1
|
Wang J, Yuan Y, Su C, Bao Y, Xu W, Yao Y, Liang L, Zeng Y, Xiong M. pH-Ultrasensitive Membranolytic Polyesters with Alternating Sequence of Ionizable and Hydrophobic Groups for Selective Oncolytic Therapy. J Am Chem Soc 2025; 147:1008-1016. [PMID: 39731565 DOI: 10.1021/jacs.4c14199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
Oncolytic therapy, inducing cell death via cell membrane lysis, holds considerable promise in cancer treatment. However, achieving precise control over the structure and function of oncolytic materials for highly selective oncolytic therapy is a key challenge in the context of the subtle differences between tumor and normal tissues/cells. Herein, we report the development of pH-ultrasensitive oncolytic polyesters (pOPs) with an alternating sequence of ionizable and hydrophobic groups. This design enables a refined "OFF" to "ON" switch within 0.2 pH units, ensuring high selectivity in membranolytic activity and cytotoxicity of pOPs between the pH levels of normal tissues and tumor acidity. The top-performing pOP, P(P-AC7), demonstrated a maximum tolerated dose of >100 mg kg-1 after intravenous administration and potent cytotoxicity at pH 6.8. Notably, the molecular weight of P(P-AC7) had a minimal effect on its pH-dependent cytotoxicity once the degree of polymerization was ≥49, ensuring consistency in properties across batches. P(P-AC7) exerts membranolytic activity by interacting with phosphatidylserine at pH 6.8 and shows high antitumor efficacy in various tumor models. Overall, we developed a strategy to develop oncolytic polymers with a precise structure for selective oncolytic therapy.
Collapse
Affiliation(s)
- Jihong Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yueling Yuan
- Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei 516621, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Chanjuan Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yan Bao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Medical Research Center, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
| | - Weide Xu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yandan Yao
- Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei 516621, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Lifang Liang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yuxuan Zeng
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Menghua Xiong
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
Deb R, Torres MDT, Boudný M, Koběrská M, Cappiello F, Popper M, Dvořáková
Bendová K, Drabinová M, Hanáčková A, Jeannot K, Petřík M, Mangoni ML, Balíková Novotná G, Mráz M, de la Fuente-Nunez C, Vácha R. Computational Design of Pore-Forming Peptides with Potent Antimicrobial and Anticancer Activities. J Med Chem 2024; 67:14040-14061. [PMID: 39116273 PMCID: PMC11345766 DOI: 10.1021/acs.jmedchem.4c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/05/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Peptides that form transmembrane barrel-stave pores are potential alternative therapeutics for bacterial infections and cancer. However, their optimization for clinical translation is hampered by a lack of sequence-function understanding. Recently, we have de novo designed the first synthetic barrel-stave pore-forming antimicrobial peptide with an identified function of all residues. Here, we systematically mutate the peptide to improve pore-forming ability in anticipation of enhanced activity. Using computer simulations, supported by liposome leakage and atomic force microscopy experiments, we find that pore-forming ability, while critical, is not the limiting factor for improving activity in the submicromolar range. Affinity for bacterial and cancer cell membranes needs to be optimized simultaneously. Optimized peptides more effectively killed antibiotic-resistant ESKAPEE bacteria at submicromolar concentrations, showing low cytotoxicity to human cells and skin model. Peptides showed systemic anti-infective activity in a preclinical mouse model of Acinetobacter baumannii infection. We also demonstrate peptide optimization for pH-dependent antimicrobial and anticancer activity.
Collapse
Affiliation(s)
- Rahul Deb
- CEITEC
− Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- National
Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Marcelo D. T. Torres
- Machine
Biology Group, Departments of Psychiatry and Microbiology, Institute
for Biomedical Informatics, Institute for Translational Medicine and
Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments
of Bioengineering and Chemical and Biomolecular Engineering, School
of Engineering and Applied Science, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn
Institute for Computational Science, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Miroslav Boudný
- CEITEC
− Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- Department
of Internal Medicine, Hematology and Oncology, University Hospital
Brno and Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic
| | - Markéta Koběrská
- Institute
of Microbiology, Czech Academy of Sciences,
BIOCEV, Vestec 252 50, Czech Republic
| | - Floriana Cappiello
- Department
of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur
Italia-Fondazione Cenci Bolognetti, Sapienza
University of Rome, Rome 00185, Italy
| | - Miroslav Popper
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc 779 00, Czech Republic
| | - Kateřina Dvořáková
Bendová
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc 779 00, Czech Republic
| | - Martina Drabinová
- CEITEC
− Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Adelheid Hanáčková
- CEITEC
− Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Katy Jeannot
- University
of Franche-Comté, CNRS, Chrono-environment, Besançon 25030, France
- National Reference Centre for Antibiotic
Resistance, Besançon 25030, France
| | - Miloš Petřík
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc 779 00, Czech Republic
- Czech
Advanced Technology and Research Institute, Palacký University, Olomouc 779 00, Czech Republic
| | - Maria Luisa Mangoni
- Department
of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur
Italia-Fondazione Cenci Bolognetti, Sapienza
University of Rome, Rome 00185, Italy
| | | | - Marek Mráz
- CEITEC
− Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- Department
of Internal Medicine, Hematology and Oncology, University Hospital
Brno and Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic
| | - Cesar de la Fuente-Nunez
- Machine
Biology Group, Departments of Psychiatry and Microbiology, Institute
for Biomedical Informatics, Institute for Translational Medicine and
Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments
of Bioengineering and Chemical and Biomolecular Engineering, School
of Engineering and Applied Science, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn
Institute for Computational Science, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert Vácha
- CEITEC
− Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- National
Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- Department
of Condensed Matter Physics, Faculty of Science, Masaryk University, Brno 611 37, Czech Republic
| |
Collapse
|
3
|
Liu H, Shen W, Liu W, Yang Z, Yin D, Xiao C. From oncolytic peptides to oncolytic polymers: A new paradigm for oncotherapy. Bioact Mater 2024; 31:206-230. [PMID: 37637082 PMCID: PMC10450358 DOI: 10.1016/j.bioactmat.2023.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/18/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
Traditional cancer therapy methods, especially those directed against specific intracellular targets or signaling pathways, are not powerful enough to overcome tumor heterogeneity and therapeutic resistance. Oncolytic peptides that can induce membrane lysis-mediated cancer cell death and subsequent anticancer immune responses, has provided a new paradigm for cancer therapy. However, the clinical application of oncolytic peptides is always limited by some factors such as unsatisfactory bio-distribution, poor stability, and off-target toxicity. To overcome these limitations, oncolytic polymers stand out as prospective therapeutic materials owing to their high stability, chemical versatility, and scalable production capacity, which has the potential to drive a revolution in cancer treatment. This review provides an overview of the mechanism and structure-activity relationship of oncolytic peptides. Then the oncolytic peptides-mediated combination therapy and the nano-delivery strategies for oncolytic peptides are summarized. Emphatically, the current research progress of oncolytic polymers has been highlighted. Lastly, the challenges and prospects in the development of oncolytic polymers are discussed.
Collapse
Affiliation(s)
- Hanmeng Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Wei Shen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, Anhui, 230012, China
| | - Wanguo Liu
- Department of Orthopaedic Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Zexin Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, Anhui, 230012, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
4
|
Zhu L, Liu J, Qiu M, Chen J, Liang Q, Peng G, Zou Z. Bacteria-mediated metformin-loaded peptide hydrogel reprograms the tumor immune microenvironment in glioblastoma. Biomaterials 2022; 288:121711. [DOI: 10.1016/j.biomaterials.2022.121711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/14/2022] [Accepted: 07/31/2022] [Indexed: 11/02/2022]
|
5
|
Bose D, Roy L, Chatterjee S. Peptide therapeutics in the management of metastatic cancers. RSC Adv 2022; 12:21353-21373. [PMID: 35975072 PMCID: PMC9345020 DOI: 10.1039/d2ra02062a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/26/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer remains a leading health concern threatening lives of millions of patients worldwide. Peptide-based drugs provide a valuable alternative to chemotherapeutics as they are highly specific, cheap, less toxic and easier to synthesize compared to other drugs. In this review, we have discussed various modes in which peptides are being used to curb cancer. Our review highlights specially the various anti-metastatic peptide-based agents developed by targeting a plethora of cellular factors. Herein we have given a special focus on integrins as targets for peptide drugs, as these molecules play key roles in metastatic progression. The review also discusses use of peptides as anti-cancer vaccines and their efficiency as drug-delivery tools. We hope this work will give the reader a clear idea of the mechanisms of peptide-based anti-cancer therapeutics and encourage the development of superior drugs in the future.
Collapse
Affiliation(s)
- Debopriya Bose
- Department of Biophysics Bose Institute Unified Academic Campus EN 80, Sector V, Bidhan Nagar Kolkata 700091 WB India
| | - Laboni Roy
- Department of Biophysics Bose Institute Unified Academic Campus EN 80, Sector V, Bidhan Nagar Kolkata 700091 WB India
| | - Subhrangsu Chatterjee
- Department of Biophysics Bose Institute Unified Academic Campus EN 80, Sector V, Bidhan Nagar Kolkata 700091 WB India
| |
Collapse
|
6
|
Behzadi M, Eghtedardoost M, Bagheri M. Endocytosis Involved d-Oligopeptide of Tryptophan and Arginine Displays Ordered Nanostructures and Cancer Cell Stereoselective Toxicity by Autophagy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14928-14943. [PMID: 35319877 DOI: 10.1021/acsami.1c23846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Owing to their self-aggregation propensity and selective interaction with the anionic membranes, the peptides rich in tryptophan (Trp) and arginine (Arg) are considered for the development of novel anticancer therapeutics. However, the structural insights from the perspective of backbone chirality and spatial orientation of side chains into the selective toxicity of peptides are limited. Here, we investigated the selectivity and cellular uptake of HHC36, a Trp/Arg-rich nonapeptide, and its d-enantiomer (allDHHC36) and a retroinverso analogue in the lung A549 and breast MDA-MB-231 cancer cells. We realized that the d-peptides can specifically induce autophagy at nontoxic concentrations only in the A549 cells supported from the LC 3-II immunostaining expression in the vicinity of the nucleus and the ultrastructural analysis revealing the autophagosome formation. The autophagic flux was also remarkable in the cells exposed to d-peptides at a far lower concentration in synergism with doxorubicin (DOX). In marked contrast, nonselective cell death was observed only if a high amount of HHC36 was applied. HHC36 tended to irregular collagen-like fibrils relative to allDHHC36 that distinctly formed higher-order coiled nanostructures. Interestingly, the short d-peptide fragments were generated in a harsh oxidative condition. Compared with the direct membrane transduction of HHC36, the entry of d-peptides into the lung cancer cells was controlled by endocytosis through the contribution of heparan sulfate proteoglycans (HSPGs) and cholesterol (CHO). However, both l- and d-peptides feasibly crossed the membrane and localized inside the S-phase-arrested cell nucleus. This suggested the likelihood of peptide intercalation with DNA that might differently appear in selective and/or nonselective deaths. These results unraveled the d-handedness-selective toxicity of a self-assembling Trp/Arg-rich sequence that is dependent on the cell type from the aspects of the density of anionic charges and CHO in the outer leaflet of the plasma membrane, as well as the intracellular redox imbalance that may drive the formation of toxic peptide nanostructure fragments.
Collapse
Affiliation(s)
- Malihe Behzadi
- Peptide Chemistry Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, 16 Azar Street, 14176-14335 Tehran, Iran
| | - Marzieh Eghtedardoost
- Peptide Chemistry Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, 16 Azar Street, 14176-14335 Tehran, Iran
| | - Mojtaba Bagheri
- Peptide Chemistry Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, 16 Azar Street, 14176-14335 Tehran, Iran
| |
Collapse
|
7
|
Yang Z, He S, Wu H, Yin T, Wang L, Shan A. Nanostructured Antimicrobial Peptides: Crucial Steps of Overcoming the Bottleneck for Clinics. Front Microbiol 2021; 12:710199. [PMID: 34475862 PMCID: PMC8406695 DOI: 10.3389/fmicb.2021.710199] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
The security issue of human health is faced with dispiriting threats from multidrug-resistant bacteria infections induced by the abuse and misuse of antibiotics. Over decades, the antimicrobial peptides (AMPs) hold great promise as a viable alternative to treatment with antibiotics due to their peculiar antimicrobial mechanisms of action, broad-spectrum antimicrobial activity, lower drug residue, and ease of synthesis and modification. However, they universally express a series of disadvantages that hinder their potential application in the biomedical field (e.g., low bioavailability, poor protease resistance, and high cytotoxicity) and extremely waste the abundant resources of AMP database discovered over the decades. For all these reasons, the nanostructured antimicrobial peptides (Ns-AMPs), based on a variety of nanosystem modification, have made up for the deficiencies and pushed the development of novel AMP-based antimicrobial therapies. In this review, we provide an overview of the advantages of Ns-AMPs in improving therapeutic efficacy and biological stability, reducing side effects, and gaining the effect of organic targeting and drug controlled release. Then the different material categories of Ns-AMPs are described, including inorganic material nanosystems containing AMPs, organic material nanosystems containing AMPs, and self-assembled AMPs. Additionally, this review focuses on the Ns-AMPs for the effect of biological activities, with emphasis on antimicrobial activity, biosecurity, and biological stability. The "state-of-the-art" antimicrobial modes of Ns-AMPs, including controlled release of AMPs under a specific environment or intrinsic antimicrobial properties of Ns-AMPs, are also explicated. Finally, the perspectives and conclusions of the current research in this field are also summarized.
Collapse
Affiliation(s)
| | | | | | | | | | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
8
|
Zhu L, Shi Y, Xiong Y, Ba L, Li Q, Qiu M, Zou Z, Peng G. Emerging self-assembling peptide nanomaterial for anti-cancer therapy. J Biomater Appl 2021; 36:882-901. [PMID: 34180306 DOI: 10.1177/08853282211027882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recently it is mainly focused on anti-tumor comprehensive treatments like finding target tumor cells or activating immune cells to inhibit tumor recurrence and metastasis. At present, chemotherapy and molecular-targeted drugs can inhibit tumor cell growth to a certain extent. However, multi-drug resistance and immune escape often make it difficult for new drugs to achieve expected effects. Peptide hydrogel nanoparticles is a new type of biological material with functional peptide chains as the core and self-assembling peptide (SAP) as the framework. It has a variety of significant biological functions, including effective local inflammation suppression and non-drug-resistant cell killing. Besides, it can induce immune activation more persistently in an adjuvant independent manner when compared with simple peptides. Thus, SAP nanomaterial has great potential in regulating cell physiological functions, drug delivery and sensitization, vaccine design and immunotherapy. Not only that, it is also a potential way to focus on some specific proteins and cells through peptides, which has already been examined in previous research. A full understanding of the function and application of SAP nanoparticles can provide a simple and practical strategy for the development of anti-tumor drugs and vaccine design, which contributes to the historical transition of peptide nanohydrogels from bench to bedside and brings as much survival benefits as possible to cancer patients.
Collapse
Affiliation(s)
- Lisheng Zhu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangyang Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Xiong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Ba
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuting Li
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengjun Qiu
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenwei Zou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Peng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Zhai L, Luo C, Gao H, Du S, Shi J, Wang F. A Dual pH-Responsive DOX-Encapsulated Liposome Combined with Glucose Administration Enhanced Therapeutic Efficacy of Chemotherapy for Cancer. Int J Nanomedicine 2021; 16:3185-3199. [PMID: 34007173 PMCID: PMC8121622 DOI: 10.2147/ijn.s303874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The acidic microenvironment of cancer can promote tumor metastasis and drug resistance. Acidic tumor microenvironment-targeted therapy is currently an important means for treating tumors, inhibiting metastasis, and overcoming drug resistance. In this study, a dual pH-responsive DOX-encapsulated liposome (DOPE-DVar7-lip@DOX) was designed and fabricated for targeting the acidic tumor microenvironment. On the one hand, the response of acid-sensitive peptide (DVar7) to the acidic tumor microenvironment increased the uptake of liposomes in tumors and prolonged the retention time; on the other hand, the response of acid-sensitive phospholipid (DOPE) to the acidic tumor microenvironment improved the controlled release of DOX in tumors. METHODS The acid-sensitive peptide DVar7 modified liposomes can be obtained by simple incubation of DSPE-DVar7 with DOX-loaded DOPE liposomes (DOPE-lip@DOX). The tumor targeting of the dual pH-responsive liposome was investigated in vitro and in vivo by near-infrared fluorescence imaging. The tumor therapeutic efficacy of DOPE-DVar7-lip@DOX was evaluated in breast cancer mouse model using the traditional liposome as a control. Moreover, we regulated the tumor microenvironment acidity by injecting glucose to further enhance the therapeutic efficacy of cancer. RESULTS DVar7 can allosterically insert into the tumor cell membrane in the acidic tumor microenvironment to enhance the tumor uptake of liposomes and prolong the retention time of liposomes in tumor. In addition, the therapeutic efficacy of pH-responsive liposomes can be further enhanced by glucose injection regulating the acidity of tumor microenvironment. DISCUSSION DVar7 modified acid-sensitive nanocarriers combined with acidity regulation have great potential to improve drug resistance in clinical practice, thus improving the response rate and therapeutic effect of chemotherapy.
Collapse
Affiliation(s)
- Luoping Zhai
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, People’s Republic of China
| | - Chuangwei Luo
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, People’s Republic of China
| | - Hannan Gao
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, People’s Republic of China
| | - Shuaifan Du
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, People’s Republic of China
| | - Jiyun Shi
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Academy of Sciences, Beijing, 100101, People’s Republic of China
| | - Fan Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, People’s Republic of China
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Academy of Sciences, Beijing, 100101, People’s Republic of China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, People’s Republic of China
| |
Collapse
|
10
|
Behzadi M, Arasteh S, Bagheri M. Palmitoylation of Membrane-Penetrating Magainin Derivatives Reinforces Necroptosis in A549 Cells Dependent on Peptide Conformational Propensities. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56815-56829. [PMID: 33296603 DOI: 10.1021/acsami.0c17648] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Anticancer lipopeptides (ACLPs) are considered promising alternatives to combat resistant cancer cells, but the influence of peptide conformational propensity alone on their selectivity and mechanism remains obscure. In this study, we developed N-palmitoylated MK5E (P1MK5E) and MEK5 (P1MEK5) that have the same composition of 23 residues undergoing the pH-dependent structural alterations but differ in the conformational tendency of their amino acid composites. Nonlipidated peptides were readily accumulated in the A549 cell nucleus by the direct membrane translocation and the heparan sulfate-mediated endocytosis than the lipid-raft-dependent pathway. The increased hydrophobicity favored the amino acid-position-dependent folding of P1MK5E and P1MEK5, respectively, toward the α-helical coiled-coil nanofibrils and amyloidlike β-protofibrils. At the close concentrations (∼7.5 μM) to the toxic effects of doxorubicin (DOX), P1MK5E exhibited (i) an increased anticancer toxicity through a time-dependent S-phase arrest, (ii) enhanced plasma membrane permeability, and (iii) dose-dependent changes in the cell death characteristic features in the A549 cells relative to P1MEK5 that was almost inactive at ∼75 μM. These observations were in accordance with the TNF-α-mediated necroptotic signaling in the c-MYC/PARP1-overexpressed A549 cells exposed to P1MK5E and accompanied by the ultrastructure of plasma membrane protrusions, extensive endoplasmic reticulum (ER) membrane expansion, mitochondrial swelling, and the formation of distinct cytoplasmic vacuolation. The structural results and the bioactivity behaviors, herein, declared the significance of α-helical propensity in the peptide sequence and the nanostructure morphologies of self-assembling ACLPs upon the selectivity and enhanced anticancer effectiveness, which notably holds promise in the design and development of efficient therapeutics for cancer.
Collapse
Affiliation(s)
- Malihe Behzadi
- Peptide Chemistry Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, 16 Azar Street, 14176-14335 Tehran, Iran
| | - Shima Arasteh
- Peptide Chemistry Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, 16 Azar Street, 14176-14335 Tehran, Iran
| | - Mojtaba Bagheri
- Peptide Chemistry Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, 16 Azar Street, 14176-14335 Tehran, Iran
| |
Collapse
|
11
|
Bunker A, Róg T. Mechanistic Understanding From Molecular Dynamics Simulation in Pharmaceutical Research 1: Drug Delivery. Front Mol Biosci 2020; 7:604770. [PMID: 33330633 PMCID: PMC7732618 DOI: 10.3389/fmolb.2020.604770] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
In this review, we outline the growing role that molecular dynamics simulation is able to play as a design tool in drug delivery. We cover both the pharmaceutical and computational backgrounds, in a pedagogical fashion, as this review is designed to be equally accessible to pharmaceutical researchers interested in what this new computational tool is capable of and experts in molecular modeling who wish to pursue pharmaceutical applications as a context for their research. The field has become too broad for us to concisely describe all work that has been carried out; many comprehensive reviews on subtopics of this area are cited. We discuss the insight molecular dynamics modeling has provided in dissolution and solubility, however, the majority of the discussion is focused on nanomedicine: the development of nanoscale drug delivery vehicles. Here we focus on three areas where molecular dynamics modeling has had a particularly strong impact: (1) behavior in the bloodstream and protective polymer corona, (2) Drug loading and controlled release, and (3) Nanoparticle interaction with both model and biological membranes. We conclude with some thoughts on the role that molecular dynamics simulation can grow to play in the development of new drug delivery systems.
Collapse
Affiliation(s)
- Alex Bunker
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tomasz Róg
- Department of Physics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Zhang L, Xu J, Wang F, Ding Y, Wang T, Jin G, Martz M, Gui Z, Ouyang P, Chen P. Histidine-Rich Cell-Penetrating Peptide for Cancer Drug Delivery and Its Uptake Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3513-3523. [PMID: 30673275 DOI: 10.1021/acs.langmuir.8b03175] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, we report a drug delivery system based on the pH-responsive self-assembly and -disassembly behaviors of peptides. Here, a systematically designed histidine-rich lipidated peptide (NP1) is presented to encapsulate and deliver an anticancer drug ellipticine (EPT) into two model cells: non-small-cell lung carcinoma and Chinese hamster ovary cells. The mechanism of pH-responsive peptide self-assembly and -disassembly involved in the drug encapsulation and release process are extensively investigated. We found that NP1 could self-assemble as a spherical nanocomplex (diameter = 34.43 nm) in a neutral pH environment with EPT encapsulated and positively charged arginine amino acids aligned outward and EPT is released in an acidic environment due to the pH-triggered disassembly. Furthermore, the EPT-encapsulating peptide could achieve a mass loading ability of 18% (mass of loaded-EPT/mass of NP1) with optimization. More importantly, it is revealed that the positively charged arginine on the periphery of the NP1 peptides could greatly facilitate their direct translocation through the negatively charged plasma membrane via electrostatic interaction, instead of via endocytosis, which provides a more efficient uptake pathway.
Collapse
Affiliation(s)
- Lei Zhang
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing 211816 , China
- Sericultural Research Institute , Chinese Academy of Agricultural Sciences , Zhenjiang , Jiangsu 212018 , China
- College of Biotechnology , Jiangsu University of Science and Technology , Zhenjiang , Jiangsu 212018 , China
| | | | | | | | | | | | | | - Zhongzheng Gui
- Sericultural Research Institute , Chinese Academy of Agricultural Sciences , Zhenjiang , Jiangsu 212018 , China
- College of Biotechnology , Jiangsu University of Science and Technology , Zhenjiang , Jiangsu 212018 , China
| | - Pingkai Ouyang
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - P Chen
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing 211816 , China
| |
Collapse
|
13
|
Nyström L, Malmsten M. Membrane interactions and cell selectivity of amphiphilic anticancer peptides. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Lu S, Zhao F, Zhang Q, Chen P. Therapeutic Peptide Amphiphile as a Drug Carrier with ATP-Triggered Release for Synergistic Effect, Improved Therapeutic Index, and Penetration of 3D Cancer Cell Spheroids. Int J Mol Sci 2018; 19:E2773. [PMID: 30223518 PMCID: PMC6165277 DOI: 10.3390/ijms19092773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 11/16/2022] Open
Abstract
Despite the great progress in the field of drug delivery systems for cancer treatment over the last decade, many challenges still lie ahead, such as low drug loading, deep penetration of tumors, side effects, and the development of drug resistance. A class of cationic membrane lytic peptides has shown potential as an anticancer agent by inducing cancer cell death via membrane disruption; meanwhile, their intrinsic selectivity renders them as having low cytotoxicity towards noncancerous cells. Here, we report the use of a cationic peptide amphiphile (PA), named PAH6, to load doxorubicin (Dox) that is intercalated in an ATP-binding aptamer-incorporated DNA scaffold. The PA contains a cationic lytic sequence, (KLAKLAK)₂, a polyhistidine segment for the "proton sponge" effect, and a hydrophobic alkyl tail to drive the self-assembly. Dox-loaded DNA was found to form a spherical nanocomplex (NC) with PAH6 with particle sizes below 100 nm at various ratios. Since the carrier PAH6 is also a therapeutic agent, the drug loadings of the NC reached up to ~86% within the ratios we tested, and Dox was released from the NC in an ATP-rich environment. In vitro studies indicate that the presence of PAH6 could permeabilize cell membranes and kill cells through fast membrane disruption and depolarization of mitochondrial membranes. The cytotoxicity tests were conducted using A549 nonsmall cell lung cancer cells and NIH-3T3 fibroblast cells. PAH6 showed selectivity towards A549 cells. Significantly, the Dox-DNA/PAH6 NC exhibited a synergistic effect against A549 cells, with the IC50 decreased up to ~90% for Dox and ~69% for PAH6 when compared to the IC50 values of the two components, respectively. Furthermore, the selectivity of PAH6 conferred to the complex an improved therapeutic index between A549 and NIH-3T3 cells. A 3D-cultured A549 spheroid model was adopted to test the capability of Dox-DNA/PAH6 for tumor penetration. The PAH6 or Dox-DNA/PAH6 complex was found to break the spheroids into pieces, while Dox-treated spheroids maintained their shapes. In summary, this work provides a new strategy for constructing nanomedicines using therapeutic agents to meet the features required by anticancer treatment.
Collapse
Affiliation(s)
- Sheng Lu
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Feng Zhao
- Faculty of Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Qiuxin Zhang
- Faculty of Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
- College of Nano Science and Technology, Soochow University, Suzhou 215123, Jiangsu Province, China.
| | - P Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
15
|
Lu S, Cui W, Li J, Sheng Y, Chen P. Functional Control of Peptide Amphiphile Assemblies via Modulation of Internal Cohesion and Surface Chemistry Switch. Chemistry 2018; 24:13931-13937. [PMID: 29974535 DOI: 10.1002/chem.201803026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Indexed: 01/01/2023]
Abstract
Understanding the impacts of the internal cohesion and surface chemistry of supramolecular systems on the collective behaviors in the contacts between the systems and biomolecules can greatly expand the functional diversity and adaptivity of supramolecular nanostructures. Here we show how the tuned molecular interactions modulate the morphologies and internal cohesion of peptide amphiphile (PA) self-assemblies and their resultant functions. Circular dichroism spectroscopy, fluorescence probing, atomic force and electron microscopy, along with molecular dynamics simulations, revealed that the PA self-assembly formed compact long fibers when surface charge repulsion was screened, but formed loose short fibers or micelle-like assemblies when hydrogen bonding was disrupted or hydrophobic core was enhanced. More importantly, depending on the strength of the phospholipid affinity for the cationic segment of the PA, the same internal cohesion of PA nanostructures can lead to either cell death or cell survival, providing unique insights into the design of supramolecular materials.
Collapse
Affiliation(s)
- Sheng Lu
- Department of Chemical Engineering and Waterloo Institute for, Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Weijia Cui
- Department of Chemical Engineering and Waterloo Institute for, Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Jason Li
- Department of Chemical Engineering and Waterloo Institute for, Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Yuebiao Sheng
- Department of Physics and High Performance Computing Center, Nanjing University, Nanjing, 210093, China
| | - Pu Chen
- Department of Chemical Engineering and Waterloo Institute for, Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
16
|
Ni R, Liu J, Chau Y. Ultrasound-facilitated assembly and disassembly of a pH-sensitive self-assembly peptide. RSC Adv 2018; 8:29482-29487. [PMID: 35548023 PMCID: PMC9084454 DOI: 10.1039/c8ra04391d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/12/2018] [Indexed: 12/23/2022] Open
Abstract
In this report, we investigated the impact of external stimulus (ultrasound) and internal stimulus (pH) on peptide assembly and disassembly. Two short rationally designed peptides K3C6SPD and F20H differing in the presence of a single pH-sensitive histidine residue were studied as the model peptides. The assembly kinetics studies demonstrated that the substitution of phenylalanine in K3C6SPD with histidine (F20H) significantly slowed down the peptide assembly rate at all three tested pHs (pH 9.5, pH 7.4 and pH 5.0). At the same time, this F to H substitution led to the increased pH-responsive assembly kinetics. By treating the peptide sample at the beginning of the assembly process at pH 9.5 for 5 min with the ultrasound power of 2.1 W cm−2, the assembly rate of peptide F20H was significantly accelerated with the lag phase being shortened from 10 days to 2 days. For the disassembly of F20H peptide nanofibrils preformed at pH 9.5, upon pH adjustment from pH 9.5 to pH 5.0, 5 min ultrasonication of the nanofibrils resulted in the nanofibril disassembly within 6 hours, instead of 5 days in the absence of ultrasound. On the contrary, similar ultrasound treatment of the peptide K3C6SPD did not produce any obvious effect on both assembly and disassembly processes. This study offers an effective strategy to modulate the stimuli-responsiveness of the peptide-based biomaterials. We present an efficient strategy to enhance the stimuli-responsiveness of peptide-based biomaterials by combination of different stimuli.![]()
Collapse
Affiliation(s)
- Rong Ni
- Department of Chemical and Biological Engineering
- The Hong Kong University of Science and Technology
- Kowloon
- China
- Institute for Advanced Study
| | - Jianhui Liu
- Department of Chemical and Biological Engineering
- The Hong Kong University of Science and Technology
- Kowloon
- China
| | - Ying Chau
- Department of Chemical and Biological Engineering
- The Hong Kong University of Science and Technology
- Kowloon
- China
| |
Collapse
|
17
|
Qiao ZY, Zhao WJ, Gao YJ, Cong Y, Zhao L, Hu Z, Wang H. Reconfigurable Peptide Nanotherapeutics at Tumor Microenvironmental pH. ACS APPLIED MATERIALS & INTERFACES 2017; 9:30426-30436. [PMID: 28828864 DOI: 10.1021/acsami.7b09033] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Peptide nanomaterials have recently attracted considerable interest in the biomedical field. However, their poor bioavailability and less powerful therapeutic efficacy hamper their further applications. Herein, we discovered reconfigurable and activated nanotherapeutics in the tumor microenvironment. Two peptides, that is, a pH-responsive peptide HLAH and a matrix metalloprotease-2 (MMP2)-sensitive peptide with a poly(ethylene glycol) (PEG) terminal were conjugated onto the hydrophobic poly(β-thioester)s backbones to gain the copolymer P-S-H. The therapeutic activity of the HLAH peptide could be activated in tumors owing to its reconfiguration under microenvironmental pH. The resultant copolymers self-assembled into nanoparticles under physiological condition, with HLAH in cores protected by PEG shells. The moderate size (∼100 nm) and negative potential enabled the stable circulation of P-S-H in the bloodstream. Once arrived at the tumor site, the P-S-H nanoparticles were stimulated by overexpressed MMP2 and acidic pH, and subsequently the shedding of the PEG shell and protonation of the HLAH peptide induced the reassembly of nanoparticles, resulting in the formation of nanoparticles with activated cytotoxic peptides on the surface. In vivo experiments demonstrated that the reorganized nanoassembly contained three merits: (1) effective accumulation in the tumor site, (2) enhanced antitumor capacity, and (3) no obvious toxic effect at the treatment dose. This on-site reorganization strategy provides an avenue for developing high-performance peptide nanomaterials in cancer treatment.
Collapse
Affiliation(s)
- Zeng-Ying Qiao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, China
| | - Wen-Jing Zhao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, China
| | - Yu-Juan Gao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, China
| | - Yong Cong
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, China
| | - Lina Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Zhiyuan Hu
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, China
| | - Hao Wang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , Beijing 100190, China
| |
Collapse
|
18
|
Dong X, Chu D, Wang Z. Leukocyte-mediated Delivery of Nanotherapeutics in Inflammatory and Tumor Sites. Theranostics 2017; 7:751-763. [PMID: 28255364 PMCID: PMC5327647 DOI: 10.7150/thno.18069] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 11/19/2016] [Indexed: 12/22/2022] Open
Abstract
Nanotechnology has become a powerful tool to potentially translate nanomedicine from bench to bedside. Nanotherapeutics are nanoparticles (NPs) loaded with drugs and possess the property of tissue targeting after surfaces of NPs are bio-functionalized. Designing smaller size of nanotherapeutics is presumed to increase tumor targeting based on the EPR (enhanced permeability and retention) effect. Since the immune systems possess a defence mechanism to fight diseases, there is an emerging concept that NPs selectively target immune cells to mediate the active delivery of drugs into sites of disease. In this review, we will focus on a key question of how nanotherapeutics specifically target immune cells and hijack them as a delivery vehicle to transport nanotherapeutics into disease tissues, thus possibly improving current therapies in inflammation, immune disorders and cancers. We will also discuss the challenges and opportunities for this new strategy of leukocyte-mediated delivery of nanotherapeutics.
Collapse
Affiliation(s)
| | | | - Zhenjia Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington, USA 99202
| |
Collapse
|
19
|
Malik E, Dennison SR, Harris F, Phoenix DA. pH Dependent Antimicrobial Peptides and Proteins, Their Mechanisms of Action and Potential as Therapeutic Agents. Pharmaceuticals (Basel) 2016; 9:ph9040067. [PMID: 27809281 PMCID: PMC5198042 DOI: 10.3390/ph9040067] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 12/16/2022] Open
Abstract
Antimicrobial peptides (AMPs) are potent antibiotics of the innate immune system that have been extensively investigated as a potential solution to the global problem of infectious diseases caused by pathogenic microbes. A group of AMPs that are increasingly being reported are those that utilise pH dependent antimicrobial mechanisms, and here we review research into this area. This review shows that these antimicrobial molecules are produced by a diverse spectrum of creatures, including vertebrates and invertebrates, and are primarily cationic, although a number of anionic examples are known. Some of these molecules exhibit high pH optima for their antimicrobial activity but in most cases, these AMPs show activity against microbes that present low pH optima, which reflects the acidic pH generally found at their sites of action, particularly the skin. The modes of action used by these molecules are based on a number of major structure/function relationships, which include metal ion binding, changes to net charge and conformational plasticity, and primarily involve the protonation of histidine, aspartic acid and glutamic acid residues at low pH. The pH dependent activity of pore forming antimicrobial proteins involves mechanisms that generally differ fundamentally to those used by pH dependent AMPs, which can be described by the carpet, toroidal pore and barrel-stave pore models of membrane interaction. A number of pH dependent AMPs and antimicrobial proteins have been developed for medical purposes and have successfully completed clinical trials, including kappacins, LL-37, histatins and lactoferrin, along with a number of their derivatives. Major examples of the therapeutic application of these antimicrobial molecules include wound healing as well as the treatment of multiple cancers and infections due to viruses, bacteria and fungi. In general, these applications involve topical administration, such as the use of mouth washes, cream formulations and hydrogel delivery systems. Nonetheless, many pH dependent AMPs and antimicrobial proteins have yet to be fully characterized and these molecules, as a whole, represent an untapped source of novel biologically active agents that could aid fulfillment of the urgent need for alternatives to conventional antibiotics, helping to avert a return to the pre-antibiotic era.
Collapse
Affiliation(s)
- Erum Malik
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - Sarah R Dennison
- School of Pharmacy and Biological Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - Frederick Harris
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - David A Phoenix
- Office of the Vice Chancellor, London South Bank University, 103 Borough Road, London SE1 0AA, UK.
| |
Collapse
|
20
|
Pugliese R, Gelain F. Peptidic Biomaterials: From Self-Assembling to Regenerative Medicine. Trends Biotechnol 2016; 35:145-158. [PMID: 27717599 DOI: 10.1016/j.tibtech.2016.09.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 11/29/2022]
Abstract
Peptidic biomaterials represent a particularly exciting topic in regenerative medicine. Peptidic scaffolds can be specifically designed for biomimetic customization for targeted therapy. The field is at a pivotal point where preclinical research is being translated into clinics, so it is crucial to understand the theory and describe the status of this rapidly developing technology. In this review, we highlight major advantages and current limitations of self-assembling peptide-based biomaterials, and we discuss the most widely used classes of assembling peptides, describing recent and promising approaches in tissue engineering, drug delivery, and clinics. We also suggest design strategies and hurdles that still need to be overcome to fully exploit their therapeutic potential.
Collapse
Affiliation(s)
- Raffaele Pugliese
- IRCCS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, Viale Cappuccini, 1, 71013 San Giovanni Rotondo (FG), Italy
| | - Fabrizio Gelain
- IRCCS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, Viale Cappuccini, 1, 71013 San Giovanni Rotondo (FG), Italy; Center for Nanomedicine and Tissue Engineering (CNTE), A. O. Ospedale Niguarda Cà Granda, Piazza dell' Ospedale Maggiore 3, 20162 Milan, Italy.
| |
Collapse
|
21
|
Wan Z, Lu S, Zhao D, Ding Y, Chen P. Arginine-rich ionic complementary peptides as potential drug carriers: Impact of peptide sequence on size, shape and cell specificity. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1479-88. [DOI: 10.1016/j.nano.2016.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 12/22/2015] [Accepted: 01/21/2016] [Indexed: 01/17/2023]
|
22
|
Lu S, Ding Y, Wu Y, Wang R, Pan R, Wan Z, Xu W, Zhang L, Yuan YF, Chen P. An amphipathic lytic peptide for enhanced and selective delivery of ellipticine. J Mater Chem B 2016; 4:4348-4355. [DOI: 10.1039/c6tb00529b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cationic lytic peptides (CLPs) have shown promise in treating bacterial infection and cancer via selective membrane disruption but are seldom studied for drug delivery potential.
Collapse
Affiliation(s)
- Sheng Lu
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| | - Yong Ding
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| | - Yan Wu
- Department of Pharmacy
- Shanghai 9th People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Rong Wang
- Department of Pharmacy
- Shanghai 9th People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Ran Pan
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| | - Zizhen Wan
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| | - Wen Xu
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
- College of Biological and Pharmaceutical Engineering
| | - Yong-fang Yuan
- Department of Pharmacy
- Shanghai 9th People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - P. Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| |
Collapse
|
23
|
Lu S, Ding Y, Cui W, Pan R, Xu W, Chen P. Supramolecular peptide amphiphile based nanocarrier for pH-triggered Dox release, overcoming drug resistance. RSC Adv 2016. [DOI: 10.1039/c6ra21389h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Self-assembled peptide amphiphile–doxorubicin conjugates showed pH-triggered drug release and ability to combat the drug resistance in cancer cells.
Collapse
Affiliation(s)
- Sheng Lu
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| | - Yong Ding
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| | - Weijia Cui
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| | - Ran Pan
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| | - Wen Xu
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| | - P. Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| |
Collapse
|