ling Lu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhongye Xu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Lei Ren
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Peng Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhicheng Hu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jia Tao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaoling Cao
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Bing Tang
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
3
|
Rodriguez Ayala A, Christ G, Griffin D. Cell-scale porosity minimizes foreign body reaction and promotes innervated myofiber formation after volumetric muscle loss. NPJ Regen Med 2025; 10:12. [PMID: 40025057 PMCID: PMC11873130 DOI: 10.1038/s41536-025-00395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/29/2025] [Indexed: 03/04/2025] Open
Abstract
Volumetric muscle loss (VML) from severe traumatic injuries results in irreversible loss of contractile tissue and permanent functional deficits. These injuries resist endogenous healing and clinical treatment due to excessive inflammation, leading to fibrosis, muscle fiber denervation, and impaired regeneration. Using a rodent tibialis anterior VML model, this study demonstrates microporous annealed particle (MAP) hydrogel scaffolds as a biomaterial platform for improved muscle regeneration. Unlike bulk (nanoporous) hydrogel scaffolds, MAP scaffolds enhance integration by preventing a foreign body reaction, slowing implant degradation, and promoting regenerative macrophage polarization. Cell migration and angiogenesis occur throughout the implant before MAP scaffold degradation, with muscle fibers and neuromuscular junctions forming within the scaffolds. These structures continue developing as the implant degrades, suggesting MAP hydrogel scaffolds offer a promising therapeutic approach for VML injuries.
Collapse
Affiliation(s)
- Areli Rodriguez Ayala
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - George Christ
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA.
| | - Donald Griffin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
4
|
Qian Y, Ding J, Zhao R, Song Y, Yoo J, Moon H, Koo S, Kim JS, Shen J. Intrinsic immunomodulatory hydrogels for chronic inflammation. Chem Soc Rev 2025; 54:33-61. [PMID: 39499495 DOI: 10.1039/d4cs00450g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The immune system plays a pivotal role in maintaining physiological homeostasis and influencing disease processes. Dysregulated immune responses drive chronic inflammation, which in turn results in a range of diseases that are among the leading causes of death globally. Traditional immune interventions, which aim to regulate either insufficient or excessive inflammation, frequently entail lifelong comorbidities and the risk of severe side effects. In this context, intrinsic immunomodulatory hydrogels, designed to precisely control the local immune microenvironment, have recently attracted increasing attention. In particular, these advanced hydrogels not only function as delivery mechanisms but also actively engage in immune modulation, optimizing interactions with the immune system for enhanced tissue repair, thereby providing a sophisticated strategy for managing chronic inflammation. In this tutorial review, we outline key elements of chronic inflammation and subsequently explore the strategic design principles of intrinsic immunomodulatory hydrogels based on these elements. Finally, we examine the challenges and prospects of such immunomodulatory hydrogels, which are expected to inspire further preclinical research and clinical translation in addressing chronic inflammation.
Collapse
Affiliation(s)
- Yuna Qian
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China.
| | - Jiayi Ding
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Institute of Imaging Diagnosis and Minimally Invasive Intervention, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Rui Zhao
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Yang Song
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610065, China
| | - Jiyoung Yoo
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Huiyeon Moon
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Seyoung Koo
- Department of Chemical and Molecular Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Korea.
| | - Jong Seung Kim
- Department of Chemical and Molecular Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Korea.
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China.
| |
Collapse
|
5
|
Gansevoort M, Oostendorp C, Bouwman LF, Tiemessen DM, Geutjes PJ, Feitz WFJ, van Kuppevelt TH, Daamen WF. Collagen-Heparin-FGF2-VEGF Scaffolds Induce a Regenerative Gene Expression Profile in a Fetal Sheep Wound Model. Tissue Eng Regen Med 2024; 21:1173-1187. [PMID: 39215940 PMCID: PMC11589036 DOI: 10.1007/s13770-024-00667-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/05/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The developmental abnormality spina bifida is hallmarked by missing tissues (e.g. skin) and exposure of the spinal cord to the amniotic fluid, which can negatively impact neurological development. Surgical closure of the skin in utero limits neurological damage, but in large defects this results in scarring and contractures. Stimulating skin regeneration in utero would greatly benefit treatment outcome. Previously, we demonstrated that a porous type I collagen (COL) scaffold, functionalized with heparin (HEP), fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor (VEGF) (COL-HEP/GF) improved pre- and postnatal skin regeneration in a fetal sheep full thickness wound model. In this study we uncover the early events associated with enhanced skin regeneration. METHODS We investigated the gene expression profiles of healing fetal skin wounds two weeks after implantation of the COL(-HEP/GF) scaffolds. Using laser dissection and microarrays, differentially expressed genes (DEG) were identified in the epidermis and dermis between untreated wounds, COL-treated wounds and wounds treated with COL-HEP/GF. Biological processes were identified using gene enrichment analysis and DEG were clustered using protein-protein-interaction networks. RESULTS COL-HEP/GF influences various interesting biological processes involved in wound healing. Although the changes were modest, using protein-protein-interaction networks we identified a variety of clustered genes that indicate COL-HEP/GF induces a tight but subtle control over cell signaling and extracellular matrix organization. CONCLUSION These data offer a novel perspective on the key processes involved in (fetal) wound healing, where a targeted and early interference during wound healing can result in long-term enhanced effects on skin regeneration.
Collapse
Affiliation(s)
- Merel Gansevoort
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Corien Oostendorp
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
- HAN University of Applied Sciences, Arnhem, The Netherlands
| | - Linde F Bouwman
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
- Leiden University Medical Center, Leiden, The Netherlands
| | - Dorien M Tiemessen
- Department of Urology, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Paul J Geutjes
- Department of Urology, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
- Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Wout F J Feitz
- Department of Urology, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Toin H van Kuppevelt
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Willeke F Daamen
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Tanner GI, Schiltz L, Narra N, Figueiredo ML, Qazi TH. Granular Hydrogels Improve Myogenic Invasion and Repair after Volumetric Muscle Loss. Adv Healthc Mater 2024; 13:e2303576. [PMID: 38329892 DOI: 10.1002/adhm.202303576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/26/2023] [Indexed: 02/10/2024]
Abstract
Skeletal muscle injuries including volumetric muscle loss (VML) lead to excessive tissue scarring and permanent functional disability. Despite its high prevalence, there is currently no effective treatment for VML. Bioengineering interventions such as biomaterials that fill the VML defect to support cell and tissue growth are a promising therapeutic strategy. However, traditional biomaterials developed for this purpose lack the pore features needed to support cell infiltration. The present study investigates for the first time, the impact of granular hydrogels on muscle repair - hypothesizing that their flowability will permit conformable filling of the defect site and their inherent porosity will support the invasion of native myogenic cells, leading to effective muscle repair. Small and large microparticle fragments are prepared from photocurable hyaluronic acid polymer via extrusion fragmentation and facile size sorting. In assembled granular hydrogels, particle size and degree of packing significantly influence pore features, rheological behavior, and injectability. Using a mouse model of VML, it is demonstrated that, in contrast to bulk hydrogels, granular hydrogels support early-stage (satellite cell invasion) and late-stage (myofiber regeneration) muscle repair processes. Together, these results highlight the promising potential of injectable and porous granular hydrogels in supporting endogenous repair after severe muscle injury.
Collapse
Affiliation(s)
- Gabrielle I Tanner
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Leia Schiltz
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Niharika Narra
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Marxa L Figueiredo
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Taimoor H Qazi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
7
|
Niu X, Xiao S, Huang R, Huang D, Aifantis KE, Yu H, Xue C, Yin L, Dunne N, Li X. ZIF-8-modified hydrogel sequentially delivers angiogenic and osteogenic growth factors to accelerate vascularized bone regeneration. J Control Release 2024; 374:154-170. [PMID: 39127448 DOI: 10.1016/j.jconrel.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
To realize high-quality vascularized bone regeneration, we developed a multifunctional hydrogel (SHPP-ZB) by incorporating BMP-2@ZIF-8/PEG-NH2 nanoparticles (NPs) into a sodium alginate/hydroxyapatite/polyvinyl alcohol hydrogel loaded with PDGF-BB, allowing for the sequential release of angiogenic and osteogenic growth factors (GFs) during bone repair. ZIF-8 served as a protective host for BMP-2 from degradation, ensuring high encapsulation efficiency and long-term bioactivity. The SHPP-ZB hydrogel exhibited enhanced mechanical strength and injectability, making it suitable for complex bone defects. It provided a swelling interface for tissue interlocking and the early release of Zn2+ and tannin acid (TA) to exert antioxidant and antibacterial effects, followed by the sequential release of angiogenic and osteogenic GFs to promote high-quality vascularized bone regeneration. In vitro experiments demonstrated the superior angiogenic and osteogenic properties of SHPP-ZB compared to other groups. In vivo experiments indicated that the sequential delivery of GFs via SHPP-ZB hydrogel could improve vascularized bone regeneration. Further, RNA sequencing analysis of regenerative bone tissue revealed that SHPP-ZB hydrogel promoted vascularized bone regeneration by regulating JUN, MAPK, Wnt, and calcium signaling pathways in vivo. This study presented a promising approach for efficient vascularized bone regeneration in large-scale bone defects.
Collapse
Affiliation(s)
- Xiaolian Niu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Shengzhao Xiao
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, China.
| | - Ruoyu Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Katerina E Aifantis
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Han Yu
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Chao Xue
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Lan Yin
- Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Nicholas Dunne
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, Dublin 9, Ireland
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
8
|
Roosa CA, Lempke SL, Hannan RT, Nicklow E, Sturek JM, Ewald SE, Griffin D. Conjugation of IL-33 to Microporous Annealed Particle Scaffolds Enhances Type 2-Like Immune Responses In Vitro and In Vivo. Adv Healthc Mater 2024; 13:e2400249. [PMID: 38648258 PMCID: PMC11461124 DOI: 10.1002/adhm.202400249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/11/2024] [Indexed: 04/25/2024]
Abstract
The inflammatory foreign body response (FBR) is the main driver of biomaterial implant failure. Current strategies to mitigate the onset of a FBR include modification of the implant surface, release of anti-inflammatory drugs, and cell-scale implant porosity. The microporous annealed particle (MAP) scaffold platform is an injectable, porous biomaterial composed of individual microgels, which are annealed in situ to provide a structurally stable scaffold with cell-scale microporosity. MAP scaffold does not induce a discernible foreign body response in vivo and, therefore, can be used a "blank canvas" for biomaterial-mediated immunomodulation. Damage associated molecular patterns (DAMPs), such as IL-33, are potent regulators of type 2 immunity that play an important role in tissue repair. In this manuscript, IL-33 is conjugated to the microgel building-blocks of MAP scaffold to generate a bioactive material (IL33-MAP) capable of stimulating macrophages in vitro via a ST-2 receptor dependent pathway and modulating immune cell recruitment to the implant site in vivo, which indicates an upregulation of a type 2-like immune response and downregulation of a type 1-like immune response.
Collapse
Affiliation(s)
- Colleen A. Roosa
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Charlottesville, Virginia 22903, USA
| | - Samantha L. Lempke
- Department of Microbiology, Immunology, and Cancer Biology, Beirne B. Carter Immunology Center, University of Virginia, 200 Jeanette Lancaster Way, Charlottesville, Virginia 22903, USA
| | - Riley T. Hannan
- Department of Medicine, Pulmonary and Critical Care, University of Virginia, 1221 Lee St, Charlottesville, Virginia 22903, USA
| | - Ethan Nicklow
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Charlottesville, Virginia 22903, USA
| | - Jeffrey M. Sturek
- Department of Medicine, Pulmonary and Critical Care, University of Virginia, 1221 Lee St, Charlottesville, Virginia 22903, USA
| | - Sarah E. Ewald
- Department of Microbiology, Immunology, and Cancer Biology, Beirne B. Carter Immunology Center, University of Virginia, 200 Jeanette Lancaster Way, Charlottesville, Virginia 22903, USA
| | - Donald Griffin
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Charlottesville, Virginia 22903, USA
| |
Collapse
|
9
|
Widener AE, Roberts A, Phelps EA. Granular Hydrogels for Harnessing the Immune Response. Adv Healthc Mater 2024; 13:e2303005. [PMID: 38145369 PMCID: PMC11196388 DOI: 10.1002/adhm.202303005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/13/2023] [Indexed: 12/26/2023]
Abstract
This review aims to understand the current progress in immune-instructive granular hydrogels and identify the key features used as immunomodulatory strategies. Published work is systematically reviewed and relevant information about granular hydrogels used throughout these studies is collected. The base polymer, microgel generation technique, polymer crosslinking chemistry, particle size and shape, annealing strategy, granular hydrogel stiffness, pore size and void space, degradability, biomolecule presentation, and drug release are cataloged for each work. Several granular hydrogel parameters used for immune modulation: porosity, architecture, bioactivity, drug release, cell delivery, and modularity, are identified. The authors found in this review that porosity is the most significant factor influencing the innate immune response to granular hydrogels, while incorporated bioactivity is more significant in influencing adaptive immune responses. Here, the authors' findings and summarized results from each section are presented and suggestions are made for future studies to better understand the benefits of using immune-instructive granular hydrogels.
Collapse
Affiliation(s)
- Adrienne E Widener
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr., Gainesville, 32611, USA
| | - Abilene Roberts
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr., Gainesville, 32611, USA
| | - Edward A Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr., Gainesville, 32611, USA
| |
Collapse
|
10
|
Emiroglu DB, Singh A, Marco-Dufort B, Speck N, Rivano PG, Oakey JS, Nakatsuka N, deMello AJ, Labouesse C, Tibbitt MW. Granular Biomaterials as Bioactive Sponges for the Sequestration and Release of Signaling Molecules. Adv Healthc Mater 2024; 13:e2400800. [PMID: 38808536 DOI: 10.1002/adhm.202400800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/07/2024] [Indexed: 05/30/2024]
Abstract
A major challenge for the regeneration of chronic wounds is an underlying dysregulation of signaling molecules, including inflammatory cytokines and growth factors. To address this, it is proposed to use granular biomaterials composed of jammed microgels, to enable the rapid uptake and delivery of biomolecules, and provide a strategy to locally sequester and release biomolecules. Sequestration assays on model biomolecules of different sizes demonstrate that granular hydrogels exhibit faster transport than comparable bulk hydrogels due to enhanced surface area and decreased diffusion lengths. To demonstrate the potential of modular granular hydrogels to modulate local biomolecule concentrations, microgel scaffolds are engineered that can simultaneously sequester excess pro-inflammatory factors and release pro-healing factors. To target specific biomolecules, microgels are functionalized with affinity ligands that bind either to interleukin 6 (IL-6) or to vascular endothelial growth factor A (VEGF-A). Finally, disparate microgels are combined into a single granular biomaterial for simultaneous sequestration of IL-6 and release of VEGF-A. Overall, the potential of modular granular hydrogels is demonstrated to locally tailor the relative concentrations of pro- and anti-inflammatory factors.
Collapse
Affiliation(s)
- Dilara Börte Emiroglu
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
- deMello Laboratory, Department of Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg, 1-5/10, Zurich, 8093, Switzerland
| | - Apoorv Singh
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| | - Bruno Marco-Dufort
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| | - Noël Speck
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| | - Pier Giuseppe Rivano
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| | - John S Oakey
- Department of Chemical & Biological Engineering, University of Wyoming, 1000 E. University Ave, Laramie, WY, 82071, USA
| | - Nako Nakatsuka
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 37/39, Zurich, 8092, Switzerland
| | - Andrew J deMello
- deMello Laboratory, Department of Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg, 1-5/10, Zurich, 8093, Switzerland
| | - Céline Labouesse
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| |
Collapse
|
11
|
Xuan L, Hou Y, Liang L, Wu J, Fan K, Lian L, Qiu J, Miao Y, Ravanbakhsh H, Xu M, Tang G. Microgels for Cell Delivery in Tissue Engineering and Regenerative Medicine. NANO-MICRO LETTERS 2024; 16:218. [PMID: 38884868 PMCID: PMC11183039 DOI: 10.1007/s40820-024-01421-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/26/2024] [Indexed: 06/18/2024]
Abstract
Microgels prepared from natural or synthetic hydrogel materials have aroused extensive attention as multifunctional cells or drug carriers, that are promising for tissue engineering and regenerative medicine. Microgels can also be aggregated into microporous scaffolds, promoting cell infiltration and proliferation for tissue repair. This review gives an overview of recent developments in the fabrication techniques and applications of microgels. A series of conventional and novel strategies including emulsification, microfluidic, lithography, electrospray, centrifugation, gas-shearing, three-dimensional bioprinting, etc. are discussed in depth. The characteristics and applications of microgels and microgel-based scaffolds for cell culture and delivery are elaborated with an emphasis on the advantages of these carriers in cell therapy. Additionally, we expound on the ongoing and foreseeable applications and current limitations of microgels and their aggregate in the field of biomedical engineering. Through stimulating innovative ideas, the present review paves new avenues for expanding the application of microgels in cell delivery techniques.
Collapse
Affiliation(s)
- Leyan Xuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yingying Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Lu Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Jialin Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Kai Fan
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China
| | - Liming Lian
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jianhua Qiu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yingling Miao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Hossein Ravanbakhsh
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA.
| | - Mingen Xu
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China.
| | - Guosheng Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| |
Collapse
|
12
|
Pfaff BN, Flanagan CC, Griffin DR. Microporous Annealed Particle (MAP) Scaffold Pore Size Influences Mesenchymal Stem Cell Metabolism and Proliferation Without Changing CD73, CD90, and CD105 Expression Over Two Weeks. Adv Biol (Weinh) 2024; 8:e2300482. [PMID: 37955859 PMCID: PMC10922193 DOI: 10.1002/adbi.202300482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/25/2023] [Indexed: 11/14/2023]
Abstract
Scaffold pore architecture is shown to influence stem cell fate through various avenues. It is demonstrated that microporous annealed particle (MAP) microgel diameter can be tuned to control scaffold pore size and, in turn, modulate mesenchymal stem cell (MSC) survivability, proliferation, metabolism, and migration, thereby enhancing bioactivity and guiding future applications of MAP for regenerative medicine.
Collapse
Affiliation(s)
- Blaise N Pfaff
- University of Virginia, 415 Lane Road, Charlottesville, VA, 22903, USA
| | - Clare C Flanagan
- University of Virginia, 415 Lane Road, Charlottesville, VA, 22903, USA
| | - Donald R Griffin
- University of Virginia, 415 Lane Road, Charlottesville, VA, 22903, USA
- Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA, 22903-3390, USA
| |
Collapse
|
13
|
Ataie Z, Horchler S, Jaberi A, Koduru SV, El-Mallah JC, Sun M, Kheirabadi S, Kedzierski A, Risbud A, Silva ARAE, Ravnic DJ, Sheikhi A. Accelerating Patterned Vascularization Using Granular Hydrogel Scaffolds and Surgical Micropuncture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307928. [PMID: 37824280 PMCID: PMC11699544 DOI: 10.1002/smll.202307928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Indexed: 10/14/2023]
Abstract
Bulk hydrogel scaffolds are common in reconstructive surgery. They allow for the staged repair of soft tissue loss by providing a base for revascularization. Unfortunately, they are limited by both slow and random vascularization, which may manifest as treatment failure or suboptimal repair. Rapidly inducing patterned vascularization within biomaterials has profound translational implications for current clinical treatment paradigms and the scaleup of regenerative engineering platforms. To address this long-standing challenge, a novel microsurgical approach and granular hydrogel scaffold (GHS) technology are co-developed to hasten and pattern microvascular network formation. In surgical micropuncture (MP), targeted recipient blood vessels are perforated using a microneedle to accelerate cell extravasation and angiogenic outgrowth. By combining MP with an adjacent GHS with precisely tailored void space architecture, microvascular pattern formation as assessed by density, diameter, length, and intercapillary distance is rapidly guided. This work opens new translational opportunities for microvascular engineering, advancing reconstructive surgery, and regenerative medicine.
Collapse
Affiliation(s)
- Zaman Ataie
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Summer Horchler
- Division of Plastic Surgery, Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
| | - Arian Jaberi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Srinivas V Koduru
- Division of Plastic Surgery, Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
| | - Jessica C El-Mallah
- Division of Plastic Surgery, Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
| | - Mingjie Sun
- Division of Plastic Surgery, Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
| | - Sina Kheirabadi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Alexander Kedzierski
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Aneesh Risbud
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | | | - Dino J Ravnic
- Division of Plastic Surgery, Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Amir Sheikhi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
14
|
Ding P, Ding X, Li J, Guo W, Okoro OV, Mirzaei M, Sun Y, Jiang G, Shavandi A, Nie L. Facile preparation of self-healing hydrogels based on chitosan and PVA with the incorporation of curcumin-loaded micelles for wound dressings. Biomed Mater 2024; 19:025021. [PMID: 38215487 DOI: 10.1088/1748-605x/ad1df9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/12/2024] [Indexed: 01/14/2024]
Abstract
The increased demand for improved strategies for wound healing has, in recent years, motivated the development of multifunctional hydrogels with favorable bio-compatibility and antibacterial properties. To this regard, the current study presented the design of a novel self-healing composite hydrogel that could perform as wound dressing for the promotion of wound healing. The composite hydrogels were composed of polyvinyl alcohol (PVA), borax and chitosan functionalized with sialic acid (SA-CS) and curcumin loaded pluronic F127 micelles. The hydrogels were formed through the boronic ester bond formation between PVA, SA-CS and borax under physiological conditions and demonstrated adjustable mechanical properties, gelation kinetics and antibacterial properties. When incubating with NIH3T3 cells, the hydrogels also demonstrated good biocompatibility. These aspects offer a promising foundation for their prospective applications in developing clinical materials for wound healing.
Collapse
Affiliation(s)
- Peng Ding
- School of Life Science, Xinyang Normal University, Xinyang 464000, People's Republic of China
- Tea Plant Biology Key Laboratory of Henan Province, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Xiaoyue Ding
- School of Life Science, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Jingyu Li
- School of Life Science, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Wei Guo
- School of Life Science, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Oseweuba Valentine Okoro
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles-BioMatter unit, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Mahta Mirzaei
- Centre for Food Chemistry and Technology, Ghent University Global Campus, Incheon, Republic of Korea
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, geb. A, B-9000 Ghent, Belgium
| | - Yanfang Sun
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Guohua Jiang
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
- Centre for Food Chemistry and Technology, Ghent University Global Campus, Incheon, South Korea
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles-BioMatter unit, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Lei Nie
- School of Life Science, Xinyang Normal University, Xinyang 464000, People's Republic of China
- Tea Plant Biology Key Laboratory of Henan Province, Xinyang Normal University, Xinyang 464000, People's Republic of China
| |
Collapse
|
15
|
Lu G, Li X, Wang P, Li X, Wang Y, Zhu J, Ronca A, D'Amora U, Liu W, Hui X. Polysaccharide-Based Composite Hydrogel with Hierarchical Microstructure for Enhanced Vascularization and Skull Regeneration. Biomacromolecules 2023; 24:4970-4988. [PMID: 37729544 DOI: 10.1021/acs.biomac.3c00655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Critical-size skull defects caused by trauma, infection, and tumor resection raise great demands for efficient bone substitutes. Herein, a hybrid cross-linked hierarchical microporous hydrogel scaffold (PHCLS) was successfully assembled by a multistep procedure, which involved (i) the preparation of poly(lactic-co-glycolic)/nanohydroxyapatite (PLGA-HAP) porous microspheres, (ii) embedding the spheres in a solution of dopamine-modified hyaluronic acid and collagen I (Col I) and cross-linking via dopamine polyphenols binding to (i) Col I amino groups (via Michael addition) and (ii) PLGA-HAP (via calcium ion chelation). The introduction of PLGA-HAP not only improved the diversity of pore size and pore communication inside the matrix but also greatly enhanced the compressive strength (5.24-fold, 77.5 kPa) and degradation properties to construct a more stable mechanical structure. In particular, the PHCLS (200 mg, nHAP) promoted the proliferation, infiltration, and angiogenic differentiation of bone marrow mesenchymal stem cells in vitro, as well as significant ectopic angiogenesis and mineralization with a storage modulus enhancement of 2.5-fold after 30 days. Meanwhile, the appropriate matrix microenvironment initiated angiogenesis and early osteogenesis by accelerating endogenous stem cell recruitment in situ. Together, the PHCLS allowed substantial skull reconstruction in the rabbit cranial defect model, achieving 85.2% breaking load strength and 84.5% bone volume fractions in comparison to the natural cranium, 12 weeks after implantation. Overall, this study reveals that the hierarchical microporous hydrogel scaffold provides a promising strategy for skull defect treatment.
Collapse
Affiliation(s)
- Gonggong Lu
- Department of Neurosurgery, West China Hospital, Sichuan University, 37# Guoxue Lane, Chengdu, Sichuan 610041, P.R. China
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P.R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P.R. China
| | - Xiang Li
- Department of Neurosurgery, West China Hospital, Sichuan University, 37# Guoxue Lane, Chengdu, Sichuan 610041, P.R. China
| | - Peilei Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P.R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P.R. China
| | - Xing Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P.R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P.R. China
| | - Yuxiang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P.R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P.R. China
| | - Jiayi Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P.R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan 610064, P.R. China
| | - Alfredo Ronca
- National Research Council, Institute of Polymers, Composites and Biomaterials, Naples 80125, Italy
| | - Ugo D'Amora
- National Research Council, Institute of Polymers, Composites and Biomaterials, Naples 80125, Italy
| | - Wenke Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, 37# Guoxue Lane, Chengdu, Sichuan 610041, P.R. China
| | - Xuhui Hui
- Department of Neurosurgery, West China Hospital, Sichuan University, 37# Guoxue Lane, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
16
|
Sharda D, Kaur P, Choudhury D. Protein-modified nanomaterials: emerging trends in skin wound healing. DISCOVER NANO 2023; 18:127. [PMID: 37843732 PMCID: PMC10579214 DOI: 10.1186/s11671-023-03903-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/23/2023] [Indexed: 10/17/2023]
Abstract
Prolonged inflammation can impede wound healing, which is regulated by several proteins and cytokines, including IL-4, IL-10, IL-13, and TGF-β. Concentration-dependent effects of these molecules at the target site have been investigated by researchers to develop them as wound-healing agents by regulating signaling strength. Nanotechnology has provided a promising approach to achieve tissue-targeted delivery and increased effective concentration by developing protein-functionalized nanoparticles with growth factors (EGF, IGF, FGF, PDGF, TGF-β, TNF-α, and VEGF), antidiabetic wound-healing agents (insulin), and extracellular proteins (keratin, heparin, and silk fibroin). These molecules play critical roles in promoting cell proliferation, migration, ECM production, angiogenesis, and inflammation regulation. Therefore, protein-functionalized nanoparticles have emerged as a potential strategy for improving wound healing in delayed or impaired healing cases. This review summarizes the preparation and applications of these nanoparticles for normal or diabetic wound healing and highlights their potential to enhance wound healing.
Collapse
Affiliation(s)
- Deepinder Sharda
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Pawandeep Kaur
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Diptiman Choudhury
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
- Thapar Institute of Engineering and Technology-Virginia Tech Centre of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
17
|
Samie A, Alavian H, Vafaei-Pour Z, Mohammadpour AH, Jafarian AH, Danesh NM, Abnous K, Taghdisi SM. Accelerated Wound Healing with a Diminutive Scar through Cocrystal Engineered Curcumin. Mol Pharm 2023; 20:5090-5107. [PMID: 37624646 DOI: 10.1021/acs.molpharmaceut.3c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Pharmaceutical cocrystals ( Regulatory Classification of Pharmaceutical Co-Crystals Guidance for Industry; Food and Drug Administration, 2018) are crystalline solids produced through supramolecular chemistry to modulate the physicochemical properties of active pharmaceutical ingredients (APIs). Despite their extensive development in interdisciplinary sciences, this is a pioneering study on the efficacy of pharmaceutical cocrystals in wound healing and scar reducing. Curcumin-pyrogallol cocrystal (CUR-PYR) was accordingly cherry-picked since its superior physicochemical properties adequately compensate for limitative drawbacks of curcumin (CUR). CUR-PYR has been synthesized by a liquid-assisted grinding (LAG) method and characterized via FT-IR, DSC, and PXRD analyses. In vitro antibacterial study indicated that CUR-PYR cocrystal, CUR+PYR physical mixture (PM), and PYR are more effective against both Gram-negative (Pseudomonas aeruginosa and Escherichia coli) and Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacteria in comparison with CUR. In vitro results also demonstrated that the viability of HDF and NIH-3T3 cells treated with CUR-PYR were improved more than those received CUR which is attributed to the effect of PYR in the form of cocrystal. The wound healing process has been monitored through a 15 day in vivo experiment on 75 male rats stratified into six groups: five groups treated by CUR-PYR+Vaseline (CUR-PYR.ung), CUR+PYR+Vaseline (CUR+PYR.ung), CUR+Vaseline (CUR.ung), PYR+Vaseline (PYR.ung), and Vaseline (VAS) ointments and a negative control group of 0.9% sodium chloride solution (NS). It was revealed that the wounds under CUR-PYR.ung treatment closed by day 12 postsurgery, while the wounds in other groups failed to reach the complete closure end point until the end of the experiment. Surprisingly, a diminutive scar (3.89 ± 0.97% of initial wound size) was observed in the CUR-PYR.ung treated wounds by day 15 after injury, followed by corresponding values for PYR.ung (12.08 ± 2.75%), CUR+PYR.ung (13.89 ± 5.02%), CUR.ung (16.24 ± 6.39%), VAS (18.97 ± 6.89%), and NS (20.33 ± 5.77%). Besides, investigating histopathological parameters including inflammation, granulation tissue, re-epithelialization, and collagen deposition signified outstandingly higher ability of CUR-PYR cocrystal in wound healing than either of its two constituents separately or their simple PM. It was concluded that desired solubility of the prepared cocrystal was essentially responsible for accelerating wound closure and promoting tissue regeneration which yielded minimal scarring. This prototype research suggests a promising application of pharmaceutical cocrystals for the purpose of wound healing.
Collapse
Affiliation(s)
- Ali Samie
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Hoda Alavian
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Zeinab Vafaei-Pour
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Amir Hooshang Mohammadpour
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Science, Mashhad 9177948954, Iran
| | - Amir Hossein Jafarian
- Cancer and Molecular Research Center, Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Noor Mohammad Danesh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Khalil Abnous
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| |
Collapse
|
18
|
Luo P, Huang R, Wu Y, Liu X, Shan Z, Gong L, Deng S, Liu H, Fang J, Wu S, Wu X, Liu Q, Chen Z, Yeung KW, Qiao W, Chen S, Chen Z. Tailoring the multiscale mechanics of tunable decellularized extracellular matrix (dECM) for wound healing through immunomodulation. Bioact Mater 2023; 28:95-111. [PMID: 37250862 PMCID: PMC10209339 DOI: 10.1016/j.bioactmat.2023.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/31/2023] Open
Abstract
With the discovery of the pivotal role of macrophages in tissue regeneration through shaping the tissue immune microenvironment, various immunomodulatory strategies have been proposed to modify traditional biomaterials. Decellularized extracellular matrix (dECM) has been extensively used in the clinical treatment of tissue injury due to its favorable biocompatibility and similarity to the native tissue environment. However, most reported decellularization protocols may cause damage to the native structure of dECM, which undermines its inherent advantages and potential clinical applications. Here, we introduce a mechanically tunable dECM prepared by optimizing the freeze-thaw cycles. We demonstrated that the alteration in micromechanical properties of dECM resulting from the cyclic freeze-thaw process contributes to distinct macrophage-mediated host immune responses to the materials, which are recently recognized to play a pivotal role in determining the outcome of tissue regeneration. Our sequencing data further revealed that the immunomodulatory effect of dECM was induced via the mechnotrasduction pathways in macrophages. Next, we tested the dECM in a rat skin injury model and found an enhanced micromechanical property of dECM achieved with three freeze-thaw cycles significantly promoted the M2 polarization of macrophages, leading to superior wound healing. These findings suggest that the immunomodulatory property of dECM can be efficiently manipulated by tailoring its inherent micromechanical properties during the decellularization process. Therefore, our mechanics-immunomodulation-based strategy provides new insights into the development of advanced biomaterials for wound healing.
Collapse
Affiliation(s)
- Pu Luo
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Ruoxuan Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - You Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Xingchen Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Zhengjie Shan
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Li Gong
- Instrumental Analysis Research Center, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shudan Deng
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Haiwen Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Jinghan Fang
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518058, China
| | - Shiyu Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Xiayi Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Quan Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Zetao Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Kelvin W.K. Yeung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518058, China
| | - Wei Qiao
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Shoucheng Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Zhuofan Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| |
Collapse
|
19
|
Lowen JM, Bond GC, Griffin KH, Shimamoto NK, Thai VL, Leach JK. Multisized Photoannealable Microgels Regulate Cell Spreading, Aggregation, and Macrophage Phenotype through Microporous Void Space. Adv Healthc Mater 2023; 12:e2202239. [PMID: 36719946 PMCID: PMC10198868 DOI: 10.1002/adhm.202202239] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/06/2023] [Indexed: 02/02/2023]
Abstract
Microgels are an emerging platform for in vitro models and guiding cell fate due to their inherent porosity and tunability. This work describes a light-based technique for rapidly annealing microgels across a range of diameters. Utilizing 8-arm poly(ethylene) glycol-vinyl sulfone, the number of arms available for crosslinking, functionalization, and annealing is stoichiometrically controlled. Small and large microgels are fabricated to explore how microgel diameter impacts void space and the role of porosity on cell spreading, cell aggregation, and macrophage polarization. Mesenchymal stromal cells spread rapidly in both formulations, yet the smaller microgels permit a higher cell density. When seeded with macrophages, the smaller microgels promote an M1 phenotype, while larger microgels promote an M2 phenotype. As another application, the inherent porosity of annealed microgels is leveraged to induce cell aggregation. Finally, the microgels are implanted to examine how different size microgels influence endogenous cell invasion and macrophage polarization. The use of ultraviolet light allows for microgels to be noninvasively injected into a desired mold or wound defect before annealing, and microgels of different properties combined to create a heterogeneous scaffold. This approach is clinically relevant given its tunability and fast annealing time.
Collapse
Affiliation(s)
- Jeremy M. Lowen
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
| | - Gabriella C. Bond
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817
| | - Katherine H. Griffin
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817
- School of Veterinary Medicine, University of California, Davis, CA 95616
| | | | - Victoria L. Thai
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
| | - J. Kent Leach
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
| |
Collapse
|
20
|
Pruett LJ, Kenny HL, Swift WM, Catallo KJ, Apsel ZR, Salopek LS, Scumpia PO, Cottler PS, Griffin DR, Daniero JJ. De novo tissue formation using custom microporous annealed particle hydrogel provides long-term vocal fold augmentation. NPJ Regen Med 2023; 8:10. [PMID: 36823180 PMCID: PMC9950481 DOI: 10.1038/s41536-023-00281-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 01/25/2023] [Indexed: 02/25/2023] Open
Abstract
Biomaterial-enabled de novo formation of non-fibrotic tissue in situ would provide an important tool to physicians. One example application, glottic insufficiency, is a debilitating laryngeal disorder wherein vocal folds do not fully close, resulting in difficulty speaking and swallowing. Preferred management of glottic insufficiency includes bulking of vocal folds via injectable fillers, however, the current options have associated drawbacks including inflammation, accelerated resorption, and foreign body response. We developed a novel iteration of microporous annealed particle (MAP) scaffold designed to provide persistent augmentation. Following a 14-month study of vocal fold augmentation using a rabbit vocal paralysis model, most MAP scaffolds were replaced with tissue de novo that matched the mixture of fibrotic and non-fibrotic collagens of the contralateral vocal tissue. Further, persistent tissue augmentation in MAP-treated rabbits was observed via MRI and via superior vocal function at 14 months relative to the clinical standard.
Collapse
Affiliation(s)
- Lauren J. Pruett
- grid.27755.320000 0000 9136 933XDepartment of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903 USA
| | - Hannah L. Kenny
- grid.27755.320000 0000 9136 933XSchool of Medicine, University of Virginia, Charlottesville, VA 22903 USA
| | - William M. Swift
- grid.27860.3b0000 0004 1936 9684Department of Otolaryngology-Head and Neck Surgery, University of California, Davis, CA 95616 USA
| | - Katarina J. Catallo
- grid.27755.320000 0000 9136 933XDepartment of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903 USA
| | - Zoe R. Apsel
- grid.27755.320000 0000 9136 933XDepartment of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903 USA
| | - Lisa S. Salopek
- grid.27755.320000 0000 9136 933XDepartment of Plastic Surgery, University of Virginia, Charlottesville, VA 22903 USA
| | - Philip O. Scumpia
- grid.19006.3e0000 0000 9632 6718Department of Medicine, Division of Dermatology and Department of Pathology, Division of Dermatopathology, University of California, Los Angeles, CA 90095 USA
| | - Patrick S. Cottler
- grid.27755.320000 0000 9136 933XDepartment of Plastic Surgery, University of Virginia, Charlottesville, VA 22903 USA
| | - Donald R. Griffin
- grid.27755.320000 0000 9136 933XDepartment of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903 USA ,grid.27755.320000 0000 9136 933XDepartment of Chemical Engineering, University of Virginia, Charlottesville, VA 22903 USA
| | - James J. Daniero
- grid.27755.320000 0000 9136 933XDepartment of Otolaryngology-Head and Neck Surgery, University of Virginia, Charlottesville, VA 22903 USA
| |
Collapse
|
21
|
Fu M, Zhao Y, Wang Y, Li Y, Wu M, Liu Q, Hou Z, Lu Z, Wu K, Guo J. On-Demand Removable Self-Healing and pH-Responsive Europium-Releasing Adhesive Dressing Enables Inflammatory Microenvironment Modulation and Angiogenesis for Diabetic Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205489. [PMID: 36319477 DOI: 10.1002/smll.202205489] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Current diabetic wound treatments remain unsatisfactory due to the lack of a comprehensive strategy that can integrate strong applicability (tissue adhesiveness, shape adaptability, fast self-healability, and facile dressing change) with the initiation and smooth connection of the cascade wound healing processes. Herein, benefiting from the multifaceted bonding ability of tannic acid to metal ions and various polymers, a family of tannin-europium coordination complex crosslinked citrate-based mussel-inspired bioadhesives (TE-CMBAs) are specially developed for diabetic wound healing. TE-CMBAs can gel instantly (< 60 s), possess favorable shape-adaptability, considerable mechanical strengths, high elasticity, considerable wet tissue adhesiveness (≈40 kPa), favorable photothermal antimicrobial activity, excellent anti-oxidant activity, biocompatibility, and angiogenetic property. The reversible hydrogen bond crosslinking and sensitive metal-phenolic coordination also confers TE-CMBAs with self-healability, pH-responsive europium ion and TA releasing properties and on-demand removability upon mixing with borax solution, enabling convenient painless dressing change and the smooth connection of inflammatory microenvironment modulation, angiogenesis promotion, and effective extracellular matrix production leveraging the acidic pH condition of diabetic wounds. This adhesive dressing provides a comprehensive regenerative strategy for diabetic wound management and can be extended to other complicated tissue healing scenarios.
Collapse
Affiliation(s)
- Meimei Fu
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yitao Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yue Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yue Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510515, P. R. China
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, P. R. China
| | - Min Wu
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Qi Liu
- Regenerative Medicine and Tissue Repair Material Research Center, Huangpu Institute of Materials, Guangzhou, 510530, P. R. China
| | - Zhiguo Hou
- Regenerative Medicine and Tissue Repair Material Research Center, Huangpu Institute of Materials, Guangzhou, 510530, P. R. China
| | - Zhihui Lu
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510515, P. R. China
- Regenerative Medicine and Tissue Repair Material Research Center, Huangpu Institute of Materials, Guangzhou, 510530, P. R. China
| | - Keke Wu
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Jinshan Guo
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510515, P. R. China
| |
Collapse
|
22
|
Roosa CA, Ma M, Chhabra P, Brayman K, Griffin D. Delivery of Dissociated Islets Cells within Microporous Annealed Particle Scaffold to Treat Type 1 Diabetes. ADVANCED THERAPEUTICS 2022; 5:2200064. [PMID: 36405778 PMCID: PMC9674036 DOI: 10.1002/adtp.202200064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Indexed: 09/03/2023]
Abstract
Type 1 diabetes (T1D) is caused by the autoimmune loss of insulin-producing beta cells in the pancreas. The only clinical approach to patient management of blood glucose that doesn't require exogenous insulin is pancreas or islet transplantation. Unfortunately, donor islets are scarce and there is substantial islet loss immediately after transplantation due, in part, to the local inflammatory response. The delivery of stem cell-derived beta cells (e.g., from induced pluripotent stem cells) and dissociated islet cells hold promise as a treatment for T1D; however, these cells typically require re-aggregation in vitro prior to implantation. Microporous scaffolds have shown high potential to serve as a vehicle for organization, survival, and function of insulin-producing cells. In this study, we investigated the use of microporous annealed particle (MAP) scaffold for delivery of enzymatically dissociated islet cells, a model beta cell source, within the scaffold's interconnected pores. We found that MAP-based cell delivery enables survival and function of dissociated islets cells both in vitro and in an in vivo mouse model of T1D.
Collapse
Affiliation(s)
- Colleen A Roosa
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Charlottesville, Virginia 22903, USA
| | - Mingyang Ma
- Department of Surgery, University of Virginia, 1300 Jefferson Park Ave, Charlottesville, Virginia 22903, USA
| | - Preeti Chhabra
- Department of Surgery, University of Virginia, 1300 Jefferson Park Ave, Charlottesville, Virginia 22903, USA
| | - Kenneth Brayman
- Department of Surgery, University of Virginia, 1300 Jefferson Park Ave, Charlottesville, Virginia 22903, USA
| | - Donald Griffin
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Charlottesville, Virginia 22903, USA
- Department of Chemical Engineering, University of Virginia, 351 McCormick Rd, Charlottesville, Virginia 22904, USA
| |
Collapse
|
23
|
Sun B, Wu F, Wang X, Song Q, Ye Z, Mohammadniaei M, Zhang M, Chu X, Xi S, Zhou N, Wang W, Yao C, Shen J. An Optimally Designed Engineering Exosome-Reductive COF Integrated Nanoagent for Synergistically Enhanced Diabetic Fester Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200895. [PMID: 35638464 DOI: 10.1002/smll.202200895] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Oxidative stress and local overactive inflammation have been considered major obstacles in diabetic wound treatment. Although antiphlogistic tactics have been reported widely, they are also challenged by pathogen contamination and compromised angiogenesis. Herein, a versatile integrated nanoagent based on 2D reductive covalent organic frameworks coated with antibacterial immuno-engineered exosome (PCOF@E-Exo) is reported to achieve efficient and comprehensive combination therapy for diabetic wounds. The E-Exo is collected from TNF-α-treated mesenchymal stem cells (MSCs) under hypoxia and encapsulated cationic antimicrobial carbon dots (CDs). This integrated nanoagent not only significantly scavenges reactive oxygen species and induces anti-inflammatory M2 macrophage polarization, but also stabilizes hypoxia-inducible factor-1α (HIF-1α). More importantly, the PCOF@E-Exo exhibits intriguing bactericide capabilities toward Gram-negative, Gram-positive, and drug-resistant bacteria, showing favorable intracellular bacterial destruction and biofilm permeation. In vivo results demonstrate that the synergetic impact of suppressing oxidative injury and tissue inflammation, promoting angiogenesis and eradicating bacterial infection, could significantly accelerate the infected diabetic fester wound healing with better therapeutic benefits than monotherapy or individual antibiotics. The proposed strategy can inspire further research to design more delicate platforms using the combination of immunotherapy with other therapeutic methods for more efficient ulcerated diabetic wounds treatments.
Collapse
Affiliation(s)
- Baohong Sun
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Fan Wu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Xinye Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Qiuxian Song
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ziqiu Ye
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Mohsen Mohammadniaei
- Department of Health Technology, Technical University of Denmark, Lyngby, 2800 Kgs., Denmark
| | - Ming Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaohong Chu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Sheng Xi
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ninglin Zhou
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Wentao Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Cheng Yao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
24
|
Roosa C, Pruett L, Trujillo J, Rodriguez A, Pfaff B, Cornell N, Flanagan C, Griffin DR. Microfluidic Synthesis of Microgel Building Blocks for Microporous Annealed Particle Scaffold. J Vis Exp 2022:10.3791/64119. [PMID: 35781297 PMCID: PMC11110642 DOI: 10.3791/64119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024] Open
Abstract
The microporous annealed particle (MAP) scaffold platform is a subclass of granular hydrogels. It is composed of an injectable slurry of microgels that can form a structurally stable scaffold with cell-scale porosity in situ following a secondary light-based chemical crosslinking step (i.e., annealing). MAP scaffold has shown success in a variety of regenerative medicine applications, including dermal wound healing, vocal fold augmentation, and stem cell delivery. This paper describes the methods for synthesis and characterization of poly(ethylene glycol) (PEG) microgels as the building blocks to form a MAP scaffold. These methods include the synthesis of a custom annealing macromer (MethMAL), determination of microgel precursor gelation kinetics, microfluidic device fabrication, microfluidic generation of microgels, microgel purification, and basic scaffold characterization, including microgel sizing and scaffold annealing. Specifically, the high-throughput microfluidic methods described herein can produce large volumes of microgels that can be used to generate MAP scaffolds for any desired application, especially in the field of regenerative medicine.
Collapse
Affiliation(s)
- Colleen Roosa
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University of Virginia
| | - Lauren Pruett
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University of Virginia
| | - Juliana Trujillo
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University of Virginia
| | - Areli Rodriguez
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University of Virginia
| | - Blaise Pfaff
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University of Virginia
| | - Nicholas Cornell
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University of Virginia
| | - Clare Flanagan
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University of Virginia
| | - Donald Richieri Griffin
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University of Virginia; Department of Chemical Engineering, School of Engineering and Applied Sciences, University of Virginia;
| |
Collapse
|
25
|
Lee S, Park J, Kim S, Ok J, Yoo JI, Kim YS, Ahn Y, Kim TI, Ko HC, Lee JY. High-Performance Implantable Bioelectrodes with Immunocompatible Topography for Modulation of Macrophage Responses. ACS NANO 2022; 16:7471-7485. [PMID: 35438981 DOI: 10.1021/acsnano.1c10506] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Implantable bioelectrodes enable precise recording or stimulation of electrical signals with living tissues in close contact. However, their performance is frequently compromised owing to inflammatory tissue reactions, which macrophages either induce or resolve by polarizing to an inflammatory (M1) or noninflammatory (M2) phenotype, respectively. Thus, we aimed to fabricate biocompatible and functional implantable conductive polymer bioelectrodes with optimal topography for the modulation of macrophage responses. To this end, we produced heparin-doped polypyrrole (PPy/Hep) electrodes of different surface roughness, with Ra values from 5.5 to 17.6 nm, by varying the charge densities during electrochemical synthesis. In vitro culture revealed that macrophages on rough PPy/Hep electrodes preferentially polarized to noninflammatory phenotypes. In particular, PPy/Hep-900 (Ra = 14 nm) was optimal with respect to electrochemical properties and the suppression of inflammatory M1 polarization. In vivo implantation indicated that PPy/Hep-900 significantly reduced macrophage recruitment, suppressed inflammatory polarization, and mitigated fibrotic tissue formation. In addition, the implanted PPy/Hep-900 electrodes could successfully record electrocardiographic signals for up to 10 days without substantial decreases in sensitivity, while other electrodes substantially lost their signal sensitivity during implantation. Altogether, we demonstrate that modulating the surface features of PPy/Hep can benefit the design and applications of high-performance and high-biocompatibility bioelectrodes.
Collapse
Affiliation(s)
- Sanghun Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Junggeon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Semin Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jehyung Ok
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jung Il Yoo
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Yong Sook Kim
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
| | - Youngkeun Ahn
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Heung Cho Ko
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
26
|
Charlet A, Bono F, Amstad E. Mechanical reinforcement of granular hydrogels. Chem Sci 2022; 13:3082-3093. [PMID: 35414870 PMCID: PMC8926196 DOI: 10.1039/d1sc06231j] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/15/2022] [Indexed: 11/25/2022] Open
Abstract
Granular hydrogels are composed of hydrogel-based microparticles, so-called microgels, that are densely packed to form an ink that can be 3D printed, injected or cast into macroscopic structures. They are frequently used as tissue engineering scaffolds because microgels can be made biocompatible and the porosity of the granular hydrogels enables a fast exchange of reagents, waste products, and if properly designed even the infiltration of cells. Most of these granular hydrogels can be shaped into appropriate macroscopic structures, yet, these structures are mechanically rather weak. The poor mechanical properties prevent the use of these structures as load-bearing materials and hence, limit their field of applications. The mechanical properties of granular hydrogels depend on the composition of microgels and the interparticle interactions. In this review, we discuss different strategies to assemble microparticles into granular hydrogels and highlight the influence of inter-particle connections on the stiffness and toughness of the resulting materials. Mechanically strong and tough granular hydrogels have the potential to open up new fields of their use and thereby to contribute to fast advances in these fields. In particular, we envisage them to be well-suited as soft actuators and robots, tissue replacements, and adaptive sensors.
Collapse
Affiliation(s)
- Alvaro Charlet
- Soft Materials Laboratory, Institute of Materials, EPFL Lausanne Lausanne 1015 Switzerland
| | - Francesca Bono
- Soft Materials Laboratory, Institute of Materials, EPFL Lausanne Lausanne 1015 Switzerland
| | - Esther Amstad
- Soft Materials Laboratory, Institute of Materials, EPFL Lausanne Lausanne 1015 Switzerland
| |
Collapse
|
27
|
Kittel Y, Kuehne AJC, De Laporte L. Translating Therapeutic Microgels into Clinical Applications. Adv Healthc Mater 2022; 11:e2101989. [PMID: 34826201 DOI: 10.1002/adhm.202101989] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/17/2021] [Indexed: 12/14/2022]
Abstract
Microgels are crosslinked, water-swollen networks with a 10 nm to 100 µm diameter and can be modified chemically or biologically to render them biocompatible for advanced clinical applications. Depending on their intended use, microgels require different mechanical and structural properties, which can be engineered on demand by altering the biochemical composition, crosslink density of the polymer network, and the fabrication method. Here, the fundamental aspects of microgel research and development, as well as their specific applications for theranostics and therapy in the clinic, are discussed. A detailed overview of microgel fabrication techniques with regards to their intended clinical application is presented, while focusing on how microgels can be employed as local drug delivery materials, scavengers, and contrast agents. Moreover, microgels can act as scaffolds for tissue engineering and regeneration application. Finally, an overview of microgels is given, which already made it into pre-clinical and clinical trials, while future challenges and chances are discussed. This review presents an instructive guideline for chemists, material scientists, and researchers in the biomedical field to introduce them to the fundamental physicochemical properties of microgels and guide them from fabrication methods via characterization techniques and functionalization of microgels toward specific applications in the clinic.
Collapse
Affiliation(s)
- Yonca Kittel
- DWI – Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
| | - Alexander J. C. Kuehne
- DWI – Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
- Institute of Organic and Macromolecular Chemistry Ulm University Albert‐Einstein‐Allee 11 89081 Ulm Germany
- Institute of Technical and Macromolecular Chemistry (ITMC) Polymeric Biomaterials RWTH University Aachen Worringerweg 2 52074 Aachen Germany
| | - Laura De Laporte
- DWI – Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
- Max Planck School‐Matter to Life (MtL) Jahnstraße 29 69120 Heidelberg Germany
- Advanced Materials for Biomedicine (AMB) Institute of Applied Medical Engineering (AME) Center for Biohybrid Medical Systems (CBMS) University Hospital RWTH 52074 Aachen Germany
| |
Collapse
|
28
|
Tao B, Lin C, Qin X, Yu Y, Guo A, Li K, Tian H, Yi W, Lei D, Chen Y, Chen L. Fabrication of gelatin-based and Zn 2+-incorporated composite hydrogel for accelerated infected wound healing. Mater Today Bio 2022; 13:100216. [PMID: 35243291 PMCID: PMC8857474 DOI: 10.1016/j.mtbio.2022.100216] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/27/2022] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
Gelatin-based hydrogels have a broad range of biomedical fields due to their biocompatibility, convenience for chemical modifications, and degradability. However, gelatin-based hydrogels present poor antibacterial ability that hinders their applications in treating infected wound healing. Herein, a series of multifunctional hydrogels (Gel@Zn) were fabricated through free-radical polymerization interaction based on gelatin methacrylate (GelMA) and dopamine methacrylate (DMA), and then immersed them into zinc nitrate solutions based on the metal coordination and ionic bonding interaction. These designed hydrogels wound dressings show strong antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) by increasing intracellular reactive oxygen species (ROS) level and changing bacterial membrane permeability. Meanwhile, the hydrogels exhibit good cytocompatibility, enhance the adhesion, proliferation, and migration of NIH-3T3 cells. Furthermore, Gel@Zn-0.08 (0.08 M Zn2+ immersed with Gel sample) presents a good balance between antibacterial effect, cell viability, and hemolytic property. Compared with 3 M commercial dressings, Gel@Zn-0.04, and Gel@Zn-0.16, the Gel@Zn-0.08 could significantly improve the healing process of S. aureus-infected full-thickness wounds via restrained the inflammatory responses, enhanced epidermis and granulation tissue information, and stimulated angiogenesis. Our study indicates that the Zn-incorporated hydrogels are promising bioactive materials as wound dressings for infected full-thickness wound healing and skin regeneration.
Collapse
Affiliation(s)
- Bailong Tao
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Chuanchuan Lin
- Department of Blood Transfusion, Laboratory of Radiation Biology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Xian Qin
- Department of Reproductive Endocrinology, Chongqing Health Center for Women and Children, Chongqing, 401147, China
| | - Yonglin Yu
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China
| | - Ai Guo
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Kai Li
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hongchuan Tian
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Weiwei Yi
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, China
| | - Dengliang Lei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|