1
|
Kavianpour A, Hosseini SN, Ashjari M, Khatami M, Hosseini T, Soleimani H. Highly efficient strategy of lipopolysaccharide (LPS) decontamination from rHBsAg: synergistic effect of enhanced magnetic nanoparticles (MNPs) as an LPS affinity adsorbent (LAA) and surfactant as a dissociation factor. Prep Biochem Biotechnol 2024:1-10. [PMID: 39002143 DOI: 10.1080/10826068.2024.2377326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
The interaction of lipopolysaccharide with a recombinant protein is a serious bottleneck, particularly in the purification step of bioprocessing. Recombinant hepatitis B surface antigen (rHBsAg), the active ingredient of the hepatitis B vaccine, is probably contaminated by extrinsic LPS like other biopharmaceuticals. This research intends to eliminate LPS from its mixture with rHBsAg efficiently. Immobilized polymyxin B on magnetic nanoparticles (PMB-MNPs) was synthesized and implemented as an enhanced LPS affinity adsorbent (LAA). The 20-80 EU/dose binary samples with and without surfactant were applied to PMB-MNPs. Formerly, dynamic light scattering (DLS) and transmission electron microscopy (TEM) were examined on the samples to qualitatively show the dissociation effect of the surfactant. Considering the high potential interaction of LPS with HBsAg, the dissociation effects of 0.5 and 1.5% Tween 20 on the binary samples were assessed using immunoaffinity chromatography (IAC) as a quantification tool. The dissociation effect of Tween 20 substantially diminished the interaction, leading to a proportional increase of free LPS up to 66%. The synergetic effect of Tween 20 and privileged LAA was highly effective in eliminating more than 80% of LPS with a remarkable LPS clearance factor of 5.8 and a substantial protein recovery rate of 97%.
Collapse
Affiliation(s)
- Alireza Kavianpour
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran
| | - Seyed Nezamedin Hosseini
- Department of Hepatitis B Vaccine Production, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Mohsen Ashjari
- Nanostructures and Bioresearch Lab, Faculty of Engineering, Department of Chemical Engineering, University of Kashan, Kashan, Iran
| | - Maryam Khatami
- Department of Hepatitis B Vaccine Production, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Taravatsadat Hosseini
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Hosnsa Soleimani
- Department of Hepatitis B Vaccine Production, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Kaushal S, Priyadarshi N, Garg P, Singhal NK, Lim DK. Nano-Biotechnology for Bacteria Identification and Potent Anti-bacterial Properties: A Review of Current State of the Art. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2529. [PMID: 37764558 PMCID: PMC10536455 DOI: 10.3390/nano13182529] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/26/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Sepsis is a critical disease caused by the abrupt increase of bacteria in human blood, which subsequently causes a cytokine storm. Early identification of bacteria is critical to treating a patient with proper antibiotics to avoid sepsis. However, conventional culture-based identification takes a long time. Polymerase chain reaction (PCR) is not so successful because of the complexity and similarity in the genome sequence of some bacterial species, making it difficult to design primers and thus less suitable for rapid bacterial identification. To address these issues, several new technologies have been developed. Recent advances in nanotechnology have shown great potential for fast and accurate bacterial identification. The most promising strategy in nanotechnology involves the use of nanoparticles, which has led to the advancement of highly specific and sensitive biosensors capable of detecting and identifying bacteria even at low concentrations in very little time. The primary drawback of conventional antibiotics is the potential for antimicrobial resistance, which can lead to the development of superbacteria, making them difficult to treat. The incorporation of diverse nanomaterials and designs of nanomaterials has been utilized to kill bacteria efficiently. Nanomaterials with distinct physicochemical properties, such as optical and magnetic properties, including plasmonic and magnetic nanoparticles, have been extensively studied for their potential to efficiently kill bacteria. In this review, we are emphasizing the recent advances in nano-biotechnologies for bacterial identification and anti-bacterial properties. The basic principles of new technologies, as well as their future challenges, have been discussed.
Collapse
Affiliation(s)
- Shimayali Kaushal
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea;
| | - Nitesh Priyadarshi
- National Agri-Food Biotechnology Institute (NABI), Sector-81, Mohali 140306, India; (N.P.); (P.G.)
| | - Priyanka Garg
- National Agri-Food Biotechnology Institute (NABI), Sector-81, Mohali 140306, India; (N.P.); (P.G.)
| | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute (NABI), Sector-81, Mohali 140306, India; (N.P.); (P.G.)
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea;
- Department of Integrative Energy Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Brain Science Institute, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
3
|
Rduch T, Arn N, Kinkel J, Fischer T, Binet I, Hornung R, Herrmann IK. Magnetic blood purification-based soluble fms-like tyrosine kinase-1 removal in comparison with dextran sulfate apheresis and therapeutic plasma exchange. Artif Organs 2023; 47:1309-1318. [PMID: 36995348 DOI: 10.1111/aor.14531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Preeclampsia remains one of the most serious complications of pregnancy. Effective therapies are yet to be developed. Recent research has identified an imbalance of angiogenic and antiangiogenic factors as a root cause of preeclampsia. In particular, soluble fms-like tyrosine kinase-1 (sFlt-1) has been shown to bind the angiogenic factors vascular endothelial growth factor (VEGF) and placental growth factor (PlGF), reducing blood vessel growth. Increasing preclinical and clinical evidence suggests that removal of the sFlt-1 protein may benefit patients with early onset preeclampsia. sFlt-1 may be removed by conventional blood purification techniques, such as therapeutic plasma exchange (TPE) and dextran sulfate apheresis (DSA), or emerging technologies, including extracorporeal magnetic blood purification (MBP). METHODS We compare the performance and selectivity of TPE, DSA, and MBP for the therapeutic removal of sFlt-1. For MPB, we employ magnetic nanoparticles functionalized with either sFlt-1 antibodies or the sFlt-1-binding partner, vascular endothelial growth factor (VEGF). RESULTS We demonstrate that sFlt-1 removal by MBP is feasible and significantly more selective than TPE and DSA at comparable sFlt-1 removal efficiencies (MBP 96%, TPE 92%, DSA 78%). During both TPE and DSA, complement factors (incl. C3c and C4) are depleted to a considerable extent (-90% for TPE, -55% for DSA), while in MBP, complement factor concentrations remain unaltered. We further demonstrate that the removal efficacy of sFlt-1 in the MBP approach is strongly dependent on the nanoparticle type and dose and can be optimized to reach clinically feasible throughputs. CONCLUSIONS Taken together, the highly selective removal of sFlt-1 and potential other disease-causing factors by extracorporeal magnetic blood purification may offer new prospects for preeclamptic patients.
Collapse
Affiliation(s)
- Thomas Rduch
- Department of Gynaecology, Cantonal Hospital St. Gallen, Rorschacherstrasse 95, St. Gallen, Switzerland
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, Switzerland
| | - Norbert Arn
- Clinic for Nephrology and Transplant Medicine, Cantonal Hospital St.Gallen, Rorschacherstrasse 95, St.Gallen, Switzerland
| | - Janis Kinkel
- Department of Gynaecology, Cantonal Hospital St. Gallen, Rorschacherstrasse 95, St. Gallen, Switzerland
| | - Tina Fischer
- Department of Gynaecology, Cantonal Hospital St. Gallen, Rorschacherstrasse 95, St. Gallen, Switzerland
| | - Isabelle Binet
- Clinic for Nephrology and Transplant Medicine, Cantonal Hospital St.Gallen, Rorschacherstrasse 95, St.Gallen, Switzerland
| | - René Hornung
- Department of Gynaecology, Cantonal Hospital St. Gallen, Rorschacherstrasse 95, St. Gallen, Switzerland
| | - Inge K Herrmann
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, Switzerland
- Department of Mechanical and Process Engineering, ETH Zurich, Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering, Sonneggstrasse 3, Zurich, Switzerland
| |
Collapse
|
4
|
Chen J, Shi Z, Yang X, Zhang X, Wang D, Qian S, Sun W, Wang C, Li Q, Wang Z, Song Y, Qing G. Broad-Spectrum Clearance of Lipopolysaccharides from Blood Based on a Hemocompatible Dihistidine Polymer. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37377344 DOI: 10.1021/acsami.3c05341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Blood infection can release toxic bacterial lipopolysaccharides (LPSs) into bloodstream, trigger a series of inflammatory reactions, and eventually lead to multiple organ dysfunction, irreversible shock, and even death, which seriously threatens human life and health. Herein, a functional block copolymer with excellent hemocompatibility is proposed to enable broad-spectrum clearance of LPSs from whole blood blindly before pathogen identification, facilitating timely rescue from sepsis. A dipeptide ligand of histidine-histidine (HH) was designed as the LPS binding unit, and poly[(trimethylamine N-oxide)-co-(histidine-histidine)], a functional block copolymer combining the LPS ligand of HH and a zwitterionic antifouling unit of trimethylamine N-oxide (TMAO), was then designed by reversible addition-fragmentation chain transfer (RAFT) polymerization. The functional polymer achieved effective clearance of LPSs from solutions and whole blood in a broad-spectrum manner and had good antifouling and anti-interference properties and hemocompatibility. The proposed functional dihistidine polymer provides a novel strategy for achieving broad-spectrum clearance of LPSs, with potential applications in clinical blood purification.
Collapse
Affiliation(s)
- Junjun Chen
- College of Pharmaceutical and Bioengineering, Shenyang University of Chemical Technology, Shenyang 110142, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhenqiang Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xijing Yang
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoyu Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dongdong Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shengxu Qian
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenjing Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Cunli Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qiongya Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhengjian Wang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Yanling Song
- College of Pharmaceutical and Bioengineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
5
|
Friedrich B, Tietze R, Dümig M, Sover A, Boca MA, Schreiber E, Band J, Janko C, Krappmann S, Alexiou C, Lyer S. Magnetic Removal of Candida albicans Using Salivary Peptide-Functionalized SPIONs. Int J Nanomedicine 2023; 18:3231-3246. [PMID: 37337577 PMCID: PMC10276999 DOI: 10.2147/ijn.s409559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/07/2023] [Indexed: 06/21/2023] Open
Abstract
Purpose Magnetic separation of microbes can be an effective tool for pathogen identification and diagnostic applications to reduce the time needed for sample preparation. After peptide functionalization of superparamagnetic iron oxide nanoparticles (SPIONs) with an appropriate interface, they can be used for the separation of sepsis-associated yeasts like Candida albicans. Due to their magnetic properties, the magnetic extraction of the particles in the presence of an external magnetic field ensures the accumulation of the targeted yeast. Materials and Methods In this study, we used SPIONs coated with 3-aminopropyltriethoxysilane (APTES) and functionalized with a peptide originating from GP340 (SPION-APTES-Pep). For the first time, we investigate whether this system is suitable for the separation and enrichment of Candida albicans, we investigated its physicochemical properties and by thermogravimetric analysis we determined the amount of peptide on the SPIONs. Further, the toxicological profile was evaluated by recording cell cycle and DNA degradation. The separation efficiency was investigated using Candida albicans in different experimental settings, and regrowth experiments were carried out to show the use of SPION-APTES-Pep as a sample preparation method for the identification of fungal infections. Conclusion SPION-APTES-Pep can magnetically remove more than 80% of the microorganism and with a high selective host-pathogen distinction Candida albicans from water-based media and about 55% in blood after 8 minutes processing without compromising effects on the cell cycle of human blood cells. Moreover, the separated fungal cells could be regrown without any restrictions.
Collapse
Affiliation(s)
- Bernhard Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Rainer Tietze
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michaela Dümig
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Alexandru Sover
- Faculty of Engineering, Ansbach University of Applied Sciences, Ansbach, Germany
| | - Marius-Andrei Boca
- Faculty of Engineering, Ansbach University of Applied Sciences, Ansbach, Germany
| | - Eveline Schreiber
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Julia Band
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sven Krappmann
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stefan Lyer
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Professorship for AI-Controlled Nanomaterials, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
6
|
Janker S, Doswald S, Schimmer RR, Schanz U, Stark WJ, Schläpfer M, Beck-Schimmer B. Targeted Large-Volume Lymphocyte Removal Using Magnetic Nanoparticles in Blood Samples of Patients with Chronic Lymphocytic Leukemia: A Proof-of-Concept Study. Int J Mol Sci 2023; 24:ijms24087523. [PMID: 37108680 PMCID: PMC10139131 DOI: 10.3390/ijms24087523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
In the past, our research group was able to successfully remove circulating tumor cells with magnetic nanoparticles. While these cancer cells are typically present in low numbers, we hypothesized that magnetic nanoparticles, besides catching single cells, are also capable of eliminating a large number of tumor cells from the blood ex vivo. This approach was tested in a small pilot study in blood samples of patients suffering from chronic lymphocytic leukemia (CLL), a mature B-cell neoplasm. Cluster of differentiation (CD) 52 is a ubiquitously expressed surface antigen on mature lymphocytes. Alemtuzumab (MabCampath®) is a humanized, IgG1κ, monoclonal antibody directed against CD52, which was formerly clinically approved for treating chronic lymphocytic leukemia (CLL) and therefore regarded as an ideal candidate for further tests to develop new treatment options. Alemtuzumab was bound onto carbon-coated cobalt nanoparticles. The particles were added to blood samples of CLL patients and finally removed, ideally with bound B lymphocytes, using a magnetic column. Flow cytometry quantified lymphocyte counts before, after the first, and after the second flow across the column. A mixed effects analysis was performed to evaluate removal efficiency. p < 0.05 was defined as significant. In the first patient cohort (n = 10), using a fixed nanoparticle concentration, CD19-positive B lymphocytes were reduced by 38% and by 53% after the first and the second purification steps (p = 0.002 and p = 0.005), respectively. In a second patient cohort (n = 11), the nanoparticle concentration was increased, and CD19-positive B lymphocytes were reduced by 44% (p < 0.001) with no further removal after the second purification step. In patients with a high lymphocyte count (>20 G/L), an improved efficiency of approximately 20% was observed using higher nanoparticle concentrations. A 40 to 50% reduction of B lymphocyte count using alemtuzumab-coupled carbon-coated cobalt nanoparticles is feasible, also in patients with a high lymphocyte count. A second purification step did not further increase removal. This proof-of-concept study demonstrates that such particles allow for the targeted extraction of larger amounts of cellular blood components and might offer new treatment options in the far future.
Collapse
Affiliation(s)
- Stefanie Janker
- Institute of Anesthesiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
- Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland
| | - Simon Doswald
- Institute for Chemical and Bioengineering, ETH, 8093 Zurich, Switzerland
| | - Roman R Schimmer
- Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland
- Department of Medical Oncology and Hematology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Urs Schanz
- Department of Medical Oncology and Hematology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Wendelin J Stark
- Institute for Chemical and Bioengineering, ETH, 8093 Zurich, Switzerland
| | - Martin Schläpfer
- Institute of Anesthesiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
- Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland
| | - Beatrice Beck-Schimmer
- Institute of Anesthesiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
- Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
7
|
Liu Z, Han Z, Jin X, An J, Kim J, Chen W, Kim JS, Zheng J, Deng J. Regulating the microenvironment with nanomaterials: Potential strategies to ameliorate COVID-19. Acta Pharm Sin B 2023; 13:S2211-3835(23)00054-0. [PMID: 36846153 PMCID: PMC9941074 DOI: 10.1016/j.apsb.2023.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
COVID-19, caused by SARS-CoV-2, has resulted in serious economic and health burdens. Current treatments remain inadequate to extinguish the epidemic, and efficient therapeutic approaches for COVID-19 are urgently being sought. Interestingly, accumulating evidence suggests that microenvironmental disorder plays an important role in the progression of COVID-19 in patients. In addition, recent advances in nanomaterial technologies provide promising opportunities for alleviating the altered homeostasis induced by a viral infection, providing new insight into COVID-19 treatment. Most literature reviews focus only on certain aspects of microenvironment alterations and fail to provide a comprehensive overview of the changes in homeostasis in COVID-19 patients. To fill this gap, this review systematically discusses alterations of homeostasis in COVID-19 patients and potential mechanisms. Next, advances in nanotechnology-based strategies for promoting homeostasis restoration are summarized. Finally, we discuss the challenges and prospects of using nanomaterials for COVID-19 management. This review provides a new strategy and insights into treating COVID-19 and other diseases associated with microenvironment disorders.
Collapse
Affiliation(s)
- Zhicheng Liu
- Department of Urology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
- Department of Urology, Urological Surgery Research Institute, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhuolei Han
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xin Jin
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jusung An
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Jaewon Kim
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Wenting Chen
- Department of Rheumatology and Clinical Immunology, Army Medical Center, Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Ji Zheng
- Department of Urology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
- Department of Urology, Urological Surgery Research Institute, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
8
|
Friedrich B, Lyer S, Janko C, Unterweger H, Brox R, Cunningham S, Dutz S, Taccardi N, Bikker FJ, Hurle K, Sebald H, Lenz M, Spiecker E, Fester L, Hackstein H, Strauß R, Boccaccini AR, Bogdan C, Alexiou C, Tietze R. Scavenging of bacteria or bacterial products by magnetic particles functionalized with a broad-spectrum pathogen recognition receptor motif offers diagnostic and therapeutic applications. Acta Biomater 2022; 141:418-428. [PMID: 34999260 DOI: 10.1016/j.actbio.2022.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 11/19/2022]
Abstract
Sepsis is a dysregulated host response of severe bloodstream infections, and given its frequency of occurrence and high mortality rate, therapeutic improvements are imperative. A reliable biomimetic strategy for the targeting and separation of bacterial pathogens in bloodstream infections involves the use of the broad-spectrum binding motif of human GP-340, a pattern-recognition receptor of the scavenger receptor cysteine rich (SRCR) superfamily that is expressed on epithelial surfaces but not found in blood. Here we show that these peptides, when conjugated to superparamagnetic iron oxide nanoparticles (SPIONs), can separate various bacterial endotoxins and intact microbes (E. coli, S. aureus, P. aeruginosa and S. marcescens) with high efficiency, especially at low and thus clinically relevant concentrations. This is accompanied by a subsequent strong depletion in cytokine release (TNF, IL-6, IL-1β, Il-10 and IFN-γ), which could have a direct therapeutic impact since escalating immune responses complicates severe bloodstream infections and sepsis courses. SPIONs are coated with aminoalkylsilane and capture peptides are orthogonally ligated to this surface. The particles behave fully cyto- and hemocompatible and do not interfere with host structures. Thus, this approach additionally aims to dramatically reduce diagnostic times for patients with suspected bloodstream infections and accelerate targeted antibiotic therapy. STATEMENT OF SIGNIFICANCE: Sepsis is often associated with excessive release of cytokines. This aspect and slow diagnostic procedures are the major therapeutic obstacles. The use of magnetic particles conjugated with small peptides derived from the binding motif of a broad-spectrum mucosal pathogen recognition protein GP-340 provides a highly efficient scavenging platform. These peptides are not found in blood and therefore are not subject to inhibitory mechanisms like in other concepts (mannose binding lectine, aptamers, antibodies). In this work, data are shown on the broad bacterial binding spectrum, highly efficient toxin depletion, which directly reduces the release of cytokines. Host cells are not affected and antibiotics not adsorbed. The particle bound microbes can be recultured without restriction and thus be used directly for diagnostics.
Collapse
Affiliation(s)
- Bernhard Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Germany
| | - Stefan Lyer
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Germany
| | - Harald Unterweger
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Germany
| | - Regine Brox
- Department of Transfusion Medicine and Hemostaseology, Universitätsklinikum Erlangen, Germany
| | - Sarah Cunningham
- Department of Transfusion Medicine and Hemostaseology, Universitätsklinikum Erlangen, Germany
| | - Silvio Dutz
- Institute of Biomedical Engineering and Informatics (BMTI), Technische Universität Ilmenau, Germany
| | - Nicola Taccardi
- Institute of Chemical Reaction Engineering, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), the Netherlands
| | - Katrin Hurle
- GeoZentrum Nordbayern, Mineralogy, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Heidi Sebald
- Immunologie und Hygiene, Mikrobiologisches Institut - Klinische Mikrobiologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Malte Lenz
- Institute of Micro- and Nanostructure Research and Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany; Interdisciplinary Center for Nanostructure Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research and Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany; Interdisciplinary Center for Nanostructure Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Lars Fester
- Institute of Anatomy and Cell Biology Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine and Hemostaseology, Universitätsklinikum Erlangen, Germany
| | - Richard Strauß
- Department of Medicine 1, Universitätsklinikum Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Christian Bogdan
- Immunologie und Hygiene, Mikrobiologisches Institut - Klinische Mikrobiologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Germany
| | - Rainer Tietze
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Germany.
| |
Collapse
|
9
|
Singh N, Yadav S, Mehta SK, Dan A. In situ incorporation of magnetic nanoparticles within the carboxymethyl cellulose hydrogels enables dye removal. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2026788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Nirbhai Singh
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University – Chandigarh, Chandigarh, India
| | - Saurabh Yadav
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University – Chandigarh, Chandigarh, India
| | - Surinder K. Mehta
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University – Chandigarh, Chandigarh, India
| | - Abhijit Dan
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University – Chandigarh, Chandigarh, India
| |
Collapse
|
10
|
Luo G, Zhang J, Sun Y, Wang Y, Wang H, Cheng B, Shu Q, Fang X. Nanoplatforms for Sepsis Management: Rapid Detection/Warning, Pathogen Elimination and Restoring Immune Homeostasis. NANO-MICRO LETTERS 2021; 13:88. [PMID: 33717630 PMCID: PMC7938387 DOI: 10.1007/s40820-021-00598-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/14/2020] [Indexed: 05/20/2023]
Abstract
Sepsis, a highly life-threatening organ dysfunction caused by uncontrollable immune responses to infection, is a leading contributor to mortality in intensive care units. Sepsis-related deaths have been reported to account for 19.7% of all global deaths. However, no effective and specific therapeutic for clinical sepsis management is available due to the complex pathogenesis. Concurrently eliminating infections and restoring immune homeostasis are regarded as the core strategies to manage sepsis. Sophisticated nanoplatforms guided by supramolecular and medicinal chemistry, targeting infection and/or imbalanced immune responses, have emerged as potent tools to combat sepsis by supporting more accurate diagnosis and precision treatment. Nanoplatforms can overcome the barriers faced by clinical strategies, including delayed diagnosis, drug resistance and incapacity to manage immune disorders. Here, we present a comprehensive review highlighting the pathogenetic characteristics of sepsis and future therapeutic concepts, summarizing the progress of these well-designed nanoplatforms in sepsis management and discussing the ongoing challenges and perspectives regarding future potential therapies. Based on these state-of-the-art studies, this review will advance multidisciplinary collaboration and drive clinical translation to remedy sepsis.
Collapse
Affiliation(s)
- Gan Luo
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| | - Jue Zhang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| | - Yaqi Sun
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| | - Ya Wang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| | - Hanbin Wang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| | - Baoli Cheng
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| | - Qiang Shu
- National Clinical Research Center for Child Health, Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052 People’s Republic of China
| | - Xiangming Fang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 People’s Republic of China
| |
Collapse
|
11
|
Chen L, Huang Q, Zhao T, Sui L, Wang S, Xiao Z, Nan Y, Ai K. Nanotherapies for sepsis by regulating inflammatory signals and reactive oxygen and nitrogen species: New insight for treating COVID-19. Redox Biol 2021; 45:102046. [PMID: 34174559 PMCID: PMC8205260 DOI: 10.1016/j.redox.2021.102046] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
SARS-CoV-2 has caused up to 127 million cases of COVID-19. Approximately 5% of COVID-19 patients develop severe illness, and approximately 40% of those with severe illness eventually die, corresponding to more than 2.78 million people. The pathological characteristics of COVID-19 resemble typical sepsis, and severe COVID-19 has been identified as viral sepsis. Progress in sepsis research is important for improving the clinical care of these patients. Recent advances in understanding the pathogenesis of sepsis have led to the view that an uncontrolled inflammatory response and oxidative stress are core factors. However, in the traditional treatment of sepsis, it is difficult to achieve a balance between the inflammation, pathogens (viruses, bacteria, and fungi), and patient tolerance, resulting in high mortality of patients with sepsis. In recent years, nanomaterials mediating reactive oxygen and nitrogen species (RONS) and the inflammatory response have shown previously unattainable therapeutic effects on sepsis. Despite these advantages, RONS and inflammatory response-based nanomaterials have yet to be extensively adopted as sepsis therapy. To the best of our knowledge, no review has yet discussed the pathogenesis of sepsis and the application of nanomaterials. To help bridge this gap, we discuss the pathogenesis of sepsis related to inflammation and the overproduction RONS, which activate pathogen-associated molecular pattern (PAMP)-pattern recognition receptor (PRR) and damage-associated molecular pattern (DAMP)-PRR signaling pathways. We also summarize the application of nanomaterials in the treatment of sepsis. As highlighted here, this strategy could synergistically improve the therapeutic efficacy against both RONS and inflammation in sepsis and may prolong survival. Current challenges and future developments for sepsis treatment are also summarized.
Collapse
Affiliation(s)
- Li Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410087, Hunan, China
| | - Tianjiao Zhao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410087, Hunan, China
| | - Lihua Sui
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Shuya Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Yayun Nan
- Geriatric Medical Center, Ningxia People's Hospital, Yinchuan, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China.
| |
Collapse
|
12
|
Doswald S, Stark WJ. Low molecular weight glycerol derived coatings on magnetic nanoparticles: role of initiator, temperature, rate of monomer addition, enhanced biocompatibility and stability. RSC Adv 2021; 11:40140-40147. [PMID: 35494117 PMCID: PMC9044556 DOI: 10.1039/d1ra03475h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/27/2021] [Indexed: 11/21/2022] Open
Abstract
Biocompatible polymer coatings for magnetic nanoparticles have shown to drastically increase their usability towards biomedical applications. The coatings imprint characteristics such as stability, resistance to non-specific adsorption and tolerance in complex media for biomedicine. Herein, a thorough investigation towards the anionic ring-opening polymerization of glycidol on the surface of carbon-coated cobalt nanoparticle was performed. Reaction parameters that influence polymer growth have been investigated. Thereafter, a maximal achievable hyperbranched polyglycidol Mw of up to 1148 g mol−1 under optimal reaction conditions was obtained. With this coating, the dispersion stability of the particles could be substantially increased, the non-specific adsorption of proteins could be decreased to 10% while retaining an efficient magnetic separation. A highly efficient coating process of magnetic nanoparticles with hyperbranched polyglycidol was investigated and the resulting particles were tested towards their biocompatible capabilities.![]()
Collapse
Affiliation(s)
- Simon Doswald
- Departement of Chemistry and Applied Science, Institute of Chemical Engineering and Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Wendelin Jan Stark
- Departement of Chemistry and Applied Science, Institute of Chemical Engineering and Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| |
Collapse
|
13
|
Papafilippou L, Claxton A, Dark P, Kostarelos K, Hadjidemetriou M. Nanotools for Sepsis Diagnosis and Treatment. Adv Healthc Mater 2021; 10:e2001378. [PMID: 33236524 PMCID: PMC11469323 DOI: 10.1002/adhm.202001378] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/07/2020] [Indexed: 12/12/2022]
Abstract
Sepsis is one of the leading causes of death worldwide with high mortality rates and a pathological complexity hindering early and accurate diagnosis. Today, laboratory culture tests are the epitome of pathogen recognition in sepsis. However, their consistency remains an issue of controversy with false negative results often observed. Clinically used blood markers, C reactive protein (CRP) and procalcitonin (PCT) are indicators of an acute-phase response and thus lack specificity, offering limited diagnostic efficacy. In addition to poor diagnosis, inefficient drug delivery and the increasing prevalence of antibiotic-resistant microorganisms constitute significant barriers in antibiotic stewardship and impede effective therapy. These challenges have prompted the exploration for alternative strategies that pursue accurate diagnosis and effective treatment. Nanomaterials are examined for both diagnostic and therapeutic purposes in sepsis. The nanoparticle (NP)-enabled capture of sepsis causative agents and/or sepsis biomarkers in biofluids can revolutionize sepsis diagnosis. From the therapeutic point of view, currently existing nanoscale drug delivery systems have proven to be excellent allies in targeted therapy, while many other nanotherapeutic applications are envisioned. Herein, the most relevant applications of nanomedicine for the diagnosis, prognosis, and treatment of sepsis is reviewed, providing a critical assessment of their potentiality for clinical translation.
Collapse
Affiliation(s)
- Lana Papafilippou
- Nanomedicine LabFaculty of BiologyMedicine and HealthAV Hill BuildingThe University of ManchesterManchesterM13 9PTUK
| | - Andrew Claxton
- Department of Critical CareSalford Royal Foundation TrustStott LaneSalfordM6 8HDUK
| | - Paul Dark
- Manchester NIHR Biomedical Research CentreDivision of InfectionImmunity and Respiratory MedicineUniversity of ManchesterManchesterM13 9PTUK
| | - Kostas Kostarelos
- Nanomedicine LabFaculty of BiologyMedicine and HealthAV Hill BuildingThe University of ManchesterManchesterM13 9PTUK
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)Campus UABBellaterraBarcelona08193Spain
| | - Marilena Hadjidemetriou
- Nanomedicine LabFaculty of BiologyMedicine and HealthAV Hill BuildingThe University of ManchesterManchesterM13 9PTUK
| |
Collapse
|
14
|
Li Y, Li J, Shi Z, Wang Y, Song X, Wang L, Han M, Du H, He C, Zhao W, Su B, Zhao C. Anticoagulant chitosan-kappa-carrageenan composite hydrogel sorbent for simultaneous endotoxin and bacteria cleansing in septic blood. Carbohydr Polym 2020; 243:116470. [DOI: 10.1016/j.carbpol.2020.116470] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/19/2020] [Accepted: 05/15/2020] [Indexed: 12/26/2022]
|
15
|
Shi Z, Jin L, He C, Li Y, Jiang C, Wang H, Zhang J, Wang J, Zhao W, Zhao C. Hemocompatible magnetic particles with broad-spectrum bacteria capture capability for blood purification. J Colloid Interface Sci 2020; 576:1-9. [PMID: 32408158 DOI: 10.1016/j.jcis.2020.04.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
Pathogen capture and removal from whole blood is a new strategy for extracorporeal blood purification, especially in initial treatment of sepsis before pathogen identification. Herein, hemocompatible magnetic particles with broad-spectrum bacteria capture capability were proposed for pathogen removal from whole blood, omitting the necessity of pathogen identification. Firstly, we designed and synthesized a new kind of imidazolium-based ionic liquid with good antibacterial activity, and polydopamine coating was utilized as a hemocompatible platform to immobilize ionic liquids on Fe3O4 nanoparticles, forming the hemocompatible magnetic particles (Fe3O4@PDA-IL). The magnetic particles exhibited good hemocompatibility and performed well in the removal of various species of clinically significant pathogens from human whole blood, including S. aureus, E. coli, and the hard-to-treat bacteria of P. aeruginosa and Methicillin-resistant S. aureus, which are the most common pathogens in bloodstream infections. Besides, the Fe3O4@PDA-IL particles were also capable to remove bacterial endotoxins from blood, inhibiting further aggravation of sepsis. Overall, we demonstrated the application of hemocompatible magnetic particles in the removal of pathogens and bacterial endotoxins from whole blood via electrostatic and hydrophobic interactions, without significant effects on blood cells or the activation of coagulation and complement, addressing the feasibility of using imidazolium-based ionic liquids for bacteria capture and removal from whole blood. It would contribute to the development of magnetic separation-based approaches to remove bacteria and bacterial endotoxin for extracorporeal blood purification, especially in initial sepsis therapy before pathogen identification.
Collapse
Affiliation(s)
- Zhenqiang Shi
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Lunqiang Jin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yupei Li
- Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China; Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610225, China
| | - Chunji Jiang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hui Wang
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Jue Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jingxia Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; Radiation Chemistry Department, Sichuan Institute of Atomic Energy, Chengdu 610101, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
16
|
Yang Q, Dong Y, Qiu Y, Yang X, Cao H, Wu Y. Design of Functional Magnetic Nanocomposites for Bioseparation. Colloids Surf B Biointerfaces 2020; 191:111014. [PMID: 32325362 DOI: 10.1016/j.colsurfb.2020.111014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/03/2020] [Indexed: 12/31/2022]
Abstract
Magnetic materials have been widely used in bioseparation in recent years due to their good biocompatibility, magnetic properties, and high binding capacity. In this review, we provide a brief introduction on the preparation and bioseparation applications of magnetic materials including the synthesis and surface modification of magnetic nanoparticles as well as the preparation and applications of magnetic nanocomposites in the separation of proteins, peptides, cells, exosomes and blood. The current limitations and remaining challenges in the fabrication process of magnetic materials for bioseparation will be also detailed.
Collapse
Affiliation(s)
- Qi Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, PR China; Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Yi Dong
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Yong Qiu
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Xinzhou Yang
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Han Cao
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, PR China.
| |
Collapse
|
17
|
Pacheco M, Jurado-Sánchez B, Escarpa A. Visible-Light-Driven Janus Microvehicles in Biological Media. Angew Chem Int Ed Engl 2019; 58:18017-18024. [PMID: 31560821 DOI: 10.1002/anie.201910053] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/24/2019] [Indexed: 12/11/2022]
Abstract
A light-driven multifunctional Janus micromotor for the removal of bacterial endotoxins and heavy metals is described. The micromotor was assembled by using the biocompatible polymer polycaprolactone for the encapsulation of CdTe or CdSe@ZnS quantum dots (QDs) as photoactive materials and an asymmetric Fe3 O4 patch for propulsion. The micromotors can be activated with visible light (470-490 nm) to propel in peroxide or glucose media by a diffusiophoretic mechanism. Efficient propulsion was observed for the first time in complex samples such as human blood serum. These properties were exploited for efficient endotoxin removal using lipopolysaccharides from Escherichia coli O111:B4 as a model toxin. The micromotors were also used for mercury removal by cationic exchange with the CdSe@ZnS core-shell QDs. Cytotoxicity assays in HeLa cell lines demonstrated the high biocompatibility of the micromotors for future detoxification applications.
Collapse
Affiliation(s)
- Marta Pacheco
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, Alcala de Henares, 28871, Madrid, Spain
| | - Beatriz Jurado-Sánchez
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, Alcala de Henares, 28871, Madrid, Spain.,Chemical Research Institute "Andres M. del Rio", University of Alcala, 28807, Madrid, Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, Alcala de Henares, 28871, Madrid, Spain.,Chemical Research Institute "Andres M. del Rio", University of Alcala, 28807, Madrid, Spain
| |
Collapse
|
18
|
Pacheco M, Jurado‐Sánchez B, Escarpa A. Visible‐Light‐Driven Janus Microvehicles in Biological Media. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Marta Pacheco
- Department of Analytical ChemistryPhysical Chemistry, and Chemical EngineeringUniversity of Alcala Alcala de Henares 28871 Madrid Spain
| | - Beatriz Jurado‐Sánchez
- Department of Analytical ChemistryPhysical Chemistry, and Chemical EngineeringUniversity of Alcala Alcala de Henares 28871 Madrid Spain
- Chemical Research Institute “Andres M. del Rio”University of Alcala 28807 Madrid Spain
| | - Alberto Escarpa
- Department of Analytical ChemistryPhysical Chemistry, and Chemical EngineeringUniversity of Alcala Alcala de Henares 28871 Madrid Spain
- Chemical Research Institute “Andres M. del Rio”University of Alcala 28807 Madrid Spain
| |
Collapse
|
19
|
Doswald S, Stark WJ, Beck-Schimmer B. Biochemical functionality of magnetic particles as nanosensors: how far away are we to implement them into clinical practice? J Nanobiotechnology 2019; 17:73. [PMID: 31151445 PMCID: PMC6544934 DOI: 10.1186/s12951-019-0506-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/27/2019] [Indexed: 01/09/2023] Open
Abstract
Magnetic nanosensors have become attractive instruments for the diagnosis and treatment of different diseases. They represent an efficient carrier system in drug delivery or in transporting contrast agents. For such purposes, magnetic nanosensors are used in vivo (intracorporeal application). To remove specific compounds from blood, magnetic nanosensors act as elimination system, which represents an extracorporeal approach. This review discusses principles, advantages and risks on recent advances in the field of magnetic nanosensors. First, synthesis methods for magnetic nanosensors and possibilities for enhancement of biocompatibility with different coating materials are addressed. Then, attention is devoted to clinical applications, in which nanosensors are or may be used as carrier- and elimination systems in the near future. Finally, risk considerations and possible effects of nanomaterials are discussed when working towards clinical applications with magnetic nanosensors.
Collapse
Affiliation(s)
- Simon Doswald
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Wendelin Jan Stark
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Beatrice Beck-Schimmer
- Institute of Anesthesiology, University of Zurich and University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
| |
Collapse
|
20
|
Abstract
Sepsis and septic shock are life-threating conditions, which form a continuum of the body's response to overwhelming infection. The current treatment consists of fluid and metabolic resuscitation, hemodynamic and end-organ support, and timely initiation of antibiotics. However, these measures may be ineffective and the sepsis-related mortality toll remains substantial; therefore, an urgent need exists for new therapies. Recently, several nanoparticle (NP) systems have shown excellent protective effects against sepsis in preclinical models, suggesting a potential utility in the management of sepsis and septic shock. These NPs serve as antibacterial agents, provide platforms to immobilize endotoxin adsorbents, interact with inflammatory cells to restore homeostasis and detect biomarkers of sepsis for timely diagnosis. This review discusses the recent developments in NP-based approaches for the treatment of sepsis.
Collapse
|
21
|
Iwasaki S, Kawasaki H, Iwasaki Y. Label-Free Specific Detection and Collection of C-Reactive Protein Using Zwitterionic Phosphorylcholine-Polymer-Protected Magnetic Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1749-1755. [PMID: 29728047 DOI: 10.1021/acs.langmuir.8b01007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this study, poly[2-methacryloyloxyethyl phosphorylcholine (MPC)]-protected Fe3O4 nanoparticles were prepared and used for the label-free specific detection and collection of an acute inflammation marker, C-reactive protein (CRP), in a simulated body fluid. The Fe3O4 nanoparticle surface was modified using poly(MPC) by surface-initiated atom-transfer radical polymerization. The density of poly(MPC) was 0.16 chains/nm2, and the colloidal stability of the nanoparticles in aqueous media and human plasma was effectively improved by surface modification. The size of the as-prepared poly(MPC)-protected Fe3O4 nanoparticles was ∼200 nm. After coming into contact with CRP, the nanoparticles aggregated as CRP comprises five subunits, and each subunit can bind to a phosphorylcholine group with two free Ca2+ ions. The change in the nanoparticle size exhibited a good correlation with the CRP concentration in the range of 0-600 nM. A low limit of detection of 10 nM for CRP was observed. The particles effectively reduced the adsorption of nonspecific proteins, and the change in the nanoparticle size with CRP was not affected by the coexistence of bovine serum albumin at a concentration 1000 times greater than that of CRP. Nanoparticle aggregates formed using CRP were dissociated using ethylenediamine- N, N, N', N'-tetraacetic acid, disodium salt, thereby regenerating poly(MPC)-protected Fe3O4 nanoparticles. In addition, CRP was collected from aqueous media using an acidic buffer solution and human plasma. CRP-containing aqueous solutions were treated with poly(MPC)-protected Fe3O4. After poly(MPC)-protected Fe3O4 nanoparticles were separated using a neodymium magnet and centrifugation, the concentration of CRP in the media dramatically decreased. In stark contrast, the concentration of albumin present in the test solution did not change even after treatment with the nanoparticles. Therefore, nanoparticles specifically recognize CRP from complex biological fluids. Although inhibition tests in the presence of 1,2-dioleoyl- sn-glycero-3-phosphocholine liposomes or free poly(MPC) were also carried out, the binding of poly(MPC)-protected Fe3O4 to CRP was not affected by these inhibitors. In conclusion, poly(MPC)-brush-bearing magnetic nanoparticles can serve not only as reliable materials for detecting and controlling the levels of CRP in simulated body fluids but also as diagnostic and therapeutic materials.
Collapse
Affiliation(s)
- Sana Iwasaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering , Kansai University , 3-3-35 Yamate-cho , Suita-shi , Osaka 564-8680 , Japan
| | - Hideya Kawasaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering , Kansai University , 3-3-35 Yamate-cho , Suita-shi , Osaka 564-8680 , Japan
| | - Yasuhiko Iwasaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering , Kansai University , 3-3-35 Yamate-cho , Suita-shi , Osaka 564-8680 , Japan
| |
Collapse
|
22
|
Guo X, Wang W, Yuan X, Yang Y, Tian Q, Xiang Y, Sun Y, Bai Z. Heavy metal redistribution mechanism assisted magnetic separation for highly-efficient removal of lead and cadmium from human blood. J Colloid Interface Sci 2019; 536:563-574. [DOI: 10.1016/j.jcis.2018.10.095] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 12/23/2022]
|
23
|
Karawacka W, Janko C, Unterweger H, Mühlberger M, Lyer S, Taccardi N, Mokhir A, Jira W, Peukert W, Boccaccini AR, Kolot M, Strauss R, Bogdan C, Alexiou C, Tietze R. SPIONs functionalized with small peptides for binding of lipopolysaccharide, a pathophysiologically relevant microbial product. Colloids Surf B Biointerfaces 2019; 174:95-102. [PMID: 30445255 DOI: 10.1016/j.colsurfb.2018.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/16/2018] [Accepted: 11/01/2018] [Indexed: 12/26/2022]
Abstract
Systemic inflammation such as sepsis represents an acute life-threatening condition, to which often no timely remedy can be found. A promising strategy may be to functionalize magnetic nanoparticles with specific peptides, derived from the binding motives of agglutinating salivary proteins, that allow immobilization of pathogens. In this work, superparamagnetic iron oxide nanoparticles with stable polycondensed aminoalkylsilane layer were developed, to which the heterobifunctional linkers N-succinimidyl 3-(2-pyridyldithio)-propanoate (SDPD) and N-succinimidyl bromoacetate (SBA) were bound. These linkers were further chemoselectively reacted with the thiol group of singularly present cysteines of selected peptides. The resulting functional nanoparticles underwent a detailed physicochemical characterization. The biocompatibility of the primarily coated aminoalkylsilane particles was also investigated. To test the pathogen-binding efficacy of the particles, the lipopolysaccharide-immobilization capacity of the peptide-coated particles was compared with free peptides. Here, one particle-bound peptide species succeeded in capturing 90% of the toxin, whereas the degree of immobilization of the toxin with a system that varied in the sequence of the peptide dropped to 35%. With these promising results, we hope to develop extracorporeal magnetic clearance systems for removing pathogens from the human body in order to accelerate diagnosis and alleviate acute disease conditions such as sepsis.
Collapse
Affiliation(s)
- Weronika Karawacka
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany.
| | - Harald Unterweger
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Marina Mühlberger
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Stefan Lyer
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Nicola Taccardi
- Institute of Chemical Reaction Engineering, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Andriy Mokhir
- Department of Chemistry and Pharmacy, Organic Chemistry Chair II, FAU 91058 Erlangen, Germany
| | - Wolfgang Jira
- Federal Research Institute of Nutrition and Food, Max Rubner-Institut, 95326 Kulmbach, Germany
| | - Wolfgang Peukert
- Institute of Particle Technology (LFG), FAU, 91058 Erlangen, Germany; Interdisciplinary Center for Functional Particle Systems (FPS), FAU, 91058 Erlangen, Germany
| | - Aldo R Boccaccini
- Interdisciplinary Center for Functional Particle Systems (FPS), FAU, 91058 Erlangen, Germany; Institute of Biomaterials, Department of Materials Science and Engineering, FAU, 91058 Erlangen, Germany
| | - Mikhail Kolot
- Department of Biochemistry and Molecular Biology, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Richard Strauss
- Deptartment of Medicine 1, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Christian Bogdan
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Rainer Tietze
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
24
|
Cave G, Harvey M, Sleigh J, Kanamala M, Wu Z. Magnetic extraction of toxin binding liposomes; a method to ameliorate drug toxicity? Preliminary in vitro/ in vivo study. Nanomedicine (Lond) 2018; 13:3083-3089. [PMID: 30457425 DOI: 10.2217/nnm-2018-0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Removal of a toxin from the body once absorbed is usually not possible. We describe the use of magnetite containing pH gradient 'MagnepH' liposomes to overcome limitations preventing removal. METHODS MagnepH liposomes were added to albumin solution containing amitriptyline and dosed intravenously in rats prior to amitriptyline injection. Albumin solution or drawn blood was exposed to a magnet and sampled. RESULTS One third of amitriptyline was extracted in vitro. In vivo amitriptyline concentrations were 1830 nmol/l (controls) and 10870 nmol/l (MagnepH; n = 2). Amitriptyline extraction increased from 0.6% (control) to 10.4% (MagnepH; 95% CI for difference 2.0-17.6%). CONCLUSION MagnepH liposomes sequestered amitriptyline and could then be extracted. This method has potential to ameliorate limitations to extracorporeal removal of toxins in poisoning.
Collapse
Affiliation(s)
- Grant Cave
- Department of Pharmacy, University of Auckland, Auckland, New Zealand 1148.,Intensive Care Unit, Tamworth Base Hospital, New South Wales, Australia 2340
| | - Martyn Harvey
- Emergency Department, Waikato Hospital, Hamilton, New Zealand 3204.,Waikato Clinical School, University of Auckland, Hamilton, New Zealand 3204
| | - Jamie Sleigh
- Emergency Department, Waikato Hospital, Hamilton, New Zealand 3204.,Department of Anaesthesia, Waikato Hospital, Hamilton, New Zealand 3204
| | - Manju Kanamala
- Department of Pharmacy, University of Auckland, Auckland, New Zealand 1148
| | - Zimei Wu
- Department of Pharmacy, University of Auckland, Auckland, New Zealand 1148
| |
Collapse
|
25
|
Balek L, Buchtova M, Kunova Bosakova M, Varecha M, Foldynova-Trantirkova S, Gudernova I, Vesela I, Havlik J, Neburkova J, Turner S, Krzyscik MA, Zakrzewska M, Klimaschewski L, Claus P, Trantirek L, Cigler P, Krejci P. Nanodiamonds as “artificial proteins”: Regulation of a cell signalling system using low nanomolar solutions of inorganic nanocrystals. Biomaterials 2018; 176:106-121. [DOI: 10.1016/j.biomaterials.2018.05.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/31/2018] [Accepted: 05/19/2018] [Indexed: 12/14/2022]
|
26
|
Prasad P, Sachan S, Suman S, Swayambhu G, Gupta S. Regenerative Core-Shell Nanoparticles for Simultaneous Removal and Detection of Endotoxins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7396-7403. [PMID: 29806945 DOI: 10.1021/acs.langmuir.8b00978] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Detection and removal of lipopolysaccharides (LPS) from food and pharmaceutical preparations is important for their safe intake and administration to avoid septic shock. We have developed an abiotic system for reversible capture, removal, and detection of LPS in aqueous solutions. Our system comprises long C18 acyl chains tethered to Fe3O4/Au/Fe3O4 nanoflowers (NFs) that act as solid supports during the separation process. The reversible LPS binding is mediated by facile hydrophobic interactions between the C18 chains and the bioactive lipid A component present on the LPS molecule. Various parameters such as pH, solvent, sonication time, NF concentration, alkane chain length, and density are optimized to achieve a maximum LPS capture efficiency. The NFs can be reused at least three times by simply breaking the NF-LPS complexes in the presence of food-grade surfactants, making the entire process safe, efficient, and scalable. The regenerated particles also serve as colorimetric labels in dot blot bioassays for simple and rapid estimation of the LPS removed.
Collapse
Affiliation(s)
- Puja Prasad
- Department of Chemical Engineering , Indian Institute of Technology (IIT) Delhi , New Delhi 110016 , India
| | - Siddharth Sachan
- Department of Chemical Engineering , Indian Institute of Technology (IIT) Delhi , New Delhi 110016 , India
| | - Sneha Suman
- Department of Chemical Engineering , Indian Institute of Technology (IIT) Delhi , New Delhi 110016 , India
| | - Girish Swayambhu
- Department of Chemical Engineering , Indian Institute of Technology (IIT) Delhi , New Delhi 110016 , India
| | - Shalini Gupta
- Department of Chemical Engineering , Indian Institute of Technology (IIT) Delhi , New Delhi 110016 , India
| |
Collapse
|
27
|
Wu Q, Xu Y, Yang K, Cui H, Chen Y, Wang M, Zhu Q, Kang W, Gao C. Fabrication of membrane absorbers based on amphiphilic carbonaceous derivatives for selective endotoxin clearance. J Mater Chem B 2017; 5:8219-8227. [DOI: 10.1039/c7tb01778b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new carrier-dispersed method based on amphiphilic carbonaceous particles (ACPs) was developed for the construction of functionalized blend membrane absorbers.
Collapse
Affiliation(s)
- Qiang Wu
- College of Pharmacy, Institutes of Environment and Medicine and Chinese Material Medica, Henan University
- Kaifeng
- China
| | - Yueyue Xu
- College of Pharmacy, Institutes of Environment and Medicine and Chinese Material Medica, Henan University
- Kaifeng
- China
| | - Kai Yang
- College of Pharmacy, Institutes of Environment and Medicine and Chinese Material Medica, Henan University
- Kaifeng
- China
| | - Hailei Cui
- College of Pharmacy, Institutes of Environment and Medicine and Chinese Material Medica, Henan University
- Kaifeng
- China
| | - Yanjun Chen
- College of Pharmacy, Institutes of Environment and Medicine and Chinese Material Medica, Henan University
- Kaifeng
- China
- Department of Pharmaceutics, Beijing Institute of Pharmacology and Toxicology
- Beijing
| | - Menghua Wang
- College of Pharmacy, Institutes of Environment and Medicine and Chinese Material Medica, Henan University
- Kaifeng
- China
| | - Qingke Zhu
- College of Pharmacy, Institutes of Environment and Medicine and Chinese Material Medica, Henan University
- Kaifeng
- China
| | - Wenyi Kang
- College of Pharmacy, Institutes of Environment and Medicine and Chinese Material Medica, Henan University
- Kaifeng
- China
| | - Chunsheng Gao
- Department of Pharmaceutics, Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| |
Collapse
|
28
|
Nanotheranostic approaches for management of bloodstream bacterial infections. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:329-341. [DOI: 10.1016/j.nano.2016.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/30/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022]
|
29
|
Kroll AV, Fang RH, Zhang L. Biointerfacing and Applications of Cell Membrane-Coated Nanoparticles. Bioconjug Chem 2016; 28:23-32. [PMID: 27798829 DOI: 10.1021/acs.bioconjchem.6b00569] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cell membrane-coated nanoparticle is a biomimetic platform consisting of a nanoparticulate core coated with membrane derived from a cell, such as a red blood cell, platelet, or cancer cell. The cell membrane "disguise" allows the particles to be perceived by the body as the source cell by interacting with its surroundings using the translocated surface membrane components. The newly bestowed characteristics of the membrane-coated nanoparticle can be utilized for biological interfacing in the body, providing natural solutions to many biomedical issues. This Review will cover the interactions of these cell membrane-coated nanoparticles and their applications within three biomedical areas of interest, including (i) drug delivery, (ii) detoxification, and (iii) immune modulation.
Collapse
Affiliation(s)
- Ashley V Kroll
- Department of NanoEngineering and Moores Cancer Center, University of California , San Diego, La Jolla, California 92093, United States
| | - Ronnie H Fang
- Department of NanoEngineering and Moores Cancer Center, University of California , San Diego, La Jolla, California 92093, United States
| | - Liangfang Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California , San Diego, La Jolla, California 92093, United States
| |
Collapse
|
30
|
Starsich FHL, Sotiriou GA, Wurnig MC, Eberhardt C, Hirt AM, Boss A, Pratsinis SE. Silica-Coated Nonstoichiometric Nano Zn-Ferrites for Magnetic Resonance Imaging and Hyperthermia Treatment. Adv Healthc Mater 2016; 5:2698-2706. [PMID: 27592719 DOI: 10.1002/adhm.201600725] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Indexed: 01/25/2023]
Abstract
Large-scale and reproducible synthesis of nanomaterials is highly sought out for successful translation into clinics. Flame aerosol technology with its proven capacity to manufacture high purity materials (e.g., light guides) up to kg h-1 is explored here for the preparation of highly magnetic, nonstoichiometric Zn-ferrite (Zn0.4 Fe2.6 O4 ) nanoparticles coated in situ with a nanothin SiO2 layer. The focus is on their suitability as magnetic multifunctional theranostic agents analyzing their T2 contrast enhancing capability for magnetic resonance imaging (MRI) and their magnetic hyperthermia performance. The primary particle size is closely controlled from 5 to 35 nm evaluating its impact on magnetic properties, MRI relaxivity, and magnetic heating performance. Most importantly, the addition of Zn in the flame precursor solution facilitates the growth of spinel Zn-ferrite crystals that exhibit superior magnetic properties over iron oxides typically made in flames. These properties result in strong MRI T2 contrast agents as shown on a 4.7 T small animal MRI scanner and lead to a more efficient heating with alternating magnetic fields. Also, by injecting Zn0.4 Fe2.6 O4 nanoparticle suspensions into pork tissue, MR-images are acquired at clinically relevant concentrations. Furthermore, the nanothin SiO2 shell facilitates functionalization with polymers, which improves the biocompatibility of the theranostic system.
Collapse
Affiliation(s)
- Fabian H. L. Starsich
- Particle Technology Laboratory; Institute of Process Engineering; Department of Mechanical and Process Engineering; ETH Zürich; Sonneggstrasse 3 CH-8092 Zürich Switzerland
| | - Georgios A. Sotiriou
- Drug Formulation & Delivery; Institute of Pharmaceutical Sciences; Department of Chemistry and Applied Biosciences; ETH Zürich; Vladimir-Prelog-Weg 3 CH-8093 Zürich Switzerland
- Department of Microbiology, Tumor and Cell Biology; Karolinska Institutet; Stockholm 17177 Sweden
| | - Moritz C. Wurnig
- Institute of Diagnostic and Interventional Radiology; University Hospital Zürich; Rämistrasse 100 CH-8091 Zürich Switzerland
| | - Christian Eberhardt
- Institute of Diagnostic and Interventional Radiology; University Hospital Zürich; Rämistrasse 100 CH-8091 Zürich Switzerland
| | - Ann M. Hirt
- Institute of Geophysics; ETH Zürich; Sonneggstrasse 5 CH-8092 Zürich Switzerland
| | - Andreas Boss
- Institute of Diagnostic and Interventional Radiology; University Hospital Zürich; Rämistrasse 100 CH-8091 Zürich Switzerland
| | - Sotiris E. Pratsinis
- Particle Technology Laboratory; Institute of Process Engineering; Department of Mechanical and Process Engineering; ETH Zürich; Sonneggstrasse 3 CH-8092 Zürich Switzerland
| |
Collapse
|
31
|
Pitt WG, Alizadeh M, Husseini GA, McClellan DS, Buchanan CM, Bledsoe CG, Robison RA, Blanco R, Roeder BL, Melville M, Hunter AK. Rapid separation of bacteria from blood-review and outlook. Biotechnol Prog 2016; 32:823-39. [PMID: 27160415 DOI: 10.1002/btpr.2299] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/03/2016] [Indexed: 12/11/2022]
Abstract
The high morbidity and mortality rate of bloodstream infections involving antibiotic-resistant bacteria necessitate a rapid identification of the infectious organism and its resistance profile. Traditional methods based on culturing the blood typically require at least 24 h, and genetic amplification by PCR in the presence of blood components has been problematic. The rapid separation of bacteria from blood would facilitate their genetic identification by PCR or other methods so that the proper antibiotic regimen can quickly be selected for the septic patient. Microfluidic systems that separate bacteria from whole blood have been developed, but these are designed to process only microliter quantities of whole blood or only highly diluted blood. However, symptoms of clinical blood infections can be manifest with bacterial burdens perhaps as low as 10 CFU/mL, and thus milliliter quantities of blood must be processed to collect enough bacteria for reliable genetic analysis. This review considers the advantages and shortcomings of various methods to separate bacteria from blood, with emphasis on techniques that can be done in less than 10 min on milliliter-quantities of whole blood. These techniques include filtration, screening, centrifugation, sedimentation, hydrodynamic focusing, chemical capture on surfaces or beads, field-flow fractionation, and dielectrophoresis. Techniques with the most promise include screening, sedimentation, and magnetic bead capture, as they allow large quantities of blood to be processed quickly. Some microfluidic techniques can be scaled up. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:823-839, 2016.
Collapse
Affiliation(s)
- William G Pitt
- Dept. of Chemical Engineering, Brigham Young University, Provo, UT
| | - Mahsa Alizadeh
- Dept. of Chemical Engineering, Brigham Young University, Provo, UT
| | - Ghaleb A Husseini
- Dept. of Chemical Engineering, American University of Sharjah, Sharjah, UAE
| | | | - Clara M Buchanan
- Dept. of Chemical Engineering, Brigham Young University, Provo, UT
| | - Colin G Bledsoe
- Dept. of Chemical Engineering, Brigham Young University, Provo, UT
| | - Richard A Robison
- Dept. of Microbiology and Molecular Biology, Brigham Young University, Provo, UT
| | - Rae Blanco
- Dept. of Chemical Engineering, Brigham Young University, Provo, UT
| | | | - Madison Melville
- Dept. of Chemical Engineering, Brigham Young University, Provo, UT
| | - Alex K Hunter
- Dept. of Chemical Engineering, Brigham Young University, Provo, UT
| |
Collapse
|
32
|
Li Y, Boraschi D. Endotoxin contamination: a key element in the interpretation of nanosafety studies. Nanomedicine (Lond) 2016; 11:269-87. [DOI: 10.2217/nnm.15.196] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The study of toxicity and potential risks of engineered nanoparticles is of particular importance in nanomedicine. Endotoxin, a common contaminant of bacterial origin, has biological effects that can mask the true biological effects of nanoparticles, if its presence is overlooked. In this review, we report the features of nanoparticle contamination by endotoxin, and the different biological effects of endotoxin-contaminated nanoparticles. We will describe different methods for endotoxin detection applied to nanoparticles, and discuss their pros and cons. Eventually, we describe various methods for eliminating endotoxin contamination in nanoparticles. Although there is no universal technique for efficiently removing endotoxin from nanoparticles, specific solutions can be found case by case, which can allow us to perform nanosafety studies in biologically relevant conditions.
Collapse
Affiliation(s)
- Yang Li
- Laboratory of Innate Immunity & Cytokines, Institute of Protein Biochemistry, National Research Council, 80131 Naples, Italy
| | - Diana Boraschi
- Laboratory of Innate Immunity & Cytokines, Institute of Protein Biochemistry, National Research Council, 80131 Naples, Italy
| |
Collapse
|
33
|
Lattuada M, Ren Q, Zuber F, Galli M, Bohmer N, Matter MT, Wichser A, Bertazzo S, Pier GB, Herrmann IK. Theranostic body fluid cleansing: rationally designed magnetic particles enable capturing and detection of bacterial pathogens. J Mater Chem B 2016; 4:7080-7086. [DOI: 10.1039/c6tb01272h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We show theoretical and experimental considerations on bacteria capturing and enrichment via magnetic separation enabling integrated diagnosis and treatment of blood stream infections.
Collapse
Affiliation(s)
- M. Lattuada
- Adolphe Merkle Institute
- University of Fribourg
- Fribourg
- Switzerland
| | - Q. Ren
- Department Materials Meet Life
- Swiss Federal Laboratories for Materials Science and Technology (Empa)
- 9014 St. Gallen
- Switzerland
| | - F. Zuber
- Department Materials Meet Life
- Swiss Federal Laboratories for Materials Science and Technology (Empa)
- 9014 St. Gallen
- Switzerland
| | - M. Galli
- Dipartimento di Chimica
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - N. Bohmer
- Department Materials Meet Life
- Swiss Federal Laboratories for Materials Science and Technology (Empa)
- 9014 St. Gallen
- Switzerland
| | - M. T. Matter
- Department Materials Meet Life
- Swiss Federal Laboratories for Materials Science and Technology (Empa)
- 9014 St. Gallen
- Switzerland
| | - A. Wichser
- Department Materials Meet Life
- Swiss Federal Laboratories for Materials Science and Technology (Empa)
- 9014 St. Gallen
- Switzerland
| | - S. Bertazzo
- Department of Medical Physics and Biomedical Engineering
- University College London
- Malet Place Engineering Building
- London
- UK
| | - G. B. Pier
- Brigham and Women's Hospital
- Harvard Medical School
- Boston
- USA
| | - I. K. Herrmann
- Department Materials Meet Life
- Swiss Federal Laboratories for Materials Science and Technology (Empa)
- 9014 St. Gallen
- Switzerland
| |
Collapse
|
34
|
Jacobson M, Roth Z'graggen B, Graber SM, Schumacher CM, Stark WJ, Dumrese C, Mateos JM, Aemisegger C, Ziegler U, Urner M, Herrmann IK, Beck-Schimmer B. Uptake of ferromagnetic carbon-encapsulated metal nanoparticles in endothelial cells: influence of shear stress and endothelial activation. Nanomedicine (Lond) 2015; 10:3537-46. [DOI: 10.2217/nnm.15.172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: Magnetic field guided drug targeting holds promise for more effective cancer treatment. Intravascular application of magnetic nanoparticles, however, bears the risk of potentially important, yet poorly understood side effects, such as off-target accumulation in endothelial cells. Materials & methods: Here, we investigated the influence of shear stress (0–3.22 dyn/cm2), exposure time (5–30 min) and endothelial activation on the uptake of ferromagnetic carbon-encapsulated iron carbide nanomagnets into endothelial cells in an in vitro flow cell model. Results: We found that even moderate shear stresses typically encountered in the venous system strongly reduce particle uptake compared with static conditions. Interestingly, a pronounced particle uptake was observed in inflamed endothelial cells. Conclusion: This study highlights the importance of relevant exposure scenarios accounting for physiological conditions when studying particle–cell interactions as, for example, shear stress and endothelial activation are major determinants of particle uptake. Such considerations are of particular importance with regard to successful translation of in vitro findings into (pre-)clinical end points.
Collapse
Affiliation(s)
- Melanie Jacobson
- Institute of Anesthesiology, University Hospital Zurich, Hof E 111, Rämistrasse 100, CH-8091 Zurich, Switzerland
- Institute of Physiology & Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Birgit Roth Z'graggen
- Institute of Anesthesiology, University Hospital Zurich, Hof E 111, Rämistrasse 100, CH-8091 Zurich, Switzerland
- Institute of Physiology & Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Sereina M Graber
- Anthropological Institute & Museum, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Christoph M Schumacher
- ETH Zurich, Institute for Chemical & Bioengineering, Vladimir-Prelog-Weg 1, CH-8093 Zurich, Switzerland
| | - Wendelin J Stark
- ETH Zurich, Institute for Chemical & Bioengineering, Vladimir-Prelog-Weg 1, CH-8093 Zurich, Switzerland
| | - Claudia Dumrese
- Center for Microscopy & Image Analysis, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jose Maria Mateos
- Center for Microscopy & Image Analysis, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Caroline Aemisegger
- Center for Microscopy & Image Analysis, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Urs Ziegler
- Center for Microscopy & Image Analysis, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Martin Urner
- Institute of Anesthesiology, University Hospital Zurich, Hof E 111, Rämistrasse 100, CH-8091 Zurich, Switzerland
- Institute of Physiology & Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Inge K Herrmann
- Institute of Anesthesiology, University Hospital Zurich, Hof E 111, Rämistrasse 100, CH-8091 Zurich, Switzerland
- Institute of Physiology & Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- Department Materials Meet Life, Swiss Federal Laboratories for Materials Science & Technology (Empa), Lerchenfeldstrasse 5, 9014 St Gallen, Switzerland
| | - Beatrice Beck-Schimmer
- Institute of Anesthesiology, University Hospital Zurich, Hof E 111, Rämistrasse 100, CH-8091 Zurich, Switzerland
- Institute of Physiology & Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
35
|
Herrmann IK, Schlegel AA, Graf R, Stark WJ, Beck-Schimmer B. Magnetic separation-based blood purification: a promising new approach for the removal of disease-causing compounds? J Nanobiotechnology 2015; 13:49. [PMID: 26253109 PMCID: PMC4528690 DOI: 10.1186/s12951-015-0110-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/29/2015] [Indexed: 01/02/2023] Open
Abstract
Recent studies report promising results regarding extracorporeal magnetic separation-based blood purification for the rapid and selective removal of disease-causing compounds from whole blood. High molecular weight compounds, bacteria and cells can be eliminated from blood within minutes, hence offering novel treatment strategies for the management of intoxications and blood stream infections. However, risks associated with incomplete particle separation and the biological consequences of particles entering circulation remain largely unclear. This article discusses the promising future of magnetic separation-based purification while keeping important safety considerations in mind.
Collapse
Affiliation(s)
- I K Herrmann
- Institute of Anesthesiology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - A A Schlegel
- Department of Surgery, Swiss HPB and Transplant Center, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.
| | - R Graf
- Department of Surgery, Swiss HPB and Transplant Center, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.
| | - W J Stark
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland.
| | - Beatrice Beck-Schimmer
- Institute of Anesthesiology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
36
|
Herrmann IK. How nanotechnology-enabled concepts could contribute to the prevention, diagnosis and therapy of bacterial infections. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:239. [PMID: 26025027 PMCID: PMC4448307 DOI: 10.1186/s13054-015-0957-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This viewpoint summarizes a selection of nanotechnology-based key concepts relevant to critical care medicine. It focuses on novel approaches for a trigger-dependent release of antimicrobial substances from degradable nano-sized carriers, the ultra-sensitive detection of analytes in body fluid samples by plasmonic and fluorescent nanoparticles, and the rapid removal of pathogens from whole blood using magnetic nanoparticles. The concepts presented here could significantly contribute to the prevention, diagnosis and therapy of bacterial infections in future and it is now our turn to bring them from the bench to the bedside.
Collapse
Affiliation(s)
- Inge K Herrmann
- Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014, St Gallen, Switzerland.
| |
Collapse
|
37
|
Bircher L, Theusinger OM, Locher S, Eugster P, Roth-Z'graggen B, Schumacher CM, Studt JD, Stark WJ, Beck-Schimmer B, Herrmann IK. Characterization of carbon-coated magnetic nanoparticles using clinical blood coagulation assays: effect of PEG-functionalization and comparison to silica nanoparticles. J Mater Chem B 2014; 2:3753-3758. [PMID: 32261721 DOI: 10.1039/c4tb00208c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Intravascular application of magnetic nanocarriers is a critical step in the development of new therapeutic strategies, including magnetic drug targeting or hyperthermia. However, injection of particulate matter bears the intrinsic risk of contact activation of the blood coagulation cascade. In this work, we use point-of-care assays to study coagulation dynamics and clotting parameters in blood samples exposed to relevant concentrations of surface-functionalized carbon-coated iron carbide nanomagnets using unmodified nanomagnets and poly(ethylene)glycol-functionalized nanomagnets with different end-groups, including -OCH3, -NH2, -COOH, -IgG, and -ProteinA-protected-IgG (-IgG-ProtA). Silica nanoparticles with a comparable surface area are used as a reference material. For magnetic nanoparticles, we observe a decrease in clotting time by 25% compared to native blood at concentrations of 1 mg mL-1, independent of the surface functionalization, and only minor differences in receptor expression on platelets (GP-IIb-IIIa, CD62, and CD63) relative to control samples were observed. Interestingly, the inter-subject variance of the clotting time is similar to the nanoparticle-induced effect in a single subject with average clotting time. Whilst the present study is based on in vitro assays and a small group of healthy blood donors, the comparison to broadly used silica nanoparticles, and the fact that experimental intergroup variability is comparable to the observed effects from the carbon-coated nanomagnets suggests continuing investigations on their potential clinical use.
Collapse
Affiliation(s)
- Lukas Bircher
- Institute of Anesthesiology, University Hospital Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Liu F, Mu J, Wu X, Bhattacharjya S, Yeow EKL, Xing B. Peptide–perylene diimide functionalized magnetic nano-platforms for fluorescence turn-on detection and clearance of bacterial lipopolysaccharides. Chem Commun (Camb) 2014; 50:6200-3. [DOI: 10.1039/c4cc01266f] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A simple and novel dual-functional peptide magnetic nanoplatform has been successfully designed for sensitive detection and rapid clearance of bacterial endotoxins.
Collapse
Affiliation(s)
- Fang Liu
- Division of Chemistry and Biological Chemistry
- School of Physical & Mathematical Sciences
- Nanyang Technological University
- Singapore, Singapore
| | - Jing Mu
- Division of Chemistry and Biological Chemistry
- School of Physical & Mathematical Sciences
- Nanyang Technological University
- Singapore, Singapore
| | - Xiangyang Wu
- Division of Chemistry and Biological Chemistry
- School of Physical & Mathematical Sciences
- Nanyang Technological University
- Singapore, Singapore
| | - Surajit Bhattacharjya
- Division of Structural Biology & Biochemistry
- School of Biological Sciences
- Nanyang Technological University
- Singapore, Singapore
| | - Edwin Kok Lee Yeow
- Division of Chemistry and Biological Chemistry
- School of Physical & Mathematical Sciences
- Nanyang Technological University
- Singapore, Singapore
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry
- School of Physical & Mathematical Sciences
- Nanyang Technological University
- Singapore, Singapore
| |
Collapse
|
39
|
Herrmann IK, Schlegel A, Graf R, Schumacher CM, Senn N, Hasler M, Gschwind S, Hirt AM, Günther D, Clavien PA, Stark WJ, Beck-Schimmer B. Nanomagnet-based removal of lead and digoxin from living rats. NANOSCALE 2013; 5:8718-8723. [PMID: 23900264 DOI: 10.1039/c3nr02468g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In a number of clinical conditions such as intoxication, bacteraemia or autoimmune diseases the removal of the disease-causing factor from blood would be the most direct cure. However, physicochemical characteristics of the target compounds limit the applicability of classical filtration and diffusion-based processes. In this work, we present a first in vivo magnetic blood purification rodent animal model and demonstrate its ability to rapidly clear toxins from blood circulation using two model toxins with stable plasma levels (lead (Pb(2+)) and digoxin). Ultra-strong functionalized metal nanomagnets are employed to eliminate the toxin from whole blood in an extracorporeal circuit. In the present experimental demonstration over 40% of the toxin (i.e. lead or digoxin) was removed within the first 10 minutes and over 75% within 40 minutes. After capturing the target substance, a magnetic trap prevents the toxin-loaded nanoparticles from entering the blood circulation. Elemental analysis and magnetic hysteresis measurements confirm full particle recovery by simple magnetic separation (residual particle concentration below 1 μg mL(-1) (detection limit)). We demonstrate that magnetic separation-based blood purification offers rapid blood cleaning from noxious agents, germs or other deleterious materials with relevance to a number of clinical conditions. Based on this new approach, current blood purification technologies can be extended to efficiently remove disease-causing factors, e.g. overdosed drugs, bacteria or cancer cells without being limited by filter cut-offs or column surface saturation.
Collapse
Affiliation(s)
- Inge K Herrmann
- Institute of Anesthesiology, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|