1
|
Gudima A, Hesselbarth D, Li G, Riabov V, Michel J, Liu Q, Schmuttermaier C, Jiao Z, Sticht C, Jawhar A, Obertacke U, Klüter H, Vrana NE, Kzhyshkowska J. Titanium induces proinflammatory and tissue-destructive responses in primary human macrophages. J Leukoc Biol 2024; 116:706-725. [PMID: 38512961 DOI: 10.1093/jleuko/qiae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Implants and medical devices are efficient and practical therapeutic solutions for a multitude of pathologies. Titanium and titanium alloys are used in orthopedics, dentistry, and cardiology. Despite very good mechanical properties and corrosion resistance, titanium implants can fail due to inflammatory or tissue degradation-related complications. Macrophages are major immune cells that control acceptance of failure of the implant. In this study, for the first time, we have performed a systematic analysis of the response of differentially activated human macrophages, M(Control), M(IFNγ), and M(IL-4), to the polished and porous titanium surfaces in order to identify the detrimental effect of titanium leading to the tissue destruction and chronic inflammation. Transcriptome analysis revealed that the highest number of differences between titanium and control settings are found in M(IL-4) that model healing type of macrophages. Real-time quantitative polymerase chain reaction analysis confirmed that both polished and porous titanium affected expression of cytokines, chitinases/chitinase-like proteins, and matrix metalloproteinases (MMPs). Titanium-induced release and activation of MMP7 by macrophages was enhanced by fibroblasts in both juxtacrine and paracrine cell interaction models. Production of titanium-induced MMPs and cytokines associated with chronic inflammation was independent of the presence of Staphylococcus aureus. MMP7, one of the most pronounced tissue-destroying factors, and chitinase-like protein YKL-40 were expressed in CD68+ macrophages in peri-implant tissues of patients with orthopedic implants. In summary, we demonstrated that titanium induces proinflammatory and tissue-destructing responses mainly in healing macrophages, and the detrimental effects of titanium surfaces on implant-adjacent macrophages are independent on the bacterial contamination.
Collapse
Affiliation(s)
- Alexandru Gudima
- Institute for Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - David Hesselbarth
- Institute for Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Clinic for Cardiology and Angiology, University Heart Centre Freiburg-Bad Krozingen, Freiburg, Germany
| | - Guanhao Li
- Institute for Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Vladimir Riabov
- Institute for Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
| | - Julia Michel
- Institute for Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| | - Quan Liu
- Institute for Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Christina Schmuttermaier
- Institute for Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Zhen Jiao
- Institute for Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Carsten Sticht
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68167 Mannheim, Germany
| | - Ahmed Jawhar
- Department of Orthopaedics and Trauma Surgery, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68167 Mannheim, Germany
| | - Udo Obertacke
- Department of Orthopaedics and Trauma Surgery, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68167 Mannheim, Germany
| | - Harald Klüter
- Institute for Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| | - Nihal Engin Vrana
- SPARTHA Medical, Strasbourg, France
- Department of Biomaterials and Bioengineering, UMR_S1121, Biomaterials and Bioengineering, INSERM and University of Strasburg, Strasbourg, France
| | - Julia Kzhyshkowska
- Institute for Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| |
Collapse
|
2
|
Kocgozlu L, Mutschler A, Tallet L, Calligaro C, Knopf-Marques H, Lebaudy E, Mathieu E, Rabineau M, Gribova V, Senger B, Vrana NE, Lavalle P. Cationic homopolypeptides: A versatile tool to design multifunctional antimicrobial nanocoatings. Mater Today Bio 2024; 28:101168. [PMID: 39221202 PMCID: PMC11364137 DOI: 10.1016/j.mtbio.2024.101168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024] Open
Abstract
Postoperative infections are the most common complications faced by surgeons after implant surgery. To address this issue, an emerging and promising approach is to develop antimicrobial coatings using antibiotic substitutes. We investigated the use of polycationic homopolypeptides in a layer-by-layer coating combined with hyaluronic acid (HA) to produce an effective antimicrobial shield. The three peptide-based polycations used to make the coatings, poly(l-arginine) (PAR), poly(l-lysine), and poly(l-ornithine), provided an efficient antibacterial barrier by a contact-killing mechanism against Gram-positive, Gram-negative, and antibiotic-resistant bacteria. Moreover, this activity was higher for homopolypeptides containing 30 amino-acid residues per polycation chain, emphasizing the impact of the polycation chain length and its mobility in the coatings to deploy its contact-killing antimicrobial properties. However, the PAR-containing coating emerged as the best candidate among the three selected polycations, as it promoted cell adhesion and epithelial monolayer formation. It also stimulated nitric oxide production in endothelial cells, thereby facilitating angiogenesis and subsequent tissue regeneration. More interestingly, bacteria did not develop a resistance to PAR and (PAR/HA) also inhibited the proliferation of eukaryotic pathogens, such as yeasts. Furthermore, in vivo investigations on a (PAR/HA)-coated hernia mesh implanted on a rabbit model confirmed that the coating had antibacterial properties without causing chronic inflammation. These impressive synergistic activities highlight the strong potential of PAR/HA coatings as a key tool in combating bacteria, including those resistant to conventional antibiotics and associated to medical devices.
Collapse
Affiliation(s)
- Leyla Kocgozlu
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Angela Mutschler
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Lorène Tallet
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | | | - Helena Knopf-Marques
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Eloïse Lebaudy
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Eric Mathieu
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Morgane Rabineau
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Varvara Gribova
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Bernard Senger
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | | | - Philippe Lavalle
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| |
Collapse
|
3
|
Motta MA, Mulko L, Marin E, Larrañaga A, Calderón M. Polypeptide-based multilayer nanoarchitectures: Controlled assembly on planar and colloidal substrates for biomedical applications. Adv Colloid Interface Sci 2024; 331:103248. [PMID: 39033588 DOI: 10.1016/j.cis.2024.103248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
Polypeptides have shown an excellent potential in nanomedicine thanks to their biocompatibility, biodegradability, high functionality, and responsiveness to several stimuli. Polypeptides exhibit high propensity to organize at the supramolecular level; hence, they have been extensively considered as building blocks in the layer-by-layer (LbL) assembly. The LbL technique is a highly versatile methodology, which involves the sequential assembly of building blocks, mainly driven by electrostatic interactions, onto planar or colloidal templates to fabricate sophisticated multilayer nanoarchitectures. The simplicity and the mild conditions required in the LbL approach have led to the inclusion of biopolymers and bioactive molecules for the fabrication of a wide spectrum of biodegradable, biocompatible, and precisely engineered multilayer films for biomedical applications. This review focuses on those examples in which polypeptides have been used as building blocks of multilayer nanoarchitectures for tissue engineering and drug delivery applications, highlighting the characteristics of the polypeptides and the strategies adopted to increase the stability of the multilayer film. Cross-linking is presented as a powerful strategy to enhance the stability and stiffness of the multilayer network, which is a fundamental requirement for biomedical applications. For example, in tissue engineering, a stiff multilayer coating, the presence of adhesion promoters, and/or bioactive molecules boost the adhesion, growth, and differentiation of cells. On the contrary, antimicrobial coatings should repel and inhibit the growth of bacteria. In drug delivery applications, mainly focused on particles and capsules at the micro- and nano-meter scale, the stability of the multilayer film is crucial in terms of retention and controlled release of the payload. Recent advances have shown the key role of the polypeptides in the adsorption of genetic material with high loading efficiency, and in addressing different pathways of the particles/capsules during the intracellular uptake, paving the way for applications in personalized medicine. Although there are a few studies, the responsiveness of the polypeptides to the pH changes, together with the inclusion of stimuli-responsive entities into the multilayer network, represents a further key factor for the development of smart drug delivery systems to promote a sustained release of therapeutics. The degradability of polypeptides may be an obstacle in certain scenarios for the controlled intracellular release of a drug once an external stimulus is applied. Nowadays, the highly engineered design of biodegradable LbL particles/capsules is oriented on the development of theranostics that, limited to use of polypeptides, are still in their infancy.
Collapse
Affiliation(s)
- Maria Angela Motta
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, 48013 Bilbao, Spain
| | - Lucinda Mulko
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Edurne Marin
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, 48013 Bilbao, Spain
| | - Aitor Larrañaga
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, 48013 Bilbao, Spain.
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain.
| |
Collapse
|
4
|
Piatnitskaia S, Rafikova G, Bilyalov A, Chugunov S, Akhatov I, Pavlov V, Kzhyshkowska J. Modelling of macrophage responses to biomaterials in vitro: state-of-the-art and the need for the improvement. Front Immunol 2024; 15:1349461. [PMID: 38596667 PMCID: PMC11002093 DOI: 10.3389/fimmu.2024.1349461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/21/2024] [Indexed: 04/11/2024] Open
Abstract
The increasing use of medical implants in various areas of medicine, particularly in orthopedic surgery, oncology, cardiology and dentistry, displayed the limitations in long-term integration of available biomaterials. The effective functioning and successful integration of implants requires not only technical excellence of materials but also consideration of the dynamics of biomaterial interaction with the immune system throughout the entire duration of implant use. The acute as well as long-term decisions about the efficiency of implant integration are done by local resident tissue macrophages and monocyte-derived macrophages that start to be recruited during tissue damage, when implant is installed, and are continuously recruited during the healing phase. Our review summarized the knowledge about the currently used macrophages-based in vitro cells system that include murine and human cells lines and primary ex vivo differentiated macrophages. We provided the information about most frequently examined biomarkers for acute inflammation, chronic inflammation, foreign body response and fibrosis, indicating the benefits and limitations of the model systems. Particular attention is given to the scavenging function of macrophages that controls dynamic composition of peri-implant microenvironment and ensures timely clearance of microorganisms, cytokines, metabolites, extracellular matrix components, dying cells as well as implant debris. We outline the perspective for the application of 3D systems for modelling implant interaction with the immune system in human tissue-specific microenvironment avoiding animal experimentation.
Collapse
Affiliation(s)
- Svetlana Piatnitskaia
- Cell Technology Laboratory, Institute of Fundamental Medicine, Bashkir State Medical University, Ufa, Russia
| | - Guzel Rafikova
- Additive Technology Laboratory, Institute of Fundamental Medicine, Bashkir State Medical University, Ufa, Russia
- Laboratory of Immunology, Institute of Urology and Clinical Oncology, Bashkir State Medical University, Ufa, Russia
| | - Azat Bilyalov
- Additive Technology Laboratory, Institute of Fundamental Medicine, Bashkir State Medical University, Ufa, Russia
| | - Svyatoslav Chugunov
- Additive Technology Laboratory, Institute of Fundamental Medicine, Bashkir State Medical University, Ufa, Russia
| | - Iskander Akhatov
- Laboratory of Mathematical modeling, Institute of Fundamental Medicine, Bashkir State Medical University, Ufa, Russia
| | - Valentin Pavlov
- Institute of Urology and Clinical Oncology, Department of Urology, Bashkir State Medical University, Ufa, Russia
| | - Julia Kzhyshkowska
- Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, Mannheim, Germany
| |
Collapse
|
5
|
Eloïse L, Petit L, Nominé Y, Heurtault B, Ben Hadj Kaddour I, Senger B, Rodon Fores J, Vrana NE, Barbault F, Lavalle P. The antibacterial properties of branched peptides based on poly(l-arginine): In vitro antibacterial evaluation and molecular dynamic simulations. Eur J Med Chem 2024; 268:116224. [PMID: 38387338 DOI: 10.1016/j.ejmech.2024.116224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/27/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
The emergence of bacterial strains resistant to antibiotics is a major issue in the medical field. Antimicrobial peptides are widely studied as they do not generate as much resistant bacterial strains as conventional antibiotics and present a broad range of activity. Among them, the homopolypeptide poly(l-arginine) presents promising antibacterial properties, especially in the perspective of its use in biomaterials. Linear poly(l-arginine) has been extensively studied but the impact of its 3D structure remains unknown. In this study, the antibacterial properties of newly synthesized branched poly(l-arginine) peptides, belonging to the family of multiple antigenic peptides, are evaluated. First, in vitro activities of the peptides shows that branched poly(l-arginine) is more efficient than linear poly(l-arginine) containing the same number of arginine residues. Surprisingly, peptides with more arms and more residues are not the most effective. To better understand these unexpected results, interactions between these peptides and the membranes of Gram positive and Gram negative bacteria are simulated thanks to molecular dynamic. It is observed that the bacterial membrane is more distorted by the branched structure than by the linear one and by peptides containing smaller arms. This mechanism of action is in full agreement with in vitro results and suggest that our simulations form a robust model to evaluate peptide efficiency towards pathogenic bacteria.
Collapse
Affiliation(s)
- Lebaudy Eloïse
- Inserm UMR_S 1121, EMR 7003 CNRS, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, F67000, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Lauriane Petit
- Inserm UMR_S 1121, EMR 7003 CNRS, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, F67000, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France; SPARTHA Medical, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| | - Yves Nominé
- Institut de génétique et de biologie moléculaire et cellulaire, IGBMC, Illkirch, France
| | - Béatrice Heurtault
- Université de Strasbourg, Centre national de la recherche scientifique (CNRS), Laboratoire de Conception et Application de Molécules Bioactives UMR 7199, Faculté de Pharmacie, Illkirch, France
| | - Inès Ben Hadj Kaddour
- Inserm UMR_S 1121, EMR 7003 CNRS, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, F67000, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France; SPARTHA Medical, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| | - Bernard Senger
- Inserm UMR_S 1121, EMR 7003 CNRS, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, F67000, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Jennifer Rodon Fores
- Inserm UMR_S 1121, EMR 7003 CNRS, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, F67000, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Nihal Engin Vrana
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France; SPARTHA Medical, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| | | | - Philippe Lavalle
- Inserm UMR_S 1121, EMR 7003 CNRS, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, F67000, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France; SPARTHA Medical, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France.
| |
Collapse
|
6
|
Kadirvelu L, Sivaramalingam SS, Jothivel D, Chithiraiselvan DD, Karaiyagowder Govindarajan D, Kandaswamy K. A review on antimicrobial strategies in mitigating biofilm-associated infections on medical implants. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100231. [PMID: 38510214 PMCID: PMC10951465 DOI: 10.1016/j.crmicr.2024.100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Biomedical implants are crucial in providing support and functionality to patients with missing or defective body parts. However, implants carry an inherent risk of bacterial infections that are biofilm-associated and lead to significant complications. These infections often result in implant failure, requiring replacement by surgical restoration. Given these complications, it is crucial to study the biofilm formation mechanism on various biomedical implants that will help prevent implant failures. Therefore, this comprehensive review explores various types of implants (e.g., dental implant, orthopedic implant, tracheal stent, breast implant, central venous catheter, cochlear implant, urinary catheter, intraocular lens, and heart valve) and medical devices (hemodialyzer and pacemaker) in use. In addition, the mechanism of biofilm formation on those implants, and their pathogenesis were discussed. Furthermore, this article critically reviews various approaches in combating implant-associated infections, with a special emphasis on novel non-antibiotic alternatives to mitigate biofilm infections.
Collapse
Affiliation(s)
- Lohita Kadirvelu
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Sowmiya Sri Sivaramalingam
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Deepsikha Jothivel
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Dhivia Dharshika Chithiraiselvan
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | | | - Kumaravel Kandaswamy
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| |
Collapse
|
7
|
Scavello F, Amiche M, Ghia JE. The Editorial Position on 'Recent Advances in Multifunctional Antimicrobial Peptides as Preclinical Therapeutic Studies and Clinical Future Applications'. Pharmaceutics 2023; 15:2383. [PMID: 37896143 PMCID: PMC10609690 DOI: 10.3390/pharmaceutics15102383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 10/29/2023] Open
Abstract
Antibiotic resistance has recently been recognized as an alarming issue and one of the leading causes of death worldwide [...].
Collapse
Affiliation(s)
| | - Mohamed Amiche
- Laboratoire de Biogenèse des Signaux Peptidiques (BioSiPe), Institut de Biologie Paris-Seine, Sorbonne Université-CNRS, 75252 Paris, France
| | - Jean-Eric Ghia
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Section of Gastroenterology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| |
Collapse
|
8
|
Costa MD, Donner S, Bertrand J, Pop OL, Lohmann CH. Hypersensitivity and lymphocyte activation after total hip arthroplasty. ORTHOPADIE (HEIDELBERG, GERMANY) 2023; 52:214-221. [PMID: 36820851 DOI: 10.1007/s00132-023-04349-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 02/24/2023]
Abstract
In the last decades total hip arthroplasty (THA) has become a standard procedure with many benefits but also a few still unsolved complications, which can lead to surgical revision in 19-23% of cases. Thus, aseptic loosening and metal hypersensitivity remain challenges. The phenomenon of wear debris causes chronic inflammation, which produces osteolysis and aseptic loosening. Wear debris promotes osteoclast production and inhibits osteoblasts by secretion of pro-inflammatory cytokines. Micro-abrasions can be induced by abrasive, adhesive and fatigue wear and cause a liberation of metal ions, which lead to another immune response elicited mostly by macrophages. Another reaction in the neocapsule can be a type IV hypersensitivity reaction to various alloys, containing metals such as nickel, cobalt and chromium. Patch testing and the lymphocyte transformation test (LTT) are not the best diagnostic possibilities to exclude a postoperative hypersensitivity reaction, because of the different alignment of the epicutaneous cells compared to the periprosthetic deep tissue. This hypersensitivity reaction is mostly induced by cytokines, which are secreted by macrophages rather than lymphocytes. In cell cultures and in animal studies, multipotent mesenchymal stem cells (MSC) have been shown to play a role in improving initial implant integration, to limit periprosthetic osteolysis and also to reconstitute peri-implant bone stock during implant revision. Thus, MSC might be used in the future to prolong the durability of THA. A better understanding of the interactions between primary chronic inflammation, corrosion, osteolysis and hypersensitivity is mandatory to develop new therapeutic strategies, aiming at the reduction of the incidence of implant failures. In this article the underlying immunological mechanisms to aseptic loosening are presented.
Collapse
Affiliation(s)
- Maximilian D Costa
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Department of Morphological Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Stefanie Donner
- Centre for Musculoskeletal Surgery, Charité-University Medicine, Berlin, Germany
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Ovidiu-Laurean Pop
- Department of Morphological Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Christoph H Lohmann
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.
| |
Collapse
|
9
|
Rafikova G, Piatnitskaia S, Shapovalova E, Chugunov S, Kireev V, Ialiukhova D, Bilyalov A, Pavlov V, Kzhyshkowska J. Interaction of Ceramic Implant Materials with Immune System. Int J Mol Sci 2023; 24:4200. [PMID: 36835610 PMCID: PMC9959507 DOI: 10.3390/ijms24044200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
The immuno-compatibility of implant materials is a key issue for both initial and long-term implant integration. Ceramic implants have several advantages that make them highly promising for long-term medical solutions. These beneficial characteristics include such things as the material availability, possibility to manufacture various shapes and surface structures, osteo-inductivity and osteo-conductivity, low level of corrosion and general biocompatibility. The immuno-compatibility of an implant essentially depends on the interaction with local resident immune cells and, first of all, macrophages. However, in the case of ceramics, these interactions are insufficiently understood and require intensive experimental examinations. Our review summarizes the state of the art in variants of ceramic implants: mechanical properties, different chemical modifications of the basic material, surface structures and modifications, implant shapes and porosity. We collected the available information about the interaction of ceramics with the immune system and highlighted the studies that reported ceramic-specific local or systemic effects on the immune system. We disclosed the gaps in knowledge and outlined the perspectives for the identification to ceramic-specific interactions with the immune system using advanced quantitative technologies. We discussed the approaches for ceramic implant modification and pointed out the need for data integration using mathematic modelling of the multiple ceramic implant characteristics and their contribution for long-term implant bio- and immuno-compatibility.
Collapse
Affiliation(s)
- Guzel Rafikova
- Laboratory of Immunology, Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Svetlana Piatnitskaia
- Institute of Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Elena Shapovalova
- Department of Chemistry, Tomsk State University, 634050 Tomsk, Russia
| | | | - Victor Kireev
- Institute of Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
- Department of Applied Physics, Ufa University of Science and Technology, 450076 Ufa, Russia
| | - Daria Ialiukhova
- Institute of Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Azat Bilyalov
- Institute of Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | | | - Julia Kzhyshkowska
- Institute of Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
- Department of Chemistry, Tomsk State University, 634050 Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunosciecnes (MI3), Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg, 68167 Mannheim, Germany
| |
Collapse
|
10
|
Šušteršič T, Gribova V, Nikolic M, Lavalle P, Filipovic N, Vrana NE. The Effect of Machine Learning Algorithms on the Prediction of Layer-by-Layer Coating Properties. ACS OMEGA 2023; 8:4677-4686. [PMID: 36777619 PMCID: PMC9909801 DOI: 10.1021/acsomega.2c06471] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/30/2022] [Indexed: 06/18/2023]
Abstract
Layer-by-layer film (LbL) coatings made of polyelectrolytes are a powerful tool for surface modification, including the applications in the biomedical field, for food packaging, and in many electrochemical systems. However, despite the number of publications related to LbL assembly, predicting LbL coating properties represents quite a challenge, can take a long time, and be very costly. Machine learning (ML) methodologies that are now emerging can accelerate and improve new coating development and potentially revolutionize the field. Recently, we have demonstrated a preliminary ML-based model for coating thickness prediction. In this paper, we compared several ML algorithms for optimizing a methodology for coating thickness prediction, namely, linear regression, Support Vector Regressor, Random Forest Regressor, and Extra Tree Regressor. The current research has shown that learning algorithms are effective in predicting the coating output value, with the Extra Tree Regressor algorithm demonstrating superior predictive performance, when used in combination with optimized hyperparameters and with missing data imputation. The best predictors of the coating thickness were determined, and they can be later used to accurately predict coating thickness, avoiding measurement of multiple parameters. The development of optimized methodologies will ensure different reliable predictive models for coating property/function relations. As a continuation, the methodology can be adapted and used for predicting the outputs connected to antimicrobial, anti-inflammatory, and antiviral properties in order to be able to respond to actual biomedical problems such as antibiotic resistance, implant rejection, or COVID-19 outbreak.
Collapse
Affiliation(s)
- Tijana Šušteršič
- Faculty
of Engineering, University of Kragujevac (FINK), Kragujevac34000, Serbia
- Steinbeis
Advanced Risk Technologies Institute doo Kragujevac (SARTIK), Kragujevac34000, Serbia
- Bioengineering
Research and Development Center (BioIRC), Kragujevac34000, Serbia
| | - Varvara Gribova
- Biomaterials
and Bioengineering laboratory, INSERM UMR
1121, Strasbourg67100, France
- Université
de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg67000, France
| | - Milica Nikolic
- Steinbeis
Advanced Risk Technologies Institute doo Kragujevac (SARTIK), Kragujevac34000, Serbia
- Institute
of Information Technologies, University of Kragujevac, Kragujevac34000, Serbia
- Eindhoven
University of Technology, Eindhoven5611 CB, The Netherlands
| | - Philippe Lavalle
- Biomaterials
and Bioengineering laboratory, INSERM UMR
1121, Strasbourg67100, France
- Université
de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg67000, France
- SPARTHA
Medical, Strasbourg67100, France
| | - Nenad Filipovic
- Faculty
of Engineering, University of Kragujevac (FINK), Kragujevac34000, Serbia
- Steinbeis
Advanced Risk Technologies Institute doo Kragujevac (SARTIK), Kragujevac34000, Serbia
- Bioengineering
Research and Development Center (BioIRC), Kragujevac34000, Serbia
| | | |
Collapse
|
11
|
Scavello F, Kharouf N, Lavalle P, Haikel Y, Schneider F, Metz-Boutigue MH. The antimicrobial peptides secreted by the chromaffin cells of the adrenal medulla link the neuroendocrine and immune systems: From basic to clinical studies. Front Immunol 2022; 13:977175. [PMID: 36090980 PMCID: PMC9452953 DOI: 10.3389/fimmu.2022.977175] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
The increasing resistance to antibiotic treatments highlights the need for the development of new antimicrobial agents. Antimicrobial peptides (AMPs) have been studied to be used in clinical settings for the treatment of infections. Endogenous AMPs represent the first line defense of the innate immune system against pathogens; they also positively interfere with infection-associated inflammation. Interestingly, AMPs influence numerous biological processes, such as the regulation of the microbiota, wound healing, the induction of adaptive immunity, the regulation of inflammation, and finally express anti-cancer and cytotoxic properties. Numerous peptides identified in chromaffin secretory granules from the adrenal medulla possess antimicrobial activity: they are released by chromaffin cells during stress situations by exocytosis via the activation of the hypothalamo-pituitary axis. The objective of the present review is to develop complete informations including (i) the biological characteristics of the AMPs produced after the natural processing of chromogranins A and B, proenkephalin-A and free ubiquitin, (ii) the design of innovative materials and (iii) the involvement of these AMPs in human diseases. Some peptides are elective biomarkers for critical care medicine, may play an important role in the protection of infections (alone, or in combination with others or antibiotics), in the prevention of nosocomial infections, in the regulation of intestinal mucosal dynamics and of inflammation. They could play an important role for medical implant functionalization, such as catheters, tracheal tubes or oral surgical devices, in order to prevent infections after implantation and to promote the healing of tissues.
Collapse
Affiliation(s)
- Francesco Scavello
- Department of Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de recherche (UMR) S 1121, Federation of Translational Medicine, Strasbourg University, Strasbourg, France
- IRCCS Humanitas Research Hospital, Milan, Italy
- *Correspondence: Francesco Scavello,
| | - Naji Kharouf
- Department of Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de recherche (UMR) S 1121, Federation of Translational Medicine, Strasbourg University, Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, Strasbourg, France
| | - Philippe Lavalle
- Department of Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de recherche (UMR) S 1121, Federation of Translational Medicine, Strasbourg University, Strasbourg, France
| | - Youssef Haikel
- Department of Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de recherche (UMR) S 1121, Federation of Translational Medicine, Strasbourg University, Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, Strasbourg, France
| | - Francis Schneider
- Department of Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de recherche (UMR) S 1121, Federation of Translational Medicine, Strasbourg University, Strasbourg, France
- Médecine Intensive-Réanimation, Hautepierre Hospital, Hôpitaux Universitaires, Strasbourg, Federation of Translational Medicine, Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Marie-Hélène Metz-Boutigue
- Department of Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de recherche (UMR) S 1121, Federation of Translational Medicine, Strasbourg University, Strasbourg, France
| |
Collapse
|
12
|
Antmen E, Muller CB, Calligaro C, Dupret-Bories A, Barthes J, Lavalle P, Vrana NE. In vitro two-step granuloma formation model for testing innate immune response to implants and coatings. BIOMATERIALS ADVANCES 2022; 138:212872. [PMID: 35913252 DOI: 10.1016/j.bioadv.2022.212872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/20/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The extensive innate immune response to implanted biomaterials contributes significantly to their sub-par performance and failure. Granuloma formation is one of such reactions which results in multi-cell type clusters in line with the immune reaction to implanted materials. However, currently no in vitro model of granuloma formation exists that takes into account the arrival of multiple cell types (immune cells and connective tissue cells) to the implant insertion site. In this study, we developed a two-step model based on stimulated macrophage seeding followed by fibroblast introduction after a physiologically relevant time period for mimicking initial steps of immune reaction to biomaterials and inducing granuloma like behavior. Both LPS and TNF-α induction resulted in granuloma like formations which persisted longer than the control conditions. Introduction of human fibroblasts resulted in the colonization of the surfaces where the cell numbers and the collagen secretion were dependent on the microenvironment. In order to demonstrate the capacity of our model system to monitor the reaction to a given coating, a validated antimicrobial coating (Polyarginine (PAR)/Hyaluronic acid (HA)) was used as a testing bed. The coating prevented the adhesion of macrophages while allowing the adhesion of the fibroblast at the time of their arrival. Similar to its antimicrobial activity, macrophage metabolic activity and M2 differentiation in the presence of PAR was dependent to its chain length. The incorporation of fibroblasts resulted in decreased TNF-α and increased IL-1RA secretion especially in stimulation conditions. The pro- and anti-inflammatory cytokine secretions were low for PAR/HA coatings in line with the decreased number of macrophage presence. In the presence of complex PBMC population, the coating resulted in slightly less cellular attachment, without any significant cytokine secretion; the absence of inflammatory reaction was also demonstrated in vivo in a mouse model. The described in vitro granuloma testing system can control the macrophage reaction as a function of stimulation. It can also be used for testing new biomaterials for the potential innate immune responses and also for validation of implant coatings beyond their primary function from the immune response point of view.
Collapse
Affiliation(s)
- Ezgi Antmen
- BIOMATEN, Middle East Technical University, Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
| | - Celine B Muller
- SPARTHA Medical, 14B Rue de la Canardiere, Strasbourg Cedex 67100, France; INSERM Unité 1121 Biomaterials and Bioengineering, CRBS, 1 Rue Eugène Boeckel, Strasbourg Cedex 67000, France
| | - Cynthia Calligaro
- SPARTHA Medical, 14B Rue de la Canardiere, Strasbourg Cedex 67100, France; INSERM Unité 1121 Biomaterials and Bioengineering, CRBS, 1 Rue Eugène Boeckel, Strasbourg Cedex 67000, France
| | - Agnes Dupret-Bories
- Surgery Department, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse Oncopole, 1 avenue Irène Joliot Curie, Toulouse 31052, France
| | - Julien Barthes
- INSERM Unité 1121 Biomaterials and Bioengineering, CRBS, 1 Rue Eugène Boeckel, Strasbourg Cedex 67000, France
| | - Philippe Lavalle
- SPARTHA Medical, 14B Rue de la Canardiere, Strasbourg Cedex 67100, France; INSERM Unité 1121 Biomaterials and Bioengineering, CRBS, 1 Rue Eugène Boeckel, Strasbourg Cedex 67000, France
| | - Nihal Engin Vrana
- SPARTHA Medical, 14B Rue de la Canardiere, Strasbourg Cedex 67100, France; INSERM Unité 1121 Biomaterials and Bioengineering, CRBS, 1 Rue Eugène Boeckel, Strasbourg Cedex 67000, France.
| |
Collapse
|
13
|
Wang Z, Li B, Cai Q, Li X, Yin Z, Li B, Li Z, Meng W. Advances and Prospects in Antibacterial-Osteogenic Multifunctional Dental Implant Surface. Front Bioeng Biotechnol 2022; 10:921338. [PMID: 35685091 PMCID: PMC9171039 DOI: 10.3389/fbioe.2022.921338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/06/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, dental implantation has become the preferred protocol for restoring dentition defects. Being the direct contact between implant and bone interface, osseointegration is the basis for implant exerting physiological functions. Nevertheless, biological complications such as insufficient bone volume, poor osseointegration, and postoperative infection can lead to implant failure. Emerging antibacterial-osteogenic multifunctional implant surfaces were designed to make up for these shortcomings both during the stage of forming osseointegration and in the long term of supporting the superstructure. In this mini-review, we summarized the recent antibacterial-osteogenic modifications of the dental implant surface. The effects of these modifications on biological performance like soft tissue integration, bone osteogenesis, and immune response were discussed. In addition, the clinical findings and prospects of emerging antibacterial-osteogenic implant materials were also discussed.
Collapse
Affiliation(s)
- Zixuan Wang
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Changchun, China
| | - Baosheng Li
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Qing Cai
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaoyu Li
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhaoyi Yin
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Birong Li
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhen Li
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Weiyan Meng
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
14
|
Gribova V, Petit L, Seguin C, Fournel S, Kichler A, Vrana NE, Lavalle P. Polyarginine as a simultaneous antimicrobial, immunomodulatory and miRNA delivery agent within polyanionic hydrogels. Macromol Biosci 2022; 22:e2200043. [PMID: 35332672 DOI: 10.1002/mabi.202200043] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 11/07/2022]
Abstract
Implantation of biomedical devices is followed by immune response to the implant, as well as occasionally bacterial, yeast and/or fungal infections. In this context, new implant materials and coatings that deal with medical device-associated complications are required. Antibacterial and anti-inflammatory materials are also required for wound healing applications, especially in diabetic patients with chronic wounds. In this work, we present hyaluronic acid (HA) hydrogels with triple activity: antimicrobial, immunomodulatory and miRNA delivery agent. We demonstrate that polyarginine with a degree of polymerization of 30 (PAR30), which was previously shown to have a prolonged antibacterial activity, decreases inflammatory response of LPS-stimulated macrophages. In addition, PAR30 accelerated fibroblast migration in macrophage/fibroblast co-culture system, suggesting a positive effect on wound healing. Furthermore, PAR30 allowed to load miRNA into HA hydrogels, and then to deliver them into the cells. To our knowledge, this study is the first describing miRNA-loaded hydrogels with antibacterial effect and anti-inflammatory features. Such system can become a tool for the treatment of infected wounds, e.g. diabetic ulcers, as well as for foreign body response modulation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Varvara Gribova
- Institut National de la Santé et de la Recherche Médicale, INSERM U1121 Biomaterials and Bioengineering, 1 rue Eugène Boeckel, Strasbourg, 67000, France.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, Strasbourg, 67000, France
| | - Lauriane Petit
- Institut National de la Santé et de la Recherche Médicale, INSERM U1121 Biomaterials and Bioengineering, 1 rue Eugène Boeckel, Strasbourg, 67000, France.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, Strasbourg, 67000, France
| | - Cendrine Seguin
- Université de Strasbourg, CNRS, 3Bio team, Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, Faculté de Pharmacie, 74 route du Rhin, Illkirch Cedex, 67401, France
| | - Sylvie Fournel
- Université de Strasbourg, CNRS, 3Bio team, Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, Faculté de Pharmacie, 74 route du Rhin, Illkirch Cedex, 67401, France
| | - Antoine Kichler
- Université de Strasbourg, CNRS, 3Bio team, Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, Faculté de Pharmacie, 74 route du Rhin, Illkirch Cedex, 67401, France
| | - Nihal Engin Vrana
- SPARTHA Medical, 14B rue de la Canardière, Strasbourg, 67100, France
| | - Philippe Lavalle
- Institut National de la Santé et de la Recherche Médicale, INSERM U1121 Biomaterials and Bioengineering, 1 rue Eugène Boeckel, Strasbourg, 67000, France.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, Strasbourg, 67000, France.,SPARTHA Medical, 14B rue de la Canardière, Strasbourg, 67100, France
| |
Collapse
|
15
|
Gvaramia D, Kern J, Jakob Y, Tritschler H, Brenner RE, Breiter R, Kzhyshkowska J, Rotter N. Modulation of the inflammatory response to decellularized collagen matrix for cartilage regeneration. J Biomed Mater Res A 2021; 110:1021-1035. [PMID: 34967101 DOI: 10.1002/jbm.a.37349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/21/2022]
Abstract
Decellularized extracellular matrices (DECM) are among the most common types of materials used in tissue engineering due to their cell instructive properties, biodegradability, and accessibility. Particularly in cartilage, a natural collagen type II matrix can be a promising means to provide the necessary cues and support for chondrogenic stem and progenitor cells (CSPCs). However, efficient remodeling of the transplanted DECM is largely dependent on the host immune response, with macrophages playing the central role in orchestrating both inflammatory and regenerative processes. Here we assessed the reaction of human primary macrophages to the cartilage DECM. Our findings show that the xenogeneic collagen matrix can elicit a mixed response in human macrophages, whereby the inflammatory response (M1) and the activation of remodeling (M2) type of macrophages are both present. Additionally, we demonstrate the inhibitory effect of macrophage response on the migratory capacity of human CSPCs. We further show that the inflammatory reaction of macrophages to the cartilage DECM, as well as the resulting inhibitory effects on CSPC migration, can be attenuated by interleukin-4 (IL-4). Finally, we demonstrate that IL-4 can effectively bind the matrix, thereby modulating macrophage response by reducing the inflammatory reaction and inducing the M2 phenotype.
Collapse
Affiliation(s)
- David Gvaramia
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Johann Kern
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Yvonne Jakob
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Hanna Tritschler
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopaedics, University of Ulm, Ulm, Germany
| | - Rolf E Brenner
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopaedics, University of Ulm, Ulm, Germany
| | - Roman Breiter
- Institute of Bioprocess Engineering, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim of Ruprecht-Karls-University Heidelberg, Mannheim, Germany
| | - Nicole Rotter
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
16
|
Polyelectrolyte Multilayer Films Based on Natural Polymers: From Fundamentals to Bio-Applications. Polymers (Basel) 2021; 13:polym13142254. [PMID: 34301010 PMCID: PMC8309355 DOI: 10.3390/polym13142254] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
Natural polymers are of great interest in the biomedical field due to their intrinsic properties such as biodegradability, biocompatibility, and non-toxicity. Layer-by-layer (LbL) assembly of natural polymers is a versatile, simple, efficient, reproducible, and flexible bottom-up technique for the development of nanostructured materials in a controlled manner. The multiple morphological and structural advantages of LbL compared to traditional coating methods (i.e., precise control over the thickness and compositions at the nanoscale, simplicity, versatility, suitability, and flexibility to coat surfaces with irregular shapes and sizes), make LbL one of the most useful techniques for building up advanced multilayer polymer structures for application in several fields, e.g., biomedicine, energy, and optics. This review article collects the main advances concerning multilayer assembly of natural polymers employing the most used LbL techniques (i.e., dipping, spray, and spin coating) leading to multilayer polymer structures and the influence of several variables (i.e., pH, molar mass, and method of preparation) in this LbL assembly process. Finally, the employment of these multilayer biopolymer films as platforms for tissue engineering, drug delivery, and thermal therapies will be discussed.
Collapse
|
17
|
Multifunctional natural polymer-based metallic implant surface modifications. Biointerphases 2021; 16:020803. [PMID: 33906356 DOI: 10.1116/6.0000876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
High energy traumas could cause critical damage to bone, which will require permanent implants to recover while functionally integrating with the host bone. Critical sized bone defects necessitate the use of bioactive metallic implants. Because of bioinertness, various methods involving surface modifications such as surface treatments, the development of novel alloys, bioceramic/bioglass coatings, and biofunctional molecule grafting have been utilized to effectively integrate metallic implants with a living bone. However, the applications of these methods demonstrated a need for an interphase layer improving bone-making to overcome two major risk factors: aseptic loosening and peri-implantitis. To accomplish a biologically functional bridge with the host to prevent loosening, regenerative cues, osteoimmunomodulatory modifications, and electrochemically resistant layers against corrosion appeared as imperative reinforcements. In addition, interphases carrying antibacterial cargo were proven to be successful against peri-implantitis. In the literature, metallic implant coatings employing natural polymers as the main matrix were presented as bioactive interphases, enabling rapid, robust, and functional osseointegration with the host bone. However, a comprehensive review of natural polymer coatings, bridging and grafting on metallic implants, and their activities has not been reported. In this review, state-of-the-art studies on multifunctional natural polymer-based implant coatings effectively utilized as a bone tissue engineering (BTE) modality are depicted. Protein-based, polysaccharide-based coatings and their combinations to achieve better osseointegration via the formation of an extracellular matrix-like (ECM-like) interphase with gap filling and corrosion resistance abilities are discussed in detail. The hypotheses and results of these studies are examined and criticized, and the potential future prospects of multifunctional coatings are also proposed as final remarks.
Collapse
|
18
|
Abstract
Biocontamination of medical devices and implants is a growing issue that causes medical complications and increased expenses. In the fight against biocontamination, developing synthetic surfaces, which reduce the adhesion of microbes and provide biocidal activity or combinatory effects, has emerged as a major global strategy. Advances in nanotechnology and biological sciences have made it possible to design smart surfaces for decreasing infections. Nevertheless, the clinical performance of these surfaces is highly depending on the choice of material. This review focuses on the antimicrobial surfaces with functional material coatings, such as cationic polymers, metal coatings and antifouling micro-/nanostructures. One of the highlights of the review is providing insights into the virus-inactivating surface development, which might particularly be useful for controlling the currently confronted pandemic coronavirus disease 2019 (COVID-19). The nanotechnology-based strategies presented here might be beneficial to produce materials that reduce or prevent the transmission of airborne viral droplets, once applied to biomedical devices and protective equipment of medical workers. Overall, this review compiles existing studies in this broad field by focusing on the recent related developments, draws attention to the possible activity mechanisms, discusses the key challenges and provides future recommendations for developing new, efficient antimicrobial and antiviral surface coatings.
Collapse
|
19
|
Lebaudy E, Fournel S, Lavalle P, Vrana NE, Gribova V. Recent Advances in Antiinflammatory Material Design. Adv Healthc Mater 2021; 10:e2001373. [PMID: 33052031 DOI: 10.1002/adhm.202001373] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/28/2020] [Indexed: 12/14/2022]
Abstract
Implants and prostheses are widely used to replace damaged tissues or to treat various diseases. However, besides the risk of bacterial or fungal infection, an inflammatory response usually occurs. Here, recent progress in the field of anti-inflammatory biomaterials is described. Different materials and approaches are used to decrease the inflammatory response, including hydrogels, nanoparticles, implant surface coating by polymers, and a variety of systems for anti-inflammatory drug delivery. Complex multifunctional systems dealing with inflammation, microbial infection, bone regeneration, or angiogenesis are also described. New promising stimuli-responsive systems, such as pH- and temperature-responsive materials, are also being developed that would enable an "intelligent" antiinflammatory response when the inflammation occurs. Together, different approaches hold promise for creation of novel multifunctional smart materials allowing better implant integration and tissue regeneration.
Collapse
Affiliation(s)
- Eloïse Lebaudy
- Institut National de la Santé et de la Recherche Médicale INSERM Unité 1121 Biomaterials and Bioengineering 11 rue Humann Strasbourg Cedex 67085 France
- Faculté de Chirurgie Dentaire Université de Strasbourg Strasbourg 67000 France
| | - Sylvie Fournel
- Université de Strasbourg CNRS 3Bio team Laboratoire de Conception et Application de Molécules Bioactives UMR 7199 Faculté de Pharmacie 74 route du Rhin Illkirch Cedex 67401 France
| | - Philippe Lavalle
- Institut National de la Santé et de la Recherche Médicale INSERM Unité 1121 Biomaterials and Bioengineering 11 rue Humann Strasbourg Cedex 67085 France
- Faculté de Chirurgie Dentaire Université de Strasbourg Strasbourg 67000 France
- SPARTHA Medical 14B Rue de la Canardiere Strasbourg 67100 France
| | | | - Varvara Gribova
- Institut National de la Santé et de la Recherche Médicale INSERM Unité 1121 Biomaterials and Bioengineering 11 rue Humann Strasbourg Cedex 67085 France
- Faculté de Chirurgie Dentaire Université de Strasbourg Strasbourg 67000 France
| |
Collapse
|
20
|
Barthes J, Lagarrigue P, Riabov V, Lutzweiler G, Kirsch J, Muller C, Courtial EJ, Marquette C, Projetti F, Kzhyskowska J, Lavalle P, Vrana NE, Dupret-Bories A. Biofunctionalization of 3D-printed silicone implants with immunomodulatory hydrogels for controlling the innate immune response: An in vivo model of tracheal defect repair. Biomaterials 2020; 268:120549. [PMID: 33278685 DOI: 10.1016/j.biomaterials.2020.120549] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/23/2022]
Abstract
The recent advances in 3D-printed silicone (PDMS: polydimethylsiloxane) implants present prospects for personalized implants with highly accurate anatomical conformity. However, a potential adverse effect, such as granuloma formation due to immune reactions, still exists. One potential way to overcome this problem is to control the implant/host interface using immunomodulatory coatings. In this study, a new cytokine cocktail composed of interleukin-10 and prostaglandin-E2 was designed to decrease adverse immune reactions and promote tissue integration by fixing macrophages into M2 pro-healing phenotype for an extended period of time. In vitro, the cytokine cocktail maintained low levels of pro-inflammatory cytokine (TNF-α and IL-6) secretions and induced the secretion of IL-10 and the upregulation of multifunctional scavenging and sorting receptor stabilin-1, expressed by M2 macrophages. This cocktail was then loaded in a gelatine-based hydrogel to develop an immunomodulatory material that could be used as a coating for medical devices. The efficacy of this coating was demonstrated in an in vivo rat model during the reconstruction of a tracheal defect by 3D-printed silicone implants. The coating was stable on the silicone implants for over 2 weeks, and the controlled release of the cocktail components was achieved for at least 14 days. In vivo, only 33% of the animals with bare silicone implants survived, whereas 100% of the animals survived with the implant equipped with the immunomodulatory hydrogel. The presence of the hydrogel and the cytokine cocktail diminished the thickness of the inflammatory tissue, the intensity of both acute and chronic inflammation, the overall fibroblastic reaction, the presence of oedema and the formation of fibrinoid (assessed by histology) and led to a 100% survival rate. At the systemic level, the presence of immunomodulatory hydrogels significantly decreased pro-inflammatory cytokines such as TNF-α, IFN-γ, CXCL1 and MCP-1 levels at day 7 and significantly decreased IL-1α, IL-1β, CXCL1 and MCP-1 levels at day 21. The ability of this new immunomodulatory hydrogel to control the level of inflammation once applied to a 3D-printed silicone implant has been demonstrated. Such thin coatings can be applied to any implants or scaffolds used in tissue engineering to diminish the initial immune response, improve the integration and functionality of these materials and decrease potential complications related to their presence.
Collapse
Affiliation(s)
- J Barthes
- Institut National de La Santé et de La Recherche Médicale, INSERM UMR1121 "Biomaterials and Bioengineering", 11 Rue Humann, 67085, Strasbourg, France.
| | - P Lagarrigue
- Institut National de La Santé et de La Recherche Médicale, INSERM UMR1121 "Biomaterials and Bioengineering", 11 Rue Humann, 67085, Strasbourg, France
| | - V Riabov
- Institute for Transfusion Medicine and Immunology, Medical, Faculty Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68167, Mannheim, Germany
| | - G Lutzweiler
- Institut National de La Santé et de La Recherche Médicale, INSERM UMR1121 "Biomaterials and Bioengineering", 11 Rue Humann, 67085, Strasbourg, France
| | - J Kirsch
- Institute for Transfusion Medicine and Immunology, Medical, Faculty Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68167, Mannheim, Germany
| | - C Muller
- Institut National de La Santé et de La Recherche Médicale, INSERM UMR1121 "Biomaterials and Bioengineering", 11 Rue Humann, 67085, Strasbourg, France
| | - E-J Courtial
- 3d.FAB, Université Lyon1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd du 11 Novembre 1918, 69622, Villeurbanne cedex, France
| | - C Marquette
- 3d.FAB, Université Lyon1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd du 11 Novembre 1918, 69622, Villeurbanne cedex, France
| | - F Projetti
- Department of Pathology, 18 rue du general Catroux, 87039, Limoges Cedex 1, France
| | - J Kzhyskowska
- Institute for Transfusion Medicine and Immunology, Medical, Faculty Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68167, Mannheim, Germany; German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany; National Research Tomsk State University, Tomsk, 634050, Russia
| | - P Lavalle
- Institut National de La Santé et de La Recherche Médicale, INSERM UMR1121 "Biomaterials and Bioengineering", 11 Rue Humann, 67085, Strasbourg, France
| | - N E Vrana
- Institut National de La Santé et de La Recherche Médicale, INSERM UMR1121 "Biomaterials and Bioengineering", 11 Rue Humann, 67085, Strasbourg, France; Spartha Medical, 14B rue de La Canardière, 67100, Strasbourg, France
| | - A Dupret-Bories
- Department of Otorhinolaryngology, Head and Neck Surgery, Institut Claudius Regaud, Institut Universitaire du Cancer Toulouse Oncopole, 31009, Toulouse, France.
| |
Collapse
|
21
|
Gribova V, Boulmedais F, Dupret-Bories A, Calligaro C, Senger B, Vrana NE, Lavalle P. Polyanionic Hydrogels as Reservoirs for Polycationic Antibiotic Substitutes Providing Prolonged Antibacterial Activity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19258-19267. [PMID: 32292035 DOI: 10.1021/acsami.9b23140] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Implantation of biomedical devices is often followed by bacterial infections that may seriously affect implant functionalities and lead to their failure. In the context of bacterial resistance to antibiotics, which is a growing problem worldwide, new strategies that are able to overcome these problems are needed. In this work, we introduce a new formulation of hyaluronic acid (HA)-based antimicrobial material: HA hydrogels loaded with polyarginine (PAR), a polycationic antibiotic substitute. The loading is possible through electrostatic interactions between negatively charged HA and positively charged PAR. Such hydrogels absorb high quantities of PAR, which are then gradually released from the hydrogel. This original system provides a long-lasting antibacterial effect on an in vitro model of repetitive infection, thus demonstrating a strong potential to fight multiple rounds of infections that are resistant to antibiotic treatment. In addition, HA-PAR hydrogels could be deposited onto/into medical devices such as wound dressings and mesh prostheses used in clinical applications. Finally, we performed first in vivo tests of hydrogel-coated mesh materials to verify their biocompatibility in a rat model, which show no difference between control HA hydrogel and PAR-loaded hydrogel in terms of inflammation.
Collapse
Affiliation(s)
- Varvara Gribova
- Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121 Biomaterials and Bioengineering, 11 rue Humann, 67085 Strasbourg Cedex, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Sainte Elisabeth, 67000 Strasbourg, France
| | - Fouzia Boulmedais
- Institut Charles Sadron, CNRS UPR 22, 23 rue du Lœss, 67034 Strasbourg, France
| | - Agnès Dupret-Bories
- Institut Claudius Regaud, Institut Universitaire de Toulouse Oncopole, 1 Avenue Irène Joliot Curie, 31059 Toulouse Cedex 9, France
| | - Cynthia Calligaro
- Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121 Biomaterials and Bioengineering, 11 rue Humann, 67085 Strasbourg Cedex, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Sainte Elisabeth, 67000 Strasbourg, France
| | - Bernard Senger
- Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121 Biomaterials and Bioengineering, 11 rue Humann, 67085 Strasbourg Cedex, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Sainte Elisabeth, 67000 Strasbourg, France
| | | | - Philippe Lavalle
- Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121 Biomaterials and Bioengineering, 11 rue Humann, 67085 Strasbourg Cedex, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Sainte Elisabeth, 67000 Strasbourg, France
- SPARTHA Medical, 11 rue Humann, 67000 Strasbourg, France
| |
Collapse
|
22
|
Xuan H, Tang X, Zhu Y, Ling J, Yang Y. Freestanding Hyaluronic Acid/Silk-Based Self-healing Coating toward Tissue Repair with Antibacterial Surface. ACS APPLIED BIO MATERIALS 2020; 3:1628-1635. [DOI: 10.1021/acsabm.9b01196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hongyun Xuan
- College of Life Science, Nantong University, Nantong 226019, PR China
| | - Xiaoxuan Tang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, PR China
| | - Yanxi Zhu
- Central Laboratory of Linyi People’s Hospital, Linyi 276003, PR China
| | - Jue Ling
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, PR China
| | - Yumin Yang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, PR China
| |
Collapse
|
23
|
Naimo PS, Konstantinov IE. Commentary: A nickel for your thoughts: An overlooked allergen in implantable devices? J Thorac Cardiovasc Surg 2020; 160:512-514. [PMID: 31948741 DOI: 10.1016/j.jtcvs.2019.11.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 11/19/2022]
Affiliation(s)
- Phillip S Naimo
- Department of Cardiac Surgery, Royal Children's Hospital, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Heart Research Group, Murdoch Children's Research Institute, Melbourne, Australia
| | - Igor E Konstantinov
- Department of Cardiac Surgery, Royal Children's Hospital, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Heart Research Group, Murdoch Children's Research Institute, Melbourne, Australia; Melbourne Children's Centre for Cardiovascular Genomics and Regenerative Medicine, Melbourne, Australia.
| |
Collapse
|
24
|
Knopf-Marques H, Barthes J, Lachaal S, Mutschler A, Muller C, Dufour F, Rabineau M, Courtial EJ, Bystroňová J, Marquette C, Lavalle P, Vrana NE. Multifunctional polymeric implant coatings based on gelatin, hyaluronic acid derivative and chain length-controlled poly(arginine). MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109898. [DOI: 10.1016/j.msec.2019.109898] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/23/2019] [Accepted: 06/15/2019] [Indexed: 12/19/2022]
|
25
|
Yu Y, Ran Q, Shen X, Zheng H, Cai K. Enzyme responsive titanium substrates with antibacterial property and osteo/angio-genic differentiation potentials. Colloids Surf B Biointerfaces 2019; 185:110592. [PMID: 31639570 DOI: 10.1016/j.colsurfb.2019.110592] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022]
Abstract
After implantation into a host, titanium (Ti) orthopaedic materials are facing two major clinical challenges: bacterial infection and aseptic loosening, which directly determine the long-term survival of the implant. To endow Ti implant with self-defensive antibacterial properties and desirable osteo/angio-genic differentiation potentials, hyaluronic acid (HA)-gentamicin (Gen) conjugates (HA-Gen) and chitosan (Chi) polyelectrolyte multilayers were constructed on deferoxamine (DFO) loaded titania nanotubes (TNT) substrates via layer-by-layer (LBL) assembly technique, termed as TNT/DFO/HA-Gen. The HA-Gen conjugate was characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (1H NMR). The physicochemical properties of the substrates were characterized by field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle measurements. The on-demand DFO release was associated with the degradation of multilayers triggered by exogenous hyaluronidase, which indicated enzymatic and bacterial responsiveness. The TNT/DFO/HA-Gen substrates displayed effective antifouling and antibacterial properties against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), while were favourable for the adhesion, proliferation and osteo/angio-genic differentiation of mesenchymal stem cells (MSCs). The multifaceted drug-device combination (DDC) strategy showed potential applications in orthopaedic fields.
Collapse
Affiliation(s)
- Yonglin Yu
- Department of Pathology, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, China.
| | - Qichun Ran
- School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xinkun Shen
- School of Life Science, Chongqing University, Chongqing 400044, China
| | - Hong Zheng
- Department of Pathology, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, China.
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
26
|
Coad BR, Michl TD, Bader CA, Baranger J, Giles C, Gonçalves GC, Nath P, Lamont-Friedrich SJ, Johnsson M, Griesser HJ, Plush SE. Visualizing Biomaterial Degradation by Candida albicans Using Embedded Luminescent Molecules To Report on Substrate Digestion and Cellular Uptake of Hydrolysate. ACS APPLIED BIO MATERIALS 2019; 2:3934-3941. [DOI: 10.1021/acsabm.9b00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bryan R. Coad
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
- School of Agriculture, Food & Wine, University of Adelaide, Adelaide 5000, Australia
| | - Thomas D. Michl
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Christie A. Bader
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Joris Baranger
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Carla Giles
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
- Centre for Aquatic Animal Health & Vaccines, Tasmania Department of Primary Industries Parks Water & Environment, 165 Westbury Road, Prospect, Tasmania 7250, Australia
| | - Giovanna Cufaro Gonçalves
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Pratiti Nath
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | | | - Malin Johnsson
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Hans J. Griesser
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Sally E. Plush
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| |
Collapse
|
27
|
Ščigalková I, Bystroňová J, Kovářová L, Pravda M, Velebný V, Riabov V, Klüter H, Kzhyshkowska J, Vrana NE. The effect of healing phenotype-inducing cytokine formulations within soft hydrogels on encapsulated monocytes and incoming immune cells. RSC Adv 2019; 9:21396-21404. [PMID: 35521319 PMCID: PMC9066154 DOI: 10.1039/c9ra02878a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/17/2019] [Indexed: 11/21/2022] Open
Abstract
Hydrogels made from the derivatives of gelatin and hyaluronic acid were used as coatings to control the immune responses.
Collapse
Affiliation(s)
| | | | - Lenka Kovářová
- Contipro a.s
- 561 02 Dolni Dobrouc
- Czech Republic
- Institute of Physical Chemistry
- Faculty of Chemistry
| | | | | | - Vladimir Riabov
- Institute for Transfusion Medicine and Immunology
- Medical Faculty Mannheim
- University of Heidelberg
- 68167 Mannheim
- Germany
| | - Harald Klüter
- Institute for Transfusion Medicine and Immunology
- Medical Faculty Mannheim
- University of Heidelberg
- 68167 Mannheim
- Germany
| | - Julia Kzhyshkowska
- Institute for Transfusion Medicine and Immunology
- Medical Faculty Mannheim
- University of Heidelberg
- 68167 Mannheim
- Germany
| | - Nihal Engin Vrana
- Protip Medical
- 67000 Strasbourg
- France
- Inserm UMR 1121, Biomaterials and Bioengineering
- 67085 Strasbourg
| |
Collapse
|
28
|
Catestatin is involved in neuropathic pain mediated by purinergic receptor P2X4 in the spinal microglia of rats. Brain Res Bull 2018; 142:138-146. [DOI: 10.1016/j.brainresbull.2018.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/02/2018] [Accepted: 07/12/2018] [Indexed: 12/18/2022]
|
29
|
Bystroňová J, Ščigalková I, Wolfová L, Pravda M, Vrana NE, Velebný V. Creating a 3D microenvironment for monocyte cultivation: ECM-mimicking hydrogels based on gelatine and hyaluronic acid derivatives. RSC Adv 2018; 8:7606-7614. [PMID: 35539143 PMCID: PMC9078457 DOI: 10.1039/c7ra13739g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 01/26/2018] [Indexed: 02/04/2023] Open
Abstract
Macrophages play a critical role in the initial response to foreign materials in the body. As most biomaterial-based implantable devices would be treated as a foreign body by the immune system, there is a need for systems that can establish a favourable interaction between the implanted biomaterial and the host. Herein, we describe such a system that can be used as an ECM-like microenvironment for macrophage polarization. The hydrogel system was designed to provide a co-crosslinkable microenvironment containing both protein and glycosaminoglycan components, a hydroxyphenyl derivative of gelatine (GTN-HPA) and tyraminated hyaluronic acid (HA-TA). Both polymers can undergo a crosslinking reaction between polymer chains via the same polymerisation initiation system where the polymer network is formed by crosslinks between phenols in GTN-HPA and HA-TA. The mechanical properties and swelling of the hydrogel can be easily controlled as a function of the crosslinking mode and by the ratio of GTN-HPA and HA-TA compounds used. THP-1 monocytes were successfully encapsulated in the gels and cultured for up to 28 days. Cells exhibited higher metabolic activity when encapsulated in softer hydrogels (E ≈ 10 kPa) compared to stiffer (E ≈ 20 kPa) material in which monocytes tended to form large clusters. Encapsulation of monocytes in the material with HA-TA content enhanced the expression of macrophage-related genes. We demonstrated a co-crosslinkable GTN-HPA and HA-TA matrix microenvironment that is suitable for in vitro micro tissue model applications.
Collapse
Affiliation(s)
- Julie Bystroňová
- Contipro a.s. Dolni Dobrouc 401 56102 Dolni Dobrouc Czech Republic
| | - Ivana Ščigalková
- Contipro a.s. Dolni Dobrouc 401 56102 Dolni Dobrouc Czech Republic
| | - Lucie Wolfová
- Contipro a.s. Dolni Dobrouc 401 56102 Dolni Dobrouc Czech Republic
| | - Martin Pravda
- Contipro a.s. Dolni Dobrouc 401 56102 Dolni Dobrouc Czech Republic
| | - Nihal Engin Vrana
- Protip Medical 8 Place de l'Hôpital 67000 Strasbourg France
- Inserm UMR 1121 11 rue Humann 67085 Strasbourg France
| | - Vladimir Velebný
- Contipro a.s. Dolni Dobrouc 401 56102 Dolni Dobrouc Czech Republic
| |
Collapse
|
30
|
Barthes J, Mutschler A, Dollinger C, Gaudinat G, Lavalle P, Le Houerou V, Brian McGuinness G, Engin Vrana N. Establishing contact between cell-laden hydrogels and metallic implants with a biomimetic adhesive for cell therapy supported implants. ACTA ACUST UNITED AC 2017; 13:015015. [PMID: 28855425 DOI: 10.1088/1748-605x/aa895b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
For in-dwelling implants, controlling the biological interface is a crucial parameter to promote tissue integration and prevent implant failure. For this purpose, one possibility is to facilitate the establishment of the interface with cell-laden hydrogels fixed to the implant. However, for proper functioning, the stability of the hydrogel on the implant should be ensured. Modification of implant surfaces with an adhesive represents a promising strategy to promote the adhesion of a cell-laden hydrogel on an implant. Herein, we developed a peptidic adhesive based on mussel foot protein (L-DOPA-L-lysine)2-L-DOPA that can be applied directly on the surface of an implant. At physiological pH, unoxidized (L-DOPA-L-lysine)2-L-DOPA was supposed to strongly adhere to metallic surfaces but it only formed a very thin coating (less than 1 nm). Once oxidized at physiological pH, (L-DOPA-L-lysine)2-L-DOPA forms an adhesive coating about 20 nm thick. In oxidized conditions, L-lysine can adhere to metallic substrates via electrostatic interaction. Oxidized L-DOPA allows the formation of a coating through self-polymerization and can react with amines so that this adhesive can be used to fix extra-cellular matrix based materials on implant surfaces through the reaction of quinones with amino groups. Hence, a stable interface between a soft gelatin hydrogel and metallic surfaces was achieved and the strength of adhesion was investigated. We have shown that the adhesive is non-cytotoxic to encapsulated cells and enabled the adhesion of gelatin soft hydrogels for 21 days on metallic substrates in liquid conditions. The adhesion properties of this anchoring peptide was quantified by a 180° peeling test with a more than 60% increase in peel strength in the presence of the adhesive. We demonstrated that by using a biomimetic adhesive, for the application of cell-laden hydrogels to metallic implant surfaces, the hydrogel/implant interface can be ensured without relying on the properties of the deposited biomaterials.
Collapse
Affiliation(s)
- Julien Barthes
- ProtipMedical, Strasbourg, France. INSERM, UMR-S 1121, 'Biomatériaux et Bioingénierie', 11 rue Humann, F-67085 Strasbourg Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Zahouani S, Hurman L, De Giorgi M, Vigier-Carrière C, Boulmedais F, Senger B, Frisch B, Schaaf P, Lavalle P, Jierry L. Step-by-step build-up of covalent poly(ethylene oxide) nanogel films. NANOSCALE 2017; 9:18379-18391. [PMID: 29147710 DOI: 10.1039/c7nr05424f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hydrogels based on poly(ethylene glycol) (PEG) are commonly used for studies related to cell fate and tissue engineering. Here we present a new covalent layer-by-layer build-up process leading to PEG coatings of nanometer size called "nanogel films". Compared to macroscopic hydrogels, such nanogels should provide a fine control over the structure and the thickness of the coating. Alternated deposition of bifunctional and tetra functional PEG molecules reacting through thiol/maleimide click chemistry is evaluated by quartz crystal microbalance. We first study parameters influencing the build-up process of such coatings and demonstrate the importance of (i) the nature of the first deposited layer, (ii) the PEG concentrations and (iii) the length of the PEG chains that appears to be the most significant parameter influencing film growth. The build-up process can be extended to a large variety of substrates like SiO2 or polymers by using an appropriate anchoring layer. Covalent functionalization of these nanogel films by proteins or enzymes is suited by modifying the biomolecules with thiol or maleimide groups and immobilizing them during the build-up process. Activity of the embedded enzymes can be maintained. Moreover ligands like biotin can be incorporated into the film and recognition by streptavidin can be modulated by playing with the number of PEG layers covering biotin. Compared to well-known PEG hydrogels, these new coatings are promising as they allow to (i) build thin nanometric coatings, (ii) finely control the amount of deposited PEG and (iii) organize the position of the embedded biomolecules inside the film layers.
Collapse
Affiliation(s)
- S Zahouani
- Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121, 11 rue Humann, 67085 Strasbourg Cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Deng Z, Xu C. Role of the neuroendocrine antimicrobial peptide catestatin in innate immunity and pain. Acta Biochim Biophys Sin (Shanghai) 2017; 49:967-972. [PMID: 28981685 DOI: 10.1093/abbs/gmx083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 07/20/2017] [Indexed: 12/15/2022] Open
Abstract
Catestatin (CST) is a neuroendocrine peptide which is derived from the chromogranin A. It has been demonstrated that CST can affect a wide range of processes, such as innate immunity, inflammatory and autoimmune reactions, and several homeostatic regulations. Furthermore, CST is positive against several kinds of bacterial strains at micromolecular range, which shows its antimicrobial activity. Recently, the role of CST in acute and chronic pain has attracted much attention. In this review, we discussed the latest research findings of CST and its role in innate immunity and pain.
Collapse
Affiliation(s)
- Zeyu Deng
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, China
| | - Changshui Xu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, China
| |
Collapse
|
33
|
Freudenthal O, Quilès F, Francius G. Discrepancies between Cyclic and Linear Antimicrobial Peptide Actions on the Spectrochemical and Nanomechanical Fingerprints of a Young Biofilm. ACS OMEGA 2017; 2:5861-5872. [PMID: 30023754 PMCID: PMC6044769 DOI: 10.1021/acsomega.7b00644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/30/2017] [Indexed: 06/08/2023]
Abstract
Antimicrobial peptides (AMPs) are currently known for their potential as an alternative to conventional antibiotics and new weapons against drug-resistant bacteria and biofilms. In the present work, the mechanism of action of a cyclic (colistin) and a linear (catestatin) AMP on a young E. coli biofilm was deciphered from the molecular to the cellular scale. To this end, infrared spectroscopy (attenuated total reflection-Fourier transform infrared) assisted by chemometric analysis was combined with fluorescence and atomic force microscopies to address the very different behaviors of both AMPs. Indeed, the colistin dramatically damaged the bacterial cell wall and the metabolism even though its action was not homogeneous over the whole bacterial population and repopulation can be observed after peptide removal. Conversely, catestatin did not lead to major damages in the bacterial morphology but its action was homogeneous over the whole bacterial population and the cells were unable to regrow after the peptide treatment. Our results strongly suggested that contrary to the cyclic molecule, the linear one is able to cause irreversible damages in the bacterial membrane concomitantly to a strong impact on the bacterial metabolism.
Collapse
Affiliation(s)
- Oona Freudenthal
- Université
de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour
l’Environnement, LCPME,
UMR 7564, Villers-lès-Nancy, F-54600, France
- CNRS,
Laboratoire de Chimie Physique et Microbiologie pour l’Environnement,
LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France
| | - Fabienne Quilès
- Université
de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour
l’Environnement, LCPME,
UMR 7564, Villers-lès-Nancy, F-54600, France
- CNRS,
Laboratoire de Chimie Physique et Microbiologie pour l’Environnement,
LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France
| | - Grégory Francius
- Université
de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour
l’Environnement, LCPME,
UMR 7564, Villers-lès-Nancy, F-54600, France
- CNRS,
Laboratoire de Chimie Physique et Microbiologie pour l’Environnement,
LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France
| |
Collapse
|
34
|
Ahn HJ, Khalmuratova R, Park SA, Chung EJ, Shin HW, Kwon SK. Serial Analysis of Tracheal Restenosis After 3D-Printed Scaffold Implantation: Recruited Inflammatory Cells and Associated Tissue Changes. Tissue Eng Regen Med 2017; 14:631-639. [PMID: 30603516 DOI: 10.1007/s13770-017-0057-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/04/2017] [Accepted: 04/17/2017] [Indexed: 02/07/2023] Open
Abstract
Tracheal restenosis is a major obstacle to successful tracheal replacement, and remains the greatest challenge in tracheal regeneration. However, there have been no detailed investigations of restenosis. The present study was performed to analyze the serial changes in recruited inflammatory cells and associated histological changes after tracheal scaffold implantation. Asymmetrically porous scaffolds, which successfully prevented tracheal stenosis in a partial trachea defect model, designed with a tubular shape by electrospinning and reinforced by 3D-printing to reconstruct 2-cm circumferential tracheal defect. Serial rigid bronchoscopy, micro-computed tomography, and histology [H&E, Masson's Trichrome, IHC against α-smooth muscle actin (α-SMA)] were performed 1, 4, and 8 weeks after transplantation. Progressive stenosis developed especially at the site of anastomosis. Neutrophils were the main inflammatory cells recruited in the early stage, while macrophage infiltration increased with time. Recruitment of fibroblasts peaked at 4 weeks and deposition of α-SMA increased from 4 weeks and was maintained through 8 weeks. During the first 8 weeks post-transplantation, neutrophils and macrophages played significant roles in restenosis of the trachea. Antagonists to these would be ideal targets to reduce restenosis and thus play a pivotal role in successful tracheal regeneration.
Collapse
Affiliation(s)
- Hee-Jin Ahn
- 1Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| | - Roza Khalmuratova
- 2Obstructive Upper Airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, 103 Daehak-ro, Seoul, 03080 Korea
| | - Su A Park
- 3Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Gajeongbuk-ro 156, Daejeon, 34103 Korea
| | - Eun-Jae Chung
- 1Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| | - Hyun-Woo Shin
- 1Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea.,2Obstructive Upper Airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, 103 Daehak-ro, Seoul, 03080 Korea.,4Department of Biomedical Sciences, Seoul National University Graduate School, 103 Daehak-ro, Jongno-gu, Seoul, 03080 Korea.,5Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| | - Seong Keun Kwon
- 1Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| |
Collapse
|
35
|
Barthes J, Ciftci S, Ponzio F, Knopf-Marques H, Pelyhe L, Gudima A, Kientzl I, Bognár E, Weszl M, Kzhyshkowska J, Vrana NE. Review: the potential impact of surface crystalline states of titanium for biomedical applications. Crit Rev Biotechnol 2017; 38:423-437. [PMID: 28882077 DOI: 10.1080/07388551.2017.1363707] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In many biomedical applications, titanium forms an interface with tissues, which is crucial to ensure its long-term stability and safety. In order to exert control over this process, titanium implants have been treated with various methods that induce physicochemical changes at nano and microscales. In the past 20 years, most of the studies have been conducted to see the effect of topographical and physicochemical changes of titanium surface after surface treatments on cells behavior and bacteria adhesion. In this review, we will first briefly present some of these surface treatments either chemical or physical and we explain the biological responses to titanium with a specific focus on adverse immune reactions. More recently, a new trend has emerged in titanium surface science with a focus on the crystalline phase of titanium dioxide and the associated biological responses. In these recent studies, rutile and anatase are the major two polymorphs used for biomedical applications. In the second part of this review, we consider this emerging topic of the control of the crystalline phase of titanium and discuss its potential biological impacts. More in-depth analysis of treatment-related surface crystalline changes can significantly improve the control over titanium/host tissue interface and can result in considerable decreases in implant-related complications, which is currently a big burden on the healthcare system.
Collapse
Affiliation(s)
- Julien Barthes
- a Fundamental Research Unit , Protip Medical , Strasbourg , France.,b INSERM, UMR-S 1121 , , "Biomatériaux et Bioingénierie" , Strasbourg Cedex , France
| | - Sait Ciftci
- b INSERM, UMR-S 1121 , , "Biomatériaux et Bioingénierie" , Strasbourg Cedex , France.,c Service ORL , Hopitaux Universitaires de Strasbourg , Strasbourg , France
| | - Florian Ponzio
- b INSERM, UMR-S 1121 , , "Biomatériaux et Bioingénierie" , Strasbourg Cedex , France.,d Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg , Fédération des Matériaux et Nanoscience d'Alsace (FMNA), Faculté de Chirurgie Dentaire , Strasbourg , France
| | - Helena Knopf-Marques
- b INSERM, UMR-S 1121 , , "Biomatériaux et Bioingénierie" , Strasbourg Cedex , France.,d Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg , Fédération des Matériaux et Nanoscience d'Alsace (FMNA), Faculté de Chirurgie Dentaire , Strasbourg , France
| | - Liza Pelyhe
- e Department of Materials Science and Engineering, Faculty of Mechanical Engineering , Budapest University of Technology and Economics , Budapest , Hungary
| | - Alexandru Gudima
- f Medical Faculty Mannheim , Institute of Transfusion Medicine and Immunology, University of Heidelberg , Mannheim , Germany
| | - Imre Kientzl
- e Department of Materials Science and Engineering, Faculty of Mechanical Engineering , Budapest University of Technology and Economics , Budapest , Hungary
| | - Eszter Bognár
- e Department of Materials Science and Engineering, Faculty of Mechanical Engineering , Budapest University of Technology and Economics , Budapest , Hungary.,g MTA-BME Research Group for Composite Science and Technology , Budapest , Hungary
| | - Miklós Weszl
- h Department of Biophysics and Radiation Biology , Semmelweis University , Budapest , Hungary
| | - Julia Kzhyshkowska
- f Medical Faculty Mannheim , Institute of Transfusion Medicine and Immunology, University of Heidelberg , Mannheim , Germany.,i German Red Cross Blood Service Baden-Württemberg-Hessen , Mannheim , Germany
| | - Nihal Engin Vrana
- a Fundamental Research Unit , Protip Medical , Strasbourg , France.,b INSERM, UMR-S 1121 , , "Biomatériaux et Bioingénierie" , Strasbourg Cedex , France
| |
Collapse
|
36
|
Chromogranins: from discovery to current times. Pflugers Arch 2017; 470:143-154. [PMID: 28875377 DOI: 10.1007/s00424-017-2027-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 02/08/2023]
Abstract
The discovery in 1953 of the chromaffin granules as co-storage of catecholamines and ATP was soon followed by identification of a range of uniquely acidic proteins making up the isotonic vesicular storage complex within elements of the diffuse sympathoadrenal system. In the mid-1960s, the enzymatically inactive, major core protein, chromogranin A was shown to be exocytotically discharged from the stimulated adrenal gland in parallel with the co-stored catecholamines and ATP. A prohormone concept was introduced when one of the main storage proteins collectively named granins was identified as the insulin release inhibitory polypeptide pancreastatin. A wide range of granin-derived biologically active peptides have subsequently been identified. Both chromogranin A and chromogranin B give rise to antimicrobial peptides of relevance for combat of pathogens. While two of the chromogranin A-derived peptides, vasostatin-I and pancreastatin, are involved in modulation of calcium and glucose homeostasis, respectively, vasostatin-I and catestatin are important modulators of endothelial permeability, angiogenesis, myocardial contractility, and innate immunity. A physiological role is now evident for the full-length chromogranin A and vasostatin-I as circulating stabilizers of endothelial integrity and in protection against myocardial injury. The high circulating levels of chromogranin A and its fragments in patients suffering from various inflammatory diseases have emerged as challenges for future research and clinical applications.
Collapse
|
37
|
Troger J, Theurl M, Kirchmair R, Pasqua T, Tota B, Angelone T, Cerra MC, Nowosielski Y, Mätzler R, Troger J, Gayen JR, Trudeau V, Corti A, Helle KB. Granin-derived peptides. Prog Neurobiol 2017; 154:37-61. [PMID: 28442394 DOI: 10.1016/j.pneurobio.2017.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 04/10/2017] [Accepted: 04/16/2017] [Indexed: 12/14/2022]
Abstract
The granin family comprises altogether 7 different proteins originating from the diffuse neuroendocrine system and elements of the central and peripheral nervous systems. The family is dominated by three uniquely acidic members, namely chromogranin A (CgA), chromogranin B (CgB) and secretogranin II (SgII). Since the late 1980s it has become evident that these proteins are proteolytically processed, intragranularly and/or extracellularly into a range of biologically active peptides; a number of them with regulatory properties of physiological and/or pathophysiological significance. The aim of this comprehensive overview is to provide an up-to-date insight into the distribution and properties of the well established granin-derived peptides and their putative roles in homeostatic regulations. Hence, focus is directed to peptides derived from the three main granins, e.g. to the chromogranin A derived vasostatins, betagranins, pancreastatin and catestatins, the chromogranin B-derived secretolytin and the secretogranin II-derived secretoneurin (SN). In addition, the distribution and properties of the chromogranin A-derived peptides prochromacin, chromofungin, WE14, parastatin, GE-25 and serpinins, the CgB-peptide PE-11 and the SgII-peptides EM66 and manserin will also be commented on. Finally, the opposing effects of the CgA-derived vasostatin-I and catestatin and the SgII-derived peptide SN on the integrity of the vasculature, myocardial contractility, angiogenesis in wound healing, inflammatory conditions and tumors will be discussed.
Collapse
Affiliation(s)
- Josef Troger
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Markus Theurl
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Rudolf Kirchmair
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Teresa Pasqua
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Bruno Tota
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Tommaso Angelone
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Maria C Cerra
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Yvonne Nowosielski
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | - Raphaela Mätzler
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jasmin Troger
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Vance Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Angelo Corti
- Vita-Salute San Raffaele University and Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Karen B Helle
- Department of Biomedicine, University of Bergen, Norway
| |
Collapse
|
38
|
Riabov V, Salazar F, Htwe SS, Gudima A, Schmuttermaier C, Barthes J, Knopf-Marques H, Klüter H, Ghaemmaghami AM, Vrana NE, Kzhyshkowska J. Generation of anti-inflammatory macrophages for implants and regenerative medicine using self-standing release systems with a phenotype-fixing cytokine cocktail formulation. Acta Biomater 2017; 53:389-398. [PMID: 28159717 DOI: 10.1016/j.actbio.2017.01.071] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/17/2017] [Accepted: 01/26/2017] [Indexed: 02/06/2023]
Abstract
The immediate tissue microenvironment of implanted biomedical devices and engineered tissues is highly influential on their long term fate and efficacy. The creation of a long-term anti-inflammatory microenvironment around implants and artificial tissues can facilitate their integration. Macrophages are highly plastic cells that define the tissue reactions on the implanted material. Local control of macrophage phenotype by long-term fixation of their healing activities and suppression of inflammatory reactions are required to improve implant acceptance. Herein, we describe the development of a cytokine cocktail (M2Ct) that induces stable M2-like macrophage phenotype with significantly decreased pro-inflammatory cytokine and increased anti-inflammatory cytokine secretion profile. The positive effect of the M2Ct was shown in an in vitro wound healing model; where M2Ct facilitated wound closure by human fibroblasts in co-culture conditions. Using a model for induction of inflammation by LPS we have shown that the M2Ct phenotype is stable for 12days. However, in the absence of M2Ct in the medium macrophages underwent rapid pro-inflammatory re-programming upon IFNg stimulation. Therefore, loading and release of the cytokine cocktail from a self-standing, transferable gelatin/tyraminated hyaluronic acid based release system was developed to stabilize macrophage phenotype for in vivo applications in implantation and tissue engineering. The M2Ct cytokine cocktail retained its anti-inflammatory activity in controlled release conditions. Our data indicate that the direct application of a potent M2 inducing cytokine cocktail in a transferable release system can significantly improve the long term functionality of biomedical devices by decreasing pro-inflammatory cytokine secretion and increasing the rate of wound healing. STATEMENT OF SIGNIFICANCE Uncontrollable activation of macrophages in the microenvironment of implants and engineered tissues is a significant problem leading to poor integration of implants and artificial tissues. In the current manuscript we demonstrate that self-standing, transferable gelatin/tyraminated hyaluronic acid based thin films are perspective tools for controlled release of anti-inflammatory cytokine combinations and can be used to down-modulate macrophage activation on implant surfaces. We also show that optimized cytokine cocktail consisting of IL4/IL10/TGFβ1 (M2Ct) induces long-term anti-inflammatory and pro-healing phenotype in human primary monocyte-derived macrophages. This cocktail formulation could be loaded on gelatin/tyraminated films and promoted favorable M2-like macrophage phenotype with low responsiveness to pro-inflammatory stimuli. Such self-standing release systems can be used for prolonged local control of macrophage phenotype upon implantation.
Collapse
Affiliation(s)
- Vladimir Riabov
- Institute for Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68167 Mannheim, Germany; Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, 36 Lenin Prospekt, Tomsk 634050, Russia
| | - Fabián Salazar
- Division of Immunology, Queen's Medical Centre, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Su Su Htwe
- Division of Immunology, Queen's Medical Centre, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Alexandru Gudima
- Institute for Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68167 Mannheim, Germany
| | - Christina Schmuttermaier
- Institute for Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68167 Mannheim, Germany
| | - Julien Barthes
- Protip Medical, 8 Place de l'Hopital, 67000 Strasbourg, France
| | - Helena Knopf-Marques
- INSERM UMR 1121, Biomaterials and Bioengineering, 11 rue Humann, 67000 Strasbourg, France; Faculté de Chirurgie Dentaire, Université de Strasbourg, 3 rue Sainte Elisabeth, 67000 Strasbourg, France
| | - Harald Klüter
- Institute for Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68167 Mannheim, Germany; Red Cross Blood Service Baden-Württemberg-Hessen, Friedrich-Ebert Str. 107, D-68167 Mannheim, Germany
| | - Amir M Ghaemmaghami
- Division of Immunology, Queen's Medical Centre, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Nihal Engin Vrana
- Protip Medical, 8 Place de l'Hopital, 67000 Strasbourg, France; INSERM UMR 1121, Biomaterials and Bioengineering, 11 rue Humann, 67000 Strasbourg, France
| | - Julia Kzhyshkowska
- Institute for Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68167 Mannheim, Germany; Red Cross Blood Service Baden-Württemberg-Hessen, Friedrich-Ebert Str. 107, D-68167 Mannheim, Germany; Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, 36 Lenin Prospekt, Tomsk 634050, Russia.
| |
Collapse
|
39
|
Knopf-Marques H, Pravda M, Wolfova L, Velebny V, Schaaf P, Vrana NE, Lavalle P. Hyaluronic Acid and Its Derivatives in Coating and Delivery Systems: Applications in Tissue Engineering, Regenerative Medicine and Immunomodulation. Adv Healthc Mater 2016; 5:2841-2855. [PMID: 27709832 DOI: 10.1002/adhm.201600316] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/11/2016] [Indexed: 12/28/2022]
Abstract
As an Extracellular Matrix (ECM) component, Hyaluronic acid (HA) plays a multi-faceted role in cell migration, proliferation and differentiation at micro level and system level events such as tissue water homeostasis. Among its biological functions, it is known to interact with cytokines and contribute to their retention in ECM microenvironment. In addition to its biological functions, it has advantageous physical properties which result in the industrial endeavors in the synthesis and extraction of HA for variety of applications ranging from medical to cosmetic. Recently, HA and its derivatives have been the focus of active research for applications in biomedical device coatings, drug delivery systems and in the form of scaffolds or cell-laden hydrogels for tissue engineering. A specific reason for the increase in use of HA based structures is their immunomodulatory and regeneration inducing capacities. In this context, this article reviews recent literature on modulation of the implantable biomaterial microenvironment by systems based on HA and its derivatives, particularly hydrogels and microscale coatings that are able to deliver cytokines in order to reduce the adverse immune reactions and promote tissue healing.
Collapse
Affiliation(s)
- Helena Knopf-Marques
- Inserm UMR 1121; 11 rue Humann 67085 Strasbourg France
- Faculté de Chirurgie Dentaire; Université de Strasbourg; 3 rue Sainte Elisabeth 67000 Strasbourg France
| | - Martin Pravda
- Contipro Biotech S. R. O; Dolni Dobrouc 401 561 02 Dolni Dobrouc Czech Republic
| | - Lucie Wolfova
- Contipro Biotech S. R. O; Dolni Dobrouc 401 561 02 Dolni Dobrouc Czech Republic
| | - Vladimir Velebny
- Contipro Biotech S. R. O; Dolni Dobrouc 401 561 02 Dolni Dobrouc Czech Republic
| | - Pierre Schaaf
- Inserm UMR 1121; 11 rue Humann 67085 Strasbourg France
- Faculté de Chirurgie Dentaire; Université de Strasbourg; 3 rue Sainte Elisabeth 67000 Strasbourg France
- Institut Charles Sadron; CNRS UPR 22; 23 rue du Lœss 67034 Strasbourg France
| | - Nihal Engin Vrana
- Inserm UMR 1121; 11 rue Humann 67085 Strasbourg France
- Protip Medical; 8 Place de l'Hôpital 67000 Strasbourg France
| | - Philippe Lavalle
- Inserm UMR 1121; 11 rue Humann 67085 Strasbourg France
- Faculté de Chirurgie Dentaire; Université de Strasbourg; 3 rue Sainte Elisabeth 67000 Strasbourg France
| |
Collapse
|
40
|
Abstract
Anti-microbial peptides (AMPs) were originally thought to exert protecting actions against bacterial infection by disintegrating bacterial membranes. Upon identification of internal bacterial targets, the view changed and moved toward inhibition of prokaryote-specific biochemical processes. However, the level of none of these activities can explain the robust efficacy of some of these peptides in animal models of systemic and cutaneous infections. A rapidly growing panel of reports suggests that AMPs, now called host-defense peptides (HDPs), act through activating the immune system of the host. This includes recruitment and activation of macrophages and mast cells, inducing chemokine production and altering NF-κB signaling processes. As a result, both pro- and anti-inflammatory responses are elevated together with activation of innate and adaptive immunity mechanisms, wound healing, and apoptosis. HDPs sterilize the systemic circulation and local injury sites significantly more efficiently than pure single-endpoint in vitro microbiological or biochemical data would suggest and actively aid recovering from tissue damage after or even without bacterial infections. However, the multiple and, often opposing, immunomodulatory functions of HDPs require exceptional care in therapeutic considerations.
Collapse
Affiliation(s)
- Laszlo Otvos
- 1 Olpe LLC, Audubon, PA, USA
- 2 Institute of Medical Microbiology , Semmelweis University , Budapest, Hungary
| |
Collapse
|
41
|
Oughlis S, Changotade S, Poirier F, Cieutat AM, Rohman G, Peltzer J, Migonney V, Lataillade JJ, Lutomski D. Improved proliferation and osteogenic differentiation of human mesenchymal stem cells on a titanium biomaterial grafted with poly(sodium styrene sulphonate) and coated with a platelet-rich plasma proteins biofilm. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911516643105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In order to replace damaged or lost bone in the human body, it is necessary to produce ‘spare body parts’ which are dependent on the use of biomaterial and stem cells and are referred to as ‘tissue engineering’. Surface modification and stem cell interaction of orthopaedic implants offer a promising approach and are investigated here specifically to improve osseointegration of the biomaterial. Osseointegration of titanium implants used in orthopaedic surgery requires that osseo-progenitor cells attach and adhere to the surface, proliferate, then differentiate into osteoblasts and, finally, produce a mineralised matrix. The surface modification of titanium with anionic polymer combined with coating of platelet-rich plasma is provided to create a favourable environment to promote early and strong fixation of implants. The ability of progenitor cells to attach to the surface during early stages is important in the development of new tissue structures; therefore, we developed in our laboratory a strategy involving the grafting of titanium implants with a polymer of sodium styrene sulphonate (poly(sodium styrene sulphonate)) and a biofilm coating of platelet-rich plasma which enables human mesenchymal stem cell interactions. The resulting biomaterial, titanium-poly(sodium styrene sulphonate) and coating of platelet-rich plasma, Ti-poly(sodium styrene sulphonate)–platelet-rich plasma was developed in order to further improve the biomaterial. In this work, we studied and characterised the ‘in vitro’ response of human mesenchymal stem cells to titanium biomaterial grafted with poly(sodium styrene sulphonate) bioactive polymer and coated with platelet-rich plasma proteins (Ti-poly(sodium styrene sulphonate)–platelet-rich plasma). This study shows an increased cell proliferation with Ti-poly(sodium styrene sulphonate)–platelet-rich plasma compared to foetal calf serum and an enhancement of the Ti-poly(sodium styrene sulphonate)–platelet-rich plasma effects on osteoblast differentiation. The results suggest that Ti-poly(sodium styrene sulphonate)–platelet-rich plasma would be a suitable scaffold for bone tissue engineering.
Collapse
Affiliation(s)
- Sophiane Oughlis
- UMR CNRS 7244 CSPBAT, Université Paris 13, Université Sorbonne Paris Cité, Paris, France
| | - Sylvie Changotade
- UMR CNRS 7244 CSPBAT, Université Paris 13, Université Sorbonne Paris Cité, Paris, France
- Plateforme de Protéomique – UFR SMBH, Université Paris 13, Université Sorbonne Paris Cité, Paris, France
| | - Florence Poirier
- UMR CNRS 7244 CSPBAT, Université Paris 13, Université Sorbonne Paris Cité, Paris, France
- Plateforme de Protéomique – UFR SMBH, Université Paris 13, Université Sorbonne Paris Cité, Paris, France
| | - Anne-Marie Cieutat
- Plateforme de Protéomique – UFR SMBH, Université Paris 13, Université Sorbonne Paris Cité, Paris, France
| | - Géraldine Rohman
- UMR CNRS 7244 CSPBAT, Université Paris 13, Université Sorbonne Paris Cité, Paris, France
| | - Juliette Peltzer
- Unité de Thérapie Cellulaire, Centre de Transfusion Sanguine des Armées Jean Julliard, Clamart, France
| | - Véronique Migonney
- UMR CNRS 7244 CSPBAT, Université Paris 13, Université Sorbonne Paris Cité, Paris, France
| | - Jean-Jacques Lataillade
- Unité de Thérapie Cellulaire, Centre de Transfusion Sanguine des Armées Jean Julliard, Clamart, France
| | - Didier Lutomski
- UMR CNRS 7244 CSPBAT, Université Paris 13, Université Sorbonne Paris Cité, Paris, France
- Plateforme de Protéomique – UFR SMBH, Université Paris 13, Université Sorbonne Paris Cité, Paris, France
| |
Collapse
|
42
|
Eltorai AEM, Haglin J, Perera S, Brea BA, Ruttiman R, Garcia DR, Born CT, Daniels AH. Antimicrobial technology in orthopedic and spinal implants. World J Orthop 2016; 7:361-9. [PMID: 27335811 PMCID: PMC4911519 DOI: 10.5312/wjo.v7.i6.361] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/06/2016] [Accepted: 04/21/2016] [Indexed: 02/06/2023] Open
Abstract
Infections can hinder orthopedic implant function and retention. Current implant-based antimicrobial strategies largely utilize coating-based approaches in order to reduce biofilm formation and bacterial adhesion. Several emerging antimicrobial technologies that integrate a multidisciplinary combination of drug delivery systems, material science, immunology, and polymer chemistry are in development and early clinical use. This review outlines orthopedic implant antimicrobial technology, its current applications and supporting evidence, and clinically promising future directions.
Collapse
|
43
|
Kzhyshkowska J, Gudima A, Moganti K, Gratchev A, Orekhov A. Perspectives for Monocyte/Macrophage-Based Diagnostics of Chronic Inflammation. Transfus Med Hemother 2016; 43:66-77. [PMID: 27226789 DOI: 10.1159/000444943] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/22/2016] [Indexed: 12/17/2022] Open
Abstract
Low-grade chronic inflammation underlies the development of the most dangerous cardiometabolic disorders including type 2 diabetes and its vascular complications. In contrast to acute inflammation induced by bacteria and viruses, chronic inflammation can be driven by abnormal reaction to endogenous factors, including Th2 cytokines, metabolic factors like advanced glycation end products (AGEs), modified lipoproteins, or hyperglycemia. The key innate immune cells that recognize these factors in blood circulation are monocytes. Inflammatory programming of monocytes which migrate into tissues can, in turn, result into generation of tissue macrophages with pathological functions. Therefore, determination of the molecular and functional phenotype of circulating monocytes is a very promising diagnostic tool for the identification of hidden inflammation, which can precede the development of the pathology. Here we propose a new test system for the identification of inflammatory programming of monocytes: surface biomarkers and ex vivo functional system. We summarize the current knowledge about surface biomarkers for monocyte subsets, including CD16, CCR2, CX3CR1, CD64, stabilin-1 and CD36, and their association with inflammatory human disorders. Furthermore, we present the design of an ex vivo monocyte-based test system with minimal set of parameters as a potential diagnostic tool for the identification of personalized inflammatory responses.
Collapse
Affiliation(s)
- Julia Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany; Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
| | - Alexandru Gudima
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Kondaiah Moganti
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Alexei Gratchev
- Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
| | | |
Collapse
|